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Abstract The effective evolution of an inhomogeneous universe model in any theory
of gravitation may be described in terms of spatially averaged variables. In Einstein’s
theory, restricting attention to scalar variables, this evolution can be modeled by solu-
tions of a set of Friedmann equations for an effective volume scale factor, with matter
and backreaction source terms. The latter can be represented by an effective scalar
field (“morphon field”) modeling Dark Energy. The present work provides an over-
view over the Dark Energy debate in connection with the impact of inhomogeneities,
and formulates strategies for a comprehensive quantitative evaluation of backreaction
effects both in theoretical and observational cosmology. We recall the basic steps of a
description of backreaction effects in relativistic cosmology that lead to refurnishing
the standard cosmological equations, but also lay down a number of challenges and
unresolved issues in connection with their observational interpretation. The present
status of this subject is intermediate: we have a good qualitative understanding of
backreaction effects pointing to a global instability of the standard model of cosmo-
logy; exact solutions and perturbative results modeling this instability lie in the right
sector to explain Dark Energy from inhomogeneities. It is fair to say that, even if
backreaction effects turn out to be less important than anticipated by some resear-
chers, the concordance high-precision cosmology, the architecture of current N-body
simulations, as well as standard perturbative approaches may all fall short in correctly
describing the Late Universe.
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1 General thoughts: the standard model, the averaging problem and key
insights

1.1 Views on and beyond the standard model of cosmology

The standard model of cosmology does not, like the standard model of particle phy-
sics, enjoy appreciable generality; it is based on the simplest conceivable class of
(homogeneous-isotropic) solutions of Einstein’s laws of gravitation. It is clear that
the inhomogeneous properties of the Universe cannot be described by such a strong
idealization. The key issue is whether they can be described so on average, and this is
the subject of considerable debate and controversy in the recent literature. If the stan-
dard model indeed describes the averaged model, we have to show that backreaction
effects, being the main subject of this report, are negligible. We are striving to discuss
most of the related aspects of this debate.

1.1.1 Dark Energy and Dark Matter

In the standard model of cosmology one has to conjecture the existence of two consti-
tuents, if observational constraints are met, that both have yet unknown origin: first,
a dominant repulsive component is thought to exist that can be modeled either by a
positive cosmological constant or a scalar field, e.g., a so-called quintessence field.
Besides this Dark Energy, there is, secondly, a non-baryonic component that should
considerably exceed the contribution by luminous and dark baryons and massive neu-
trinos. This Dark Matter is thought to be provided by exotic forms of matter, not
yet detected in (non-gravitational) experiments. According to the concordance model
[8,121,185], the former converges to about 3/4 and the latter to about 1/4 of the
total source of Friedmann’s equations, up to a few percent that have to be attributed
to baryonic matter and neutrinos (in the matter-dominated era). There are, however,
other voices [18,19].

Contemporary research to uncover this enigma pursues essentially two directions:
one focusses on generalizations of the geometry of spacetime mostly restricting atten-
tion to modifications of the underlying theory of gravitation, the other invokes new
sources in the energy momentum tensor and so implies a challenge for particle phy-
sics. As for the former, a Dark Energy component may possibly derive either from
higher-order Ricci curvature Lagrangians [54], see also [55] (as well as Capozziello
and Francaviglia, this volume), [69], or string-motivated low-energy effective actions
[20]. It is doubtful whether a fundamental scalar field exists in nature, at least one
that can be viewed as a natural candidate for the relevant effects needed to explain
Dark Energy. This latter remark is supported by the well-known violation of energy
conditions of a quintessence field that is able to produce late-time volume acceleration
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of the Universe. Rather, a scalar field would likely be an effective one, either stemming
from higher-order gravity terms, or effective terms as remnants from higher dimen-
sions that are compactified or even non-compactified as in brane world cosmologies
[130] (see also Koyama, this volume). As we shall learn below, already classical
general relativity allows to identify effective geometrical terms, simply resulting from
inhomogeneities, with an effective scalar field component, the morphon field [49], a
good example of William of Ockham’s razor. In this picture Dark Energy emerges as
an excess of kinetic over potential energies of a scalar field in an “out-of-equilibrium”
state, and it allows attributing Dark Energy to the classical vacuum. If we restrict our
attention to cosmology and the fitting of extra terms from various different modified
gravitational theories to observational data, then those extra terms may also be mapped
into morphon fields with different but unambiguously defined physical consequences.
A review of the status and properties of currently discussed models can be found in
[67], see also [146], see also [147] (as well as Padmanabhan, this volume), [172,194].
We shall not directly address the Dark Matter problem in this report, but also this
problem might be related to an explanation of Dark Energy; we shall discuss such
possible relations.

Thus, the intriguing question is whether an explanation of these dark components
is (i) the task of particle physicists, or (ii) an expression of the need to modify the
laws of gravitation, or (iii) whether the cosmological model is built on oversimplified
priors. We are going to study this last possibility.

1.1.2 The longstanding averaging problem

Does an inhomogeneous model of the Universe evolve on average like a homogeneous
solution of Einstein‘s or Newton’s laws of gravitation? This question is not new, at
least among relativists who think that the answer is certainly, in general, no, not only
in view of the nonlinearity of the theories mentioned [72]. The problem was and still
is the notion of averaging whose specification and unambiguous definition turned out
to be an endeavor of high magnitude, mainly because it is not straightforward to give
a unique meaning to the averaging of tensors, e.g., a given metric of spacetime. This
problem seems to lie in the backyard of relativists who, from time to time, add another
effort towards a solution of this technical issue. On the other hand, the community of
cosmologists should locate exactly this research topic at the basis of their evolutionary
models of the Universe.

Although there have been numerous exceptions to this ubiquitous ignorance of
the averaging problem in cosmology, e.g., [182], and many efforts after George Ellis
[72] has brought the subject into the fore [14,16,21,58,78,88,89,108,173,189,201],1

still, the cosmologist’s thinking rests on the hegemony of the standard model despite
the drastic changes of our picture of structures in the Universe on large scales. This

1 This is certainly an incomplete list—more references may be found in these papers and, e.g., in [74].
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standard model, up to the present state of knowledge, is used as a prior to interpret
a wide variety of orthogonal observations, and it is therefore hard to beat due to
this intentionally established status. Therefore, most investigations in cosmology are
still based on the vocabulary of the standard model, aiming to constrain its global
cosmological parameters, often on the basis of observations of structure in the regional
Universe that is very different from homogeneous and isotropic. As a consequence, also
structure on large scales is described in terms of (quasi-Newtonian) perturbations of
this standard model, a construction that again makes only sense, if the standard model
correctly describes the average distributions of matter and geometry. Promisingly, the
conjecture that the standard model agrees with the averaged model has recently been
recognized as such and challenged by a wider community thanks to the Dark Energy
debate.

1.1.3 Uncharted territory beyond the standard model

The concordance model is encircled by a large set of observational data that are,
however, orthogonal only within the predefined solution space of a FLRW (Friedmann–
Lemaître–Robertson–Walker) cosmology. This solution space has dimension two for
Friedmann’s expansion law derives from the Hamiltonian constraint of general relati-
vity (see Eq. (18) below), restricted to (about every point) locally isotropic and hence
(by Schur’s Lemma) homogeneous distributions of matter and curvature,

Ωm +Ωk +ΩΛ = 1, (1)

where the standard cosmological parameters are global and iconized by the cosmic
triangle [11],

Ωm := 8πG�H

3H2 , Ωk := −k

a2 H2 , ΩΛ := Λ

3H2 , (2)

�H (t) is the homogeneous matter density, H(t) := ȧ/a Hubble’s function with the
scale factor a(t), k a positive, negative or vanishing constant related to the three elemen-
tary constant-curvature geometries, andΛ is the cosmological constant, nowadays—if
positive—employed as the simplest model of Dark Energy [155].

We shall learn below that an extended solution space of an averaged inhomogeneous
universe model is three-dimensional, when we include inhomogeneities of matter and
geometry. Hence, such more realistic models seem to enjoy more parameter freedom,
but it should be emphasized that these (effective) “parameters” are defined in terms
of volume averages of dynamically interacting physical variables. For a given inho-
mogeneous model, the additional parametrization appears in the initial conditions for
the inhomogeneities that are absent in the standard model of cosmology.

How can we be sure that fitting an idealized model, that ignores inhomogeneities,
to observational data is not “epicyclic”, especially if the model enters as a prior into
the process of interpreting the data? Confronting observers with the wider class of
averaged cosmologies allows them to draw their data points within a cube of possible
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solutions and to differentiate the relevant observational scales reflected by these data;
if we “force” them to draw the data points into the plane of the FLRW solutions
on every scale, then they conclude that there are “dark” components. Thus, we have
to exclude that they may have missed something in the projection and we have to
clarify whether the ignorance of scale-dependence of observables in the standard model
does not mislead their interpretation. Both issues are equally important to judge the
viability of the standard model in observational cosmology: the first is the question
of how backreaction quantitatively affects the standard cosmological parameters, and
the second is the comparison of data taken on small scales (e.g., on cluster scales)
and data taken on large scales (e.g., CMB; high-redshift supernovae). Both additional
“degrees of freedom” in interpreting observational data are interlocked in the sense
that backreaction effects may alter the evolution history of cosmological parameters. A
comparison of data taken on different spatial scales has therefore also to be subjected to
a critical assessment of data that are taken at different times of the cosmic history: with
backreaction at work, the simple time-scaling of parameters in a FLRW cosmology is
also lost.

The plan of this report is the following. We shall first provide a list of arguments
that justify existence of backreaction effects. Then, we move on to construct realistic
universe models and discuss the governing equations in Sect. 2. A qualitative unders-
tanding of the backreaction mechanism relevant to the question of Dark Energy is
developed in Sect. 3, and thereafter we propose and discuss strategies for a quantita-
tive evaluation of backreaction effects in Sect. 4. Before we now enter the physics of
backreaction that is easy to understand, we have to probe some more critical territory
in the following subsection.

1.2 Averaging strategies: different “directions” of backreaction

The notion of averaging in cosmology is tied to space-plus-time thinking. Despite the
success of general covariance in the four-dimensional formulation of classical relati-
vity, the cosmologist’s way of conceiving the Universe is evolutionary. This breaking
of general covariance is in itself an obstacle to appreciating the proper status of cos-
mological equations. The standard model of cosmology is employed with the implicit
understanding that there is a global spatial frame of reference that, if mapped to the
highly isotropic Cosmic Microwave Background, is elevated to a physical frame rather
than a particular choice of a mathematical slicing of spacetime. Restricting attention
to an irrotational cosmic continuum of dust (that we shall retain throughout the main
text), the best we can say is that all elements of the cosmic continuum defined by the
homogeneous distribution of matter are in free fall within that spacetime, and therefore
are preferred relative to accelerating observers with respect to this frame of reference.
Those preferred observers are called fundamental. Exploiting the diffeomorphism
degrees of freedom we can write the FLRW cosmology in contrived ways, so that
nobody would realize it as such. This point is raised as a criticism of an averaging fra-
mework [102], as if this problem were not there in the standard model of cosmology.
Again, the “natural” choice for the matter model “irrotational dust” is a collection of
freely-falling continuum elements, now for an inhomogeneous continuum. For such a
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generalized collection of fundamental observers, the 4-metric form reads2

4g = −dt2 + 3g, 3g = gab dXa ⊗ dXb, (3)

where latin indices run through 1 · · · 3 and Xa are local (Gaussian normal) coordinates.
Evolving the first fundamental form 3g of the spatial hypersurfaces along ∂/∂t =: ∂t

defines their second fundamental form

3K = Kab dXa ⊗ dXb, Kab := −1

2
∂t gab, (4)

with the extrinsic curvature components Kab. Such a comoving (synchronous) slicing
of spacetime may be considered “natural”, but it may also be questioned. However,
to dismiss its physical relevance due to the fact that shell-crossing singularities arise
is shortsighted. It is a problem of the matter model in the first place. A comoving
(Lagrangian) frame helps to access nonlinear stages of structure evolution, as is
well-exemplified in Newtonian models of structure formation, where the problem
of choosing a proper slicing is absent. Those nonlinear stages inevitably include the
development of singularities, provided we do not improve on the matter model to in-
clude effects that counteract gravitation (like velocity dispersion) in order to regularize
such singularities [43]. If a chosen slicing appears to be better suited, because it does
not run into singularities, then one should rather ask the question whether the evolution
of variables is restricted to a singularity-free regime just because inhomogeneities are
not allowed to enter nonlinear stages of structure evolution. An example for this is
perturbation theory formulated, e.g., in longitudinal gauge, where the variables are
“gauge-fixed” to a (up to a given time-dependent scale factor) non-evolving back-
ground.

However, the problem of choosing an appropriate slicing of spacetime is not
off the table. There exist strategies to consolidate the notion of an effective spatial
slicing that would minimize frame fluctuations being attributed to the diffeomor-
phism degrees of freedom in an inhomogeneous model. Such, more involved, stra-
tegies relate to the intrinsic direction of backreaction that we put into perspective
below.

1.2.1 Extrinsic (kinematical) and intrinsic backreaction

Having chosen a foliation of spacetime implies that we can speak of two “directions”:
one being extrinsic in the direction of the extrinsic curvature Kab of the embed-
ding of the hypersurface into spacetime (e.g., parametrized by time), the other being
intrinsic in the direction of the Ricci tensor Rab of the three-dimensional spatial
hypersurfaces parametrized by a scaling parameter (let it be the geodesic radius of

2 For notations the reader may consult the Appendix; generally, we work with spatial variables in the
hypersurfaces of constant coordinate time t (that is equal to proper time for an irrotational dust continuum),
and we explicitly indicate with a prefix when we talk about four-dimensional variables in cases where this
is not obvious.

123



Dark Energy from structure 473

a randomly placed geodesic ball). Consequently, we may speak of two “directions”
of backreaction: inhomogeneities in extrinsic curvature and in intrinsic curvature.
The former is of kinematical nature, since we may interpret the extrinsic curvature
actively through the expansion tensor Θab := −Kab, and introduce a split into its
kinematical parts: Θab = 1/3gabΘ + σab, with the rate of expansion Θ = Θc

c,
the shear tensor σab, and the rate of shear σ 2 := 1/2σabσ

ab; note that vorticity and
acceleration are absent for dust in the present flow-orthogonal foliation. The latter
addresses the so-called fitting problem [72,78,152], i.e., the question whether we
could find an effective constant-curvature geometry that best replaces the inhomo-
geneous hypersurface at a given time. An answer to this question has to deal with
the problem of “averaging” the tensorial (spatial) geometry for which several dif-
ferent strategies are conceivable. Some of those strategies do not distinguish between
extrinsic and intrinsic averaging (e.g., [64,65,201], and other references in [74]).
A comparison of such a more “synthetic” approach with a pure kinematical avera-
ging that leaves the physical properties of a spatial hypersurface untouched has been
provided [153] and helps to also formally understand the differences between both
viewpoints.

One method has recently obtained a strong position in the context of Perelman’s
work (e.g., [158,159]) on the Ricci–Hamilton flow related to the recent proof of
Poincaré’s conjecture, and implied progress on Thurston’s geometrization program
[5] to cut a Riemannian manifold into “nice pieces” of eight elementary geometries.
This method we briefly sketch now.

1.2.2 Renormalization of average characteristics: smoothing the geometry

Employing the Ricci–Hamilton flow [57,94,95], an “averaging” of geometry can be
put into practice by a rescaling of the spatial metric tensor, much in the spirit of a
renormalization flow [58]. A general scaling flow is described by Petersen’s equations
[160] that we may implement through a 2 + 1 setting by evolving the boundary of a
geodesic ball in a three-dimensional cosmological hypersurface in radial directions,
thus exploring the Riemannian manifold passively. Upon linearizing the general sca-
ling flow, e.g., in normal geodesic coordinates, we obtain a scaling equation for the
metric along radial directions; up to tangential geometrical terms on the boundary we
obtain [39],

∂

∂r
gab(r)− ∂

∂r
gab(r)

∣
∣
∣
r0

= −2Rab(r0)[r − r0], (5)

i.e., the metric scales in the direction of its Ricci tensor much in the same way as it
is deformed in the direction of the extrinsic curvature by the Einstein flow. If we now
implement the active (geometrically Lagrangian) point of view of deforming the metric
by the same flow along a Lagrangian vector field ∂/∂r0 while holding the geodesic
radius r0 fixed, we are able to smooth the metric in a controlled way. Depending on our
choice of normalization of the flow, we may preserve the mass content inside the geo-
desic ball while smoothing the metric. Such a mass-preserving Ricci flow transforms
kinematical averages on given hypersurfaces from their values in the inhomogeneous
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geometry (the actual space section) to their values on a constant-curvature geometry
(the fitting template for the space section): they are renormalized resulting in addi-
tional backreaction effects due to the difference of the two volumes (the Riemannian
volume of the actual space section and the constant-curvature volume)—the volume
effect, and also curvature backreaction terms that involve averaged invariants of the
Ricci tensor. For details and references see [39] and for small overviews [40] and
[41]. In such a setting the role of lapse and shift functions (i.e., the choice of slicing,
cf. Appendix) can also be controlled by employing the recent results of Perelman
[56].

We now come to some crucial points of understanding the physics behind
backreaction. In order not to think of any exotic mechanism, the historical use of
the notion “model with backreaction’ should simply be replaced by ‘more realistic
model”.

1.3 The origin of kinematical backreaction and the physics behind it

Let us now concentrate on the question, why there must be backreaction at work,
restricting attention to kinematical backreaction as defined above. In doing so, we do
not actively modify the physics, i.e., the metrical properties of spatial sections; we
merely look at general integral properties of the inhomogeneous spatial distributions
of matter and geometry on a given scale. After we have understood the reasons behind
backreaction effects in general terms, i.e., without resorting to restrictions of spatial
symmetry or approximations of evolution models, the very question of their relevance
is better defined.

