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Abstract We present perfect fluid Friedmann–Robertson–Walker quantum cosmo-
logical models in the presence of negative cosmological constant. In this work the
Schutz’s variational formalism is applied for radiation, dust, cosmic string, and domain
wall dominated Universes with positive, negative, and zero constant spatial curvature.
In this approach the notion of time can be recovered. These give rise to Wheeler–
DeWitt equations for the scale factor. We find their eigenvalues and eigenfunctions
by using Spectral Method. After that, we use the eigenfunctions in order to construct
wave packets for each case and evaluate the time-dependent expectation value of the
scale factors, which are found to oscillate between finite maximum and minimum
values. Since the expectation values of the scale factors never tends to the singular
point, we have an initial indication that these models may not have singularities at the
quantum level.

Keywords Quantum cosmology · Wheeler–DeWitt equation · Spectral method

1 Introduction

Quantum cosmological models are important subjects on the interface of cosmology
and gravitation. At first, DeWitt [1] quantized a Friedmann Universe filled with dust
and later, closed isotropic cosmological models with matter as a conformal and mini-
mally coupled scalar fields were quantized [2,3]. Misner worked on the quantization of
anisotropic cosmological models [4], and Barabanenkov quantized the Friedmann met-
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1664 P. Pedram et al.

ric matched with the Kruskal one [5]. The quantization of a dust-like closed isotropic
cosmological model with a cosmological constant is also investigated in [6].

In the quantum cosmology the Wheeler–DeWitt (WD) equation which determines
the wave function of the Universe, can be constructed using ADM decomposition of the
geometry [7] in the Hamiltonian formalism of general relativity. However, quantum
cosmology has many technical and conceptual problems. In fact, the WD equation
of quantum gravity is a functional differential equation defined in the superspace
which is the space of all possible three-dimensional spatial metrics, and no general
solution is known in this superspace. In quantum cosmology this problem is avoided by
using symmetry requirements to freeze out an infinite number of degrees of freedom,
leaving only a few for quantization process. This procedure defines a minisuperspace,
where exact solutions can often be found. On the other hand, the general covariance
will be lost upon applying the ADM decomposition, and in most cases the notion of
time disappears at the quantum level [8]. Even, if all these problems are solved, the
interpretation of the central object, i.e., the wave function of the Universe, remains
unanswered.

The many-worlds interpretations [9] of quantum mechanics is one of the most pop-
ular interpretation schemes for the wave function of the Universe. This interpretation
differs noticeably from the Copenhagen interpretation of quantum mechanics since
the conception of probability is abandoned in some sense. In fact, all possibilities are
participated to create new Universes with different possible eigenvalues obtained by
measurements. The evolution of observables such as scale factor is found by evalu-
ating the expectation values. In this case, like in the Copenhagen interpretation, the
structure of Hilbert space and self-adjoint operators are still unchanged.

The presence of the matter in quantum cosmology needs further consideration and
can be described by fundamental fields, as done in [10]. Using WKB approximation
one can predict the behavior of the quantum Universe which leads to determination
of the trajectories in phase space. However, even in the minisuperspace, general exact
solutions are hard to find, the Hilbert space structure is ambiguous and it is difficult
to recover the conception of a semiclassical time [8,10].

Here, we consider matter as a perfect fluid. This description is basically semiclas-
sical, but it introduces a variable, which can be identified with time and connected
with the matter degrees of freedom, leading to a well-defined Hilbert space struc-
ture. Moreover, this allow us to treat the barotropic equation of state p = αρ with
arbitrary α.

It is very convenient to construct a quantum perfect fluid model. Schutz’s for-
malism [11,12] gives dynamics to the fluid degrees of freedom in interaction with
the gravitational field. Using a proper canonical transformations, at least one conju-
gate momentum operator associated with matter appears linearly in the action inte-
gral. Therefore, a Schrödinger-like equation can be obtained where the matter plays
the role of time. Moreover, recently, some applications of the Schutz’s formalism
have been discussed in the framework of the perfect fluid Stephani Universe [13,14]
and Friedmann–Robertson–Walker (FRW) Universe in the presence of Chaplygin gas
[15,16].

Until now, quantum perfect fluid models with common equations of state have
been constructed in the absence of cosmological constants [17–21]. We can study
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Perfect fluid quantum Universe in the presence of negative cosmological constant 1665

the behavior of the scale factor using the many-worlds and the de Broglie–Bohm
interpretations of quantum mechanics.

