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Abstract I review the problem of dark energy focussing on cosmological constant
as the candidate and discuss what it tells us regarding the nature of gravity. Section 1
briefly overviews the currently popular “concordance cosmology” and summarizes
the evidence for dark energy. It also provides the observational and theoretical argu-
ments in favour of the cosmological constant as a candidate and emphasizes why no
other approach really solves the conceptual problems usually attributed to cosmolog-
ical constant. Section 2 describes some of the approaches to understand the nature
of the cosmological constant and attempts to extract certain key ingredients which
must be present in any viable solution. In the conventional approach, the equations
of motion for matter fields are invariant under the shift of the matter Lagrangian by a
constant while gravity breaks this symmetry. I argue that until the gravity is made to
respect this symmetry, one cannot obtain a satisfactory solution to the cosmological
constant problem. Hence cosmological constant problem essentially has to do with
our understanding of the nature of gravity. Section 3 discusses such an alternative
perspective on gravity in which the gravitational interaction—described in terms of
a metric on a smooth spacetime—is an emergent, long wavelength phenomenon, and
can be described in terms of an effective theory using an action associated with nor-
malized vectors in the spacetime. This action is explicitly invariant under the shift of
the matter energy momentum tensor Tab → Tab + �gab and any bulk cosmological
constant can be gauged away. Extremizing this action leads to an equation determin-
ing the background geometry which gives Einstein’s theory at the lowest order with
Lanczos–Lovelock type corrections. In this approach, the observed value of the cos-
mological constant has to arise from the energy fluctuations of degrees of freedom
located in the boundary of a spacetime region.
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530 T. Padmanabhan

1 Cosmological constant as the dark energy

1.1 The cosmological paradigm

A host of different observations, which became available in the last couple of decades,
have thrusted upon us a preposterous composition for the energy density of different
components in the universe which defies any simple explanation. The energy densities
of the different species which drive the expansion of the universe, can be measured
in terms of a critical energy density ρc = 3H2

0 /8πG where H0 = (ȧ/a)0 is the rate
of expansion of the universe at present. The variables �i = ρi/ρc will then give the
fractional contribution of different components of the universe (i denoting baryons,
dark matter, radiation, etc.) to the critical density required to close the universe. Obser-
vations suggest that the universe has 0.98 � �tot � 1.08 with radiation (R), baryons
(B), dark matter, made of weakly interacting massive particles (DM) and dark en-
ergy (DE) contributing �R � 5 × 10−5,�B � 0.04,�DM � 0.26,�DE � 0.7,
respectively. All known observations [1–15] are consistent with such an—admittedly
weird—composition for the universe.1

The conventional cosmological paradigm—which is remarkably successful—is
based on these numbers and can be summarized (for recent reviews of cosmologi-
cal paradigm, see, e.g., [16,17]) as follows: The key idea is that if there existed small
fluctuations in the energy density in the early universe, then gravitational instability
can amplify them in a well-understood manner leading to structures like galaxies,
etc., today. The most popular model for generating these fluctuations is based on the
idea that if the very early universe went through an inflationary phase [18–25], then
the quantum fluctuations of the field driving the inflation can lead to energy density
fluctuations [26–33].2 It is possible to construct models of inflation such that these
fluctuations are described by a Gaussian random field and are characterized by a power
spectrum of the form P(k) = Akn with n � 1. The inflationary models cannot predict
the value of the amplitude A in an unambiguous manner. But it can be determined
from CMBR observations and the inflationary model parameters can be fine-tuned to
reproduce the observed value. The CMBR observations are consistent with the infla-
tionary model for the generation of perturbations and gives A � (28.3 h−1 Mpc)4 and
n � 1. (The first results were from COBE [34–36] and WMAP has re-confirmed them
with far greater accuracy). When the perturbation is small, one can use well defined
linear perturbation theory to study its growth. But when δ ≈ (δρ/ρ) is comparable to
unity the perturbation theory breaks down. Since there is more power at small scales,
smaller scales go non-linear first and structure forms hierarchically. The non-linear
evolution of the dark matter halos can be understood by simulations as well as the-
oretical models based on approximate ansatz ([37–43]; this is essentially an example
of statistical mechanics of self gravitating systems; see e.g., [44–46]) and non-linear
scaling relations [47–54]. The baryons in the halo will cool and undergo collapse in
a fairly complex manner because of gas dynamical processes. It seems unlikely that

1 For a review of BBN, see [13].
2 For a recent discussion with detailed set of references, see [31].
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the baryonic collapse and galaxy formation can be understood by analytic approxima-
tions; one needs to do high resolution computer simulations to make any progress (For
a pedagogical description, see [55,56]). The results obtained from all these attempts
are broadly consistent with observations but the summary given above demonstrates
that modelling the universe and comparing the theory with observations is a rather
involved affair.

So, to the zeroth order, the universe is characterized by just seven numbers: h ≈ 0.7
describing the current rate of expansion;�DE � 0.7,�DM � 0.26,�B � 0.04,�R �
5×10−5 giving the composition of the universe; the amplitude A � (28.3 h−1 Mpc)4

and the index n � 1 of the initial perturbations. The remaining challenge, of course, is
to make some sense out of these numbers themselves from a more fundamental point
of view. Among all these components, the dark energy, which exerts negative pressure,
is probably the weirdest and—since non-cosmologists often wonder how strong is the
evidence for it—it is useful keep the following points in mind:

• The rapid acceptance of dark energy by the community is partially due to the
fact that—even before the supernova data came up—there were strong indications
for the existence of dark energy. Early analysis of several observations [57–59]
indicated that this component is unclustered and has negative pressure. This is,
of course, confirmed dramatically by the supernova observations [60–65]. (For a
critical look at the current data, see [66–69]; a sample of recent (2007) work in SN
data analysis papers and related topics can be found in refs. [70–77].)

• The WMAP-CMBR data with a reasonable prior on Hubble constant implies
�tot ≈ 1 while a host of other astronomical observations show that the clus-
tered matter contributes only about �DM ≈ 0.25 − −0.4. Together, they require
a unclustered (negative pressure) component in the universe independent of SN
data. It, therefore, seems very unlikely that dark energy will “go away”.

The key observational feature of dark energy is that—treated as a fluid with a stress
tensor T a

b = dia (ρ,−p,−p,−p)—it has an equation state p = wρ with w � −0.8
at the present epoch. The spatial part g of the geodesic acceleration (which measures
the relative acceleration of two geodesics in the spacetime) satisfies an exact equation
in general relativity given by:

∇ · g = −4πG(ρ + 3p). (1)

This shows that the source of geodesic acceleration is (ρ + 3p) and not ρ. As long as
(ρ + 3p) > 0, gravity remains attractive while (ρ + 3p) < 0 can lead to “repulsive”
gravitational effects. In other words, dark energy with sufficiently negative pressure
will accelerate the expansion of the universe, once it starts dominating over the normal
matter. This is precisely what is established from the study of high redshift supernova,
which can be used to determine the expansion rate of the universe in the past [60–65].

The simplest model for a fluid with negative pressure is the cosmological constant
(for a sample of recent reviews, see refs. [78–87]) withw = −1, ρ = −p = constant.
If dark energy is indeed the cosmological constant, then it introduces a fundamental
length scale in the theory L� ≡ H−1

� , related to the constant dark energy density ρDE

by H2
� ≡ (8πGρDE/3). In classical general relativity, based on G, c and L�, it is not
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possible to construct any dimensionless combination from these constants. But when
one introduces the Planck constant, h̄, it is possible to form the dimensionless com-
bination H2

�(Gh̄/c3) ≡ (L2
P/L2

�). Observations then require (L2
P/L2

�) � 10−123.
This will require enormous fine tuning. What is more, in the past, the energy density
of normal matter and radiation would have been higher while the energy density con-
tributed by the cosmological constant does not change. Hence we need to adjust the
energy densities of normal matter and cosmological constant in the early epoch very
carefully so that ρ� � ρNR around the current epoch. This raises the second of the
two cosmological constant problems: Why is (ρ�/ρNR) = O(1) at the current phase
of the universe? These are the two conventional conceptual difficulties associated with
the cosmological constant and have been discussed extensively in literature.