1.3.1 An incomplete message to particle physicists

Employing Einstein’s general theory of relativity to describe the evolution of the
Universe, we base our universe model on a relation between geometry and matter
sources. A maximal reduction of this theoretical fundament is to consider the simplest
conceivable geometry. Without putting in doubt that it might be an oversimplification
to assume a (about every point) locally isotropic (and hence homogeneous) geome-
try, standard cosmology conjectures the existence of sources that would generate this
simple geometry. As already remarked, the majority of these sources have yet unknown
physical origin. Obviously, particle physicists take the demand for missing fundamen-
tal fields literally. But, as was emphasized above, the standard model has physical
sense only, if a homogeneous-isotropic solution of Einstein’s equations also describes
the inhomogeneous Universe effectively, i.e., on average. This is not obvious. The
very fact that the distributions of matter and geometry are inhomogeneous gives rise
to backreaction terms; we shall restrict them to those additional terms that influence
the kinematics of the homogeneous-isotropic solutions. These terms can be viewed to
arise on the geometrical side of Einstein’s equations, but they may as well be put on
the side of the sources.

We start with a basic kinematical observation that lies at the heart of the backreaction
problem.
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1.3.2 A key to the averaging problem: non-commutativity

Let us define spatial averaging of a scalar field Ψ on a compact3 domain D with
volume VD := |D | through its Riemannian volume average

〈

Ψ (Xi , t)
〉

D
:= 1

VD

∫

D

Ψ (Xi , t) Jd3 X, J :=
√

det(gi j ). (6)

The key property of inhomogeneity of the field Ψ is revealed by the commutation rule
[32,44]:

∂t 〈Ψ 〉D − 〈∂tΨ 〉D = 〈ΘΨ 〉D − 〈Θ〉D 〈Ψ 〉D , (7)

where Θ := uµ;µ denotes the trace of the fluid’s expansion tensor, uµ its 4-velocity,
and ∂t J = Θ J the evolution of the root of the 3-metric determinant J ; the spatial
average of Θ describes the rate of volume change of a collection of fluid elements
along ∂/∂t ,

〈Θ〉D = ∂t VD

VD
=: 3HD , (8)

where we have introduced a volume Hubble rate HD that reduces to Hubble’s func-
tion in the homogeneous case. Commutativity reflects the conjecture implied by the
standard model: a realistically evolved inhomogeneous field will feature the same ave-
rage characteristics as those predicted by the evolution of the (homogeneous) average
quantity; in other words, the right-hand-side of (7) is assumed to vanish. This rule also
shows that backreaction terms deal with the sources of non-commutativity that are in
general non-zero for inhomogeneous fields. Note that this rule is purely kinematical,
which shows that it is not necessarily the nonlinearity of the field equations that is
responsible for backreaction effects.

1.3.3 Regional volume acceleration despite local deceleration

Based on a first application of the above rule, we shall emphasize that there is not neces-
sarily anti-gravity at work, e.g., in the “redcapped” version of a positive cosmological
constant, in order to have sources that counteract gravity. Raychaudhuri’s equation, if
physically essential terms like vorticity, velocity dispersion, or pressure are retained,
provides terms needed to oppose gravity, e.g., to support spiral galaxies (vorticity),
elliptical galaxies (velocity dispersion), and other stabilization mechanisms involving
pressure (think of the hierarchy of stable states of stars until they collapse into a
Black Hole). Admittedly, those terms are effectively “small-scale-players”. Now, let

3 This is a strong assumption on smaller spatial scales in the case of the matter model “irrotational dust”:
as soon as singularities in the flow develop, the boundary of the domain then also experiences singularities,
i.e., a breaking of the boundary due to a splitting of the domain or due to a merging of domains. These
latter processes that alter the domain’s topology may also occur in a smooth way, if the flow is regularized
through generalizations of the matter model.
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us consider Raychaudhuri’s equation (see (21) below), restricted to irrotational dust,4

∂tΘ = Λ− 4πG� + 2II − I2, (9)

with the principal scalar invariants of Θab, 2II := 2/3Θ2 − 2σ 2 and I := Θ . Then,
unless there is a positive cosmological constant, there is no term that could counter-
balance gravitational attraction and, at every point, ∂tΘ < 0. Applying the commuta-
tion rule (7) for Ψ = Θ , we find that the averaged variables obey the same equation
as above despite non-commutativity:5

∂t 〈Θ〉D = Λ− 4πG 〈�〉D + 2 〈II〉D − 〈I〉2
D . (10)

This result can be understood on the grounds that shrinking the domain D to a point
should produce the corresponding local equation. Now, notwithstanding, the above
equation contains a positive term that acts against gravity. This can be easily seen by
rewriting the averaged principal invariants: we obtain6

2 〈II〉D −〈I〉2
D = 2

3

〈

(Θ − 〈Θ〉D )2
〉

D
−2

〈

(σ − 〈σ 〉D )2
〉

D
− 1

3
〈Θ〉2

D −2 〈σ 〉2
D , (11)

which, compared with the corresponding local expression,

2II − I2 = −1

3
Θ2 − 2σ 2, (12)

gave rise to two additional, positive-definite fluctuation terms, where that for the
averaged expansion variance enters with a positive sign. It may appear “magic” that
the time-derivative of a (on some spatial domain D) averaged expansion may be
positive despite the fact that the time-derivative of the expansion at all points in D
is negative. As the above explicit calculation shows, this property does not furnish
an argument against the possibility of volume acceleration [102], but simply is due
to the fact that an average correlates the local contributions, and it is this correlation
(or fluctuation) that adds “kinematical pressure”. The interesting point is that these
additional terms are “large-scale players”, as we shall make more precise below.7

What we can learn from this simple exercise is that any local argument, e.g., on the
smallness of some perturbation amplitude at a given point, is not enough to exclude

4 We assume that the influence of a strong vorticity evolution (that is known to happen on small scales in the
nonlinear regime of structure formation) is not relevant on scales larger than the scale of, say, superclusters
of galaxies. According to the sign of its appearence in Raychaudhuri’s equation, vorticity counteracts
gravitation and its effect will be relevant, if averages are performed over domains on and below the scales
of galaxy clusters.
5 This is only true, if all terms appearing in Raychaudhuri’s equation are written in terms of principal
scalar invariants; it is actually a special non-linearity of this equation that cancels the corresponding non-
commutativity term (see Corollary I in [32]).
6 We have formally inserted the averaged shear term, so that the last two terms correspond to the local ones.
7 The physical and observational consequences of the expansion fluctuation term have been thoroughly
explained and illustrated by a toy model in the review paper [165].
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regional (“global”) physical effects that arise from averaging inhomogeneities; even
if deviations from the average are small, as measured for example today, the evolution
of the average may be different from the evolution of a “background solution” in
perturbation theory. As we shall discuss more in detail in the course of this report, such
correlation effects must not be subdominant compared to the magnitude of the local
fields, since they are related to the spatial variation of the local fields and, having said
“spatial”, it could (and it will) imply a coupling to the geometry as a dynamical variable
in Einstein gravitation. This latter remark will turn out very useful in understanding
the potential relevance of backreaction effects in relativistic cosmology.

1.3.4 The production of information in the Universe

The above considerations on effective expansion properties can be essentially traced
back to “non-commutativity” of averaging and time-evolution, lying at the root of
backreaction. (Note that additional “spatial” backreaction terms that have been dis-
cussed in Sect. 1.2.2 are also the result of a “non-commutativity”, this time between
averaging and spatial rescaling—see also [74].) The same reasoning underlies the
following entropy argument. Applying the commutation rule (7) to the density field,
Ψ = �,

〈∂t�〉D − ∂t 〈�〉D = ∂t S{�|| 〈�〉D }
VD

, (13)

we derive, as a source of non-commutativity, the (for positive-definite density) positive-
definite Lyapunov functional (known as Kullback–Leibler functional in information
theory; [99] and references therein):

S{�|| 〈�〉D } :=
∫

D

� ln
�

〈�〉D
Jd3 X. (14)

This measure vanishes for Friedmannian cosmologies (“zero structure”). It attains
some positive time-dependent value otherwise. The source in (13) shows that relative
entropy production and volume evolution are competing: commutativity can be rea-
ched, if the volume expansion is faster than the production of information contained
within the same volume.

In [99] the following conjecture was advanced:
The relative information entropy of a dust matter model S{�|| 〈�〉Σ } is, for suffi-

ciently large times, globally (i.e., averaged over the whole manifoldΣ that is assumed
simply-connected and without boundary) an increasing function of time.
This conjecture already holds for linearized scalar perturbations at a Friedmannian
background (the growing-mode solution of the linear theory of gravitational insta-
bility implies ∂t S> 0 and S is, in general, time-convex, i.e., ∂2

t S> 0). Generally,
information entropy is produced, i.e., ∂t S> 0 with

∂t S{�|| 〈�〉D }
VD

= −〈δ�Θ〉D = −〈�δΘ〉D = −〈δ�δΘ〉D , (15)
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(and with the deviations of the local fields from their average values, e.g., δ� :=
� − 〈�〉D ), if the domain D contains more expanding underdense and contracting
overdense regions than the opposite states contracting underdense and expanding
overdense regions. The former states are clearly favoured in the course of evolution,
as can be seen in simulations of large-scale structure.

There are essentially three lessons relevant to the origin of backreaction that can
be learned here. First, structure formation (or “information” contained in structures)
installs a positive-definite functional as a potential to increase the deviations from
commutativity; it can therefore not be statistically “averaged away” (the same remark
applies to the averaged variance of the expansion rate discussed before). Second, gra-
vitational instability acts in the form of a negative feedback that enhances structure
(or “information”), i.e., it favours contracting clusters and expanding voids. This ten-
dency is opposite to the thermodynamical interpretation within a closed system where
such a relative entropy would decrease and the system would tend to thermodynami-
cal equilibrium. This is a result of the long-ranged nature of gravitation: the system
contained within D must be treated as an open system. Third, backreaction is a genui-
nely non-equilibrium phenomenon, thus, opening this subject also to the language of
non-equilibrium thermodynamics [161,181,205], general questions of gravitational
entropy [24,99,138,156,157], and observational measures using distances to equili-
brium [13]. “Near-equilibrium” can only be maintained (not established) by a simul-
taneous strong volume expansion of the system. Later we discuss an example of a
cosmos that is “out-of-equilibrium”, i.e., settled in a state far from a Friedmannian
model that, this latter, can be associated with the relative equilibrium state S = 0.

In particular, we conclude that the standard model may be a good description for
the averaged variables only when information entropy production is over-compensated
by volume expansion (measured in terms of a corresponding adimensional quantity).
This latter property is realized by linear perturbations at a FLRW background. Thus,
the question is whether this remains true in the nonlinear regime, where informa-
tion production is strongly promoted by structure formation and expected to be more
efficient.

Before we can go deeper into the problem of whether such backreaction terms,
being well-motivated, are indeed relevant in a quantitative sense, we have to study the
governing equations.

2 Constructing a realistic universe model: refurnishing the cosmological
equations

In this section we recall a set of averaged Einstein equations together with alternative
forms of these equations which put us in the position to study backreaction terms as
additional sources to the standard Friedmann equations.

2.1 Einstein’s equations recalled

In order to make the presentation more self-contained, we recall the complete set of
local Einstein equations, restricted to irrotational fluid motion with the simplest matter
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model “dust” (i.e., vanishing pressure), as before.8 In this case the flow is geodesic
and space-like hypersurfaces can be constructed that are flow-orthogonal at every
spacetime event in a 3 + 1 representation.

We start with Einstein’s equations.9

4 Rµν − 1

2
gµν

4 R = 8πG�uµuν −Λgµν, (16)

with the 4-Ricci tensor 4 Rµν , its trace 4 R, the fluid’s 4-velocity uµ (uµuµ = −1), the
cosmological constant Λ, and the rest mass density � obeying the conservation law

(

�uµuν
)

;µ = 0. (17)

In a flow-orthogonal coordinate system xµ = (Xk, t) (i.e., Gaussian or normal
coordinates which are comoving with the fluid) we can write xµ = f µ(Xk, t), and
we have uµ = ḟ µ = (1, 0, 0, 0) and uµ = ḟµ = (−1, 0, 0, 0). These coordinates are
defined such as to label geodesics in spacetime, i.e., uνuµ;ν = 0.

Defining the two fundamental forms as in Eqs. (3, 4), with the 3-metric coefficients
gi j and the extrinsic curvature coefficients Ki j := −hµi h

ν
j uµ;ν (projected into the

hypersurfaces orthogonal to uµ with the help of hµν := gµν+uµuν), Einstein’s equa-
tions (16) together with (17) (contracted with uν) then are equivalent to the following
system of equations [7,183], consisting of the energy or Hamiltonian constraint and
the momentum or Codazzi constraints,

1

2

(

R + K 2 − K i
j K j

i

)

= 8πG� +Λ, K i
j ||i − K| j = 0, (18)

and the evolution equations for the density and the two fundamental forms,

∂t� = K�, ∂t gi j = −2 gik K k
j , ∂t K i

j = K K i
j + Ri

j − (4πG�+Λ)δi
j . (19)

R := Ri
i and K := K i

i denote the traces of the spatial Ricci tensor Ri j and the
extrinsic curvature Ki j , respectively. Expressing the latter in terms of kinematical
quantities,

−Ki j = Θi j = σi j + 1

3
Θgi j , −K = Θ, (20)

8 The corresponding equations with arbitrary lapse and shift functions for a perfect fluid energy–
momentum–tensor are discussed in the Appendix, together with the averaged equations.
9 Greek indices run through 0...3, while latin indices run through 1...3; summation over repeated indices
is understood. A semicolon will denote covariant derivative with respect to the 4-metric with signature
(−,+,+,+); the units are such that c = 1; further below, a double vertical slash || denotes covariant
derivative with respect to the 3-metric gi j , while a single vertical slash denotes partial derivative with

respect to the local coordinates Xi ; The overdot denotes partial time-derivative (at constant Xi ) as before,
here identical to the covariant time-derivative ∂t = uµ∂µ.
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with the expansion Θi j , the trace-free symmetric shear σi j , and the rate of expansion
Θ , we may write the above equations in the form

1

2
R + 1

3
Θ2 − σ 2 = 8πG� +Λ, σ i

j ||i = 2

3
Θ| j ,

∂t� = −Θ�, ∂t gi j = 2 gikσ
k
j + 2

3
Θgikδ

k
j ,

∂tΘ + 1

3
Θ2 + 2σ 2 + 4πG� −Λ = 0,

∂tσ
i
j +Θσ i

j = −
(

Ri
j − 1

3
δi

j R

)

, (21)

where we have introduced the rate of shear σ 2 := 1/2σ i
jσ

j
i . (To derive the last

two equations, Raychaudhuri’s equation [167,168] and the equation for the trace-free
parts, we have used the Hamiltonian constraint.)

2.2 Averaged cosmological equations

In order to find evolution equations for effective (i.e., spatially averaged) cosmolo-
gical variables, we may put the following simple idea into practice. We observe that
Friedmann’s differential equations [84,85], see also [86] capture the scalar parts of
Einstein’s equations (21), while restricting them by the strong symmetry assumption
of local isotropy. The resulting equations, Friedmann’s expansion law (the energy or
Hamiltonian constraint) and Friedmann’s acceleration law (Raychaudhuri’s equation),
together with restmass conservation,

3

(
ȧ

a

)2

− 8πG�H −Λ = −3k

a2 , 3
ä

a
+ 4πG�H −Λ = 0, �̇H + 3

(
ȧ

a

)

�H = 0,

(22)
can be replaced by their spatially averaged, general counterparts (for the details the
reader is referred to [32,34,36,49]):

3

(
ȧD

aD

)2

− 8πG 〈�〉D −Λ = −〈R〉D + QD

2
, (23)

3
äD

aD
+ 4πG 〈�〉D −Λ = QD , (24)

〈�〉̇D + 3
ȧD

aD
〈�〉D = 0. (25)

We have replaced the Friedmannian scale factor by the volume scale factor aD ,
depending on content, shape and position of the domain of averaging D , defined
via the domain’s volume VD (t) = |D |, and the initial volume VDi = VD (ti) = |Di|:

aD (t) :=
(

VD (t)

VDi

)1/3

. (26)
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Using a scale factor instead of the volume should not be confused with “isotropy”. The
above equations are general for the evolution of a mass-preserving, compact domain
containing an irrotational continuum of dust, i.e., they provide a background-free
and non-perturbative description of inhomogeneous and anisotropic fields.10 The new
term appearing in these equations, the kinematical backreaction, arises as a result of
expansion and shear fluctuations:

QD := 2 〈II〉D − 2

3
〈I〉2

D = 2

3

〈

(θ − 〈θ〉D )2
〉

D
− 2

〈

σ 2
〉

D
, (27)

I and II denote the principal scalar invariants of the extrinsic curvature, and the second
equality follows by introducing the decomposition of the extrinsic curvature into the
kinematical variables, as before. Also, it is not a surprise that the general averaged
3-Ricci curvature 〈R〉D replaces the constant-curvature term in Friedmann’s equations.
Note also that the term QD encoding the fluctuations has the particular structure of
vanishing at a Friedmannian background, a property that it shares with gauge-invariant
variables.11

In the Friedmannian case, Eqs. (22), the acceleration law arises as the time-derivative
of the expansion law, if the integrability condition of restmass conservation is respec-
ted, i.e., the homogeneous density �H ∝ a−3. In the general case, however, restmass
conservation is not sufficient. In addition to the (built-in) general integral of Eq. (25),

〈�〉D = 〈�(ti)〉Di

a3
D

= MD

a3
D VDi

, MD = MDi , (28)

we also have to respect the following curvature–fluctuation-coupling:

1

a6
D

∂t

(

QD a6
D

)

+ 1

a2
D

∂t

(

〈R〉D a2
D

)

= 0. (29)

This relation will be key to understand how backreaction can take the role of Dark
Energy.

2.3 Alternative forms of the averaged equations

We here provide three compact forms of the averaged equations introduced above, as
well as some derived quantities. They will prove useful for our further discussion of
the backreaction problem.