Recently, the quantization of FRW radiation dominated Universe in the presence
of a negative cosmological constant is discussed by Monerat et al. [22]. However, as
mentioned in [23], their results are inaccurate and their relative errors range between
10−3 for the ground state of k = 1 case, and 1 for the ground state of k = −1,
which make their work unreliable. Here, we generalize the previous investigations
by studying quantum perfect fluid models for barotropic equation of state p = αρ,
where α = {1/3, 0,−1/3,−2/3} correspond to radiation, dust, cosmic string, and
domain wall dominated Universes, respectively. Using the many-worlds framework,
the behavior of the scale factor is determined, although the results are independent of
the interpretation scheme employed. The large time average of the expectation value
of the scale factor is similar to the classical case. Moreover, the model predicts an
accelerated expansion today if −1/3 > α > −1.

It is important to mention that although recent observations point toward a positive
cosmological constant, it is still possible that at the very early Universe the cosmo-
logical constant be negative. Moreover, we think it is important to understand more
about such models which represent bound Universes.

This paper is organized as follows. We quantize three Friedmann–Robertson–
Walker perfect fluid models in the presence of a negative cosmological constant,
using the formalism of quantum cosmology. In Sect. 2, the quantum cosmological
model with a perfect fluid as the matter content is constructed in Schutz’s formalism
[11,12], and the WD equation in minisuperspace is found to quantize the model. The
wave-function depends on the scale factor a and on the canonical variable associated
to the fluid which plays the role of time T , in the Schutz’s variational formalism.
We separate the wave-function in two parts, one depending solely on the scale fac-
tor and the other depending only on the time. The solution in the time sector of the
WD equation is trivial, leading to imaginary exponentials of the type ei Et , where E
is the system energy and t = T . In Sect. 3, we outline the spectral method [24–26],
and use it to find the eigenvalues and eigenfunctions of corresponding WD equations.
In Sect. 4, we construct wave packets from the eigenfunctions, for radiation, dust,
cosmic string and domain wall dominated Universes, respectively, and compute the
time-dependent expectation values of the scale factors for k = 1, 0,−1. In Sect. 5, we
state our conclusions.

2 Model

Let us start from the Einstein–Hilbert action plus a perfect fluid in the formalism
developed by Schutz. For this, we write down the action for gravity plus perfect fluid as

S = 1

2

∫

M

d4x
√−g (R − 2�)+ 2

∫

∂M

d3x
√

h hab K ab +
∫

M

d4x
√−g p, (1)

here, K ab is the extrinsic curvature, � is the cosmological constant, and hab is the
induced metric over the three-dimensional spatial hypersurface, which is the boundary
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∂M of the four-dimensional manifold M . We choose units such that the factor 8πG
becomes equal to one. The first two terms were first obtained in [7] and the last term
of (1) represents the matter contribution to the total action, p being the pressure which
obeys the barotropic equation of state p = αρ. In Schutz’s formalism [11,12] the
fluid’s four-velocity can be expressed in terms of five potentials ε, ζ , β, θ and S

uν = 1

µ
(ε,ν + ζβ,ν + θ S,ν) (2)

where µ is the specific enthalpy. S is the specific entropy, and the potentials ζ and β
are connected with rotation which are absent of models in the FRW type. The vari-
ables ε and θ have no clear physical meaning. The four-velocity also satisfies the
normalization condition

uνuν = −1. (3)

The FRW metric
ds2 = −N 2(t)dt2 + a2(t)gi j dxi dx j , (4)

can be inserted in the action (1), where N (t) is the lapse function and gi j is the metric
on the constant-curvature spatial section. After some thermodynamical considerations
and using the constraints for the fluid, and dropping the surface terms, the final reduced
action takes the form [18].

S =
∫

dt

[
−3

ȧ2a

N
−�Na3+3k Na+N−1/αa3 α

(α+1)1/α+1 (ε̇+θ Ṡ)1/α+1 exp

(
− S

α

)]
.