1.2 The “denial” approach to the cosmological constant

Because of these conceptual problems associated with the cosmological constant,
people have explored a large variety of alternative possibilities. The most popular
among them uses a scalar field φ with a suitably chosen potential V (φ) so as to make
the vacuum energy vary with time. The hope then is that, one can find a model in which
the current value can be explained naturally without any fine tuning. A simple form
of the source with variable w are scalar fields with Lagrangians of different forms, of
which we will discuss two possibilities:

Lquin = 1

2
∂aφ∂

aφ − V (φ); Ltach = −V (φ)[1− ∂aφ∂
aφ]1/2. (2)

Both these Lagrangians involve one arbitrary function V (φ). The first one, Lquin,
which is a natural generalization of the Lagrangian for a non-relativistic particle,
L = (1/2)q̇2−V (q), is usually called quintessence (For a sample of recent (� 2003)
papers covering time varying w in different guises, see [88–122]). When it acts as a
source in Friedman universe, it is characterized by a time dependent w(t) with

ρq(t) = 1

2
φ̇2 + V ; pq(t) = 1

2
φ̇2 − V ; wq = 1− (2V/φ̇2)

1+ (2V/φ̇2)
. (3)

The structure of the second Lagrangian in Eq. (2) (which arises in string theory)
can be understood by a simple analogy from special relativity. A relativistic particle
with (1-dimensional) position q(t) and mass m is described by the Lagrangian L =
−m

√
1− q̇2. It has the energy E = m/

√
1− q̇2 and momentum k = mq̇/

√
1− q̇2

which are related by E2 = k2 + m2. As is well known, this allows the possibility of
having massless particles with finite energy for which E2 = k2. This is achieved by
taking the limit of m → 0 and q̇ → 1, while keeping the ratio in E = m/

√
1− q̇2

finite. The momentum acquires a life of its own, unconnected with the velocity q̇ ,
and the energy is expressed in terms of the momentum (rather than in terms of q̇) in
the Hamiltonian formulation. We can now construct a field theory by upgrading q(t)
to a field φ. Relativistic invariance now requires φ to depend on both space and time
[φ = φ(t, x)] and q̇2 to be replaced by ∂iφ∂

iφ. It is also possible now to treat the mass
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parameter m as a function ofφ, say, V (φ) thereby obtaining a field theoretic Lagrangian
L = −V (φ)

√
1− ∂ iφ∂iφ. The Hamiltonian structure of this theory is algebraically

very similar to the special relativistic example we started with. In particular, the theory
allows solutions in which V → 0, ∂iφ∂

iφ → 1 simultaneously, keeping the energy
(density) finite. Such solutions will have finite momentum density (analogous to a
massless particle with finite momentum k) and energy density. Since the solutions can
now depend on both space and time (unlike the special relativistic example in which
q depended only on time), the momentum density can be an arbitrary function of the
spatial coordinate. The structure of this Lagrangian is similar to those analysed in a
wide class of models called K-essence (for a small sample of recent (� 2003) papers,
see [123–133]) and provides a rich gamut of possibilities in the context of cosmology
[134–161].

Since the quintessence field (or the tachyonic field) has an undetermined free func-
tion V (φ), it is possible to choose this function in order to produce a given expansion
history of the universe characterized by the function H(a) = ȧ/a expressed in terms
of a. To see this explicitly, let us assume that the universe has two forms of energy
density with ρ(a) = ρknown(a)+ρφ(a)where ρknown(a) arises from any known forms
of source (matter, radiation,. . .) and ρφ(a) is due to a scalar field. Let us first consider
quintessence. Here, the potential is given implicitly by the form [134–136,162,163]

V (a) = 1

16πG
H(1− Q)

[
6H + 2aH ′ − aH Q′

1− Q

]
, (4)

φ(a) =
[

1

8πG

]1/2 ∫
da

a

[
aQ′ − (1− Q)

d ln H2

d ln a

]1/2

, (5)

where Q(a) ≡ [8πGρknown(a)/3H2(a)] and prime denotes differentiation with
respect to a. Given any H(a), Q(a), these equations determine V (a) and φ(a) and
thus the potential V (φ). Every quintessence model studied in the literature can be
obtained from these equations.

Similar results exists for the tachyonic scalar field as well [134–136]. For example,
given any H(a), one can construct a tachyonic potential V (φ) so that the scalar field
is the source for the cosmology. The equations determining V (φ) are now given by:

φ(a) =
∫

da

aH

(
aQ′

3(1− Q)
− 2

3

aH ′

H

)1/2

, (6)

V (a) = 3H2

8πG
(1− Q)

(
1+ 2

3

aH ′

H
− aQ′

3(1− Q)

)1/2

. (7)

Equations (6) and (7) completely solve the problem. Given any H(a), these equations
determine V (a) and φ(a) and thus the potential V (φ). A wide variety of phenomeno-
logical models with time dependent cosmological constant have been considered in
the literature; all of these can be mapped to a scalar field model with a suitable V (φ).

While the scalar field models enjoy considerable popularity (one reason being they
are easy to construct!) it is very doubtful whether they have helped us to understand
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Fig. 1 The observational constraints on the variation of dark energy density as a function of redshift
from WMAP and SNLS data (see [164]). The green/hatched region is excluded at 68% confidence limit,
red/cross-hatched region at 95% confidence level and the blue/solid region at 99% confidence limit. The
white region shows the allowed range of variation of dark energy at 68% confidence limit

the nature of the dark energy at any deeper level. These models, viewed objectively,
suffer from several shortcomings:

• They have no predictive power. As explicitly demonstrated above, virtually every
form of a(t) can be modelled by a suitable “designer” V (φ).

• These models are degenerate in another sense. The previous discussion illustrates
that even when w(a) is known/specified, it is not possible to proceed further and
determine the nature of the scalar field Lagrangian. The explicit examples given
above show that there are at least two different forms of scalar field Lagrangians—
corresponding to the quintessence or the tachyonic field—which could lead to the
same w(a). (See the first paper in refs. [66–69] for an explicit example of such a
construction.)

• By and large, the potentials used in the literature have no natural field theoretical
justification. All of them are non-renormalizable in the conventional sense and
have to be interpreted as a low energy effective potential in an ad hoc manner.

• One key difference between cosmological constant and scalar field models is that
the latter lead to a w(a) which varies with time. If observations have demanded
this, or even if observations have ruled out w = −1 at the present epoch, then one
would have been forced to take alternative models seriously. However, all available
observations are consistent with cosmological constant (w = −1) and—in fact—
the possible variation of w is strongly constrained [164] as shown in Fig. 1.
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• While on the topic of observational constraints on w(t), the following point needs
to be stressed: One should be careful about the hidden assumptions in the statistical
analysis of these data. Claims regarding the value of w depends crucially on the
data sets used, priors which are assumed and possible parameterizations which are
adopted. (For more details related to these issues, see the last reference in [164].)
It is fair to say that all currently available data is consistent with w = −1. Further,
there is some amount of tension between WMAP and SN-Gold data with the recent
SNLS data [65] being more concordant with WMAP than the SN Gold data.

• The most serious problem with the scalar field models is the following: All the
scalar field potentials require fine tuning of the parameters in order to be viable. This
is obvious in the quintessence models in which adding a constant to the potential is
the same as invoking a cosmological constant. So to make the quintessence models
work, we first need to assume the cosmological constant is zero. These models,
therefore, merely push the cosmological constant problem to another level, making
it somebody else’s problem!.

The last point makes clear that if we shift L→ Lmatt − 2λm in an otherwise suc-
cessful scalar field model for dark energy, we end up “switching on” the cosmological
constant and raising the problems again. It is therefore important to address this issue,
which we will discuss in Sect. 3.

Given this situation, we shall first take a more serious look at the cosmological
constant as the source of dark energy in the universe.

2 Aspects of the cosmological constant

2.1 Facing up to the challenge

The observational and theoretical features described above suggests that one should
consider cosmological constant as the most natural candidate for dark energy. Though
it leads to well known problems, it is also the most economical [just one number] and
simplest explanation for all the observations.

Once we invoke the cosmological constant, classical gravity will be described by
the three constants G, c and � ≡ L−2

� . Since �(Gh̄/c3) ≡ (L P/L�)2 ≈ 10−123, it
is obvious that the cosmological constant is telling us something regarding quantum
gravity, indicated by the combination Gh̄. An acid test for any quantum gravity model
will be its ability to explain this value; needless to say, all the currently available
models—strings, loops, etc.—flunk this test. Even assuming that this is more of an
issue in semiclassical gravity rather than quantum gravity, one cannot help noticing
that several different approaches to semiclassical gravity [165–172] are silent about
cosmological constant.

In terms of the energy scales, the cosmological constant problem is an infra red
problem par excellence. At the same time, the occurrence of h̄ in �(Gh̄/c3) shows
that it is a relic of a quantum gravitational effect (or principle) of unknown nature.
One is envisaging here a somewhat unusual possibility of a high energy phenomenon
leaving a low energy relic and an analogy will be helpful to illustrate this idea [173].
Suppose we solve the Schrodinger equation for the Helium atom for the quantum
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states of the two electrons ψ(x1, x2). When the result is compared with observations,
we will find that only half the states—those in whichψ(x1, x2) is antisymmetric under
x1 ←→ x2 interchange—are realized in nature. But the low energy Hamiltonian for
electrons in the Helium atom has no information about this effect! Here is a low
energy (IR) effect which is a relic of relativistic quantum field theory (spin-statistics
theorem) that is totally non-perturbative, in the sense that writing corrections to the
Hamiltonian of the Helium atom in some (1/c) expansion will not reproduce this result.
I suspect the current value of cosmological constant is related to quantum gravity in
a similar spirit. There must exist a deep principle in quantum gravity which leaves its
non-perturbative trace even in the low energy limit that appears as the cosmological
constant.