10 One could, of course, introduce an isotropic or anisotropic reference background [44] or, explicitly
isolate an averaged shear from the above equations to study deviations from the kinematics of Bianchi-type
models, as was done with some interesting results in [12].
11 In a quasi-Newtonian setting, where averages are taken on the Euclidean or constant-curvature back-
ground space, the variable QD is gauge-invariant to second-order in perturbation theory [119,126], since
this variable vanishes at the background [186,187]; for related thoughts see [153,150].
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2.3.1 Generalized expansion law

The correspondence between Friedmann’s expansion law (the first equation in (22))
and the general expansion law (23) can be made more explicit through formal inte-
gration of the integrability condition (29):

3kDi

a2
D

− 1

a2
D

t∫

ti

dt ′ QD
d

dt ′
a2
D (t

′) = 1

2
(〈R〉D + QD ) . (30)

The (domain-dependent) integration constant kDi relates the new terms to the
“constant-curvature part”. We insert this latter integral back into the expansion law
(23) and obtain:

3
ȧ2
D + kDi

a2
D

− 8πG 〈�〉D −Λ = 1

a2
D

t∫

ti

dt ′ QD
d

dt ′
a2
D (t

′). (31)

This equation is formally equivalent to its Newtonian counterpart [44]. It shows that,
by eliminating the averaged scalar curvature, the whole history of the averaged kine-
matical fluctuations acts as a source of a generalized expansion law that features the
“Friedmannian part” on the left-hand-side of (31).

2.3.2 Effective Friedmannian framework

We may also recast the general equations (23, 24, 25, 29) by appealing to the Fried-
mannian framework. This amounts to re-interpret geometrical terms, that arise through
averaging, as effective sources within a Friedmannian setting.

In the present case the averaged equations may be written as standard zero-curvature
Friedmann equations for an effective perfect fluid energy momentum tensor with new
effective sources [34]:

�D
eff = 〈�〉D − 1

16πG
QD − 1

16πG
〈R〉D ,

(32)
pD

eff = − 1

16πG
QD + 1

48πG
〈R〉D .

3

(
ȧD

aD

)2

− 8πG�D
eff −Λ = 0,

3
äD

aD
+ 4πG(�D

eff + 3pD
eff)−Λ = 0, (33)

�̇D
eff + 3

ȧD

aD

(

�D
eff + pD

eff

)

= 0.

Eqs. (33) correspond to the equations (23), (24), (25) and (29), respectively.
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We notice that QD , if interpreted as a source, introduces a component with “stiff
equation of state”, pD

Q = �D
Q , suggesting a correspondence with a free scalar field

(discussed in the next subsection), while the averaged scalar curvature introduces a
component with “curvature equation of state” pD

R = −1/3�D
R . Although we are dea-

ling with dust matter, we appreciate a “geometrical pressure” in the effective energy-
momentum tensor.

There is, of course, some ambiguity in defining the effective sources. We recall [36]
that, firstly, it may sometimes be useful to incorporateΛ into the effective sources by
defining �D

effΛ := �D
eff + Λ/8πG and pD

effΛ := pD
eff − Λ/8πG. Secondly, we might

add the “constant-curvature term” 3kDi/a
2
D to the expansion law in (33); if we wish

to do so, then the effective sources can be represented solely through the kinematical
backreaction term QD and its time-integral. For this we have to exploit the “Newtonian
form”, Eq. (31), and would have to define the effective sources as follows:

�̂D
eff := 〈�〉D + XD

16πG
, p̂D

eff := − QD

12πG
− XD

48πG
,

XD := 2

a2
D

t∫

ti

dt ′ QD
d

dt ′
a2
D (t

′). (34)

The integrated form of the integrability condition, Eq. (30), then allows to express
XD again through the averaged scalar curvature, XD = 6kDi/a

2
D − QD − 〈R〉D , and

we obtain the sources corresponding to (32), however, with a curvature source that
captures the deviations WD = 〈R〉D − 6kDi/a

2
D from a constant-curvature model:

�̂D
eff = 〈�〉D − QD

16πG
− WD

16πG
, p̂D

eff = − QD

16πG
+ WD

48πG
. (35)

2.3.3 “Morphed” Friedmann cosmologies

In the above-introduced framework we distinguish the averaged matter source on the
one hand, and averaged sources due to geometrical inhomogeneities stemming from
extrinsic and intrinsic curvature (kinematical backreaction terms) on the other. As
shown above, the averaged equations can be written as standard Friedmann equations
that are sourced by both. Thus, we have the choice to consider the averaged model
as a (scale-dependent) “standard model” with matter source evolving in a mean field
of backreaction terms. This form of the equations is closest to the standard model of
cosmology. It is a “morphed” Friedmann cosmology, sourced by matter and “morphed”
by a (minimally coupled) scalar field, the morphon field [49]. We write (recall that we
have no matter pressure source here):

�D
eff =: 〈�〉D + �D

Φ , pD
eff =: pD

Φ , (36)

with

�D
Φ = ε

1

2
Φ̇2

D + UD , pD
Φ = ε

1

2
Φ̇2

D − UD , (37)
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where ε = +1 for a standard scalar field (with positive kinetic energy), and ε = −1
for a phantom scalar field (with negative kinetic energy).12 Thus, in view of Eq. (32),
we obtain the following correspondence:

− 1

8πG
QD = εΦ̇2

D − UD , − 1

8πG
〈R〉D = 3UD . (38)

Inserting (38) into the integrability condition (29) then implies that ΦD , for Φ̇D �= 0,
obeys the (scale-dependent) Klein–Gordon equation:13

Φ̈D + 3HD Φ̇D + ε
∂

∂ΦD
U (ΦD , 〈�〉D ) = 0. (39)

The above correspondence allows us to interpret the kinematical backreaction effects
in terms of properties of scalar field cosmologies, notably quintessence or phantom-
quintessence scenarii that are here routed back to models of inhomogeneities. Dark
Energy emerges as unbalanced kinetic and potential energies due to structural inho-
mogeneities.14 For a full-scale discussion of this correspondence see [49].

2.3.4 A note on closure assumptions

This system of the averaged equations in the various forms introduced above does
not close unless we specify a model for the inhomogeneities. Note that, if the system
would close, this would mean that we solved the scalar parts of the GR equations in
general by reducing them to a set of ordinary differential equations on arbitrary scales.
Closure assumptions have been studied by prescribing a cosmic equation of state of
the form pD

eff = β(�D
eff , aD ) [35,36], or by prescribing the backreaction terms through

scaling solutions, e.g., QD ∝ an
D , parametrized by a scaling index n [49]. We shall

come back to the important question of how to close the averaged equations later in
Sect. 4.2.

2.4 Derived dimensionless quantities

For any quantitative discussion it is important to provide a set of dimensionless cha-
racteristics that arise from the above framework.

12 We have chosen the letter U for the potential to avoid confusion with the volume functional; if ε is
negative, a “ghost” can formally arise on the level of an effective scalar field, although the underlying
theory does not contain one.
13 Note that the potential is not restricted to depend only on ΦD explicitly. An explicit dependence on the
averaged density and on other variables of the system (that can, however, be expressed in terms of these
two variables) is generic.
14 More precisely, kinematical backreaction appears as excess of kinetic energy density over the “virial
balance”, cf. Eq. (51), while the averaged scalar curvature of space sections is directly proportional to the
potential energy density; e.g., a void (a “classical vacuum”) with on average negative scalar curvature (a
positive potential) can be attributed to a negative potential energy of a morphon field (“classical vacuum
energy”).
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2.4.1 The cosmic quartet

We start by dividing the volume-averaged Hamiltonian constraint (23) by the squared
volume Hubble functional HD := ȧD/aD introduced before. Then, expressed through
the following set of “parameters”,15

ΩD
m := 8πG

3H2
D

〈�〉D ; ΩD
Λ := Λ

3H2
D

; ΩD
R := −〈R〉D

6H2
D

; ΩD
Q := − QD

6H2
D

, (40)

the averaged Hamiltonian constraint assumes the form of a cosmic quartet [33,41]:

ΩD
m +ΩD

Λ +ΩD
R +ΩD

Q = 1, (41)

showing that the solution space of an averaged inhomogeneous cosmology is three-
dimensional in the present framework. In this set, the averaged scalar curvature para-
meter and the kinematical backreaction parameter are directly expressed through 〈R〉D
and QD , respectively. In order to compare this pair of parameters with the “constant-
curvature parameter” that is the only curvature contribution in standard cosmology to
interpret observational data, we can alternatively introduce the pair

ΩD
k := − kDi

a2
D H2

D

, ΩD
QN := 1

3a2
D H2

D

t∫

ti

dt ′ QD
d

dt ′
a2
D (t

′), (42)

being related to the previous parameters by

ΩD
k +ΩD

QN = ΩD
R +ΩD

Q =: ΩD
X . (43)

After a little thought we see that both sides of this equality would mimick a Dark
Energy component, ΩD

X , in a Friedmannian model. Note, in particular, that it is not
the additional backreaction parameter alone that can play this role, but it is the joint
action with the (total) curvature parameter, or, looking to the left-hand-side, it is the
cumulative effect acquired during the history of the backreaction parameter. A positive
cosmological term would require this sum, or the effective history, respectively, to be
positive.

2.4.2 Volume state finders

Like the volume scale factor aD and the volume Hubble rate HD , we may intro-
duce “parameters” for higher derivatives of the volume scale factor, e.g., the volume
deceleration

qD := − äD

aD

1

H2
D

= 1

2
ΩD

m + 2ΩD
Q −ΩD

Λ . (44)

15 We shall, henceforth, call these characteristics “parameters”, but the reader should keep in mind that
these are functionals on D . Moreover, they are dynamically coupled.
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Following [1,174] (see also [81] and references therein) we may also define the
following volume state finders involving the third derivative of the volume scale factor:

rD :=
...
a D

aD

1

H3
D

= ΩD
m

(

1 + 2ΩD
Q

)

+ 2ΩD
Q

(

1 + 4ΩD
Q

)

− 2

HD
Ω̇D

Q , (45)

and

sD := rD − 1

3(qD − 1/2)
. (46)

The above definitions are identical to those given in [1,174], however, note the fol-
lowing obvious and subtle differences. One of the obvious differences was already
mentioned: while the usual state finders of a global homogeneous state in the standard
model of cosmology are the same for every scale, the volume state finders defined
above are different for different scales. The other is the fact that the volume state fin-
ders apply to an inhomogeneous cosmology with arbitrary 3-metric, while the usual
state finders are restricted to a FLRW metric. Besides these there is a more subtle
difference, namely a degeneracy in the Dark Energy density parameter: while [1,174]
denote (with obvious adaptation) 1 − ΩD

m = ΩD
X we have from the Hamiltonian

constraint (41) ΩD
X = ΩD

Q +ΩD
R , i.e., so-called X -matter (Dark Energy) is compo-

sed of two physically distinct components.

2.4.3 Cosmic equation of state and Dark Energy equation of state

We already mentioned the possibility to characterize a solution of the averaged equa-
tions by a cosmic equation of state pD

eff = β(�D
eff , aD ) with wD

eff := pD
eff/�

D
eff . Now,

we may separately discuss (i.e., without matter source) the morphon equation of state
that plays the role of the Dark Energy equation of state [49],

wD
Φ := QD − 1/3〈R〉D

QD + 〈R〉D . (47)

We can express the volume state finders through this equation of state parameter and
its first time-derivative:

rD = 1 + 9

2
wD
Φ

(

1 + wD
Φ

) (

1 −ΩD
m

)

− 3

2

ẇD
Φ

HD

(

1 −ΩD
m

)

, (48)

and

sD = 1 + wD
Φ − 1

3HD

ẇD
Φ

wD
Φ

, (49)

being zero for wD
Φ ≡ −1, i.e., for the case of a (scale-dependent) cosmological

constant. As emphasized in [1,174], the above expressions have the advantage that one
can immediately infer the case of a constant Dark Energy equation of state, so-called
quiessence models, that here correspond to scaling solutions of the morphon field with
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a constant fraction of kinetic to potential energies [49]:

2ED
kin

ED
pot

= εΦ̇2
D VD

−UD VD
= −1 − 3QD

〈R〉D = 2
wD
Φ + 1

wD
Φ − 1

, (50)

where the case QD = 0 (no kinematical backreaction), or wD
Φ = −1/3 (i.e., �D

Φ +
3pD

Φ = 0) corresponds to the “virial condition”

2 ED
kin + ED

pot = 0, (51)

obeyed by the scale-dependent Friedmannian model.16 As has been already remarked,
a non-vanishing backreaction is associated with violation of “equilibrium”. Note that a
morphon field does not violate energy conditions as in the case of a fundamental scalar
field, cf. Sect. 3.2.1. Again it is worth emphasizing that the above-defined equations
of state are scale-dependent.

With the help of these dimensionless parameters an inhomogeneous, anisotropic
and scale-dependent state can be effectively characterized.

3 Implications and further insights: qualitative views on backreaction

Having laid down a framework to characterize inhomogeneous cosmologies and
having understood the physical nature of backreaction effects, does not entitle us
to draw conclusions on the quantitative importance of inhomogeneities for the global
properties of world models. It may well be that the robustness of the standard model
also withstands this challenge. A good example is provided by Newtonian cosmology
that is our starting point for discussing the implications of the present framework.

3.1 Thoughts on Newtonian cosmology and N-body simulations

Analytical as well as numerical models for inhomogeneities are commonly studied
within Newtonian cosmology. Essential cornerstones of our understanding of inhomo-
geneities rest on the Euclidean notion of space and corresponding Euclidean spatial
averages.

3.1.1 Global properties of Newtonian models

The present framework can also be set up for the Newtonian equations and, indeed,
at the beginning of its development the main result on global properties of Newtonian
models was the confirmation of the FLRW cosmology as a correct model describing
the averaged inhomogeneous variables. Technically, this result is due to the fact that the

16 In the case of vanishing kinematical backreaction, the scalar field is present for our definition of the cor-
respondence and it models a constant-curvature term 〈R〉D = 6kDi

/a2
D . Alternatively, we could associate

a morphon with the deviations WD from the constant-curvature model only.

123



488 T. Buchert

averaged principal invariants, encoded in QD , are complete divergences on Euclidean
space sections and, therefore, have to vanish on some scale where we impose periodic
boundary conditions on the deviation fields from the FLRW background. The latter is
a necessary requirement to obtain unique solutions for Newtonian models (for details
see [44]).

This point is interesting in itself, because researchers who have set up cosmological
N-body simulations did not investigate backreaction: the vanishing of the averaged
deviations from a FLRW background is enforced by construction. The same remark
applies to analytical models, where a homogeneous background is introduced with the
manifest implication of coinciding with the averaged model, but without an explicit
proof. The outcome that a FLRW cosmology indeed describes the average of a general
Newtonian cosmology can be traced back to the (non-trivial) property that the second
principal invariant II appearing in QD can indeed be written (like the first) as a com-
plete divergence, cf. Eq. (54) below. Since this is not valid in Riemannian geometry,
“global” backreaction effects—if relevant—entail the need of generalizing current
cosmological simulations and analytical models. If backreaction is substantial, then
current models must be considered as toy-models that have improved our understan-
ding of structure formation, but are inapplicable in circumstances where the dynamics
of geometry is a relevant issue. We shall learn that (i) these circumstances are those
needed to route Dark Energy back to inhomogeneities, and (ii) at the precision le-
vel at which currently cosmological parameters are determined, it can already be
demonstrated that backreaction might potentially be a non-negligible player in the
Late Universe.

While the last point will be touched upon in Sect. 4, there are a number of more
points that improve our qualitative understanding, to which we turn now.

3.1.2 Morphological and statistical interpretation of backreaction

The expansion law, Eq. (31), is built on the rate of change of a simple morphological
quantity, the volume content of a domain. Although functionally it depends on other
morphological characteristics of a domain, it does not explicitly provide information
on their evolution. An evolution equation for the backreaction term QD is missing.
This fact touches on the problem of closing the hierarchy of dynamical evolution
equations mentioned in Sect. 2.3.4.

We shall, in this subsection, provide a morphological interpretation of QD that is
possible in the Newtonian framework (the following considerations substantially rely
on the Euclidean geometry of space). This will improve our understanding of what
QD actually measures, if geometry is not considered as a dynamical variable. We
know from previous remarks that the dynamical coupling of QD to the geometry of
space sections will change this picture.

Let us focus our attention on the boundary of the spatial domain D . A priori, the
location of this boundary in a non-evolving background space enjoys some freedom
which we may constrain by saying that the boundary coincides with a velocity front
of the fluid (hereby restricting attention to irrotational flows). This way we employ
the Legendrian point of view of velocity fronts that is dual to the Lagrangian one of
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fluid trajectories. Let S(x, y, z, t) = s(t) define a velocity front at Newtonian time t ,
v = ∇S.

Defining the unit normal vector n on the front, n = ±∇S/|∇S| (the sign depends
on whether the domain is expanding or collapsing), the average expansion rate can be
written as a flux integral using Gauss’ theorem,

〈Θ〉D = 1

VD

∫

D

∇ · v d3x = 1

VD

∫

∂D

v · dS, (52)

with the Euclidean volume element d3x , and the surface element dσ , dS = n dσ .
We obtain the intuitive result that the average expansion rate is related to another
morphological quantity of the domain, the total area of the enclosing surface:

〈Θ〉D = ± 1

VD

∫

∂D

|∇S| dσ. (53)

The principal scalar invariants of the velocity gradient vi, j =: S,i j can be transformed
into complete divergences of vector fields [71]:

I(vi, j ) = Θ = ∇ · v,

II(vi, j ) = ω2 − σ 2 + 1

3
Θ2 = 1

2
∇ · (v(∇ · v)− (v · ∇)v) ,

III(vi, j ) = 1

9
Θ3 + 2Θ

(

σ 2 + 1

3
ω2

)

+ σi jσ jkσki − σi jωiω j

= 1

3
∇ ·

(
1

2
∇ · (v(∇ · v)− (v · ∇)v) v − (v(∇ · v)− (v · ∇)v) · ∇v

)

.