(5)

The reduced action may be further simplified using canonical methods [18], resulting
in the super-Hamiltonian

H = − p2
a

12a
+�a3 − 3ka + pα+1

ε eS

a3α , (6)

where pa = −6ȧa/N and pε = −ρ0u0 Na3, ρ0 being the rest mass density of the
fluid. The following additional canonical transformations, which generalizes the one
used in [18],

T = −pSe−S p−(α+1)
ε , pT = pα+1

ε eS,

ε̄ = ε − (α + 1)
pS

pε
, p̄ε = pε, (7)

simplifies the super-Hamiltonian to,

H = − p2
a

12a
+�a3 − 3ka + pT

a3α , (8)

where the momentum pT is the only remaining canonical variable associated with
matter and appears linearly in the super-Hamiltonian. The parameter k defines the
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curvature of the spatial section, taking the values 0, 1,−1 for a flat, close or open
Universes, respectively.

The classical dynamics is governed by the Hamilton equations, derived from Eq. (8)
and Poisson brackets as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

ȧ = {a, NH} = − N pa
6a ,

ṗa = {pa, NH} = − N
12a2 p2

a + 3Nk

−3N�a2 + N3αa−3α−1 pT ,

Ṫ = {T, NH} = Na−3α,

ṗT = {pT , NH} = 0.

(9)

We also have the constraint equation H = 0. Choosing the gauge N = a(t), we have
the following solutions for the system

ä = −ka + 2

3
�a3 + 1 − 3α

6
a−3α pT , (10)

0 = −3ȧ2 +�a4 − 3ka2 + a1−3α pT . (11)

The classical equation of motion for the scale factor in absent of the cosmological
constant is solved in a unified form for any α ∈ [0, 1] in terms of hypergeomet-
ric functions in [27]. Moreover, In the radiation dominated Universe (α = 1/3)
with a negative cosmological constants, the classical solutions have been obtained
using Jacobi’s elliptic sine functions [22]. The WD equation in minisuperspace can be
obtained by imposing the standard quantization conditions on the canonical momenta
and

(
pa → −i ∂

∂a , pT → −i ∂
∂T

)
demanding that the super-Hamiltonian operator

annihilate the wave function (h̄ = 1)

∂2�

∂a2 + 12�a4� − 36ka2� − i12a1−3α ∂�

∂t
= 0, (12)

where t = T corresponds to the time coordinate. Equation (12) takes the form of a
Schrödinger equation i∂�/∂t = Ĥ�. Demanding that the Hamiltonian operator Ĥ
to be self-adjoint, the inner product of any two wave functions� and� must take the
form [19,28]

(�,�) =
∞∫

0

a1−3α�∗�da. (13)

On the other hand, the wave functions should satisfy the following boundary conditions

�(0, t) = 0 or
∂�(a, t)

∂a

∣∣∣∣
a=0

= 0. (14)

The WD equation (12) can be solved by separation of variables as follows:

ψ(a, t) = ei Etψ(a), (15)
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where the a dependent part of the wave function (ψ(a)) satisfies

−ψ ′′(a)+ (36ka2 − 12�a4)ψ(a) = 12Ea1−3αψ(a). (16)

Since the energy term grows faster than the potential for α < −1, this equation has
a discrete spectra (En) with associated bound state eigenfunctions (ψn(x)) only for
α > −1.

We construct a general solution to the WD equation (12) by taking linear combi-
nations of the ψn(a, t)’s,

�(a, t) =
m∑

n=0

Cn(En)ψn(a)e
i Ent , (17)

where the coefficients Cn(En) will be fixed later. Form pure mathematical point of
view, by allowing negative values of a, the Parity operator can be defined. If the WD
equation (16) is covariant under the Parity operator, its eigenfunctions can be separated
into even and odd ones. The even or odd wave packets constructed from appropriate
linear combinations of the eigenstates, have the important property that they will not
change their parity in the course of their time evolution. Therefore, if we choose the
initial wave packets to be odd or even, that is they satisfy either the first or the second
condition stated in Eq. 14, respectively, they will satisfy them for all times. We can
compute the expected value for the scale factor a for any wave function, using the
many worlds interpretation of quantum mechanics. This means, we may write the
expected value for the scale factor a as [29]

〈a〉t =
∫ ∞

0 a2−3α |�(a, t)|2da∫ ∞
0 a1−3α |�(a, t)|2da

. (18)

Before solving the WD equation (16) via spectral method, it is worthy to state a
brief overview of the Chhajlany and Malnev method and Variational Sinc Collocation
Method (VSCM), which have been recently used to solve the WD equation (16), for
radiation epoch (α = 1/3) in [22,23], respectively.