2.1.1 Cosmology with two length scales

Given the two length scales L P and L�, one can construct two energy scales ρUV =
1/L4

P and ρIR = 1/L4
� in natural units (c = h̄ = 1). There is sufficient amount of

justification from different theoretical perspectives to treat L P as the zero point length
of spacetime [174–185], giving a natural interpretation toρUV . The second one,ρIR also
has a natural interpretation. Since the universe dominated by a cosmological constant
at late times will be asymptotically DeSitter with a(t) ∝ exp(t/L�) at late times,
it will have a horizon and associated thermodynamics [186,187] with a temperature
T = H�/2π . The corresponding thermal energy density is ρthermal ∝ T 4 ∝ 1/L4

� =
ρIR . Thus L P determines the highest possible energy density in the universe while L�
determines the lowest possible energy density in this universe. As the energy density
of normal matter drops below this value, ρIR, the thermal ambience of the DeSitter
phase will remain constant and provide the irreducible “vacuum noise”. The observed
dark energy density is the geometric mean

ρDE = √ρIRρUV =
1

L2
P L2

�

(8)

of these two energy densities. If we define a dark energy length scale LDE such that
ρDE = 1/L4

DE then LDE = √L P L� is the geometric mean of the two length scales
in the universe.3

Figure 2 describes some peculiar features in such a universe [188,189]. Using
the characteristic length scale of expansion, the Hubble radius dH ≡ (ȧ/a)−1, we
can distinguish between three different phases of such a universe. The first phase is
when the universe went through a inflationary expansion with dH = constant; the
second phase is the radiation/matter dominated phase in which most of the stan-
dard cosmology operates and dH increases monotonically; the third phase is that of
re-inflation (or accelerated expansion) governed by the cosmological constant in which
dH is again a constant. The first and last phases are time translation invariant; that is,
t → t+ constant is an (approximate) invariance for the universe in these two phases.

3 Incidentally, LDE ≈ 0.04 mm is macroscopic; it is also pretty close to the length scale associated with a
neutrino mass of 10−2 eV; another intriguing coincidence ?!
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Fig. 2 The geometrical structure of a universe with two length scales L P and L� corresponding to the
Planck length and the cosmological constant [188,189]. Such a universe spends most of its time in two
DeSitter phases which are (approximately) time translation invariant. The first DeSitter phase corresponds
to the inflation and the second corresponds to the accelerated expansion arising from the cosmological
constant. Most of the perturbations generated during the inflation will leave the Hubble radius (at some
A, say) and re-enter (at B). However, perturbations which exit the Hubble radius earlier than C will never
re-enter the Hubble radius, thereby introducing a specific dynamic range CE during the inflationary phase.
The epoch F is characterized by the redshifted CMB temperature becoming equal to the DeSitter temperature
(H�/2π)which introduces another dynamic range DF in the accelerated expansion after which the universe
is dominated by vacuum noise of the DeSitter spacetime

The universe satisfies the perfect cosmological principle and is in steady state during
these phases!

In the most natural scenario, the two DeSitter phases (first and last) can be of
arbitrarily long duration [188]. If �� ≈ 0.7,�DM ≈ 0.3 the final DeSitter phase
does last forever; as regards the inflationary phase, nothing prevents it from lasting
for arbitrarily long duration. Viewed from this perspective, the in between phase—
in which most of the “interesting” cosmological phenomena occur—is of negligible
measure in the span of time. It merely connects two steady state phases of the universe.
The Fig. 2 also shows the variation of LDE by broken horizontal lines.

While the two DeSitter phases can last forever in principle, there is a natural cutoff
length scale in both of them which makes the region of physical relevance to be
finite [188]. Let us first discuss the case of re-inflation in the late universe. As the
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universe grows exponentially in the phase 3, the wavelength of CMBR photons are
being redshifted rapidly. When the temperature of the CMBR radiation drops below
the DeSitter temperature (which happens when the wavelength of the typical CMBR
photon is stretched to the L�) the universe will be essentially dominated by the vacuum
thermal noise of the DeSitter phase. This happens at the point marked F when the
expansion factor is a = aF determined by the equation T0(a0/aF ) = (1/2πL�). Let
a = a� be the epoch at which cosmological constant started dominating over matter,
so that (a�/a0)

3 = (�DM/��). Then we find that the dynamic range of DF is

aF

a�
= 2πT0 L�

(
��

�DM

)1/3

≈ 3× 1030. (9)

One can also impose a similar bound on the physically relevant duration of infla-
tion. We know that the quantum fluctuations generated during this inflationary phase
could act as seeds of structure formation in the universe [26–31].2 Consider a per-
turbation at some given wavelength scale which is stretched with the expansion of
the universe as λ ∝ a(t). (See the line marked AB in Fig. 2.) During the infla-
tionary phase, the Hubble radius remains constant while the wavelength increases,
so that the perturbation will “exit” the Hubble radius at some time (the point A
in Fig. 2). In the radiation dominated phase, the Hubble radius dH ∝ t ∝ a2

grows faster than the wavelength λ ∝ a(t). Hence, normally, the perturbation will
“re-enter” the Hubble radius at some time (the point B in Fig. 2). If there was no
re-inflation, this will make all wavelengths re-enter the Hubble radius sooner or later.
But if the universe undergoes re-inflation, then the Hubble radius “flattens out” at
late times and some of the perturbations will never reenter the Hubble radius. The
limiting perturbation which just “grazes” the Hubble radius as the universe enters the
re-inflationary phase is shown by the line marked CD in Fig. 2. If we use the criterion
that we need the perturbation to reenter the Hubble radius, we get a natural bound
on the duration of inflation which is of direct astrophysical relevance. This portion
of the inflationary regime is marked by CE and its dynamic range can be calculated
to be:

(
aend

ai

)
=

(
T0 L�

Treheat H
−1
in

) (
��

�DM

)1/3

=
(

aF

a�

)
(2πTreheat H

−1
in )
−1 ∼= 1025 (10)

for a GUTs scale inflation with EGUT = 1014GeV, Treheat = EGUT, ρin = E4
GUT

we have 2πH−1
in Treheat ≈ 105. If we consider a quantum gravitational, Planck scale,

inflation with 2πH−1
in Treheat = O(1), the phases CE and DF are approximately equal.

The region in the quadrilateral CEDF is the most relevant part of standard cosmology,
though the evolution of the universe can extend to arbitrarily large stretches in both
directions in time. This figure is telling us something regarding the duality between
Planck scale and Hubble scale or between the infrared and ultraviolet limits of the
theory and is closely related to the fact that ρ2

DE = ρU V ρIR.
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2.1.2 Area scaling for energy fluctuations

The geometrical mean relation described above can also be presented in a different
manner which allows us to learn something significant. Consider a 3-dimensional
region of size L with a bounding area which scales as L2. Let us assume that we
associate with this region N microscopic cells of size L P each having a Poissonian
fluctuation in energy of amount EP ≈ 1/L P . Then the mean square fluctuation of
energy in this region will be (
E)2 ≈ N L−2

P corresponding to the energy density ρ =

E/L3 = √N/L P L3. If we make the usual assumption that N = Nvol ≈ (L/L P )

3,
this will give

ρ =
√

Nvol

L P L3 =
1

L4
P

(
L P

L

)3/2

(bulk fluctuations). (11)

On the other hand, if we assume that (for reasons which are unknown), the relevant
degrees of freedom scale as the surface area of the region, then N = Nsur ≈ (L/L P )

2

and the relevant energy density is

ρ =
√

Nsur

L P L3 =
1

L4
P

(
L P

L

)2

= 1

L2
P L2

(surface fluctuations). (12)

If we take L ≈ L�, the surface fluctuations in Eq. (12) give precisely the geometric
mean in Eq. (8) which is observed. On the other hand, the bulk fluctuations lead to
an energy density which is larger by a factor (L/L P )

1/2. Of course, if we do not take
fluctuations in energy but coherently add them, we will get N/L P L3 which is 1/L4

P
for the bulk and (1/L P )

4(L P/L) for the surface. In summary, we have the hierarchy:

ρ = 1

L4
P

×
[

1,

(
L P

L

)
,

(
L P

L

)3/2

,

(
L P

L

)2

,

(
L P

L

)4

. . .

]

(13)

in which the first one arises by coherently adding energies (1/L P ) per cell with
Nvol = (L/L P )

3 cells; the second arises from coherently adding energies (1/L P )

per cell with Nsur = (L/L P )
2 cells; the third one is obtained by taking fluctuations in

energy and using Nvol cells; the fourth from energy fluctuations with Nsur cells; and
finally the last one is the thermal energy of the DeSitter space if we take L ≈ L� and
clearly the further terms are irrelevant due to this vacuum noise. Of all these, the only
viable possibility is the one that is obtained if we assume that

• The number of active degrees of freedom in a region of size L scales as Nsur =
(L/L P )

2.
• It is the fluctuations in the energy that contributes to the cosmological constant

[190–199] and the bulk energy does not gravitate.4

4 For earlier attempts in similar spirit, see [192].
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Recently, it has been shown—in a series of papers, see refs. [200–205]—that it
is possible to obtain classical relativity from purely thermodynamic considerations
in which the surface term of the gravitational actions play a crucial role. The area
scaling is familiar from the usual result that entropy of horizons scale as area. In fact,
one can argue from general considerations that the entropy associated with any null
surface should be (1/4) per unit area and will be observer dependent. Further, in cases
like Schwarzschild black hole, one cannot even properly define the volume inside a
horizon. A null surface, obtained as a limit of a sequence of timelike surfaces (like the
r = 2M obtained from r = 2M + k surfaces with k → 0+), “loses” one dimension
in the process (e.g., r = 2M + k is 3-dimensional and timelike for k > 0 but is
2-dimensional and null for k = 0) suggesting that the scaling of degrees of freedom
has to change appropriately. It is difficult to imagine that these features are unconnected
and accidental and we will discuss these ideas further in Sect. 3.