(54)

(With our assumptions ω in the above expressions vanishes identically.)
In obtaining these expressions, the flatness of space is used essentially. Inserting the
velocity potential and performing the spatial average, we obtain [38]:

〈II〉D = 1

VD

∫

D

II d3x =
∫

∂D

H |∇S|2dσ, (55)

〈III〉D = 1

VD

∫

D

III d3x = ±
∫

∂D

G |∇S|3dσ, (56)

where H is the local mean curvature and G the local Gaussian curvature at every
point on the 2-surface bounding the domain. |∇S| = ds

dt equals 1, if the instrinsic arc-
length s of the trajectories of fluid elements is used instead of the extrinsic Newtonian
time t . The averaged invariants comprise, together with the volume, a complete set of
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morphological characteristics known as the Minkowski Functionals Wα of a body:

W0(s) :=
∫

D

d3x = VD , W1(s) := 1

3

∫

∂D

dσ,

W2(s) := 1

3

∫

∂D

H dσ, W3(s) := 1

3

∫

∂D

G dσ = 4π

3
χ. (57)

The Euler-characteristic χ determines the topology of the domain and is assumed to
be an integral of motion (χ = 1), if the domain remains simply-connected.17

Thus, we have gained a morphological interpretation of the backreaction term: it
can be entirely expressed through three of the four Minkowski Functionals:

QD (s) = 6

(

W2

W0
− W 2

1

W 2
0

)

. (58)

The Wα ; α = 0, 1, 2, 3 have been introduced into cosmology in [137] in order to
statistically assess morphological properties of cosmic structure. Minkowski Func-
tionals proved to be useful tools to also incorporate information from higher-order
correlations, e.g., in the distribution of galaxies, galaxy clusters, density fields or cos-
mic microwave background temperature maps ([113,115,178,179]; see the review
by Kerscher [111] and references therein). Related to the morphology of individual
domains is the study of building blocks of large-scale cosmic structure [175,180].

For a ball with radius R we have for the Minkowski Functionals:

W BR
0 (s) := 4π

3
R3, W BR

1 (s) := 4π

3
R2,

(59)
W BR

2 (s) := 4π

3
R, W BR

3 (s) := 4π

3
.

Inserting these expressions into the backreaction term, Eq. (58), shows that
QBR

D (s) = 0, and we have proved Newton‘s “Iron Sphere Theorem”, i.e., the fact
that a spherically-symmetric configuration features the expansion properties of a
homogeneous-isotropic model.18 Moreover, we can understand now that the backreac-
tion term encodes the deviations of the domain‘s morphology from that of a ball, a
fact that we shall illustrate now with the help of Steiner‘s formula of integral geometry
(see also [137]).

Let dσ 0 be the surface element on the unit sphere, then (according to the Gaussian
map) dσ = R1 R2dσ 0 is the surface element of a 2-surface with radii of curvature
R1 and R2. Moving the surface a distance ε along its normal we get for the surface

17 Notice that this may provide a morphological closure condition for the hierarchy of evolution equations.
18 This can be shown explicitly by using a radially-symmetric velocity field [48].
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element of the parallel velocity front:

dσε = (R1 +ε)(R2 +ε)dσ 0 = R1 R2 + ε(R1 + R2)+ ε2

R1 R2
dσ = (1+ε2H +ε2G)dσ,

(60)
where

H = 1

2

(
1

R1
+ 1

R2

)

, G = 1

R1 R2
, (61)

are the mean curvature and Gaussian curvature of the front as before.
Integrating Eq. (60) over the whole front we arrive at a relation between the total

surface area AD of the front and ADε
of its parallel front. The gain in volume may

then be expressed by an integral of the resulting relation with respect to ε (which is
known as Steiner‘s formula defining the Minkowski Functionals of a (convex) body
in three spatial dimensions):

VDε
= VD +

ε∫

0

dε′ ADε′ = VD + εAD + ε2
∫

∂D

H dσ + 1

3
ε3

∫

∂D

G dσ. (62)

An important lesson that can be learned here is that the backreaction term QD
obviously encodes all orders of the N-point correlation functions, since the Minkow-
ski Funktionals have this property; it is not merely a two-point term as the form of
QD as an averaged variance would suggest. In other words, a complete measurement
of fluctuations must take into account that the domain is Lagrangian and the shape
of the domain is an essential expression of the full N-point statistics of the matter
enclosed within D . (For further statistical considerations of backreaction in terms of
given fluctuation spectra see [48,112]). Kinematically, Steiner’s formula shows that the
volume scale factor aD , being defined through the volume in Eq. (26), also depends
on other morphological properties of D in the course of evolution. In a comoving
relativistic setting, the domain D is frozen into the metric of spatial sections, so that
we also understand that an evolving geometry in general relativity takes the role of
this shape-dependence in the Newtonian framework.

3.1.3 Backreaction views originating from Newtonian cosmology and relativistic
perturbation theory of a FLRW background

We may place Newtonian models, but also relativistic models that suppress the cou-
pling between fluctuations, encoded in QD , and the geometry of space sections, into
the same category: as a rule of thumb we can say that any model that describes fluctua-
tions on a Euclidean “background space” must be rejected as a potential candidate for
a backreaction-driven cosmology. The reason is that fluctuations in those models can
be subjected to periodic boundary conditions implying a globally (on the periodicity
scale) vanishing kinematical backreaction [44]. The very architecture of such models
is simply too restrictive to account for a non-vanishing (Hubble-scale) QD being a
generic property of relativistic models. Of course, also in those models, backreaction
can be investigated (a detailed investigation within Newtonian cosmology may be
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found in [48] as well as an application on the abundance statistics of collapsed objects
[112]), but it is then only a rephrasing of the known cosmic variance within the stan-
dard model of cosmology. Nevertheless, the potential relevance of a non-vanishing
backreaction can also be seen in Newtonian cosmology: in [48] it was found that the
magnitude of ΩD

Q remains small throughout the evolution, being restricted to fall off
to zero on some scale, but the indirect influence of a non-vanishing QD in the inter-
ior of the periodic box is strongly seen in the other cosmological parameters. Thus,
independent of our statement of irrelevance of the magnitude of ΩD

Q on large scales
in Newtonian cosmology, backreaction is clearly an important player to interpret cos-
mological parameters starting at scales of galaxy surveys, and it may here be a key to
also understand the Dark Matter problem, cf. Sect. 4.3.4.

We refer to the term “quasi-Newtonian” when we think of relativistic models that
are restricted to sit locally close to a Friedmannian state, as in standard gauge-invariant
perturbation theory [116,141,143], their average properties being evaluated on Eucli-
dean space sections [142]. Although we do not refer to the discussion of structure on
super-Hubble scales [117,134,154,162], the following consideration would also apply
there. The integrability condition (29), in essence, spells out the generic coupling of
kinematical fluctuations to the evolution of the averaged scalar curvature. Thus, the
freedom taken by a generic model is carried by a non-vanishing QD (even if small) into
changes of the other cosmological parameters, notably the averaged scalar curvature. If
that coupling is absent (even if QD is non-zero), Eq. (29) shows that QD ∝ V −2

D and

〈R〉D ∝ a−2
D , i.e., the averaged curvature evolves like a constant-curvature model,

and backreaction decays more rapidly than the averaged density, 〈�〉D ∝ V −1
D . In

other words, backreaction cannot be relevant today in all models that suppress this
coupling (we shall make this more precise in the following). Therefore, as another
rule of thumb, we may say that any (relativistic) model that evolves curvature at or in
the vicinity of the constant-curvature model is rejected as a potential candidate for a
backreaction-driven cosmology [49].

In summary, Dark Energy cannot be routed back to inhomogeneities on large scales
in Newtonian and quasi-Newtonian models, but a careful re-interpretation of cosmo-
logical parameters will have nevertheless to be envisaged.

3.2 Qualitative picture for backreaction-driven cosmologies

Looking at the backreaction term QD , the relevant positive term that could potentially
drive an accelerated expansion in accord with recent indications from supernovae data
[8,66,185] (see also Leibundgut and Enqvist, this volume, [80]),19 is the averaged
variance of the rate of expansion, cf. Eq. (27). This term, however, is quadratic and
the averaging operation involves a division by the square of the volume. How can
we then expect that, in an expanding Universe, such a term can be of any relevance
at the present time? Before we give an answer to this question, let us introduce a

19 Note, however, that the interpretation of volume acceleration in those data relies on the FLRW cosmology.
Backreaction could be influential and could change the interpretation of astronomical data also without
featuring an accelerating phase.
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criterion for a backreaction-driven cosmology that requires volume acceleration, i.e.,
we postulate high relevance of backreaction. This can be done with the help of the
averaged equations as has been advocated by Kolb et al. [118,119].

3.2.1 Acceleration and energy conditions

Let us look at the general acceleration law (24), and ask when we would find volume
acceleration on a given patch of the spatial hypersurface [35,36,119]:

3
äD

aD
= Λ− 4πG〈�〉D + QD > 0. (63)

We find that, if there is no cosmological constant, the necessary condition QD >

4πG〈�〉D must be satisfied on a sufficiently large scale, at least at the present time.
This requires that QD is positive, i.e., shear fluctuations are superseded by expansion
fluctuations20 and, what is crucial, that QD decays less rapidly than the averaged
density [35]. It is not obvious that this latter condition could be met in view of our
remarks above. We conclude that backreaction has only a chance to be relevant in
magnitude compared with the density (e.g., as defined through the inequality Eq. (63)
today), if its decay rate substantially deviates from its “quasi-Newtonian” behavior
and, more precisely, its decay rate must be weaker than that of the averaged density
(or at least comparable, depending on initial data for the magnitude of Early Dark
Energy [52,53]).

Another model of Dark Energy is to assume the existence of a scalar field source,
a so-called quintessence field (others are discussed in [67]). However, a usual scalar
field source in a Friedmannian model, attributed, e.g., to phantom quintessence that
leads to acceleration, will violate the strong energy condition � + 3p > 0, i.e.,:

3
ä

a
= −4πG(� + 3p) = −4πG(�H + �Φ + 3pΦ) > 0. (64)

In Sect. 2.3.3 we have introduced a mean field description of kinematical backreaction
in terms of a morphon field. For such an effective scalar field the strong energy condition
is not violated for the true content of the Universe, that is ordinary dust matter. In this
line it is interesting that we can identify “violation” of an effective “strong energy
condition” with the acceleration condition above (cf. Eqs. (32), (36)):

20 From the observational point of view this property is in accord with constraints that can be imposed
on the averaged shear fluctuations (quantitatively discussed in [36]): the universe model can be highly
isotropic in accord with strong constraints on the shear amplitude on large scales. For the backreaction
term it is important to independently constrain the large-scale expansion fluctuations that are in general not
necessarily proportional to large-scale density fluctuations as in a linear perturbation approach at a FLRW
background. Note also that the time-evolution of an isotropic average model must not (and in this case will
not) coincide with the time-evolution of a FLRW background.
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3
äD

aD
=−4πG

(

�D
eff + 3pD

eff

)

=−4πG
(

〈�〉D + �D
Φ + 3pD

Φ

)

=−4πG〈�〉D + QD ,

(65)
which has to be positive, if the acceleration condition (63) is met.

3.2.2 Curvature–fluctuation coupling

It is clear by now that a backreaction-driven cosmology [165] must make efficient use
of the genuinely relativistic effect that couples averaged extrinsic and intrinsic curva-
ture invariants, as is furnished by the integrability condition (29) (or the Klein–Gordon
equation (39) in the mean field description). While models that suppress the scalar
field degrees of freedom attributed to backreaction (or the morphon field in the mean
field description), and so cannot lead to an explanation of Dark Energy on the Hubble
scale, general relativity offers a wider range of possible cosmologies, since it is not
constrained by the assumption of Euclidean or constant-curvature geometry and small
deviations thereof. Here, it is essentially the requirement that the evolution of the back-
ground geometry is suppressed (naturally in Newtonian models and through “gauge-
fixing” in gauge-invariant perturbation theory), while generically the geometry is a
dynamical variable and does not evolve independently of the perturbations. But, how
can a cosmological model be driven away from a “near-Friedmannian” state, if we do
not already start with initial data away from a perturbed Friedmannian model? How
does the mechanism of the coupling between geometry and matter fluctuations work,
and can this mechanism be sufficiently effective?

3.2.3 The “Newtonian anchor”

Let us guide our thoughts by the following intuitive picture. Integral properties of
Newtonian and quasi-Newtonian models remain unchanged irrespective of whether
fluctuations are absent or “turned on”. Imagine a ship in a silent water and wind envi-
ronment (homogeneous equilibrium state). Newtonian and quasi-Newtonian models
do not allow, by construction [102], that the ship would move away as soon as water
and wind become more violent. This “Newtonian anchor” is lifted into the ship as soon
as we allow for the coupling of fluctuations to the geometry of spatial hypersurfaces
in the form of the averaged scalar curvature. It is this coupling that can potentially
drive the ship away, i.e., change the integral properties of the cosmology. Before we
are going to exemplify this coupling mechanism, e.g., by discussing exact solutions,
let us add some understanding to the role played by the averaged scalar curvature.

3.2.4 The role of curvature

Looking at the integral of the curvature–fluctuation–coupling, Eq. (30), we understand
that the constant-curvature of the standard model is specified by the integration constant
kDi . This term does not play a crucial dynamical role as soon as backreaction is at
work. Envisaging a cosmology that is driven by backreaction, we may as well dismiss
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this constant altogether. In such a case, the averaged curvature is dynamically ruled
by the backreaction term and its history. Given this remark we must expect that the
averaged scalar curvature may experience changes in the course of evolution (in terms
of deviations from constant-curvature), as soon as the structure formation process
injects backreaction. This picture is actually what one needs in order to solve the
coincidence problem, i.e., the observation that the onset of acceleration of the Universe
seems to coincide with the epoch of structure formation.

This mechanism can be qualitatively understood by studying scaling solutions,
cf. Sect. 3.3.5, which impose a direct coupling, QD ∝ 〈R〉D . (These scaling solutions
correspond to quiessence fields, Eq. (50), and have been thoroughly studied by many
people working on quintessence (see [67,176] and references therein.) In the language
of a morphon field, the mechanism perturbs the “virial equilibrium”, Eq. (78), such
that the potential energy stored in the averaged curvature is released and injected into
an excess of kinetic energy (kinematical backreaction). Thus, in this picture, positive
backreaction, capable of mimicking Dark Energy, is fed by the global “curvature
energy reservoir”. It is clear that such a mechanism relies on an evolution of curvature
that differs from the evolution of the constant-curvature part of the standard cosmology.
Indeed, as we shall exemplify below, already a deviation term of the form WD =
〈R〉D − 6kDi a

−2
D ∝ a−3

D is sufficient to change the decay rate of QD from ∝ a−6
D to

∝ a−3
D .

If we start with “near-Friedmannian initial data”, and no cosmological constant,
then the averaged curvature must be negative today and—if we require the model
to fully account for Λ—of the order of the value that we would find for a void-
dominated Universe [49]. Thus, the determination of curvature evolution, even only
asymptotically [170,171], is key to understand backreaction. The difference to the
concordance model is essentially that the averaged curvature changes from an almost
negligible value at the CMB epoch to a cosmologically relevant negative curvature
today. This is one of the direct hints to put backreaction onto the stage of observational
cosmology, cf. Sect. 4.3.1.

Let us add three remarks. First, it is not at all evident that a flat Universe is necessarily
favoured by the data throughout the evolution [101]. This latter analysis has been
performed within the framework of the standard model, and it is clear that in the
wider framework discussed here, the problem of interpreting astronomical data is
more involved. Second, it is often said that spatial curvature can only be relevant near
Black Holes and can therefore not be substantial. Here, one mistakenly implies an
astrophysical Black Hole, while the Schwarzschild radius corresponding to the mat-
ter content in a Hubble volume is of the order of the Hubble scale. As the averaged
Hamiltonian constraint (23) shows, the averaged scalar curvature is a quantitatively
competitive player that could only be “compensated” (and only on a specified scale)
by introducing a cosmological constant. In essence, a cosmologically relevant cur-
vature contribution is tiny, but this property is shared by all cosmological sources.
Third, even standard perturbation theory predicts a scaling-law for the averaged scalar
curvature that substantially differs from the evolution of a constant-curvature model,
see Sect. 4.2.
(The above qualitative picture is illustrated in detail in Räsänen’s review [165]).
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3.3 Exact solutions for kinematical backreaction

The following families of exact solutions of the averaged equations are used to illus-
trate the mechanism of a backreaction-driven cosmology. Other implications of these
examples are discussed in [36].

3.3.1 A word on the cosmological principle

We may separate the following classes of solutions into those solutions that respect
the cosmological principle and those that do not. It is therefore worth recalling the
assumptions behind the cosmological principle. In the literature one often finds a
“strong” version that demands local isotropy of the universe model. More realistically,
however, we should define a “weak” version that refers to the existence of a scale of
homogeneity: we assume that there exists a scale beyond which all observables do no
longer depend on scale. It is beyond this scale where the standard model is supposed
to describe the Universe on average; it is simply unreasonable to apply this model,
even on average, to smaller scales, since the standard, spatially flat FLRW model has
an in-built scale-independence. On the same grounds, isotropy can only be expected
on the homogeneity scale and not below. Accepting the existence of this scale has
strong implications, one of them being that cosmological parameters on that scale
are representative for the whole Universe. If this were not so, and generically we
may think of, e.g., a decay of average characteristics with scale all the way to the
diameter of the Universe as in a generic fractal (or multi-fractal) distribution [104],
then the cosmological parameters of the standard model would make no sense unless
the scale is explicitly indicated. The homogeneity scale is thought to be well below the
scale of the observable Universe and within our past-lightcone. Therefore, with this
assumption, averaging over non-causally connected regions delivers the same values
as those already accumulated up to the homogeneity scale [42,165].