In Chhajlany and Malnev method [30,31], one adds an extra term to the original
anharmonic oscillator potential to find a subset of normalizable solutions of the mod-
ified Hamiltonian. In the case of Eq. (16) this extra term is c a6 where c is constant.
Now, the solution can be written as a polynomial where the larger the degree of the
polynomial, the smaller the constant, c is. In fact, by increasing the order of polyno-
mial, the energy eigenvalues predicted by this method approach monotonically to the
energy eigenvalues of the original Hamiltonian.

On the other hand, to obtain highly accurate numerical results, both for the energy
eigenvalues and eigenfunctions, one can use Variational Sinc Collocation Method
(VSCM) [32]. It is shown that the errors decay exponentially with the number of
elements (sinc functions) used for discretization of the Hamiltonian. Diagonaliza-
tion of the resulting matrix, by specification of the otherwise arbitrary grid spacing
h (spacing between two contiguous sinc functions), yields energy eigenvalues and
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eigenfunctions. As shown by Amore et al. [32] for a specified number of sinc func-
tions, there exists an optimal value of h which yields the minimum errors. This optimal
value can be found using the Principle of Minimal Sensitivity (PMS) [33] to the trace
of the Hamiltonian matrix.

As indicated by Lemos et al. [34] the need for a modified potential instead of the
original one in the Chhajlany and Malnev method, gives rise to significant errors,
particularly for k = −1. In fact, VSCM is more uniformly accurate and converges
more rapidly than the Chhajlany and Malnev method.

3 The spectral method

In this section we introduce spectral method (SM) [24,25] as a tool for solving dif-
ferential equation. We have recently used the spectral method for constructing the
appropriate wave packets which are solutions to a WD equation [26]. This method is
simple, fast, accurate and stable.

Let us consider the general time-independent WD equation (16),

−d2ψ(x)

dx2 + f̂ [x]ψ(x) = E ĝ[x] ψ(x), (19)

where f̂ and ĝ are arbitrary, but with derivative operators less than two. For the
usual eigenvalue problem ĝ = 1, which includes the time-independent Schrödinger
equation. The method SM can be easily extended to solve the general case which
ĝ is a operator in the x space. This generalize problem can be named a generalized
eigenvalue problem. Throughout this paper, we only examine the bound states of this
problem, i.e., the states which are the square integrable. The configuration space for
most physical problems are defined by −∞ < x < ∞. Since the bound states fall
off sufficiently fast for large |x |, a finite region suffices, and the proper choice for this
region, say −L/2 < x < L/2. The use of a finite domain is also necessary since we
need to choose a finite subspace of a countably infinite basis. We find it convenient
to shift the domain to 0 < x < L . In particular, we need to shift the potential energy
functions also. This means that we can expand the solution as,

ψ(x) =
∞∑

n=1

An

√
2

L
sin

(nπx

L

)
. (20)

We can also make the following expansions,

f̂ψ(x) =
∑

n

Bn

√
2

L
sin

(nπx

L

)
, (21)

ĝψ(x) =
∑

n

B ′
n

√
2

L
sin

(nπx

L

)
, (22)
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where Bn B ′
n are coefficients that can be determined once f̂ and ĝ are specified. By

substituting Eqs. (20), (21) and (22) into Eq. (19) and using the differential equation
of the Fourier basis we obtain,

∑
n

[(nπ

L

)2
An + Bn

]
sin

(nπx

L

)
= E

∑
n

B ′
n sin

(nπx

L

)
. (23)

Because of the linear independence of sin
( nπx

L

)
, every term in the summation must

satisfy,

(nπ

L

)2
An + Bn = E B ′

n . (24)

It only remains to determine the matrices B and B ′. Using Eqs. (21), (22) and (20) we
have,

∑
n

Bn sin
(nπx

L

)
=

∑
n

An f̂ sin
(nπx

L

)
, (25)

∑
n

B ′
n sin

(nπx

L

)
=

∑
n

An ĝ sin
(nπx

L

)
. (26)

By multiplying both sides of the above equations by sin
( nπx

L

)
and integrating over

the x-space and using the orthonormality condition of the basis functions, one finds,

Bn =
∑

m

Cm,n Am, (27)

B ′
n =

∑
m

C ′
m,n Am, (28)

where,

Cm,n = 2

L

L∫

0

sin
(mπx

L

)
f̂ sin

(nπx

L

)
dx, (29)