2.2 Attempts on the life of �

Let us now turn our attention to few of the many attempts to understand the cosmo-
logical constant with the choice dictated by personal bias. There is extensive literature
on different paradigms for solving the cosmological constant problem, like e.g., those
based on new symmetries: [206–208]; those based on QFT in CST: [209–216]. Non-
ideal fluids mimicking cosmological constant, like e.g., [217]; Quantum cosmologi-
cal considerations: [218–223]. Holographic dark energy: [224–229]. Those based on
renormalization group, running coupling constants and more general time dependent
decay schemes: [230–240] and many more.

2.2.1 Conservative explanations of dark energy

One of the least esoteric ideas regarding the dark energy is that the cosmological
constant term in the FRW equations arises because we have not calculated the energy
density driving the expansion of the universe correctly. The motivation for such a
suggestion arises from the following fact: The energy momentum tensor of the real
universe, Tab(t, x) is inhomogeneous and anisotropic and will lead to a complicated
metric gab if only we could solve the exact Einstein’s equations Gab[g] = κTab.
The metric describing the large scale structure of the universe should be obtained by
averaging this exact solution over a large enough scale, to get 〈gab〉. But what we
actually do is to average the stress tensor first to get 〈Tab〉 and then solve Einstein’s
equations. But since Gab[g] is non-linear function of the metric, 〈Gab[g]〉 = Gab[〈g〉]
and there is a discrepancy. This is most easily seen by writing

Gab[〈g〉] = κ
[
〈Tab〉 + κ−1(Gab[〈g〉] − 〈Gab[g]〉)

]
≡ κ [〈Tab〉 + T corr

ab

]
. (14)

If—based on observations—we take the 〈gab〉 to be the standard Friedman metric,
this equation shows that it has, as its source, two terms: The first is the standard
average stress tensor and the second is a purely geometrical correction term T corr

ab =
κ−1(Gab[〈g〉] − 〈Gab[g]〉) which arises because of non-linearities in the Einstein’s
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theory that leads to 〈Gab[g]〉 = Gab[〈g〉]. If this term can mimic the cosmological
constant at large scales there will be no need for dark energy and—as a bonus—one
will solve the coincidence problem!

The approach requires us to identify an effective expansion factor aeff(t) of an
inhomogeneous universe after suitable averaging, to be sourced by terms which will
lead to äeff(t) > 0 while the standard matter [with (ρ+3p) > 0] leads to deceleration
of standard expansion factor a(t). Since correct averaging of positive quantities in
(ρ + 3p) will not lead to a negative quantity, the real hope is in defining aeff(t) and
obtaining its dynamical equation such that äeff (t) > 0. In spite of some recent attention
this idea has received [241–252] it is doubtful whether it will lead to the correct result
when implemented properly. The reasons for my skepticism are the following:

• Any calculation in linear theory or any calculation in which special symmetries are
invoked are inconclusive in settling the issue. The key question, of identifying a
suitable analogue of expansion factor from an averaged geometry, is non-trivial and
it is not clear that the answer will be unique. To stress the point by an extreme (and a
bit silly) example, suppose we decide to call a(t)n with, say n > 2 as the effective
expansion factor aeff(t) = a(t)n ; obviously äeff can be positive (“accelerating
universe”) even with ä being negative. So, unless one has a unique procedure to
identify the expansion factor of the average universe, it is difficult to settle the
issue.

• It is obvious that T corr
ab is non-zero (for an explicit example, in a completely different

context of electromagnetic plane wave, see [253]); the question that needs to be
settled is how big is it compared to Tab. It seems unlikely that when properly done,
we will get a large effect for the simple reason that the amount of mass which is
contained in the non-linear regimes in the universe today is subdominant.

• This approach is too strongly linked to explaining the acceleration as observed by
SN. Even if we decide to completely ignore all SN data, we still have reasonable
evidence for dark energy and it is not clear how this approach can tackle such
evidence.

Another equally conservative explanation of the cosmic acceleration will be that
we are located in a large underdense region in the universe; so that, locally, the under-
density acts like negative mass and produces a repulsive force. While there has been
some discussion in the literature [254,255] as to whether observations indicate such
a local “Hubble bubble”, this does not seem to be a tenable explanation that one can
take seriously at this stage. Again, CMBR observations indicating dark energy, for
example, will not be directly affected by this feature though one does need to take into
account the effect of the local void.

Finally, one should not forget that a vanishing cosmological constant is still a prob-
lem that needs an explanation. So even if all the evidence for dark energy disappears
within a decade, we still need to understand why cosmological constant is zero and
much of what I have to say in the sequel will remain relevant. I stress this because there
is a recent tendency to forget the fact that the problem of the cosmological constant
existed (and was recognized as a problem) long before the observational evidence
for dark energy, accelerating universe, etc., cropped up. In this sense, cosmological
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constant problem has an important theoretical dimension which is distinct from what
has been introduced by the observational evidence for dark energy.

2.2.2 Cosmic Lenz law

The second simplest possibility which has been attempted in the literature several
times in different guises is to try and “cancel out” the cosmological constant by some
process, usually quantum mechanical in origin. One can, for example, ask whether
switching on a cosmological constant will lead to a vacuum polarization with an effec-
tive energy momentum tensor that will tend to cancel out the cosmological constant.
A less subtle way of doing this is to invoke another scalar field (here we go again!)
such that it can couple to cosmological constant and reduce its effective value [256–
262]. Unfortunately, none of this could be made to work properly. By and large, these
approaches lead to an energy density which is either ρUV ∝ L−4

P or to ρIR ∝ L−4
� . The

first one is too large while the second one is too small!

2.2.3 Unimodular gravity

One possible way of addressing the issue of cosmological constant is to simply elimi-
nate from the gravitational theory those modes which couple to cosmological constant.
If, for example, we have a theory in which the source in Eq. (1) is (ρ + p) rather than
(ρ+3p), then cosmological constant will not couple to gravity at all. Unfortunately it
is not possible to develop a covariant theory of gravity using (ρ+ p) as the source. But
we can probably gain some insight from the following considerations. Any metric gab

can be expressed in the form gab = f 2(x)qab such that det q = 1 so that det g = f 4.
From the action functional for gravity

A = 1

16πG

∫ √−g d4x (R − 2�) = 1

16πG

∫ √−g d4x R − �

8πG

∫
d4x f 4(x)

(15)
it is obvious that the cosmological constant couples only to the conformal factor f .
So if we consider a theory of gravity in which f 4 = √−g is kept constant and only
qab is varied, then such a model will be oblivious of direct coupling to cosmological
constant. If the action (without the � term) is varied, keeping det g = −1, say, then
one is lead to a unimodular theory of gravity that has the equations of motion

Rab − (1/4)gab R = κ(Tab − (1/4)gabT ) (16)

with zero trace on both sides. Using the Bianchi identity, it is now easy to show that
this is equivalent to the usual theory with an arbitrary cosmological constant. That
is, cosmological constant arises as an undetermined integration constant in this model
[263–268].

While this is all very interesting, we still need an extra physical principle to fix
the value (even the sign) of cosmological constant. One possible way of doing this,
suggested in Eq. (15), is to interpret the� term in the action as a Lagrange multiplier for
the proper volume of the spacetime. Then it is reasonable to choose the cosmological
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constant such that the total proper volume of the universe is equal to a specified
number. While this will lead to a cosmological constant which has the correct order of
magnitude, it has an obvious problem because the proper four volume of the universe
is infinite unless we make the spatial sections compact and restrict the range of time
integration.

Amongst all approaches, this one has some valuable ingredients for a solution to the
cosmological constant problem because it directly eliminates the coupling between
gravity and bulk cosmological constant. But it needs to be remodelled considerably
to be made viable. We will discuss in the next section how this can be done in a
completely different approach to gravity which holds promise.

3 Gravity as an emergent phenomenon and the cosmological constant

3.1 The necessary ingredients of a new perspective

In conventional approach to gravity, one derives the equations of motion from a
Lagrangian Ltot = Lgrav(g)+Lmatt(g, φ)where Lgrav is the gravitational Lagrangian
dependent on the metric and its derivative and Lmatt is the matter Lagrangian which
depends on both the metric and the matter fields, symbolically denoted as φ. This
total Lagrangian is integrated over the spacetime volume with the covariant measure√−gd4x to obtain the action. In such an approach, the cosmological constant can be
introduced via two different routes which are conceptually different but operationally
the same.

First, one may decide to take the gravitational Lagrangian to be Lgrav = (2κ)−1(R−
2�g) where �g is a parameter in the (low energy effective) action just like the New-
tonian gravitational constant κ . This is equivalent to assuming that, even in the absence
of matter, flat spacetime is not a solution to the field equations. The second route
through which the cosmological constant can be introduced is by shifting the matter
Lagrangian by Lmatt → Lmatt − 2λm . The equations of motion for matter are invari-
ant under such a transformation which implies that—in the absence of gravity—we
cannot determine the value of λm . But such a shift is clearly equivalent to adding a
cosmological constant 2κλm to the Lgrav. In general, what can be observed through
gravitational interaction is the combination �tot = �g + 2κλm .