We are now briefly describing some exact solutions, and we mainly have in mind
to learn about the coupling between curvature and fluctuations.

3.3.2 Backreaction as a constant curvature or a cosmological constant

Kinematical backreaction terms can model a constant-curvature term as is already
evident from the integrability condition (29). Also, a cosmological constant need not
be included into the cosmological equations, since QD can play this role [33,48,164],
and can even provide a constant exactly, as was shown in [119] and [36]. The exact
condition can be inferred from Eq. (24) and (31) and reads:

2

a2
D

t∫

ti

dt ′ QD
d

dt ′
a2
D (t

′) ≡ QD , (66)

which implies QD = QD (ti ) = const. as the only possible solution. Such a “cos-
mological constant” installs, however, via Eq. (30), a non-vanishing averaged scalar
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curvature (even for kDi = 0):

〈R〉D = 6kDi

a2
D

− 3QD (ti ). (67)

This fact has interesting consequences for “morphed” inflationary models [123].

3.3.3 The Universe in an out-of-equilibrium state: a fluctuating Einstein cosmos

Following Einstein’s thought to construct a globally static model, we may require the
effective scale-factor aΣ on a simply-connected 3-manifold Σ without boundary to
be constant on some time-interval, hence ȧΣ = äΣ = 0 and Eqs. (24) and (23) may
be written in the form:

QΣ = 4πG
MΣ

Via3
Σ

−Λ, 〈R〉Σ = 12πG
MΣ

Via3
Σ

+ 3Λ, (68)

with the global kinematical backreaction QΣ , the globally averaged scalar 3-Ricci
curvature 〈R〉Σ , and the total restmass MΣ contained in Σ .

Let us now consider the case of a vanishing cosmological constant:Λ = 0. The ave-
raged scalar curvature is, for a non-empty Universe, always positive, and the balance
conditions (68) replace Einstein’s balance conditions that determined the cosmological
constant in the standard homogeneous Einstein cosmos. A globally static inhomoge-
neous cosmos without a cosmological constant is conceivable and characterized by
the cosmic equation of state:

〈R〉Σ = 3QΣ = const. ⇒ pΣeff = �Σeff = 0. (69)

Equation (69) is a simple example of a strong coupling between curvature and fluc-
tuations. Note that, in this cosmos, the effective Schwarzschild radius is larger than
the radius of the Universe,

aΣ = 1
√

4πG 〈�〉Σ
= 1

π
2G MΣ = 1

π
aSchwarzschild, (70)

hence confirms the cosmological relevance of curvature on the global scaleΣ . The term
“out-of-equilibrium” refers to our measure of relative information entropy,
cf. Sect. 1.3.4: in the above example volume expansion cannot compete with informa-
tion production because the volume is static, while information is produced (see [36]
for more details).

Such examples of global restrictions imposed on the averaged equations do not
refer to a specific inhomogeneous metric, but should be thought of in the spirit of
the virial theorem that also specifies integral properties but without a guarantee for
the existence of inhomogeneous solutions that would satisfy this condition. (In [36]
a possible stabilization mechanism of a stationarity condition by backreaction, as
opposed to the global instability of the classical Einstein cosmos, has been discussed.)
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3.3.4 Demonstration of the backreaction mechanism: a globally stationary
inhomogeneous cosmos

Suppose that the Universe indeed is hovering around a non-accelerating state on the
largest scales. A wider class of models that balances the fluctuations and the avera-
ged sources can be constructed by introducing globally stationary effective cosmolo-
gies: the vanishing of the second time-derivative of the scale-factor would only imply
ȧΣ = const. =: C , i.e., aΣ = aS + C(t − ti ), where the integration constant aS

is generically non-zero, e.g., the model may emerge [76,77] from a globally static
cosmos, aS := 1, or from a “Big-Bang”, if aS is set to zero. In this respect this cosmos
does not appear very different from the standard model, since it evolves at an effective
Hubble rate HΣ ∝ 1/t . (There are, however, substantial differences in the evolution
of cosmological parameters, see [36, Appendix B].)

The averaged equations deliver a dynamical coupling relation between QΣ and
〈R〉Σ as a special case of the integrability condition (29):21

−∂t QΣ + 1

3
∂t 〈R〉Σ = 4C3

a3
Σ

. (71)

The cosmic equation of state of the Λ-free stationary cosmos and its solutions read
[35,36]:

pΣeff = −1

3
�Σeff , QΣ = QΣ(ti )

a3
Σ

, (72)

〈R〉Σ = 3QΣ(ti )

a3
Σ

− 3QΣ(ti )− 〈R〉Σ (ti )
a2
Σ

. (73)

The total kinematical backreaction QΣVΣ = 4πG MΣ is a conserved quantity in this
case.

The stationary state tends to the static state only in the sense that, e.g., in the case
of an expanding cosmos, the rate of expansion slows down, but the steady increase of
the scale factor allows for a global change of the sign of the averaged scalar curvature.
As Eq. (73) shows, an initially positive averaged scalar curvature would decrease, and
eventually would become negative as a result of backreaction. This may not necessarily
be regarded as a signature of a global topology change, as a corresponding sign change
in a Friedmannian model would suggest (see Sect. 4.1).

The above two examples of globally non-accelerating universe models evidently
violate the cosmological principle, while they would imply a straightforward expla-
nation of Dark Energy on regional (Hubble) scales: in the latter example the ave-
raged scalar curvature has acquired a piece ∝ a−3

Σ that, astonishingly, had a large
impact on the backreaction parameter, changing its decay rate from ∝ a−6

Σ to ∝ a−3
Σ ,

i.e., the same decay rate as that of the averaged density. This is certainly enough to
produce sufficient “Dark Energy” on some regional patch due to the presence of strong

21 The constant C is determined, for the normalization aΣ(ti ) = 1, by: 6C2 = 6Λ+3QΣ(ti )−〈R〉Σ (ti ).
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fluctuations22 [35]. However, solutions that respect the cosmological principle and, at
the same time, satisfy observational constraints can also be constructed [49]. In this
latter work, scaling solutions that we shall discuss now, have been exploited for such
a more conservative approach.

3.3.5 The solution space explored by scaling solutions

In [49] a systematic classification of scaling solutions of the averaged equations was
given. Like the averaged dust matter density 〈�〉D that evolves, for a restmass pre-
serving domain D , as 〈�〉D = 〈�〉Di a−3

D , we can look at the case where also the
backreaction term and the averaged scalar curvature obey scaling laws,

QD = QDi an
D , 〈R〉D = RDi a p

D , (74)

where QDi and RDi denote the initial values of QD and 〈R〉D , respectively. The
integrability condition (29) then immediately provides as a first scaling solution ([32,
Appendix B]):

QD = QDi a−6
D , 〈R〉D = RDi a−2

D . (75)

This is the only solution with n �= p. In the case n = p, we can define a coupling
parameter rD (that can be chosen differently for a chosen domain of averaging23) such
that QDi ∝ RDi ; the solution reads:

QD = r 〈R〉D = r RDi an
D , n = −2

(1 + 3r)

(1 + r)
, r = − (n + 2)

(n + 6)
, (76)

(with r �= −1 and n �= −6). The mean field description of backreaction, Sect. 2.3.3,
defines a scalar field evolving in a positive potential, if RDi < 0 (and in a negative
potential if RDi > 0), and a real scalar field, if εRDi(r + 1/3) < 0. In other words, if
RDi < 0 we have a priori a phantom field for r < −1/3 and a standard scalar field for
r > −1/3; if RDi > 0, we have a standard scalar field for r < −1/3 and a phantom
field for r > −1/3.

For the scaling solutions the explicit form of the self-interaction term of the scalar
field can be reconstructed [49]:

U (ΦD , 〈�〉Di
)= 2(1 + r)

3

(

(1 + r)
Ω

Di
R

Ω
Di
m

) 3
n+3

〈�〉Di sinh
2n

n+3

(
(n + 3)√−εn

√
2πGΦD

)

,

(77)
where 〈�〉Di is the initial averaged restmass density of dust matter, introducing a natural
scale into the scalar field dynamics. This potential is well-known in the context of
phenomenological quintessence models [1,127,155,174] and references therein. The

22 In [36] a conservative estimate, based on currently discussed numbers for the cosmological parameters,
shows that such a cosmos provides room for at least 50 Hubble volumes.
23 For notational ease we henceforth drop the index D and simply write r .
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CASE A

CASE E

CASE D

CASE B

q

mΩ

r = −1/3

r       −1

r = 0

r = +1/3

r      +oo.

r      −oo.

D

D

CASE C

Fig. 1 This “cosmic phase diagram”, spanned by the effective volume deceleration parameter qD , Eq. (44),
and the effective density parameterΩD

m , Eq. (40), is valid for all times and on all scales, i.e., it can be read as
a diagram for the corresponding parameters “today” on the scale of the observable Universe. It represents a
two-dimensional subspace { Λ = 0 } of the full solution space that would include a cosmological constant.
All the scaling solutions are represented by straight lines passing through the Einstein-de Sitter model
in the center of the diagram (1/2; 1). The vertical line corresponding to (qD ; 1) is not associated with
a solution of the backreaction problem; it degenerates to the Einstein-de Sitter model (1/2; 1). This line
forms a “mirror”: inside the cone (Case E) there are solutions with ΩD

m > 1 that cannot be related to any
real-valued scalar field, but are still of physical interest in the backreaction context (models with positive
averaged scalar curvature). Models with “Friedmannian kinematics”, but with renormalized parameters
form the line r = 1/3 (for details see [49, Appendix A]). The line r = 0 are models with no backreaction
on which the parameter ΩD

k varies (scale-dependent “Friedmannian models”). Below the line r = 0 in

the “quintessence phase” we find effective models with subdominant shear fluctuations (QD positive,ΩD
Q

negative).The line r = −1/3 mimics a “Friedmannian model” with scale-dependent cosmological constant.
The line below r = −1/3 in the “phantom quintessence phase” represents the solution inferred from SNLS
data (cf. [49]), and the point at (qD ;ΩD

m ) = (−1.03; 0) locates the late-time attractor associated with this
solution. Since we have no cosmological constant here, all expanding solutions in the subplane qD < 0 drive
the averaged variables away from the standard model featuring a backreaction-driven volume acceleration
of effectively isotropic cosmologies that are curvature-dominated at late times

scaling solutions correspond to specific scalar field models with a constant fraction of
kinetic and potential energies of the scalar field, i.e., with Eq. (50),

ED
kin + (1 + 3r)

2ε
ED

pot = 0. (78)

We previously discussed the case r = 0 (“zero backreaction”) for which this condition
agrees with the standard scalar virial theorem.

We turn now to an explicit discussion of these scaling solutions summarized in a
cosmic phase diagram in Fig. 1.
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3.3.6 Discussion of Fig. 1

In Fig. 1 we only concentrate on the two-dimensional solution space of averaged
inhomogeneous cosmologies without a cosmological constant. We further concentrate
in this discussion only on expanding universe models; the solution space contains also
contracting models that are equally relevant if we interpret this figure for smaller
spatial scales; (recall that we have RDi < 0 for r > − 1 and RDi > 0 for r < − 1).

A phase space analysis of the scaling solutions [49] shows that the Einstein-de
Sitter model is a saddle point for the scaling dynamics and small inhomogeneities with
QD > 0 should make the system evolve away from it. The sign of QD is important:
for all the models corresponding to r > 0 or r < −1, that is the cases C,D and E in
Figure 1, which cannot produce accelerated expansion, we have QD < 0. In other
words, the kinematical backreaction is dominated by shear fluctuations, cf. Eq. (27).
This does not necessarily mean that the universe model is regionally (on the scale D)
anisotropic, because in these cases kinematical fluctuations decay rapidly. On the other
hand, cases A and B that could be responsible for an accelerated expansion correspond
to QD > 0 and have subdominant shear fluctuations. Therefore, these models can be
regionally almost isotropic, although kinematical fluctuations have strong influence.

Moving down the cases from Case E to Case A we first have models in which
QD decays stronger than the density; equal decay rate QD ∝ a−3

D is found on the
line r = 1/3. This situation changes for Case C where the Friedmannian kinematics
does no longer act as an attractor: backreaction, having a decay rate weaker than
the density, entails an averaged curvature evolution that deviates from a constant-
curvature Friedmannian model. Case B represents the quintessence phase in the scalar
field correspondence, in which the averaged model accelerates, bounded below by the
line r = −1/3 of a constant backreaction (exactly modeling a cosmological constant
on a given scale). While fitting supernovae data with a constant negative curvature
(the line r = 0 left to the Einstein-de Sitter model) is not successful, we nevertheless
appreciate that such Friedmannian models would physically mimic the instability
towards a curvature-dominated phase. Deviations from constant-curvature carry the
averaged model into the quintessence or even phantom quintessence regime (Case A),
in which case backreaction is growing (as seen within the on average negatively curved
space!). In Sect. 4 (Sect. 4.2.2) we shall discuss a perturbative model that features as a
leading mode a decay rate QD ∝ a−1

D with a deviation from constant-curvature at the

same rate, 〈R〉D ∝ a−1
D . This (conservative) model already lies in the quintessence

phase of an accelerating universe model and can be located on the line r = −1/5
in between the constant-curvature line and the “cosmological constant”. Thus, in this
figure and explicitly in Fig. 2, an explanation of Dark Energy through backreaction
effects is expressed by the expectation that a non-perturbative model would weaken
the leading perturbative mode further; it would certainly lie below QD ∝ a−1

D . We
shall continue this discussion in the context of perturbative solutions in Sect. 4.2.2.

3.3.7 Explicit inhomogeneous solutions

If we wish to specify the evolution of averaged quantities without resorting to pheno-
menological assumptions on the equations of state of the various ingredients, or on the
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necessarily qualitative analysis of scaling solutions, or with specific global assump-
tions, we have to specify the inhomogeneous metric [120]. Natural first candidates are
the spherically-symmetric Lemaître–Tolman–Bondi (LTB) solutions that were first
employed in the context of backreaction in [59] and [163].

Considerable effort has been spent on LTB solutions and, especially recently, rela-
tions to integral properties of averaged cosmologies have been sought. Interestingly,
[145] also found a strong coupling between averaged scalar curvature and kinematical
backreaction, and LTB solutions also feature an additional curvature piece ∝ a−3

D on
some domain D . There are obvious shortcomings of LTB solution studies that consider
the class of on average vanishing scalar curvature, since in that class also QD ≡ 0
[151]; also here, a non-vanishing averaged curvature is crucial to study backreaction
[61]. However, there is enough motivation to quantify the extra effect of a positive
expansion variance to fit observational data ([60] and references below).

The value of LTB studies or studies of other highly symmetric exact solutions is
more to be seen in the specification of observational properties such as the lumino-
sity distance in an inhomogeneous metric [2–4,17,25,80,90], as well as Enqvist (this
volume). Although interesting results were obtained, especially in connection with
the interpretation of supernova data, care must be taken when determining, e.g., just
luminosity distances, since the free LTB functions may fit any data [144]. Generally,
apart from mistakes (e.g., setting the shear to zero), those studies sometimes confuse
integral properties of a cosmological model with local properties (e.g., the scale factor
aD and a local scale factor in the given metric form). The averaged equations can-
not predict luminosity distances unless one considers averages on the lightcone, cf.
Sect. 4.3.2 (see, however, different strategies proposed and pursued in [22,136,149]),
which in turn is related to the issue of light-propagation in an inhomogeneous Uni-
verse (see [23,133,105–107,188], and discussion and references in [74]). A promising
strategy to exploit the LTB solution is to consider an ensemble of spherical regions
whose initial data are constrained by a standard Cold Dark Matter power spectrum,
and to look at the correlated average properties of the ensemble.24 However, in order
to avoid matching conditions that are necessarily involved for an ensemble of LTB
solutions, a generic collapse model in the spirit of the Newtonian model investigated
in [112] would facilitate such a description.

Another possibility to construct explicit inhomogeneous metrics is, of course, to
employ perturbative, but also non-perturbative assumptions, that will be both discussed
in Sect. 4.2.

4 Future theoretical and observational strategies: quantitative views on
backreaction

In this section we are going to outline several strategies towards the goal of unders-
tanding the quantitative importance of backreaction effects, and to device methods

24 Räsänen (priv. comm.) is currently looking at an ensemble of spherical regions in the spherical collapse
model to describe the statistical distribution of expanding and collapsing regions, where the statistical
properties of this ensemble are given by the peak model of structure formation for CDM.
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of their observational interpretation. All the topics discussed below are the subject of
work in progress.

4.1 Global aspects

The question of what actually determines the averaged scalar curvature is open. For
a two-dimensional Riemannian manifold this question is answered through the Gauss–
Bonnet theorem: the averaged scalar curvature is determined by the Euler-characteristic
of the manifold. Hence, it is a global topological property rather than a certain restric-
tion on local properties of fluctuations that determines the averaged scalar curvature.
If such an argument would carry over to a three-dimensional manifold, then any local
argument for an estimate of backreaction would obviously be off the table. (There
are related thoughts and results in string theory that could be very helpful here.) In
ongoing work [42,56] we consider the consequences of Perelman’s work that was
mentioned in Sect. 1.2.2. There is no such theorem like that of Gauss and Bonnet in
three-dimensions, but there are uniformization theorems that could provide similar
conclusions. For example, for closed inhomogeneous universe models we can apply
Poincaré’s conjecture (now proven by Perelman [158,159]) that any simply-connected
three-dimensional Riemannian manifold without boundary is a homeomorph of a
3-sphere. Ongoing work concentrates on the multi-scale analysis of the curvature
distribution and the related distribution of kinematical backreaction on cosmological
hypersurfaces that feature the phenomenology we observe. All these studies underline
the relevance of topological issues for a full understanding of backreaction in rela-
tivistic cosmology. To keep up with the developments in Riemannian geometry and
related mathematical fields will be key to advance cosmological research. In this line
it should be stressed that the averaged scalar curvature is only a weak descriptor for
the topology in the general three-dimensional case, and information on the sectional
curvatures or the full Ricci tensor is required. In observational cosmology there are
already a number of efforts, e.g., related to the observation of the topological struc-
ture of the Universe derived from CMB maps (for further discussion see [36] and for
topology-related issues see [9,10,68,124,140,195]).