C ′
m,n = 2

L

L∫

0

sin
(mπx

L

)
ĝ sin

(nπx

L

)
dx . (30)

Therefore we can rewrite Eq. (24) as,

(nπ

L

)2
An +

∑
m

Cm,n Am = E
∑

m

C ′
m,n Am . (31)

It is obvious that the presence of the operators f̂ and ĝ in Eq. (19), leads to nonzero
coefficients Cm,n and C ′

m,n in Eq. (31), which in principle could couple all of the vector
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elements of A. It is easy to see that the more basis functions we include, the closer our
solution will be to the exact one. We select a finite subset of the basis functions, i.e., the
first N ones, by letting the index m run from 1 to N in the summations. Equation (31)
can be written as,

D A = E D′ A, (32)

or,

D′−1 D A = E A, (33)

where D and D′ are square matrices with N × N elements. Their elements can be
obtained from Eq. (31). The solution to this matrix equation simultaneously yields
N sought after eigenstates and eigenvalues. It is important to note that the optimized
value of L crucially depends on the number of basis functions N (L(N )), which results
in the maximum accuracy and the stability of the solutions (for a comprehensive study
about the optimization procedure see [25]).

4 Results

In this section we will solve the Eq. (16) using SM. By choosing N = 100 basis
functions, and we report our results with 10 significant digits. Note that, although, we
are free to choose other values of �, but the accuracy of results for small |�| reduces
in comparison with large values of |�| for a given number of basis N , particularly for
k = −1. This means that we need to increase the number of basis N to obtain the same
accuracy which increases the computations. With regard to these considerations, the
results are robust under changes of Lambda.

4.1 Radiation (α = 1/3)

In the radiation dominated Universe time-independent WD equation has the following
form,

−d2ψ(a)

da2 + (36ka2 − 12�a4)ψ(a) = 12Eψ(a). (34)

In this form it is obvious that the system is absolutely stable for � < 0. Note that
equation is covariant under the Parity operator. For ease of comparison of our results
with those of [22,23], we select the first condition of the Eq. (14) and choose the
coefficients Cn s in Eq. (17) to be 1 and zero for the odd and even eigenfunctions,
respectively. We can find the energy eigenvalues and eigenvectors of this equation
with ease using SM where f̂ = 36kx2 − 12�x4 and ĝ = 12 in comparison with
Eq. (19). Table 1 shows the first 26 odd eigenvalues for k = 1, 0,−1, respectively.
Figures 1, 2, and 3 show the resulting expectation values of the scale factor a, versus
t for the various values of k. As can be seen from the table, the results are as same as
those reported in [23]. To show the arbitrariness in choosing initial odd wave packet,
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Table 1 The lowest calculated
energy levels for the cases
k = 0, k = 1, and k = −1 in
radiation dominated Universe
(in all cases, � = −0.1)

k = 1 k = 0 k = −1

E1 1.510262538 0.3364795921 −21.79569604

E2 3.550647291 1.031199050 −20.39848969

E3 5.621893706 1.880761581 −19.01885126

E4 7.722777814 2.842487493 −17.65745105

E5 9.852194220 3.894746211 −16.31503013

E6 12.00913857 5.024091561 −14.99241327

E7 14.19269339 6.221192430 −13.69052532

E8 16.40201655 7.479120856 −12.41041248

E9 18.63633173 8.792490724 −11.15327022

E10 20.89492047 10.15697184 −9.920481041

E11 23.17711552 11.56899282 −8.713666752

E12 25.48229516 13.02554815 −7.534763378

E13 27.80987836 14.52406697 −6.386132854

E14 30.15932069 16.06232038 −5.270738293

E15 32.53011067 17.63835396 −4.192437789

E16 34.92176669 19.25043737 −3.156519423

E17 37.33383429 20.89702582 −2.170719225

E18 39.76588373 22.57673016 −1.246288323

E19 42.21750793 24.28829319 −0.3899963301

E20 44.68832056 26.03057067 0.4337198672

E21 47.17795441 27.80251593 1.300741394

E22 49.68605987 29.60316715 2.243855391

E23 52.21230364 31.43163692 3.256001774

E24 54.75636750 33.28710339 4.326509414

E25 57.31794728 35.16880284 5.448058248

E26 59.89675181 37.07602341 6.615611361

we can use the coefficients of odd coherent state of the quantum simple harmonic
oscillator. Figure 4 shows the 3D plot of resulting wave packet for k = 1 case.