It is clear that there are two distinct aspects to the so called cosmological constant
problem. The first question is why�tot is very small when expressed in natural units.
Second, since �tot could have had two separate contributions from the gravitational
and matter sectors, why does the sum remain so fine tuned? This question is particularly
relevant because it is believed that our universe went through several phase transitions
in the course of its evolution, each of which shifts the energy momentum tensor of
matter by T a

b → T a
b + L−4δa

b where L is the scale characterizing the transition.
For example, the GUT and Weak Interaction scales are about LGUT ≈ 10−29 cm,
L SW ≈ 10−16 cm respectively which are tiny compared to L�. Even if we take a
more pragmatic approach, the observation of Casimir effect in the lab sets a bound
that L < O(1) nanometer, leading to a ρ which is about 1012 times the observed value
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[269]. Given all these, it seems reasonable to assume that gravity is quite successful
in ignoring most of the energy density in the vacuum.

The transformation L→ Lmatt − 2λm is a symmetry of the matter sector (at least
at scales below the scale of supersymmetry breaking; we shall ignore supersymmetry
in what follows). The matter equations of motion do not care about constant λm . In
the conventional approach, gravity breaks this symmetry. This is the root cause of the
so called cosmological constant problem. As long as gravitational field equations are
of the form Eab = κTab where Eab is some geometrical quantity (which is Gab in
Einstein’s theory) the theory cannot be invariant under the shifts of the form T a

b →
T a

b + ρδa
b . Since such shifts are allowed by the matter sector, it is very difficult to

imagine a definitive solution to cosmological constant problem within the conventional
approach to gravity.

If metric represents the gravitational degree of freedom that is varied in the action
and we demand full general covariance (unlike in the unimodular theory of gravity),
we cannot avoid Lmatter

√−g coupling and cannot obtain of the equations of motion
which are invariant under the shift Tab → Tab + �gab. Clearly a new, drastically
different, approach to gravity is required.

Even if we manage to obtain a theory in which gravitational action is invariant
under the shift Tab → Tab +�gab, we would have only succeeded in making gravity
is decouple from the bulk vacuum energy. While this is considerable progress, there
still remains the second issue of explaining the observed value of the cosmological
constant. Once the bulk value of the cosmological constant (or vacuum energy) decou-
ples from gravity, classical gravity becomes immune to cosmological constant; that
is, the bulk classical cosmological constant can be gauged away. Any observed value
of the cosmological constant has to be necessarily a quantum phenomenon arising as
a relic of microscopic spacetime fluctuations. This is a non-trivial issue to address at
least for two reasons: First, even the structure of matter vacuum in the presence of
non-trivial metric is far from simple; for example, it is well known that the vacuum
state depends on the class of observers we are considering [270–275] and it is not clear
whether this aspect has any fundamental significance. Second, and more important,
we have no clue as to what is the substructure from which the spacetime arises as an
excitation. The concept of gravitons is fairly useless [276] in providing an answer to
this—inherently non-perturbative—question.

Nevertheless, in an approach in which the surface degrees of freedom play the
dominant role, rather than bulk degrees of freedom, we have a hope for obtaining the
correct value for the cosmological constant. We have already seen that, in this case one
obtains the correct result if the relevant degrees of freedom are scales as the surface
area of a region rather as volume. Hence, to be considered plausible, any model should
single out surface degrees of freedom in some suitable manner. To summarize the
above discussion, we are looking for an approach which has the following ingredients
[277,278]:

• The field equations must remain invariant under the shift Lmatt → Lmatt + λm

of the matter Lagrangian Lmatt by a constant λm . That is, we need to have some
kind of “gauge freedom” to absorb any λm . Once we have succeeded in decoupling
gravity from bulk vacuum energy, we have won more than half the battle.
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• General covariance requires using the integration measure
√−gd Dx in actions.

Since we do not want to restrict general covariance but at the same time do not
want this coupling to metric tensor via

√−g, it follows that metric cannot be the
dynamical variable in our theory.

• The discussion in Sect. 2.1.2, especially Eq. (12), shows that the relevant degrees of
freedom should be linked to surfaces in spacetime rather than bulk regions. This is
important because—after we eliminate the coupling between the bulk cosmological
constant and gravity—we still need to address the observed value of cosmological
constant. This is a relic of quantum gravitational physics and should arise from
degrees of freedom which scale as the surface area.

• In such a approach, one should naturally obtain a theory of gravity which is more
general than Einstein’s theory with the latter emerging as a low energy approxi-
mation.

We will now describe how this can be achieved in a model in which gravity arises
as an emergent phenomenon like elasticity.

3.2 Micro-structure of the spacetime

For reasons described above, we abandon the usual picture of treating the metric as
the fundamental dynamical degrees of freedom of the theory and treat it as providing a
coarse grained description of the spacetime at macroscopic scales, somewhat like the
density of a solid—which has no meaning at atomic scales [279–289]. The unknown,
microscopic degrees of freedom of spacetime (which should be analogous to the atoms
in the case of solids), will play a role only when spacetime is probed at Planck scales
(which would be analogous to the lattice spacing of a solid [174–185]).

Moreover, in the study of ordinary solids, one can distinguish between three
levels of description. At the macroscopic level, we have the theory of elasticity which
has a life of its own and can be developed purely phenomenologically. At the other
extreme, the microscopic description of a solid will be in terms of the statistical
mechanics of a lattice of atoms and their interaction. Both of these are well known;
but interpolating between these two limits is the thermodynamic description of a solid
at finite temperature which provides a crucial window into the existence of the cor-
puscular substructure of solids. As Boltzmann taught us, heat is a form of motion and
we will not have the thermodynamic layer of description if matter is a continuum all
the way to the finest scales and atoms did not exist! The mere existence of a thermody-
namic layer in the description is proof enough that there are microscopic degrees of
freedom.

Move on from a solid to the spacetime. Again we should have three levels of
description. The macroscopic level is the smooth spacetime continuum with a metric
tensor gab(xi ) and the equations governing the metric have the same status as the
phenomenological equations of elasticity. At the microscopic level, we expect a quan-
tum description in terms of the “atoms of spacetime” and some associated degrees of
freedom qA which are still elusive. But what is crucial is the existence of an interpo-
lating layer of thermal phenomenon associated with null surfaces in the spacetime.
Just as a solid cannot exhibit thermal phenomenon if it does not have microstructure,
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thermal nature of horizon, for example, cannot arise without the spacetime having a
microstructure.

In such a picture, we normally expect the microscopic structure of spacetime to man-
ifest itself only at Planck scales or near singularities of the classical theory. However, in
a manner which is not fully understood, the horizons—which block information from
certain classes of observers—link [290,291] certain aspects of microscopic physics
with the bulk dynamics, just as thermodynamics can provide a link between statistical
mechanics and (zero temperature) dynamics of a solid. The reason is probably related
to the fact that horizons lead to infinite redshift, which probes virtual high energy
processes; it is, however, difficult to establish this claim in mathematical terms.

The above paradigm, in which the gravity is an emergent phenomenon, is anchored
on a fundamental relationship between the dynamics of gravity and thermodynamics
of horizons [292,293] and the following three results are strongly supportive of the
above point of view:

• There is a deep connection between the dynamical equations governing the metric
and the thermodynamics of horizons. An explicit example was provided in ref.
[294], in the case of spherically symmetric horizons in four dimensions in which
it was shown that, Einstein’s equations can be interpreted as a thermodynamic
relation T d S = d E + PdV arising out of virtual radial displacements of the
horizon. Further work showed that this result is valid in all the cases for which
explicit computation can be carried out—like in the Friedmann models [295–298]
as well as for rotating and time dependent horizons in Einstein’s theory [299].

• The Hilbert Lagrangian has the structure LE H ∝ R ∼ (∂g)2 + ∂2g. In the usual
approach the surface term arising from Lsur ∝ ∂2g has to be ignored or cancelled to
get Einstein’s equations from Lbulk ∝ (∂g)2. But there is a peculiar (unexplained)
relationship between Lbulk and Lsur:

√−gLsur = −∂a

(
gi j
∂
√−gLbulk

∂(∂agi j )

)
. (17)

This shows that the gravitational action is “holographic” with the same information
being coded in both the bulk and surface terms and one of them is sufficient. One
can indeed obtain Einstein’s equations from an action principle which uses only
the surface term and the virtual displacements of horizons [277,278,300,301].
Since the surface term has the thermodynamic interpretation as the entropy of
horizons, this establishes a direct connection between spacetime dynamics and
horizon thermodynamics.

• Most importantly, recent work has shown that all the above results extend far
beyond Einstein’s theory. The connection between field equations and the thermo-
dynamic relation T d S = d E+PdV is not restricted to Einstein’s theory alone, but
is in fact true for the case of the generalized, higher derivative Lanczos–Lovelock
gravitational theory in D dimensions as well [302–306]. The same is true [307] for
the holographic structure of the action functional: the Lanczos–Lovelock action
has the same structure and—again—the entropy of the horizons is related to the
surface term of the action. These results show that the thermodynamic description
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is far more general than just Einstein’s theory and occurs in a wide class of theories
in which the metric determines the structure of the light cones and null surfaces
exist blocking the information.

The conventional approach to gravity fails to provide any clue on these results just
as Newtonian continuum mechanics—without corpuscular, discrete, substructure for
matter—cannot explain thermodynamic phenomena. A natural explanation for these
results requires a different approach to spacetime dynamics which I will now outline.