4.2 Perturbative and non-perturbative approaches to backreaction

There is a large body of possibilities to construct a generic inhomogeneous metric.
First, there is the possibility of using standard methods of perturbation theory. Although
the equations and “parameters” discussed in this work can live without introducing a
background spacetime, a concrete model for the backreaction terms can be obtained
by employing perturbation theory (preferably of the Lagrangian type) and, hence,
a reference background must be introduced. But, the construction idea is (i) to only
model the fluctuations by perturbation theory (the term QD ) and to find the final (non-
perturbative) model by employing the exact framework of the averaged equations.
Such a model is currently investigated by paraphrasing the corresponding Newtonian
approximation [48]. We shall outline more in detail below what we expect to learn
from such a model. Second, we could aim at finding an approximate evolution equation
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for QD by (ii) closing the hierarchy of ordinary differential equations that involve the
evolution of shear and the electric and magnetic parts of the projected Weyl tensor. The
problem of closing such a hierarchy of equations is often considered in the literature
and various closure conditions are formulated (e.g., [100]). One of them, the silent
universe model [28], which assumes a vanishing magnetic part of the Weyl tensor,
is found to be too restrictive to describe a realistic inhomogeneous Universe [79,
184,196], so that we need to head for closures with non-vanishing magnetic part. In
this line, (iii) further studies of cosmic equations of state (like, e.g., the Chaplygin
state [92]) are not only a clearcut way to close the averaged equations, but also a
way to classify different solution sectors. All these models could be subjected to (iv)
standard dynamical system’s analysis to show their stability in the phase space of
their parameters [193,198].

As already remarked above, the FLRW cosmology as an averaged model is found
to be stable in many cases, but there is an unstable sector that just lies in the right
corner needed to explain “Dark Energy”. In order to analyze this instability, we first
look at perturbation theory in Lagrangian form. The following excursion allows us to
roughly examine the possibilities provided by perturbation theory and to identify the
unstable mode that is of interest in the Dark Energy context, although we do not expect
such an approach to be sufficient. We shall also begin to investigate non-perturbative
methods below.

4.2.1 Relativistic Lagrangian perturbation theory

The following is a shortcut to a setup that will provide insights without entering
a detailed perturbative analysis. The idea is to generalize the Newtonian results on
backreaction, investigated in detail in [48]. For this purpose it is enough to note that
in a comoving and synchronous setting the electric part of the projected Weyl tensor
is sufficient to capture the relativistic generalization of a first-order Lagrangian per-
turbation scheme in Newtonian cosmology. This latter is furnished by a Lagrangian
set of evolution equations for a family of trajectories, sending an initial (Lagrangian)
position vector Xi to its Eulerian position vector at time t , xi = f(Xi , t) in a Euclidean
embedding space. The relativistic generalization of the exact spatial one-forms dxi

is provided by Cartan co-frame fields ηa = ηa
j d X j 25 deforming the local exact

basis d X j . Correspondingly, the first-order Lagrangian perturbation solution [30]
f i = a(t)Xi + ξ(t)Pi (Xi ), with a(t) solving the standard Friedmann equations and
ξ(t) a background-dependent known function of time, has its analog in the relativistic
deformation one-form ηa = a(t)Xa + ξ(t)Pa(Xi ) [109,135]. This approximation
solves the “electric part” of the projected Einstein equations, written for Cartan co-
frame fields, to first order. This part of Einstein’s equations, consisting of four equations
for the nine co-frame coefficients ηa

i with determinant

J := det(ηa
i ) = 1

6
εabcε

i jk ηa
iη

b
jη

c
k, (79)

25 The indices (a, b, c, . . .) are here non-coordinate indices that just count the one-forms, as opposed to
the coordinate indices (i, j, k, . . .).

123



Dark Energy from structure 505

can be written [38,50]:

δab η̈
a
[ j η

b
i] = 0,

1

2
εabc ε

i jk η̈a
i η

b
j η

c
k = ΛJ − 4πG�i (X

i ). (80)

This system of equations is the relativistic (non-Euclidean) generalization of the
Lagrange–Newton system (81) below for dust matter:26

δi j f̈ i
[| j f j

|i] = 0,
1

2
ε�mn ε

i jk f̈ �|i f m
| j f n

|k = ΛJ − 4πG�i (X
i ). (81)

The geometrical limit that sends the non-exact Cartan forms to the exact forms d f i

(implying that the metric of space is flat) reduces the system (80) to the Newtonian sys-
tem (81), demonstrating that the comoving synchronous spacetime slicing considered
has a clearcut Newtonian limit.27

4.2.2 A non-perturbative model for backreaction and the leading mode

Combined with the relativistic form of Zel’dovich’s model [30,203,204], straightfor-
ward generalization of the results provided in [48] yields a backreaction term that
separates into its time-evolution given by ξ(t) and the spatial dependence on the ini-
tial displacement field given by averages over the principal scalar invariants of the
extrinsic curvature coefficients at initial time, Ii, IIi, IIIi:

QD = ξ̇2 (Υ1 + ξΥ2 + ξ2Υ3)
(

1 + ξ 〈Ii〉Di
+ ξ2 〈IIi〉Di

+ ξ3 〈IIIi〉Di

)2 , (82)

with Υ1 := 2 〈IIi〉Di
− 2

3 〈Ii〉2
Di

= QDi , and

Υ2 := 6 〈IIIi〉Di
− 2

3
〈Ii〉Di

〈IIi〉Di
, Υ3 := 2 〈Ii〉Di

〈IIIi〉Di
− 2

3
〈IIi〉2

Di
.

The first term in the numerator is global and corresponds to the linear damping factor;
in an Einstein-de-Sitter universe ξ̇2 ∝ a−1. The denominator of the first term is a
volume effect, whereas the second term in brackets features the initial backreaction
as a leading term.

In the early stages of structure formation with ξ(t) � 1 we get

QD ≈ 1

a
QDi , (83)

26 This (closed) system of equations was obtained in [47] for the case of no background source, in particular
Λ = 0, and in [29] including backgrounds of Friedmann–Lemaître type. The function ξ(t) is given for
backgrounds including Λ in [15]. A review and alternative forms of these equations may be found in [71].
27 A rigorous account for this Newtonian limit, employing the full set of Einstein’s equations that includes
the “magnetic part”, will be given in [50] and [38]. In a post-Newtonian setting the Newtonian limit leads
to the Eulerian representation of the Newtonian system, while in the comoving setting considered here it
leads to its Lagrangian representation.
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identical to the perturbative evolution of QD , functionally evaluated with the linear
approximation. In the Newtonian investigation [48] it was found that this latter solution
is in very good accord with the general model corresponding to (82) on scales larger
than ≈ 300 Mpc/h, which entitles us to expect that, on large scales, a perturbative
model for QD can at best moderately improve on this solution by going to higher
orders in the perturbation scheme. Since QD is quadratic, this mode appears in a
relativistic second-order perturbation solution as the leading mode [119,126,162],
although this leading term is dismissed due to its property to be a complete divergence
in a standard perturbative setting.28 Exploiting the fact that on large scales we only
find a small deviation of the volume scale factor aD from the Friedmannian scale
factor a(t) in this scheme, we may use the exact scaling solution, cf. Sect. 3.3.5,
QS

D ∝ a−1
D as a (conservative) prototype model for backreaction, arising as a first

leading perturbation in the vicinity of a standard FLRW model. The averaged scalar
curvature corresponding to this scaling solution also evolves with the same power
〈R〉S

D ∝ a−1
D , which again is in accord with the leading second-order perturbative

term found in [126].

4.2.3 Can backreaction compete with a cosmological constant?

Let us now look at the dimensionless characteristics (40). For the perturbative scaling
modes QS

D and 〈R〉S
D discussed in the last subsection we find ΩD

QS = −1/5ΩD
RS ,

both are growing functions of aD , and the relevant term that can play the role of Dark
Energy, see Eq. (43), divided by the mass density parameter, is also growing,

ΩD
QS +ΩD

RS

ΩD
m

(t) = −4ΩDi
Q

Ω
Di
m

a2
D (t) = QDi

4πG 〈�〉Di

a2
D (t), ΩD

Λ = 0, (84)

clearly demonstrating the (global) instability of the standard model. This has to be
compared with the corresponding fraction of a cosmological constant parameter with
respect to the density parameter,

ΩD
Λ

ΩD
m
(t) = Ω

Di
Λ

Ω
Di
m

a3
D (t) = Λ

8πG 〈�〉Di

a3
D (t), ΩD

Q = 0, (85)

where, with the last assumption, the index of domain-dependence is redundant. Looking
at the respective deceleration parameters,

qD
QS = 1

2
ΩD

m + 2ΩD
QS , qΛ = 1

2
Ωm −ΩΛ, (86)

28 Notice that in our derivation of the large-scale behavior of a non-perturbative Lagrangian model, this
is not the case, in agreement with the general situation in a relativistic setting. The backreaction term is
a complete divergence only, if the initial data have this property. This latter is only possible for initially
Euclidean geometry.
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we find in both models the onset of acceleration (qD
QS = qΛ = 0) at the time when

aacc
D (QS) =

[
4πG 〈�〉Di

QDi

]1/2

, aacc(Λ) =
[

4πG�H (ti )

Λ

]1/3

. (87)

Although the leading second-order perturbative mode discussed here in the form of a
scaling solution lies in the quintessence sector, cf. Figs. 1 and 2, perturbation theory is
restricted to a regime close to the Friedmannian state and so, strictly, does not allow us
to follow the scaling mode further towards a curvature-dominated regime. However,
by extrapolating the scaling behavior of the perturbative mode into this regime, its
impact is in principle competitive, even if we set out standard initial data for QDi :
the comparison of scaling behaviors of (i) the averaged density, being a zero-order
quantity in a perturbative framework, ∝ a−3

D , (ii) the constant-curvature, a first-order

quantity (if a flat background was perturbed), ∝ a−2
D , and (iii) the backreaction terms

as second-order quantities ∝ a−1
D feature decay-rates that compensate the differences

in their initial conditions magnitudes, if the volume scale factor is assumed to evolve
until aD (z = 0) ≈ 1,000 [126].

Thus, the expectation is that a non-perturbative treatment, allowing for an evolving
background, would confirm our extrapolation of the perturbative mode and would even
produce a further weakening of the decay rates of the backreaction terms, eventually
coming closer to the behavior of a bare cosmological constant, as speculated in Fig. 2.
Note that such a behavior, or the more extreme case of a growing backreaction term
corresponding to a phantom quintessence in the scalar field correspondence, must be
understood on the grounds that we are looking at the fluctuations within a negatively
curved space section. In the course of evolution of the averaged scalar curvature, we
know that the backreaction mechanism draws “potential energy” from curvature, and
converts it into an excess of “kinetic energy” that implies the observed weakening
of the decay of fluctuations. It is therefore misleading to think about fluctuations
as evolving on a fixed background, i.e., in “Newtonian terms”. In this context it is
worth recalling that, if the employed perturbative framework is “quasi-Newtonian”,
then this also implies that backreaction terms appear as surface terms [119,126,173],
demonstrating that we are not describing fluctuations in a curved Riemannian space
section in which case the principal scalar invariants of extrinsic curvature fluctuations
cannot be represented through surface terms (compare Sect. 3.1).

The fact that already a perturbative mode entails departures of the averaged model
from the standard model (a “global” instability) means that the architecture of current
N-body simulations and its determining parameters of the concordance cosmology
is challenged and it might be overrestricted for the correct description of the Late
Universe: a (possibly indirect) impact of a few percent would already have severe
implications for the demand of “high-precision” cosmology. This statement needs
consolidation in terms of quantitative considerations, an issue that is very involved
and, at present, not conclusive. We shall just add a few remarks below.
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Fig. 2 The unstable sector in Fig. 1 that expresses the global instability of the standard model is shown
together with the scaling behavior of the leading perturbative mode P discussed in this and the last sub-
sections. Again, the volume deceleration parameter qD is plotted against the effective density parameter
ΩD

m . This scaling mode (corresponding to the coupling parameter r = −1/5 for the scaling index n = −1)
is shown as a dashed line. It originates from the Einstein-de Sitter model in the center and ends on the
curvature-dominated attractor qD = 2r/(1 + r) = −1/2. This scaling solution lies in the quintessence
regime, defined by the mean field description of a morphon field. Recall that it lies in between the line
ending at qD = 0 (models with Friedmannian kinematics with constant negative curvature) and the line
ending at qD = −1 (a morphon modeling a cosmological constant). The indicated line NP expresses our
expectation of a non-perturbative, non-scaling solution that would fully explain Dark Energy today, while
starting in the vicinity of the Einstein-de Sitter model

4.2.4 A few words on quantitative estimates of backreaction

Based on the above-discussed scaling behavior of backreaction that is suggested by per-
turbation theory, we may discuss typical magnitudes of backreaction that are expected
to be reached today. Since such estimates strongly rely on an extrapolation of a per-
turbative mode, they are merely indicative, but they give us an intuition of where we
stand with perturbative calculations.

First, if we naively (i.e., without investigating a sensible re-interpretation of
observational data within the new framework) track the perturbative scaling solution
from standard Cold Dark Matter initial data on “some large scale” of the order of the
observable Universe, then the comparison of (84) with (85) shows that backreaction
is expected to fall short by a large amount to fully explain Dark Energy, e.g., setting
QDi = Λ we obtain with aD0 ≈ 1,000, −4 · ΩD0

QS = 2 × 10−3Ω
D0
Λ ≈ 0, 0015,
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which still lies close to the perturbative regime. The initial data taken assume that the
intial expansion fluctuation amplitude is independent and does not necessarily derive
from density fluctuations. Estimates in the literature range from values (perturbative) of
0.004 for an inhomogeneity-inducedΛ-parameter [197] up toΩD0

Q ≈ −0.05 · · ·−0.26
(Lyman-α absorbers in the redshift range z ∈ {3.8, 2}[165], which may at best be taken
as an indication of a discrepancy between perturbative model estimates and the way
of how we interpret observational data.

Second, if we look at those estimates in a scale-dependent way, i.e., taking into
account that the influence of backreaction must be compared toΛ on the observational
scales at which we postulate a Dark Energy component, then the answer is more
sensible: taking initial data for a standard Cold Dark Matter model from [48] and
translating the effect on the time-history ofΩD

Q into the relativistic context, we would

start to explain the value of ΩD0
Λ by the perturbative scaling mode today on scales of

typically below 100 Mpc, if that region is at 2-σ variance level in the initial conditions.
For a typical such region (at 1-σ ) we would not compensate Λ, but would talk about
a significant effect in magnitude.

The number of pitfalls in the above considerations is, however, large.
A re-interpretation of the other cosmological parameters in terms of their scale-
dependence is mandatory, especially since the indirect influence of a non-vanishing
backreaction on the other cosmological parameters has been found to be crucial and
actually is expected to largely outweigh the magnitude effect in ΩD

Q (compare the
discussion in [48]). Therefore, it might not be a good idea to judge the influence of
backreaction based on the magnitude of ΩD

Q itself. We have to investigate realistic
models beyond perturbation theory at a fixed background, before we can reliably
discuss quantitative estimates from models.

4.3 Issues of interpretation of backreaction within observational cosmology

4.3.1 A first step: a quasi-Friedmannian template metric

The particular form of the metric for an effective approximation of the inhomoge-
neous Universe that springs to mind has been suggested and thoroughly discussed by
Paranjape and Singh [152], who consider the metric form

4gD = −dt2 + a2
Dγ

D
i j dxi ⊗ dx j , (88)

with the volume scale factor aD (t) on a mass-preserving compact domain D that
is specified in terms of the exact kinematical equations, and a (domain-dependent)
effective constant curvature three-metric with coefficients γD

i j that, as opposed to
[152], may also allow for a time-parametrization of the constant-curvature appearing
in γD

i j . The concrete form of the 3-metric coefficients we consider reads:

γD
i j =

(
dr2

1 − κD (t)r2 + dΩ2
)

, (89)
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where κD (t) corresponds to the (domain-dependent) constant curvature of the template
space at time t , and dΩ2 = r2(dφ2 + sin2(φ)dψ2).

It should be emphasized that this template metric must not be a dust solution of
Einstein’s equations [139,166] (the effective fluid of an averaged dust model also
features a geometrical pressure).

The reason why we wish to allow for an explicit time-dependence of the “curvature
constant” κD is given by the key-insight that the constant-curvature evolution is not
identical with that of the averaged 3-Ricci curvature of an inhomogeneous universe
model, if the degrees of freedom in inhomogeneities (kinematical backreaction) are
taken into account, e.g., [32,36,165]. This effective metric provides an alternative
dynamical picture to the thoughts recently advanced by Kasai [110], who investi-
gated the goodness of fit to supernova data for Friedmannian models without cos-
mological constant, but different curvature parameters. Thus, while a single standard
model without cosmological constant cannot account for the supernova data, two such
models—if applied to low- and high-redshift data separately—would [110]. In [122]
we are currently investigating this model for the purpose of fitting supernova data.
This fit must be constrained by CMB observations, since otherwise we could not
significantly distinguish the curvature evolution with backreaction from the constant-
curvature evolution in a narrow range of redshifts [62,83,101].