4.2 Dust (α = 0)

In dust dominated Universe time-independent WD equation has the following form,

−d2ψ(a)

da2 + (36ka2 − 12�a4)ψ(a) = 12Eaψ(a). (35)

We can find the energy eigenvalues and eigenvectors of this equation with ease using
SM where f̂ = 36kx2 − 12�x4 and ĝ = 12x in notation displayed in Eq. (19).
Table 2 shows the first 20 positive eigenvalues for k = 1, 0,−1, respectively. Note
that, for any positive eigenvalues (E+

n ), there is an negative counterpart (E−
n ) which
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Fig. 1 Behavior of the
expectation value of the scalar
factor for � = −0.1, k = 1, and
Cn = 1, 0 for odd and even n,
respectively, in radiation regime
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Fig. 2 Behavior of the
expectation value of the scalar
factor for � = −0.1, k = 0, and
Cn = 1, 0 for odd and even n,
respectively, in radiation regime
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Fig. 3 Behavior of the
expectation value of the scalar
factor for � = −0.1, k = −1,
and Cn = 1, 0 for odd and even
n, respectively, in radiation
regime
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E−
n = −E+

n . The above equation, is not invariant under the Parity operator. Therefore,
its eigenfunctions can not in general satisfy either of the conditions of Eq. (14). How-
ever, we can construct wave packets, from linear combinations of the eigenfunctions,
which vanishes at a = 0 and t = 0. Then we need to check that the constraints
[Eq. (14)] remain valid for all t for our choice of initial condition. For example we can
choose the coefficients Cn s so as to construct a gaussian initial wave packet (�(a, 0))
which is centered, e.g., at a = 1. Figures 5, 6 and 7 show the resulting expectation
values of the scale factor a, versus t for the various values of k. As can seen from the
figures these wave packets always satisfy the first boundary condition [Eq. (14)].

123



1674 P. Pedram et al.

Fig. 4 3D plot of the square of
the wave packet for k = 1 in
radiation regime with the
coefficients of odd coherent state
of the quantum simple harmonic
oscillator
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In the case � = 0 and k = 1, the time-independent WD equation (35) reduces to

−d2ψ(a)

da2 + 36a2ψ(a) = 12Eaψ(a). (36)

In terms of the new variable x = 6a − E we find

−d2ψ(x)

dx2 +
[

x2

36
− E2

36

]
ψ(x) = 0. (37)

Equation (37) is formally identical to the time-independent Schrödinger equation for
a harmonic oscillator with unit mass and energy λ

−d2ξ

dx2 +
[
−2λ+ w2x2

]
ξ(a) = 0, (38)

where 2λ = E2/36 and w = 1/6. Therefore, the allowed values of λ are (n + 1/2)w
and the possible values of E are

En = ±√
6(2n + 1), n = 0, 1, 2, . . . (39)

Thus the stationary solutions are

�n(a, t) = e−i Entϕn (12a − En) , (40)

where

ϕn(x) = Hn

(
x√
12

)
e−x2/24 , (41)

and Hn are the n-th Hermite polynomial.
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Table 2 The lowest calculated
energy levels for the cases
k = 0, k = 1, and k = −1 in
dust dominated Universe (in all
cases, � = −15)

As mentioned in the text for
every positive eigenvalue there
exist a corresponding negative
one with identical absolute value

k = 1 k = 0 k = −1

E0 4.660967538 3.354101966 1.955113416

E1 11.92641527 10.06230590 8.159825054

E2 18.98089410 16.77050983 14.53079652

E3 25.95270272 23.47871376 20.97932418

E4 32.87827896 30.18691770 27.47251428

E5 39.77369328 36.89512163 33.99515040

E6 46.64761142 43.60332556 40.53888200

E7 53.50529876 50.31152949 47.09859109

E8 60.35022067 57.01973343 53.67089213

E9 67.18479286 63.72793736 60.25341729

E10 74.01077406 70.43614129 66.84443864

E11 80.82948903 77.14434522 73.44265237

E12 87.64196335 83.85254916 80.04704775

E13 94.44900906 90.56075309 86.65682363

E14 101.2512814 97.26895702 93.27133299

E15 108.0493176 103.9771610 99.89004490

E16 114.8435643 110.6853649 106.5125177

E17 121.6343972 117.3935688 113.1383797

E18 128.4221359 124.1017728 119.7673145

E19 135.2070546 130.8099767 126.3990507

E20 141.9893905 137.5181806 133.0333530

Fig. 5 Behavior of the
expectation value of the scalar
factor for � = −15, k = 1, and
�(a, 0) = exp(−8(a − 1)2) in
dust regime