3.3 Gravity from normalized vector fields

Suppose there are certain microscopic—as yet unknown—degrees of freedom qA,
analogous to the atoms in the case of solids, described by some microscopic action
functional Amicro[qA]. In the case of a solid, the relevant long-wavelength elastic
dynamics is captured by the displacement vector field which occurs in the equation
xa → xa + ξa(x). In the case of spacetime, we no longer want to use metric as a
dynamical variable; so we need to introduce some other degrees of freedom, analogous
to ξa in the case of elasticity, and an effective action functional based on it. Normally,
varying an action functional with respect certain degrees of freedom will lead to
equations of motion determining those degrees of freedom. But we now make an
unusual demand that varying our action principle with respect to some (non-metric)
degrees of freedom should lead to an equation of motion determining the background
metric which remains non-dynamical.

Based on the role expected to be played by surfaces in spacetime, we shall take the
relevant degrees of freedom to be the normalized vector fields ni (x) in the spacetime
[308]5 with a norm which is fixed at every event but might vary from event to event:
(i.e., ni ni ≡ ε(x) with ε(x) being a fixed function; one can choose the norm to
be 0,±1 at each event by our choice of the vector fields but its nature can vary
from event to event.). That is, just as the displacement vector ξa captures the macro-
description in case of solids, the normalized vectors (e.g., normals to surfaces) capture
the essential macro-description in case of gravity in terms of an effective action S[na].
More formally, we expect the coarse graining of microscopic degrees of freedom to
lead to an effective action in the long wavelength limit:

∑

qA

exp(−Amicro[qA]) −→ exp(−S[na]). (18)

To proceed further we need to determine the nature of S[na]. The general form of
S[na] in such an effective description, at the quadratic order, will be:

S[na] =
∫

V
d Dx
√−g

(
4P cd

ab ∇cna∇dnb − Tabnanb
)
, (19)

5 This is a generalisation of the ideas presented in an earlier work, which only considered null normals.
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where P cd
ab and Tab are two tensors and the signs, notation, etc., are chosen with

hindsight. We will see that Tab can be identified with the matter stress-tensor. The full
action for gravity plus matter will be taken to be Stot = S[na] + Smatt with:

Stot =
∫

V
d Dx
√−g

(
4P cd

ab ∇cna∇dnb − Tabnanb
)
+

∫

V
d Dx
√−gLmatter (20)

with an important extra prescription: Since the gravitational sector is related to space-
time microstructure, we must first vary the na and then vary the matter degrees of
freedom. (In the language of path integrals, we should integrate out the gravitational
degrees of freedom na first and use the resulting action for the matter sector.) We shall
comment more fully on this point at the end of this section.

We next address the crucial conceptual difference between the dynamics in gravity
and elasticity, say, which we mentioned earlier. In the case of solids, one will write
a similar functional [say, for entropy or free energy] in terms of the displacement
vector ξa and extremizing it will lead to an equation which determines ξa . In the
case of spacetime, we expect the variational principle to hold for all vectors na with
constant norm and lead to a condition on the background metric. Obviously, the action
functional in Eq. (19) must be rather special to accomplish this and one need to impose
two restrictions on the coefficients P cd

ab and Tab to achieve this. First, the tensor Pabcd

should have the algebraic symmetries similar to the Riemann tensor Rabcd of the
D-dimensional spacetime. Second, we need:

∇a Pabcd = 0 = ∇aT ab. (21)

In a complete theory, the explicit form of Pabcd will be determined by the long wave-
length limit of the microscopic theory just as the elastic constants can—in principle—
be determined from the microscopic theory of the lattice. In the absence of such a
theory, we can take a cue from the renormalization group theory and expand Pabcd in
powers of derivatives of the metric [300,301,308]. That is, we expect,

Pabcd(gi j , Ri jkl) = c1

(1)
P abcd(gi j )+ c2

(2)
P abcd(gi j , Ri jkl)+ · · · (22)

where c1, c2, . . . are coupling constants and the successive terms progressively probe
smaller and smaller scales. The lowest order term must clearly depend only on the
metric with no derivatives. The next term depends (in addition to metric) linearly on
curvature tensor and the next one will be quadratic in curvature, etc. It can be shown
that the mth order term which satisfies our constraints is unique and is given by

(m)
P cd

ab ∝ δcda3...a2m
abb3...b2m

Rb3b4
a3a3
· · · Rb2m−1b2m

a2m−1a2m =
∂L(D)m

∂Rab
cd

, (23)

where δcda3...a2m
abb3...b2m

is the alternating tensor and the last equality shows that it can be
expressed as a derivative of the m th order Lanczos–Lovelock Lagrangian [300,301,
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309–311], given by

L(D) =
K∑

m=1

cmL(D)m ; L(D)m = 1

16π
2−mδ

a1a2...a2m
b1b2...b2m

Rb1b2
a1a2

Rb2m−1b2m
a2m−1a2m , (24)

where the cm are arbitrary constants and L(D)m is the mth order Lanczos–Lovelock
term and we assume D ≥ 2K + 1. (See Appendix for a brief description of Lanczos–
Lovelock gravity.) The lowest order term (which leads to Einstein’s theory) is

(1)
P ab

cd =
1

16π

1

2
δ

a1a2
b1b2
= 1

32π
(δa

c δ
b
d − δa

dδ
b
c ) (25)

while the first order term (which gives the Gauss–Bonnet correction) is:

(2)
P ab

cd =
1

16π

1

2
δ

a1a2a3a4
b1 b2 b3 b4

Rb3b4
a3a4
= 1

8π

(
Rab

cd − Ga
cδ

b
d + Gb

cδ
a
d + Ra

dδ
b
c − Rb

dδ
a
c

)
,

(26)
where the fourth order alternating tensor is

δ
a1a2a3a4
b1 b2 b3 b4

= −1

(D − 4)!ε
c1···cD−4a1a2a3a4εc1···cD−4b1b2b3b4 . (27)

The alternating tensors are totally antisymmetric in both sets of indices and take values
+1, −1 and 0. They can be written in any dimension as an appropriate contraction of
the Levi–Civita tensor density with itself. All higher orders terms are obtained in a
similar manner (see Appendix).

In our paradigm based on Eq. (18), the field equations for gravity arises from
extremizing S with respect to variations of the vector field na , with the constraint
δ(nana) = 0, and demanding that the resulting condition holds for all normalized
vector fields. Varying the normal vector field na after adding a Lagrange multiplier
function λ(x) for imposing the constant norm condition naδna = 0, we get

δS = 2
∫

V
d Dx
√−g

(
4P cd

ab ∇cna
(
∇dδn

b
)
− Tabnaδnb − λ(x)gabnaδnb

)
, (28)

where we have used the symmetries of P cd
ab and Tab. An integration by parts and the

condition ∇d P cd
ab = 0, leads to

δS = 2
∫

V
d Dx
√−g

[
−4P cd

ab

(∇d∇cna)− (Tab + λgab)n
a
]
δnb

+ 8
∫

∂V
d D−1x

√
h

[
kd P cd

ab

(∇cna)]
δnb, (29)
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where ka is the D-vector field normal to the boundary ∂V and h is the determinant
of the intrinsic metric on ∂V . As usual, in order for the variational principle to be
well defined, we require that the variation δna of the vector field should vanish on
the boundary. The second term in Eq. (29) therefore vanishes, and the condition that
S[na] be an extremum for arbitrary variations of na then becomes

2P cd
ab (∇c∇d −∇d∇c) na − (Tab + λgab)n

a = 0, (30)

where we used the antisymmetry of P cd
ab in its upper two indices to write the first

term. The definition of the Riemann tensor in terms of the commutator of covariant
derivatives reduces the above expression to

(
2P i jk

b Ra
i jk − T a

b + λδa
b

)
na = 0, (31)

and we see that the equations of motion do not contain derivatives with respect to
na which is, of course, the crucial point. This peculiar feature arose because of the
symmetry requirements we imposed on the tensor P cd

ab . We further require that the
condition in Eq. (31) hold for arbitrary vector fields na . A simple argument based on
local Lorentz invariance then implies that

2P i jk
b Ra

i jk − T a
b = −λδa

b . (32)

The scalar λ is arbitrary so far and we will now show how it can be determined in
the physically interesting cases. To see what is involved, consider the lowest order
approximation (viz. Einstein gravity) in which we take P cd

ab to be given in Eq. (25)
so that the above equation reduces to:

1

8π
Ra

b − T a
b = −λδa

b , (33)

where −λ can be an arbitrary function of the metric. Writing this equation as (Ga
b −

8πT a
b ) = Q(g)δa

b with Q = −8πλ−(1/2)R and using∇aGa
b = 0,∇aT a

b = 0 we get
∂b Q = ∂b[−8πλ− (1/2)R] = 0; so that Q is an undetermined integration constant,
say �, and λ must have the form 8πλ = −(1/2)R −�. The resulting equation is

Ra
b − (1/2)Rδa

b = 8πT a
b +�δa

b , (34)

which leads to Einstein’s theory if we identify Tab as the matter energy momentum
tensor using the standard Newtonian limit of the theory. Clearly, the cosmological
constant appears as an integration constant. The mathematical similarity with uni-
modular gravity is apparent; keeping the function nana = ε(x) fixed while varying na

is equivalent to keeping
√−g fixed in unimodular gravity. Taking the trace of Eq. (33)

will lead, for example, to Eq. (16), etc. But the conceptual structure is quite different
and we maintain full general covariance.
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The crucial feature of the coupling between matter and gravity through Tabnanb is
that, under the shift Tab → Tab+ρ0gab the ρ0 term in the action in Eq. (19) decouples
from na and becomes irrelevant:

∫

V
d Dx
√−gTabnanb →

∫

V
d Dx
√−gTabnanb +

∫

V
d Dx
√−gερ0. (35)

Since ε is not varied when na is varied there is no coupling between ρ0 and the
dynamical variables na the theory is invariant under the shift Tab → Tab+ρ0gab. We
see that the condition nana = constant on the dynamical variables have led to a “gauge
freedom” which allows an arbitrary integration constant to appear in the theory which
can absorb the bulk cosmological constant. This was our key objective.