This form of an effective metric can be motivated on the grounds that Ricci flow
renormalization of the average characteristics on a bumpy geometry, cf. Sect. 1.2.2,
would produce a constant-curvature slice, but only at a given instant of time. In gene-
ral, such a flow has singularities, if the Ricci tensor is non-positive, and a constant-
curvature model is reached only after subsequent steps of surgery of the manifold.
However, if we assume intrinsic curvature fluctuations (not the averaged curvature),
i.e., terms like

〈

(R − 〈R〉D )2
〉

D to be subdominant over kinematical (extrinsic curva-
ture) fluctuations, then we may assume that the actual inhomogeneous metric (at one
instant of time!) is already close to a constant-curvature metric, in which case Ricci
flow smoothing may be free of singularities. In any case, the disclaimer of using such
a simple metric for, e.g., calculating luminosity distances is still that we neglect the
effect of inhomogeneities on light propagation. This issue we address now.

4.3.2 Averaging on the lightcone

Here, the most important step that would considerably advance the management of
observational data, will be to investigate the averaging formalism on the lightcone.
Such a framework is currently being constructed [51]. It relates not only to all aspects
of observations in terms of distances within inhomogeneous cosmologies, but also
links directly to initial data in the form of, e.g., CMB fluctuation amplitudes and the
integrated Sachs–Wolfe effect. Relating lightcone averages to cosmological model
averages is also possible and is in the focus of this investigation. For example, a closed
smooth lightfront would enclose a region of space that is characterized by the evolution
of the volume scale factor employed in this report. The consequences of a quantita-
tive importance of an integrated backreaction history, described through a propagating
morphon along the lightcone, are obvious. Applying generic redshift–distance rela-
tions, e.g., to galaxy surveys would put us in the position to better understand the actual
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distribution of galaxies that are currently mapped with the help of FLRW distances.
If expansion fluctuations are a dominant player on large-scales, we can imagine that
also the galaxy density maps would be affected. This attempt is non-perturbative in
the sense that the fully nonlinear optical propagation equations are averaged; quasi-
Newtonian estimates may capture (on the background-defined lightcone) localized
perturbation magnitudes [197], but they suffer from the same restrictions as those dis-
cussed in Sect. 3.1.3, i.e., the averaged curvature of the lightcone integrated over its full
propagation history may substantially deviate from a perturbed background-defined
curvature. (Compare here also the remarks on metrical properties of spacetime at the
end of the following subsection.)

4.3.3 Direct measurement of kinematical backreaction

If we ask whether the kinematical backreaction term QD is observable, the ans-
wer within a Newtonian (or quasi-Newtonian) framework is straightforward: on the
observable domain D , QD is built from invariants of the peculiar-velocity gradient
in a Newtonian model. Ignoring geometrical fluctuations on regional scales may not
be unrealistic to estimate this term from high-resolution maps of peculiar-velocities.
More precisely, we need to carefully map the gradient of the peculiar-velocity to build
the Newtonian approximation of QD . We so have to ignore the fact that in a relativistic
setting QD cannot be represented through invariants of a gradient, which is derived
from a vector field. Existing catalogues are, however, too small and usually, for the
definition of peculiar-velocities, the prior of a Friedmannian model is imposed, which
therefore would only return the cosmic variance around the assumed Friedmannian
background in a likely untypical patch of the Universe that is statistically affected by
boundary conditions [91,202]. The measurement of QD on small scales may also pro-
vide a negative value, i.e., irrelevant for a direct large-scale estimate of Dark Energy,
but relevant for a scale-dependent evaluation of QD . Indications for a shear-dominated
QD on scales of about 100 Mpc were discussed in the Newtonian analysis [48]. Two
papers are of particular interest here: by taking the sampling anisotropies of the velo-
city field explicitly into account, Regös and Szalay [169], already in 1989, reported
a large effect (40%) of the dipole and quadrupole anisotropies on the estimated bulk
flow of an elliptical galaxy sample; around the same time, using the Eulerian linear
approximation, Górski [93] already showed that the velocity field is significantly cor-
related even on scales of 100 Mpc. The measurement of the shear field related to weak
gravitational lensing can add further information for backreaction on regional scales
[177]. On large scales, on the other hand, we know several observational data that
could place constraints on the value of kinematical variables [73]. “Global” bounds
on QD , where D is of the order of the CMB scale, can be inferred from work of
Maartens et al. [131,132].

In this context, the question whether and how close our observers have to be at
the center of a regional “Hubble bubble”, that probes the expected negative curvature
region for positive backreaction, furnishes relevant observational input [190–192]
[3,128]. The scale of this “reduced curvature region” likely exceeds scales that have
been discussed in connection with peculiar-velocity catalogues.
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Another possibility is to exploit the relation of the kinematical backreaction term
to Minkowski Functionals, as outlined in Sect. 3.1.2. The problem here is to iden-
tify the boundary of the averaging region with a surface of constant peculiar-velocity
potential. Again we need peculiar-velocity data or, alternatively, a model-dependent
relation between iso-density and velocity potential surfaces; the relativistic geometri-
cal effects are again ignored. The boundary of the averaging region plays a crucial
role, since it carries higher-order correlations of the velocity distribution encoding
the history of structure formation, and hence the backreaction history that was iden-
tified as the source of the general expansion law (31). Measuring Minkowski Func-
tionals of iso-velocity potential surfaces thus directly mirrors the fact that QD is
determined through all orders of the correlation functions. In this line it is impor-
tant to point out that, even if the fluctuations in number density (the first moment
of the galaxy distribution) and in the two-point correlation function (or the power
spectrum, i.e., the second moment) may not be significant, fluctuations may show up
especially in higher moments, since those determine the morphology of the averaging
region (the phase correlations). An investigation of subsets from the IRAS catalogues
revealed large morphological fluctuations up to scales of 200 Mpc that are significant
on scales of the order of several tens of Megaparsecs, while on the scale around 10
Mpc these fluctuations disappeared [113,114]. This has been confirmed by a recent
analysis of SDSS data [98], although here deviations were not so dramatic, an issue
that has to be (and is currently) addressed with the help of a substantially improved
data set.

A direct determination of metrical properties of spacetime rather than properties of
the matter distribution from observational data furnishes a promising programme that
relates to all the issues outlined here [97,129]. This programme relates to the fully
relativistic considerations pursued here as opposed to the prior of a quasi-Newtonian
model that usually enters into the interpretation process. Here it is important to realize
that, irrespective of the small magnitude of the field strength in a weak-field situa-
tion, its derivatives may be important. If we consider space to be Euclidean and the
gravitational field of the mass distribution to be a quasi-Newtonian perturbation, then
we may not correctly characterize the effect of intrinsic curvature that is built in a
highly nonlinear way from derivatives of the metric tensor. There are effects due to
the morphological properties of the gravitational field, e.g., the volume effect being
the simplest morphological characteristic mentioned in Sect. 1.2.2. As Hellaby [96]
showed, a volume matching of a Friedmannian template model to such a distribu-
tion implies an error of 10–30% which may be interpreted as a volume effect in a
mass-preserving smoothing procedure due to a factor of the order of π2/6 with which
the Euclidean volume and the Riemannian volume of a ball differ [41]. Such a factor
cannot be regarded as a perturbation of 1. Otherwise stated: the metrical properties
of space could be very different from Euclidean in terms of the morphology (volume,
shape, connectivity) of the gravitational field, not in terms of its magnitude.

4.3.4 A common origin of Dark Energy and Dark Matter?

Several times we have already pointed out that the scale-dependence of observables
is key to understand the cosmological parameters in the present framework. Viewing
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observational data with this additional discrimination power of a scale-dependent
interpretation of backreaction effects, there is furthermore a link to the Dark Matter
problem that certainly is important to be understood in relation to sources, i.e., Dark
Matter particles, but there is also a kinematical contribution that may alter existing
strategies of Dark Matter search.

Concentrating on the Dark Energy problem has led us to focussing on a positive
contribution of QD on large scales. However, as already mentioned above in the context
of peculiar-velocity catalogues, the kinematical backreaction QD itself can also be
negative, and a sign-change may actually happen by going to smaller scales. Looking
at the phenomenology of large-scale structure reveals strongly anisotropic patterns,
so that it is not implausible that on the scales of superclusters of galaxies we would
find29 a shear-dominated QD < 0. Thus, again as a result of its scale-dependence,
the kinematical backreaction parameter can potentially be the origin of Kinematical
Dark Energy, but also of Kinematical Dark Matter [31].

Mapping kinematical backreaction with a “morphon field” opens further links to
previous studies that tried to model Dark Energy and Dark Matter by a scalar field
([6,148] and references to earlier work therein). Other explanations to unify the des-
cription of Dark Energy and that of Dark Matter may also be put into perspective [87].
With this in mind, the volume deceleration functional (44) can change sign too, but
this crucially depends on the value of the matter density parameterΩD

m . We infer from
Eq. (44) that, for a small value of ΩD

m , a smaller negative value of ΩD
Q is needed to

obtain volume acceleration, qD < 0. Since this problem touches on a scale-dependent
understanding of cosmological parameters, we now propose a strategy to properly
address this issue.

4.3.5 Multi-scale analysis of backreaction

Let us discriminate different spatial scales by a suitable partitioning of space sections.
We denote by LH a scale larger than the homogeneity scale, say the Hubble-scale,
by LE the scale of a typical void, and by LM a typical scale of a matter-dominated
region (e.g., galaxy clusters) [42]. In standard cosmology we would requireΩH0

m ≈1/4
including Dark Matter. Hence, in order to find volume acceleration today, cf. Eq. (63),
we would need −ΩH0

Q > 1/16. If, however, the global value of the matter parameter
on the scale LH is smaller, then also the needed amount of backreaction in a Hubble-
domain H is smaller. Now, we discuss that it is indeed the case that the matter density
parameter drops substantially at around the scale LE in a cosmological slice that is
volume-dominated by voids.

We employ the averaged Hamiltonian constraint (23), and assume that a domain as
large as H is formed out of a union of underdense regions E and a union of occupied
overdense regions M . We further consider the following picture that complies with
what we see in the present-day Universe: we require the volume Hubble expansion to be
subdominant in matter-dominated regions and, on the other hand, the averaged density

29 This was actually found in the Newtonian investigation [48] that, however, suffers from the fact that
QD is restricted to drop to zero on the periodicity scale of the fluctuations.
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to be subdominant in devoid regions. In the first case, an expansion or contraction
would negatively contribute and so would, e.g., enhance a negative averaged curvature,
in the second case, the presence of a low averaged density would positively contribute.
We can therefore reasonably expect that the following idealization of the distributions
would not substantially impair the overall argument: we model voids with 〈�〉E = 0
and matter-dominated regions with HM = 0 (corresponding to the stable clustering
hypothesis). We also introduce a parameter for the occupied volume fraction, λM :=
VM /VH , where VM denotes the total volume of the union of occupied regions M ,
that may be chosen more conservatively to weaken this idealization. Thus, we would
have:

〈R〉E = −6H2
E − QE + 2Λ, 〈R〉M = −QM + 16πG〈�〉M + 2Λ, (90)

together with30 HH = (1 − λM )HE and 〈�〉H = λM 〈�〉M .
Consider for the moment the case where the kinematical backreaction terms in the

above equations are negligible and that there is no cosmological constant. Then, we
infer that the averaged scalar curvature must be negative on domains E and positive
on domains M , what obviously complies with what we expect. We form the “global”
cosmological parameters by dividing by H2

H , “regional” cosmological paramters may
be introduced by dividing by H2

E , if we wish to relate sources to the regionally measured
Hubble parameter. The introduction of cosmological parameters on the scale LM is
pathological and useless. With our assumptions the matter density parameterΩH

m can
be traced back to the average density in matter-dominated regions, 〈�〉H ∼= λM 〈�〉M ,
and thus, the global density parameter can be reconstructed out of an observed 〈�〉M
on the scale LM . Therefore, we find a smaller value for the density parameter on the
global scale, depending on the value of the volume fraction of occupied regions, as
a consequence of the compensation (through conservation of the total mass) of the
missing matter in the regions E .

The volume fraction is a sensible quantity since it depends on the coarsening of the
distribution. We know that even in matter-dominated regions M the matter distribution
in luminous matter is very spiky leaving a lot of volume to empty space. Whether
this argument carries over to all matter depends on how smoothly Dark Matter is
distributed. In relativistic cosmology it is crucial that, unlike for the mass, there is
no equipartition of curvature in Riemannian space sections (there is more volume
available in negatively curved regions than in positive ones); therefore, Newtonian
estimates always provide a conservative upper limit on a realistic volume fraction. It is
not implausible that a realistic value for λM0 could be much smaller than anticipated
by Newtonian simulations that employ a fairly large coarsening scale ([63]; other
estimates give a larger value for the void volume fraction, see discussion and references
in [42,165]).

30 The fact that we expect the global Hubble parameter to be slightly smaller than the one measured on
the scale of voids could be used, of course with more refined assumptions, to observationally determine
the volume fraction λM . It will be these refined assumptions together with a scale-dependent treatment of
other relevant variables that put us in the position to seriously think about an observational determination
of the void volume fraction that is certainly one of the key-parameters of a scale-dependent cosmology.
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Finally, it should be noted that a scale-dependent analysis may be performed for a
given slicing of spacetime, as above, but we may also expose the particular situation
of observers, who perform measurements in matter-dominated regions, to a refined
analysis of a scale-dependent slicing. Such a picture has been recently advanced by
Wiltshire and coworkers [125,199,200], distinguishing cosmic from the observer’s
time, and this would involve considerations of spatial renormalization of average
characteristics that we briefly discussed in Sect. 1.2.2.

4.4 A short conclusion: opening Pandora’s Jar

Let us conclude by stressing the most important issue: quantitative relevance of
backreaction effects. Even if all these efforts would “only” nail down an effect of
a few percent, rather than 75%, these studies would have justified their quantitative
importance for observational cosmology, and what is to be expected, would substan-
tially improve our understanding of the Universe.

Especially the recent efforts, spent on the backreaction problem by a fairly large
number of researchers, added substantial qualitative understanding to the numerous
previous efforts that were undertaken since George Ellis initiated this discussion in
1984 [72] (see references in [74]). The issue remains unresolved to date: an explanation
of Dark Energy along these lines is attractive, not only because it naturally explains
the coincidence problem. From what has been said, it is also physically plausible, but
a reliable and unambiguous estimate of the actual influence of these effects is lacking.
This situation may change soon and for this to happen it requires considerable efforts,
for which some possible strategies have been outlined in this section.

After those results are coming in, we may face a more challenging situation than
anticipated by the qualitative understanding that we have. For example, while the
explanation of Dark Energy by quintessence (or phantom quintessence) still allows
to hide the physical consequences behind a scalar field that is open for a number of
explanations, the mapping of a scalar field to the backreaction problem, as in the mean
field description outlined in Sect. 2.3.3, can no longer keep a phenomenological status:
fluctuations exist and can be measured. There are no free parameters, there are initial
data that can be constrained.

Despite being premature, let us speculate that the outcome is i) a confirmation of the
qualitative picture of a backreaction-driven cosmology, but ii) a quantitative problem
to reconcile this picture with the data in the sense that there is not enough time for
the mechanism to be sufficient. In that situation we “lost” the standard model for a
correct description of the Late Universe, and we do not reach a full explanation of
Dark Energy—unless—we allow for initial data that are non-standard. This situation
would in turn ask for a comprehensive understanding of these required initial data,
hence reconsideration of inhomogeneous inflationary models [82] and their fluctuation
spectrum at the exit epoch. As further discussed in [36], globally inhomogeneous initial
data may arise by the very same mechanism: if backreaction plays a role due to the
generic coupling of fluctuations to intrinsic curvature in the Late Universe, then this
coupling may have been efficient also in the Early Universe. Is it conceivable that the
Universe evolved out of a spaceform with strongly positive averaged scalar curvature
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that, during inflation, acquires “flatness” on average, but at the end leaves an imprint
in the fluctuation spectrum as a remnant of the kinematical conversion of curvature
energy? We opened Pandora’s Jar.

Notwithstanding, I would consider such a situation as the beginning of a fruitful
development of cosmology. As previously mentioned, the issues of scale-dependence
of observables, the priors underlying interpretations of observations, the large subject
of Dark Matter and, of course, the issue of Dark Energy, will be all interlocked and
ask for a comprehensive realistic treatment beyond crude idealizations.
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Appendix: Averaged ADM equations for non-vanishing lapse function

For completeness, we here add the general Einstein equations for a specified folia-
tion of spacetime employing lapse and shift functions according to the Arnowitt–
Deser–Misner, short ADM formulation [7,183], and discuss the resulting system of
spatially averaged equations for vanishing shift.