200 400 600 800 1000

t

0.4

0.6

0.8

1

4.3 Cosmic strings (α = −1/3)

In Cosmic Strings dominated Universe time-independent WD equation has the fol-
lowing form,

−d2ψ(a)

da2 + (36ka2 − 12�a4)ψ(a) = 12E a2ψ(a). (42)
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Fig. 6 Behavior of the
expectation value of the scalar
factor for � = −15, k = 0, and
�(a, 0) = exp(−8(a − 1)2) in
dust regime
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1

Fig. 7 Behavior of the
expectation value of the scalar
factor for � = −15, k = −1,
and �(a, 0) = exp(−8(a − 1)2)
in dust regime
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t
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1

This differential equation is covariant under parity operator and hence its eigenstates
can be separated into even and odd ones. We can find the energy eigenvalues and
eigenvectors of this equation with ease using SM where f̂ = 36kx2 − 12�x4 and
ĝ = 12x2 in comparison with Eq. (19). Table 3 shows the first 20 eigenvalues for
k = 1, 0,−1, respectively. By choosing the first condition of the Eq. (14), the resulting
wave packets should consist of only the odd eigenfunctions. Therefore, the coefficients
Cn s in Eq. (17) are arbitrary for the odd eigenfunctions zero for the even ones. To
be able to extend the results of [22,23] for the radiation case to the present one, we
choose the same initial state as their’s. That is the odd ones are all chosen to be equal
to one. Figures 8, 9 and 10 show the resulting expectation values of the scale factor a,
versus t for the various values of k.

4.4 Domain walls (α = −2/3)

In Domain Walls dominated Universe (α = −2/3) the time-independent WD equation
has the following form,

−d2ψ(a)

da2 + (36ka2 − 12�a4)ψ(a) = 12E a3ψ(a). (43)
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Table 3 The lowest calculated
energy levels for the cases k = 0,
k = 1, and k = −1 in cosmic
strings dominated Universe
(in all cases, � = −15)

k = 1 k = 0 k = −1

E1 11.63722935 8.637229353 5.637229353

E2 19.36451595 16.36451595 13.36451595

E3 25.54276474 22.54276474 19.54276474

E4 30.96152618 27.96152618 24.96152618

E5 35.89633715 32.89633715 29.89633715

E6 40.48441592 37.48441592 34.48441592

E7 44.80660320 41.80660320 38.80660320

E8 48.91557892 45.91557892 42.91557892

E9 52.84808309 49.84808309 46.84808309

E10 56.63102596 53.63102596 50.63102596

E11 60.28486358 57.28486358 54.28486358

E12 63.82560554 60.82560554 57.82560554

E13 67.26607937 64.26607937 61.26607937

E14 70.61676389 67.61676389 64.61676389

E15 73.88635930 70.88635930 67.88635930

E16 77.08218981 74.08218981 71.08218981

E17 80.21050097 77.21050097 74.21050097

E18 83.27676241 80.27676241 77.27676241

E19 86.28668819 83.28668819 80.28668819

E20 89.25169642 86.25169642 83.25169642

Fig. 8 Behavior of the
expectation value of the scalar
factor for � = −15, k = 1, and
Cn = 1, 0 for odd and even n,
respectively, in cosmic strings
regime
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1.8

We can find the energy eigenvalues and eigenvectors of this equation with ease using
SM where f̂ = 36kx2 − 12�x4 and ĝ = 12x3 in comparison with Eq. (19). Table 4
shows the first 20 eigenvalues for k = 1, 0,−1, respectively. Note that, for any positive
eigenvalues (E+

n ), there is an negative counterpart (E−
n ) which E−

n = −E+
n . This case

is similar to the Dust case and in particular its differential equation is not covariant
under Parity Operator and therefore, its eigenfunctions can not in general satisfy either
of the conditions stated in Eq. (14). However, we can construct wave packets, from
linear combinations of the eigenfunctions, which vanishes at a = 0 and t = 0. Then
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Fig. 9 Behavior of the
expectation value of the scalar
factor for � = −15, k = 0, and
Cn = 1, 0 for odd and even n,
respectively, in cosmic strings
regime
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Fig. 10 Behavior of the
expectation value of the scalar
factor for � = −15, k = −1,
and Cn = 1, 0 for odd and even
n, respectively, in cosmic strings
regime
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Fig. 11 Behavior of the
expectation value of the scalar
factor for � = −15, k = 1, and
�(a, 0) = exp(−8(a − 1.5)2) in
domain walls regime
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t