The same procedure works with the more general structure in the family of theories
starting with Einstein’s GR, Gauss–Bonnet gravity, etc., and—in the general case—
one obtains the field equations:

16π

[
P i jk

b Ra
i jk −

1

2
δa

bL(D)m

]
= 8πT a

b +�δa
b . (36)

These are identical to the field equations for Lanczos–Lovelock gravity with a cos-
mological constant arising as an undetermined integration constant. To the lowest
order, when we use Eq. (25) for P i jk

b , the Eq. (36) reproduces Einstein’s theory.
More generally, we get Einstein’s equations with higher order corrections which are
to be interpreted as emerging from the derivative expansion of the action functional
as we probe smaller and smaller scales. Remarkably enough, we can derive not only
Einstein’s theory but even Lanczos–Lovelock theory from a dual description in terms
on the normalized vectors in spacetime, without varying gab in an action functional!

To gain a bit more insight into what is going on, let us consider the on-shell value
of the action functional. Manipulating the covariant derivatives in Eq. (19) and using
the field equation Eq. (36) we can write

Stot|on−shell = S[n] + Smat

=
∫

V
d Dx
√−g

[
4∇d

(
P cd

ab

(∇cna)
nb

)
−4P cd

ab

(∇d∇cna) nb−Tabnanb
]
+Smat

= 4
∫

∂V
d D−1x

√
hkd

(
P cd

ab nb∇cna
)
+

∫

V
d Dx
√−gε

(
L(D)m + �

8π

)

+
∫

V
d Dx
√−gLmatter, (37)

where ε ≡ nana . We see that, on shell, the only dependence on na is through a surface
term. Since the metric tensor is not dynamical, second term is irrelevant and we can
now vary the matter Lagrangian with respect to matter variables to determine the
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behaviour of matter in a given curved spacetime, which, of course is sourced by the
matter stress tensor through Eq. (36) obtained earlier.

The key new feature, which survives and depends on our original variables na is
the surface term which we shall now explore further. Explicitly, this surface term is
given by:

S|on−shell = 4
∫

∂V
d D−1x

√
h ka

(
Pabcdnc∇bnd

)

−→ 1

8π

∫

∂V
d D−1x

√
h ka

(
na∇bnb − nb∇bna

)

= − 1

8π

∫

∂V
d D−1x

√
h ki

(
ni K + ai

)
, (38)

where we have manipulated a few indices using the symmetries of Pabcd . The
expression in the second line, after the arrow, is the result for general relativity. Note
that the integrand has the familiar structure of ki (ni K + ai ) where ai = nb∇bni is
the acceleration associated with the vector field na and K ≡ −∇bnb is the trace of
extrinsic curvature in the standard context. If we restrict to a series of surfaces foliating
the spacetime with ni representing their unit normals and take the boundary to be one
of them, we can identify ki with ni ; then ai ni = 0 and the surface term is just

S|on−shell = ∓ 1

8π

∫

∂V
d D−1x

√
hK , (39)

which is the York–Gibbons–Hawking boundary term in general relativity [312,313]
if we normalize ε to ±1 depending on the nature of the surface.

It is now obvious that this term in the on-shell action will lead to the entropy of the
horizons (which will be 1/4 per unit transverse area) in the case of general relativity.
More formally, we treat the horizon surface as a limit of a sequence of timelike surfaces;
for example, in the case of Schwarschild metric we consider surfaces with r = 2M+δ
with δ→ 0. In fact, the result is far more general. Even in the case of a more general
Pab

cd it can be shown that the on-shell value of the action reduces to [308]5 the entropy
of the horizons. The general expression is:

S|H =
K∑

m=1

4πmcm

∫

H
d D−2x⊥

√
σL(D−2)

(m−1) =
1

4
[Area]⊥ + corrections, (40)

where x⊥ denotes the transverse coordinates on the horizon H, σ is the determinant
of the intrinsic metric on H and we have restored a summation over m thereby giving
the result for the most general Lanczos–Lovelock case obtained as a sum of individual
Lanczos–Lovelock lagrangians. The expression in Eq. (40) is precisely the entropy of a
general Killing horizon in Lanczos–Lovelock gravity based on the general prescription
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given by Wald [314] and Iyer and Wald [315] and computed by several authors. Further,
in any spacetime, if we take a local Rindler frame around any event we will obtain
an entropy for the locally defined Rindler horizon. In the case of GR, this entropy per
unit transverse area is just 1/4 as expected.

This result shows that, in the semiclassical limit in which the action can possibly
be related to entropy, we reproduce the conventional entropy which scales as the area
in Einstein’s theory. Since the entropy counts the relevant degrees of freedom, this
shows that the degrees of freedom which survives and contributes in the long wave
length limit scales as the area. The quantum fluctuations in these degrees of freedom
can then lead to the correct, observed, value of the cosmological constant. The last
aspect can be made more quantitative and we will briefly describe in the next section
how this can be done.

Our action principle is somewhat peculiar compared to the usual action principles
in the sense that we have varied na and demanded that the resulting equations hold for
all vector fields of constant norm. Our action principle actually stands for an infinite
number of action principles, one for each vector field of constant norm! This class of
all ni allows an effective, coarse grained, description of some (unknown) aspects of
spacetime micro physics. This is why we need to first vary na , obtain the equations
constraining the background metric and then use the action in Eq. (37) to obtain the
equations of motion for matter. (If, instead, we vary matter terms first the coupling
Tabnanb will couple matter to na which will remain undetermined since we have
no equation for na .) Of course, in most contexts, ∇aT a

b = 0 will take care of the
dynamical equations for matter and these issues are irrelevant.6

At this stage, it is not possible to proceed further and relate ni to some microscopic
degrees of freedom q A. This issue is conceptually similar to asking one to identify
the atomic degrees of freedom, given the description of an elastic solid in terms of
a displacement field ξa—which we know is impossible. However, the same analogy
tells us that the relevant degree of freedom in the long wavelength limit (viz. ξa or ni )
can be completely different from the microscopic degrees of freedom and it is best to
proceed phenomenologically.

3.4 Gravity as detector of the vacuum fluctuations

The description of gravity using the action principle given above provides a natural
back drop for gauging away the bulk value of the cosmological constant since it
decouples from the dynamical degrees of freedom in the theory. Once the bulk term
is eliminated, what is observable through gravitational effects, in the correct theory of
quantum gravity, should be the fluctuations in the vacuum energy. These fluctuations
will be non-zero if the universe has a DeSitter horizon which provides a confining
volume. In this paradigm the vacuum structure can readjust to gauge away the bulk
energy density ρUV � L−4

P while quantum fluctuations can generate the observed
value ρDE.

6 On shell, the last two terms in the action in Eq. (37) is the same as the conventional one for gravity
coupled matter, if ε = 1 but the surface term in, for example, Eq. (39) has the wrong sign.
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The role of energy fluctuations contributing to gravity also arises, more formally,
when we study the question of detecting the energy density using gravitational field as a
probe. Recall that an Unruh–DeWitt detector with a local coupling LI = M(τ )φ[x(τ )]
to the field φ actually responds to 〈0|φ(x)φ(y)|0〉 rather than to the field itself [270–
275]. Similarly, one can use the gravitational field as a natural “detector” of energy
momentum tensor Tab with the standard coupling L = κhabT ab. Such a model was
analysed in detail in ref. [316] and it was shown that the gravitational field responds to
the two point function 〈0|Tab(x)Tcd(y)|0〉. In fact, it is essentially this fluctuations in
the energy density which is computed in the inflationary models [18–25] as the source
for gravitational field, as stressed in refs. [32,33]. All these suggest treating the energy
fluctuations as the physical quantity “detected” by gravity, when one incorporates
quantum effects.

If the cosmological constant arises due to the fluctuations in the energy density
of the vacuum, then one needs to understand the structure of the quantum gravita-
tional vacuum at cosmological scales. Quantum theory, especially the paradigm of
renormalization group has taught us that the concept of the vacuum state depends
on the scale at which it is probed. The vacuum state which we use to study the lat-
tice vibrations in a solid, say, is not the same as vacuum state of the QED and it
is not appropriate to ask questions about the vacuum without specifying the scale.
If the spacetime has a cosmological horizon which blocks information, the natural
scale is provided by the size of the horizon, L�, and we should use observables de-
fined within the accessible region. The operator H(< L�), corresponding to the total
energy inside a region bounded by a cosmological horizon, will exhibit fluctuations

E since vacuum state is not an eigenstate of this operator. The corresponding fluc-
tuations in the energy density, 
ρ ∝ (
E)/L3

� = f (L P , L�) will now depend on
both the ultraviolet cutoff L P as well as L�. To obtain 
ρvac ∝ 
E/L3

� which
scales as (L P L�)−2 we need to have (
E)2 ∝ L−4

P L2
�; that is, the square of the

energy fluctuations should scale as the surface area of the bounding surface which is
provided by the cosmic horizon. Remarkably enough, a rigorous calculation [80] of
the dispersion in the energy shows that for L� � L P , the final result indeed has the
scaling

(
E)2 = c1
L2
�

L4
P

, (41)

where the constant c1 depends on the manner in which ultraviolet cutoff is imposed.
Similar calculations have been done (with a completely different motivation, in the
context of entanglement entropy) by several people and it is known that the area
scaling found in Eq. (41), proportional to L2

�, is a generic feature [317–320] (this
result can also be obtained from those in ref. [316]). For a simple exponential UV-
cutoff, c1 = (1/30π2) but cannot be computed reliably without knowing the full
theory. We thus find that the fluctuations in the energy density of the vacuum in a
sphere of radius L� is given by


ρvac = 
E

L3
�

∝ L−2
P L−2

� ∝
H2
�

G
. (42)
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The numerical coefficient will depend on c1 as well as the precise nature of infrared
cutoff radius; but it is a fact of life that a fluctuation of magnitude 
ρvac � H2

�/G
will exist in the energy density inside a sphere of radius H−1

� if Planck length is the
UV cutoff. On the other hand, since observations suggest that there is a ρvac of similar
magnitude in the universe it seems natural to identify the two. Our approach explains
why there is a surviving cosmological constant which satisfies ρDE = √ρIRρUV .