The ADM equations recalled31

Let nµ be the future directed unit normal to a three-dimensional Riemannian hypersur-
faceΣ . The projector intoΣ , hµν = gµν + nµnν, (⇒ hµνnµ = 0, hµνhνγ = hµγ ),
induces in Σ the 3-metric

hi j := gµνhµi h
ν

j . (A.1)

Let us write

nµ = N (−1, 0, 0, 0), nµ = 1

N
(1,−N i ), (A.2)

with the lapse function N and the shift vector components N i . Note that N and N i

determine our choice of coordinates.
From nµ = gµνnν we find g00 = −(N 2 − Ni N i ); g0i = Ni ; gi j = hi j and, using

local coordinates xi in a t = const. hypersurface Σ with 3-metric gi j , setting x0 = t
and dx0 = dt , the line element becomes:

ds2 = −(N 2 − Ni N i ) dt2 + 2Ni dxi dt + gi j dxi ⊗ dx j ,

= −N 2dt2 + gi j (dxi + N i dt)⊗ (dx j + N j dt). (A.3)

31 Notation: a semicolon denotes covariant derivative with respect to the 4-metric with signature
(−,+,+,+) (the units are such that c = 1), a double vertical slash covariant spatial differentiation with
respect to the 3-metric, and a single slash denotes partial differentiation with respect to the local coordi-
nates; greek indices run through 0 . . . 3, and latin indices through 1 . . . 3; summation over repeated indices
is understood.
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Introducing the extrinsic curvature on Σ by

Ki j := −nµ;νhµi h
ν

j = −ni; j , (A.4)

we obtain the Arnowitt–Deser–Misner, short ADM equations [7,75,183]:
Energy (Hamiltonian) constraint:

R − K i
j K j

i + K 2 = 16πGε + 2Λ, ε := Tµνnµnν, (A.5)

Momentum (Codazzi) constraints:

K i
j ||i − K|| j = 8πG Jj , Ji := −Tµνnµhνi , (A.6)

Evolution equation for the first fundamental form:

1

N

∂

∂t
gi j = −2Ki j + 1

N
(Ni || j + N j ||i ), (A.7)

Evolution equation for the second fundamental form:

1

N

∂

∂t
K i

j = Ri
j + K K i

j − δi
jΛ− 1

N
N ||i || j

+ 1

N

(

K i
k N k

|| j − K k
j N i

||k + N k K i
j ||k

)

−8πG(Si
j + 1

2
δi

j (ε − Sk
k)), Si j := Tµνhµi h

ν
j . (A.8)

For the trace parts of (A2c) and (A2d) we have:

1

N

∂

∂t
g = 2g

(

−K + 1

N
N k

||k
)

, g := det(gi j ), (A.9)

1

N

∂

∂t
K = R + K 2 − 4πG

(

3ε − Sk
k

)

− 3Λ− 1

N
N ||k ||k + 1

N
N k K||k . (A.10)

In relativistic cosmology it is often assumed that the energy-momentum tensor has
the form of a perfect fluid Tµν = εuµuν+ phµν . Also, it is often required that the fluid
is irrotational; putting the shift vector field N i = 0, we then model all inhomogeneities
of the fluid by the 3-metric and the lapse function. The lapse function is related to the
fluid acceleration in the hypersurface that reduces to the pressure gradient in fluid-
comoving gauge (see below):

ai = N||i
N

≡ −p||i
ε + p

. (A.11)

Notice that with this gauge choice the unit normal coincides with the 4-velocity and, es-
pecially, the momentum flux density inΣ vanishes. The total time-derivative operator
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of a tensor field F along integral curves of the unit normal, d/dτ F := nν∂νF =
uν∂νF becomes

d

dτ
F = 1

N

∂

∂t
F , (A.12)

since nνF||ν = 0. Note that, although the definition of proper time is τ := ∫

Ndt ,
the line element cannot be written in the form of the comoving gauge by measuring
“time” through proper time dτ = Ndt , since dτ is not an exact form in the case of an
inhomogeneous lapse function. The exterior derivative of the proper time will involve
a non-vanishing shift vector according to the space-dependence of the lapse function.
Therefore, a foliation into hypersurfaces τ = const. with simultaneously requiring
uα = −∂ατ is not possible.

Averaged ADM equations for vanishing shift

For vanishing shift vector, as will be our choice for the averaged equations, the line
element reads:

ds2 = −N 2dt2 + gi j dXi ⊗ dX j , (A.13)

where we have written the local coordinates in capital letters now, as in the main text,
to indicate that they now label comoving fluid elements.

We here recall the results given in [34]. We shall study spatial averages in a hyper-
surface defined by the choice of the in general inhomogeneous lapse function N in
the line-element (A.13).

We consider perfect fluid sources, i.e., energy density ε and pressure p with energy
momentum tensor Tµν = εuµuν + phµν . Restricting attention to irrotational flows
we can, without loss of generality, write the flow’s 4-velocity in the form

uµ = −∂
µS

h
, h = ε + p

�
, (A.14)

together with the decomposition into kinematical parts of the 4-velocity gradient,

uµ;ν = 1

3
Θhµν + σµν + ωµν − u̇µuν, (A.15)

where the inhomogeneous normalization of the 4-velocity gradient h is given by the
injection energy per fluid element and unit restmass, dε = hd� with the restmass
density � [103]; Θ is the rate of expansion, σµν the shear tensor.

The existence of a scalar 4-velocity potential S together with the choice (A.14)
implies that the conservation equations Tµν;ν = 0 are satisfied, but also that the flow has
to be irrotational and that the covariant spatial gradient of S vanishes [26,27,34,70]:

ωµν = h α
µ h β

ν u[α;β] = −h α
µ h β

ν

(

∂[αS /h
)

;β] = 0, (A.16)

S||µ = h α
µ ∂αS = ∂µS + uµṠ = 0, (A.17)

with the covariant time-derivative Ṡ := uµ∂µS ≡ h.
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We now define the averaging operation in terms of Riemannian volume integra-
tion on the hypersurfaces orthogonal to uµ, restricting attention to scalar functions
Ψ (t, Xi ),

〈Ψ (t, Xi )〉D := 1

VD

∫

D

Ψ (t, Xi ) dαg, (A.18)

with the Riemannian volume element dαg := √
gd3 X , g := det(gi j ), and the volume

of an arbitrary compact domain, VD (t) := ∫

D Jd3 X ; J := √

det(gi j ). We introduce
a dimensionless scale factor via the volume (normalized by the volume of the initial
domain VD i ):

aD (t) :=
(

VD

VD i

)1/3

. (A.19)

This means that we are only interested in the volume dynamics of the domain; aD will
be a functional of the domain’s shape (dictated by the metric) and position. We require
the domains to follow the flow lines, so that the total restmass MD := ∫

D �Jd3 X
contained in a given domain is conserved. Introducing the scaled (t-)expansion Θ̃ :=
NΘ , the rate of change of the domain’s volume within the spatial hypersurfaces defines
the rate of volume expansion and, through (A.19), an effective volume Hubble rate:

〈Θ̃〉D = ∂t VD (t)

VD (t)
= 3

∂t aD

aD
=: 3HD . (A.20)

We shall reserve the overdot for the covariant time-derivative (defined through the
4-velocity uµ):

∂

∂τ
:= uµ

∂

∂µ
= 1

N

∂

∂t
, (A.21)

and we shall abbreviate the coordinate time-derivative by a prime in all following equa-
tions. For an arbitrary scalar field Υ (t, Xi ) we make essential use of the commutation
rule

〈Υ 〉′D − 〈Υ ′〉D = 〈Υ Θ̃〉D − 〈Υ 〉D 〈Θ̃〉D , (A.22)

or, alternatively, 〈Υ 〉′D +3HD 〈Υ 〉D = 〈Υ ′+Υ Θ̃〉D . A simple application is the proof
that the total restmass in a domain is conserved: let Υ = �, then 〈�〉′D + 3HD 〈�〉D =
〈�′ + �Θ̃〉D = 0 according to the local conservation law �′ + �Θ̃ = 0.

We now consider the scalar parts of Einstein’s equations. Their evolution is deter-
mined by Raychaudhuri’s equation and the Hamiltonian constraint (A.5). The former
can be obtained by inserting (A.5) into (A.10),

Θ̇ = −1

3
Θ2 − 2σ 2 − 4πG(ε + 3p)+ A , (A.23)

with the rate of shear σ , σ 2 := 1/2σ i
jσ

j
i , and the acceleration divergence A :=

(N |k/N )||k . Upon averaging these two equations, we can cast the result into a compact
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form (to be found under the heading Corollary 2 in [34]):

3
a′′
D

aD
+ 4πG (εeff + 3peff) = 0,

6H2
D − 16πGεeff = 0, (A.24)

ε′eff + 3HD (εeff + peff) = 0,

with the following fluctuating sources:

16πGεeff := 16πG〈ε̃〉D − Q̃D − 〈R̃〉D ,
(A.25)

16πGpeff := 16πG〈 p̃〉D − Q̃D + 1

3
〈R̃〉D − 4

3
P̃D ,

ε̃ := N 2ε and p̃ := N 2 p are the scaled energy density and pressure of matter,
respectively. The kinematical backreaction term is given by:

Q̃D := 2〈N 2 I I 〉D − 2

3
〈NΘ〉2

D . (A.26)

It is built from the principal scalar invariants 2I I := Θ2 − K i
j K j

i and K i
i = −Θ of

the extrinsic curvature,

K i
j = −1

2
gik 1

N
g′

k j . (A.27)

The averaged scaled scalar curvature and the acceleration backreaction terms read:

〈R̃〉D := 〈N 2 R〉D , P̃D := 〈 ˜A 〉D +
〈

N ′

N
Θ̃

〉

D
, (A.28)

with the scaled (t-)acceleration divergence ˜A := N 2A = N 2
(

N |i/N
)

||i .

Some comments

With the help of these equations more general matter models can be considered within
the kinematically averaged framework. Notably, scalar field sources and radiation. As
for the latter it is interesting that, due to the non-commutativity of averaging and time-
evolution, an averaged radiation cosmos is not described by the familiar law in the
homogeneous situation. There are source terms demonstrating that an inhomogeneous
radiation cosmos is in an out-of-equilibrium state. An analoguous situation occurs for
the dark radiation part when averaging brane world cosmologies [45], see also[46],
where those source terms can be written in terms of effective Tsallis information
entropies [99]. (Note: it is straightforward to interpret the averaged ADM equations
for vanishing shift for the choice of a tilted slicing, i.e., where the 4-velocity is not
required to coincide with the normal on the hypersurfaces: we have to write them for
the extrinsic curvature, and not for the expansion tensor, which (up to the sign) agree
for our choice.)

123



Dark Energy from structure 521

References

1. Alam, U., Sahni, V., Saini, T.D., Starobinskii, A.A.: Exploring the expanding Universe and Dark
Energy using the statefinder diagnostic. Mon. Not. Roy. Astro. Soc. 344, 1057 (2003)

2. Alnes, H., Amarzguioui, M.: Supernova Hubble diagram for off-center observers in a spherically
symmetric inhomogeneous universe. Phys. Rev. D 75, 023506 (2007)

3. Alnes, H., Amarzguioui, M., Grøn, Ø.: An inhomogeneous alternative to Dark Energy? Phys. Rev.
D 73, 083519 (2006)

4. Alnes, H., Amarzguioui, M., Grøn, Ø.: Can a dust dominated Universe have accelerated expan-
sion? JCAP 0701, 007 (2007)

5. Anderson, M.T.: Scalar curvature and geometrization conjectures for 3-manifolds. Comparison Geo-
metry (Berkeley, 1993–94), pp. 49–82, Math. Sci. Res. Inst. Publ., vol. 30, Cambridge University
Press, Cambridge (1997)

6. Arbey, A.: Dark fluid: A complex scalar field to unify Dark Energy and Dark Matter. Phys. Rev.
D. 74, 043516 (2006)

7. Arnowitt, R., Deser, S., Misner, C.W.: The dynamics of general relativity. In: Witten, L. (ed.)
Gravitation, pp. 227–265. Wiley, New York (1962)

8. Astier, P., et al.: The Supernova Legacy Survey: measurement of Ωm , ΩΛ and w from the first year
data set. Astron. & Astrophys. 447, 31 (2006)

9. Aurich, R., Steiner, F.: The cosmic microwave background for a nearly flat compact hyperbolic
universe. Mon. Not. Roy. Astro. Soc. 323, 1016 (2001)

10. Aurich, R., Steiner, F.: Dark Energy in a hyperbolic universe. Mon. Not. Roy. Astro. Soc. 334,
735 (2002)

11. Bahcall, N., Ostriker, J.P., Perlmutter, S., Steinhardt, P.J.: The Cosmic Triangle: revealing the state
of the Universe. Science 284, 1481 (1999)

12. Barrow, J.D., Tsagas, C.G.: Averaging anisotropic cosmologies. Class. Quant. Grav. 24, 1023 (2007)
13. Biesiada, M.: Information-theoretic model selection applied to supernovae data. JCAP 0702, 003

(2007)
14. Bildhauer, S.: Remarks on possible backreactions of inhomogeneities on expanding universes. Prog.

Theor. Phys. 84, 444 (1990)
15. Bildhauer, S., Buchert, T., Kasai, M.: Solutions in Newtonian cosmology—the pancake theory with

cosmological constant. Astron. Astrophys. 263, 23 (1992)
16. Bildhauer, S., Futamase, T.: The Cosmic Microwave Background in a globally inhomogeneous

universe. Mon. Not. Roy. Astron. Soc. 249, 126 (1991)
17. Biswas, T., Mansouri, R., Notari, A.: Nonlinear structure formation and “apparent” acceleration: an

investigation. arXiv:astro-ph/0606703 (2006)
18. Blanchard, A.: Cosmological parameters: where are we? Astrophys. Space Sci. 290, 135 (2004)
19. Blanchard, A., Douspis, M., Rowan-Robinson, M., Sarkar, S.: An alternative to the cosmological

“concordance model”. Astron. Astrophys. 412, 35 (2003)
20. Blumenhagen, R., Kors, B., Lüst, D., Stieberger, S.: Four-dimensional string compactifications with

D-branes, orientifolds and fluxes. Phys. Rep. 445, 1 (2007)
21. Boersma, J.P.: Averaging in cosmology. Phys. Rev. D 57, 798 (1998)
22. Bolejko, K.: Cosmological applications of the Szekeres model. In: Golovin, A., Ivashchenko, G.,

Simon, A. (eds.) 13th Young Scientists’ Conference on Astronomy and Space Physics. Kyiv Univer-
sity Press, arXiv:astro-ph/0607130 (2006)

23. Bonvin, C., Durrer, R., Gasparini, M.A.: Fluctuations of the luminosity distance. Phys. Rev.
D 73, 023523 (2006)

24. Brandenberger, R.H., Prokopec, T., Mukhanov, V.F.: The entropy of the gravitational field. Phys.
Rev. D 48, 2443 (1993)

25. Brouzakis, N., Tetradis, N., Tzavara, E.: The effect of large scale inhomogeneities on the luminosity
distance. JCAP 0702, 013 (2007)

26. Bruni, M., Dunsby, P.K.S., Ellis, G.F.R.: Cosmological perturbations and the physical meaning of
gauge-invariant variables. Astrophys. J. 395, 34 (1992)

27. Bruni, M., Ellis, G.F.R., Dunsby, P.K.S.: Gauge-invariant perturbations in a scalar field dominated
Universe. Class. Quant. Grav. 9, 921 (1992)

28. Bruni, M., Matarrese, S., Pantano, O.: Dynamics of silent universes. Astrophys. J. 445, 958 (1995)

123



522 T. Buchert

29. Buchert, T.: A class of solutions in Newtonian cosmology and the pancake theory. Astron. Astro-
phys. 223, 9 (1989)

30. Buchert, T.: Lagrangian theory of gravitational instability of Friedmann-Lemaître cosmologies and
the ‘Zel’dovich approximation’. Mon. Not. Roy. Astron. Soc. 254, 729 (1992)

31. Buchert, T.: Averaging hypotheses in Newtonian Cosmology. In: Coles P., et al. (eds.) Mapping,
Measuring and Modelling the Universe, Astron. Soc. of the Pacific 94. pp. 349–356; arXiv:astro-
ph/9512107 (1996)

32. Buchert, T.: On average properties of inhomogeneous fluids in general relativity: 1. dust cosmolo-
gies. Gen. Rel. Grav. 32, 105 (2000)

33. Buchert, T.: On average properties of inhomogeneous cosmologies. In: Eriguchi Y., et al. (eds.) 9th
JGRG Meeting, Hiroshima 1999. pp. 306–321; arXiv:gr-qc/0001056 (2000)

34. Buchert, T.: On average properties of inhomogeneous fluids in general relativity: 2. perfect fluid
cosmologies. Gen. Rel. Grav. 33, 1381 (2001)

35. Buchert, T.: A cosmic equation of state for the inhomogeneous universe: can a global far-from-
equilibrium state explain Dark Energy? Class. Quant. Grav. 22, L113 (2005)

36. Buchert, T.: On globally static and stationary cosmologies with or without a cosmological constant
and the Dark Energy problem. Class. Quant. Grav. 23, 817 (2006)

37. Buchert, T.: Backreaction issues in relativistic cosmology and the Dark Energy debate. In: Novello
M., et al. (eds.) XII. Brazilian School of Cosmology and Gravitation:Mangaratiba, Rio de Janeiro,
Brazil 2006. AIP Conf. Proc., vol. 910, pp. 361–380 (2007)

38. Buchert, T.: Cosmic Continua—a treatise on self-gravitating collisionless systems in cosmology.
Cambridge University Press, Cambridge (in preparation) (2007)

39. Buchert, T., Carfora, M.: Regional averaging and scaling in relativistic cosmology. Class. Quant.
Grav. 19, 6109 (2002)

40. Buchert, T., Carfora, M.: Cosmological parameters are ‘dressed’. Phys. Rev. Lett. 90, 031101–14
(2003)

41. Buchert, T., Carfora, M.: The cosmic quartet: cosmological parameters of a smoothed inhomogeneous
spacetime. In: Shibata M., et al. (eds.) 12th JGRG Meeting, Tokyo 2002, pp. 157–161; arXiv:astro-
ph/0312621 (2003)

42. Buchert, T., Carfora, M.: On the curvature of the present-day Universe. (in preparation) (2007)
43. Buchert, T., Domínguez, A.: Adhesive gravitational clustering. Astron. Astrophys. 438, 443 (2005)
44. Buchert, T., Ehlers, J.: Averaging inhomogeneous Newtonian Cosmologies. Astron. Astrophys.

320, 1 (1997)
45. Buchert, T., Ellis, G.F.R., Maartens, R.: Effective brane world cosmologies and averaging scales. (in

preparation) (2007)
46. Koyama, K.: arXiv:0706.1557 [astro-ph] (2007, this volume)
47. Buchert, T., Götz, G.: A class of solutions for self-gravitating dust in Newtonian gravity. J. Math.

Phys. 28, 2714 (1987)
48. Buchert, T., Kerscher, M., Sicka, C.: Backreaction of inhomogeneities on the expansion: the evolution

of cosmological parameters. Phys. Rev. D. 62, 043525 (2000)
49. Buchert, T., Larena, J., Alimi, J.-M.: Correspondence between kinematical backreaction and scalar

field cosmologies—the ’morphon field’. Class. Quant. Grav. 23, 6379 (2006)
50. Buchert, T., Ostermann, M.: On relativistic generalizations of Zel’dovich’s approximation. (in pre-

paration) (2007)
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