1

1.2

1.4

1.6

we need to check that the constraints [Eq. (14)] remain valid for all t for our choice of
initial condition. For example we can choose the coefficients Cn s so as to construct a
gaussian initial wave packet (�(a, 0)) which is centered, e.g., at a = 1.5. Figures 11,
12 and 13 show the resulting expectation values of the scale factor a, versus t for the
various values of k. As can seen from the figures these wave packets always satisfy
the first boundary condition [Eq. (14)].
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Table 4 The lowest calculated
energy levels for the cases k = 0,
k = 1, and k = −1 in domain
walls dominated Universe (in all
cases, � = −15)

As mentioned in the text for
every positive eigenvalue there
exist a corresponding negative
one with identical absolute value

k = 1 k = 0 k = −1

E1 17.07778092 12.54649750 7.458961879

E2 21.41791925 18.18718412 14.81583000

E3 24.32147857 21.57780684 18.75859852

E4 26.60465935 24.14422756 21.63352524

E5 28.52359398 26.25664404 23.95258205

E6 30.19749314 28.07460050 25.92257362

E7 31.69296487 29.68328712 27.64978790

E8 33.05153398 31.13420271 29.19682156

E9 34.30107228 32.46114131 30.60396527

E10 35.46131513 33.68761746 31.89883581

E11 36.54683096 34.83073057 33.10127373

E12 37.56911074 35.90336205 34.22606529

E13 38.54199370 36.91577767 35.28463557

E14 39.50080454 37.87984925 36.28735433

E15 40.512127 38.825301 37.253593

E16 41.627809 39.812705 38.232631

E17 42.859939 40.895275 39.288909

E18 44.203790 42.088418 40.454402

E19 45.653137 43.388462 41.730668

E20 47.203213 44.789203 43.111449

Fig. 12 Behavior of the
expectation value of the scalar
factor for � = −15, k = 0, and
�(a, 0) = exp(−8(a − 1.5)2) in
domain walls regime
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t
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1.6

It is important to note that we have repeated the simulations for all cases (α =
1/3, 0,−1/3,−2/3) with other values of � and different initial conditions [sub-
ject to �(0, 0) = 0]. In particular, we have also repeated simulations for � =
−10,−12.5,−17.5,−20 rather than � = −15 which studied in detail, and found
the corresponding eigenvalues and eigenfunctions with desired accuracy. Moreover,
we chose other initial conditions in the form �(a, 0) = exp(−γ (a − a0)

δ) with vari-
ous choices of γ (2, 5, 10, 20), δ (2, 4, 6), and a0 (1, 1.2, 1.4, 1.6). We found that, for
all these cases the behavior of the expectation value of the scale factor is similar to
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Fig. 13 Behavior of the
expectation value of the
scalar factor for � = −15,
k = −1, and
�(a, 0) = exp(−8(a − 1.5)2)
in domain walls regime
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1.6

ones depicted in Figs. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 and 13 and never tends to the
singular point.

5 Conclusions

In this work we have investigated closed, flat, and open minisuperspace FRW quan-
tum cosmological models (k = 1, 0,−1) with perfect fluid for the radiation, dust,
cosmic strings, and domain walls dominated Universes ({α = 1/3, 0,−1/3,−2/3},
respectively). The use of Schutz’s formalism for perfect fluids allowed us to obtain a
Schrödinger-like WD equation in which the only remaining matter degree of freedom
plays the role of time. We have used spectral method and obtained accurate results
for the eigenfunctions and eigenvalues. Physically acceptable wave packets were con-
structed by appropriate linear combination of these eigenfunctions. The time evolution
of the expectation value of the scale factor has been determined in the spirit of the
many-worlds interpretation of quantum cosmology. Since the expectation values of
the scale factors for the cases considered here never tend to the singular point, we
have an initial indication that these models may not have singularities at the quantum
level. The similar conclusions have been obtained on general grounds in [18] and for
the radiation case in [22].

Acknowledgments Authors thank H.R. Sepangi for useful discussions and comments.
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