We stress that the computation of energy fluctuations is completely meaning-
less in the conventional models of gravity in which the metric couples to the bulk
energy density. Once a UV cutoff at Planck scale is imposed, one will always get
a bulk contribution ρU V ≈ L−4

P with the usual problems. It is only because we
have a way of decoupling the bulk term from contributing to the dynamical equa-
tions that, we have a right to look at the subdominant term L−4

P (L P/L�)2.
Approaches in which the sub-dominant term is introduced by an ad hoc manner
are technically flawed since the bulk term cannot be ignored in these usual
approaches to gravity. Getting the correct value of the cosmological constant from
the energy fluctuations is not as difficult as understanding why the bulk value (which
is larger by 10120!) can be ignored. Our approach provides a natural backdrop for
ignoring the bulk term—and as a bonus—we get the right value for the cosmo-
logical constant from the fluctuations. It is small because it is a purely quantum
effect.

4 Conclusions

It is obvious that the existence of a component with negative pressure constitutes a
major challenge in theoretical physics. The simplest choice for this component is the
cosmological constant; other models based on scalar fields [as well as those based
on branes, etc., which I have not discussed] do not alleviate the difficulties faced by
cosmological constant and—in fact—makes them worse. The key point I want to stress
is that the cosmological constant is most likely to be a low energy relic of a quantum
gravitational effect or principle and its explanation will require a radical shift in our
current paradigm.

I have tried to advertize a new approach to gravity as a possible broad paradigm
to understand the cosmological constant. On the negative side, there are some very
obvious difficulties with the ideas that I have outlined. The most serious objections
are the following:

• The normalized vectors ni were introduced in a totally ad hoc manner and does
not relate to anything we know about gravity and hence the motivation for the
condition the ni ni = constant is unclear. The unusual nature of this variable and
the action S[na]makes it difficult to construct a quantum theory via path integrals.

• While we have fairly attractive scheme to eliminate the bulk cosmological constant
term, the arguments given in the last section to obtain the observed value is, at best,
tentative. The area scaling for surviving degrees of freedom emerges naturally but
it is unclear how to connect up the energy fluctuations in these degrees of freedom
to the source of gravity.
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Against this, one should compare the attractive features of the approach in a broader
context. The conceptual basis for this approach rests on the following logical ingredi-
ents.

1. It is impossible to solve the cosmological constant problem unless the gravitational
sector of the theory is invariant under the shift Tab → Tab+λm gab. Any approach
which does not address this issue cannot provide a comprehensive solution to the
cosmological constant problem.

2. General covariance requires us to use the measure
√−gd Dx in D-dimensions

in the action. This will couple the metric (through its determinant) to the matter
sector. Hence, as long as we insist on metric as the fundamental variable describing
gravity, one cannot address the issue in (1) above. So we need to introduce some
other degrees of freedom and an effective action which, however, is capable of
constraining the background metric.

3. We found an action principle, based on the normalized vector fields in spacetime,
that satisfies all these criteria mentioned above. The new action does not couple
to the bulk energy density and maintains invariance under the shift Tab → Tab +
λm gab. What is more, the on shell value of the action is related to the entropy
of horizons showing the relevant degrees of freedom scales as the area of the
bounding surface.

4. Since our formalism ensures that the bulk energy density does not contribute to
gravity—and only because of that—it makes sense to compute the next order
correction due to fluctuations in the energy density. This is impossible to do rig-
orously with the machinery available but a plausible case can be made as how this
will lead to the correct, observed, value of the cosmological constant.

5. In the long wavelength limit, the relevant physics is captured in terms of an effec-
tive theory related to the degrees of freedom contained in the fluctuations of the
normalized vectors. The resulting theory is far more general than Einstein gravity
since the thermodynamic interpretations should transcend classical considerations
and incorporate some of the microscopic corrections. Einstein’s equations provide
the lowest order description of the dynamics and calculable, higher order, cor-
rections arise as we probe smaller scales. The mechanism for ignoring the bulk
cosmological constant is likely to survive quantum gravitational corrections which
are likely to bring in additional, higher derivative, terms to the action.

Taking stock, I strongly believe there is no way out of the points mentioned in (1)
and (2) above and a tenable description of gravity must be based on variables other
than the metric. Such a theory is very likely to have most of the ingredients I have
outlined here.

Acknowledgments I thank A. Paranjape and K. Subramanian for useful comments on first draft of the
review.

Appendix: A primer on Lanczos–Lovelock gravity

The Lanczos–Lovelock Lagrangian is a specific example from a general class of
Lagrangians which describes a (possibly semiclassical) theory of gravity and are given
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by
L = Q bcd

a Ra
bcd , (43)

where Q bcd
a is the most general fourth rank tensor sharing the algebraic symmetries

of the Riemann tensor Ra
bcd and further satisfying the criterion∇b Q bcd

a = 0 (Several
general properties of this class of Lagrangians are discussed in ref. [307]). It can be
shown that (see, e.g., [307]) the equations of motion for a general theory of gravity
derived from the Lagrangian in Eq. (43) using the standard variational principle with
gab as the dynamical variables, are given by

Eab = 1

2
Tab; Eab ≡ 1√−g

∂

∂gab

(√−gL)− 2∇m∇n Pamnb. (44)

Here Tab is the energy–momentum tensor for the matter fields. The tensor Pabcd

defined through P bcd
a ≡ (∂L/∂Ra

bcd). The partial derivatives are taken treating gab,
�a

bc and Ra
bcd as independent quantities.

The D-dimensional Lanczos–Lovelock Lagrangian is given by [309–311] a poly-
nomial in the curvature tensor:

L(D) =
K∑

m=1

cmL(D)m ; L(D)m = 1

16π
2−mδ

a1a2...a2m
b1b2...b2m

Rb1b2
a1a2

Rb2m−1b2m
a2m−1a2m , (45)

where the cm are arbitrary constants and L(D)m is the mth order Lanczos–Lovelock
term. Here the generalized alternating tensor δ······ is the natural extension of the one
defined in Eq. (27) for 2m indices, and we assume D ≥ 2K + 1. The mth order
Lanczos–Lovelock term L(D)m given in Eq. (45) is a homogeneous function of the
Riemann tensor of degree m. For each such term, the tensor Q bcd

a defined in Eq. (43)
carries a label m and becomes

(m)Q cd
ab = 1

16π
2−mδ

cda3...a2m
abb3...b2m

Rb3b4
a3a3
· · · Rb2m−1b2m

a2m−1a2m . (46)

The full tensor Q cd
ab is a linear combination of the (m)Q cd

ab with the coefficients
cm . Einstein’s GR is a special case of Lanczos–Lovelock gravity in which only the
coefficient c1 is non-zero. Since the tensors (m)Q cd

ab appear linearly in the Lanczos–
Lovelock Lagrangian and consequently in all other tensors constructed from it, for
most applications it is sufficient to concentrate on the case where a single coefficient
cm is non-zero. All the results that follow can be easily extended to the case where
more than one of the cm are non-zero, by taking suitable linear combinations of the
tensors involved.

For the mth order Lanczos–Lovelock Lagrangian L(D)m , since Pabcd is divergence-
free, the expression for the tensor Eab in Eq. (44) becomes

Eab = ∂L(D)m

∂gab
− 1

2
L(D)m gab , (47)
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where we have used the relation ∂(
√−g)/∂gab = −(1/2)√−ggab. The first term in

the expression for Eab in Eq. (47) can be simplified to give

∂L(D)m

∂gab
= m Q i jk

a Rbi jk = P i jk
a Rbi jk, (48)

where the expressions in Eq. (48) can be verified by direct computation, or by noting
that L(D)m is a homogeneous function of the Riemann tensor Ra

bcd of degree m. To
summarize, the Lanczos–Lovelock field equations are given by

16π

[
P i jk

b Ra
i jk −

1

2
δa

bL(D)m

]
= 8πT a

b, (49)

where we have included a possible cosmological constant in the definition of T a
b .

Taking the trace of this equation, we find that that L(D)m = (2m − D)−1T . In other
words, the on-shell value of the Lagrangian is proportional to the trace of the stress
tensor in all Lanczos–Lovelock theories, just like in GR.
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