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Abstract A new parametrization of the 3-metric allows to find explicitly a York map
by means of a partial Shanmugadhasan canonical transformation in canonical ADM
tetrad gravity. This allows to identify the two pairs of physical tidal degrees of free-
dom (the Dirac observables of the gravitational field have to be built in term of them)
and 14 gauge variables. These gauge quantities, whose role in describing generalized
inertial effects is clarified, are all configurational except one, the York time, i.e. the
trace 3 K (τ, �σ) of the extrinsic curvature of the instantaneous 3-spaces �τ (corres-
ponding to a clock synchronization convention) of a non-inertial frame centered on an
arbitrary observer. In �τ the Dirac Hamiltonian is the sum of the weak ADM energy
EADM = ∫

d3σ EADM(τ, �σ) (whose density EADM(τ, �σ) is coordinate-dependent,
containing the inertial potentials) and of the first-class constraints. The main results of
the paper, deriving from a coherent use of constraint theory, are: (i) The explicit form of
the Hamilton equations for the two tidal degrees of freedom of the gravitational field in
an arbitrary gauge: a deterministic evolution can be defined only in a completely fixed
gauge, i.e. in a non-inertial frame with its pattern of inertial forces. The simplest such
gauge is the 3-orthogonal one, but other gauges are discussed and the Hamiltonian
interpretation of the harmonic gauges is given. This frame-dependence derives from
the geometrical view of the gravitational field and is lost when the theory is reduced to
a linear spin 2 field on a background space-time. (ii) A general solution of the super-
momentum constraints, which shows the existence of a generalized Gribov ambiguity
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associated to the 3-diffeomorphism gauge group. It influences: (a) the explicit form
of the solution of the super-momentum constraint and then of the Dirac Hamiltonian;
(b) the determination of the shift functions and then of the lapse one. (iii) The depen-
dence of the Hamilton equations for the two pairs of dynamical gravitational degrees of
freedom (the generalized tidal effects) and for the matter, written in a completely fixed
3-orthogonal Schwinger time gauge, upon the gauge variable 3 K (τ, �σ), determining
the convention of clock synchronization. The associated relativistic inertial effects,
absent in Newtonian gravity and implying inertial forces changing from attractive
to repulsive in regions with different sign of 3 K (τ, �σ), are completely unexplored
and may have astrophysical relevance in the interpretation of the dark side of the
universe.

1 Introduction

In a series of papers a new formulation of canonical metric [1] and tetrad [2,3] gra-
vity both based on the ADM action1 was given with the aim [4–7] to identify the
Dirac observables of the gravitational field (the generalized tidal effects) after having
separated them from the gauge variables (the generalized inertial effects) by using the
Shanmugadhasan canonical transformation [8,9] adapted to the first class constraints
of the theory.

The formulation was given in a family of non-compact space-times M4 with the
following properties:

(i) globally hyperbolic and topologically trivial, so that they can be foliated with
space-like hyper-surfaces �τ diffeomorphic to R3 (3+1 splitting of space-time
with τ , the scalar parameter labeling the leaves, as a mathematical time);

(ii) asymptotically flat at spatial infinity and with boundary conditions at spatial
infinity independent from the direction, so that the spi group of asymptotic
symmetries is reduced to the Poincare’ group with the ADM Poincare’ charges
as generators. In this way we can eliminate the super-translations, namely the
obstruction to define angular momentum in general relativity, and we have
the same type of boundary conditions which are needed to get well defined
non-Abelian charges in Yang-Mills theory, opening the possibility of a uni-
fied description of the four interactions with all the fields belonging to same
function space [1,10,11]. All these requirements imply that the admissible
foliations of space-time must have the space-like hyper-surfaces tending in

1 Tetrad gravity is more natural for the coupling to the fermions. This leads to an interpretation of gravity
based on a congruence of time-like observers endowed with orthonormal tetrads: in each point of space-time
the time-like axis is the unit 4-velocity of the observer, while the spatial axes are a (gauge) convention for
observer’s gyroscopes. Tetrad gravity has ten primary first class constraints and four secondary first class
ones. Six of the primary constraints describe the extra freedom in the choice of the tetrads. The other four
primary (the vanishing of the momenta of the lapse and shift functions) and four secondary (the super-
Hamiltonian and super-momentum constraints) constraints are the same as in metric gravity. In Ref. [3] 13
of the 14 constraints were solved: the super-Hamiltonian one can be solved only after linearization.
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a direction-independent way to Minkowski space-like hyper-planes at spatial
infinity, which moreover must be orthogonal there to the ADM 4-momentum.
Therefore, M4 is asymptotically Minkowskian [13]. Moreover the simulta-
neity 3-surfaces must admit an involution (Lichnerowicz 3-manifolds [14,15])
allowing the definition of a generalized Fourier transform with its associated
concepts of positive and negative energy, so to avoid the claimed impossibility
to define particles in curved space-times.

(iii) All the fields have to belong to suitable weighted Sobolev spaces so that; (i)
the admissible space-like hyper-surfaces are Riemannian 3-manifolds without
asymptotically vanishing Killing vectors [13,16,17] (we furthermore assume
the absence of any Killing vector); (ii) the inclusion of particle physics leads to
a formulation without Gribov ambiguity [18–20].

In absence of matter the class of Christodoulou–Klainermann space-times [12],
admitting asymptotic ADM Poincare’ charges and an asymptotic flat metric is selected.

This formulation, the rest-frame instant form of metric and tetrad gravity, empha-
sizes the role of non-inertial frames (the only ones existing in general relativity due to
the global interpretation of the equivalence principle; see Ref. [4–7] for this viewpoint)
and deparametrizes to the rest-frame instant form of dynamics in Minkowski space-
time [4–7,10,11] when matter is present if the Newton constant is switched off. The
non-inertial frames are the 3 + 1 splittings admissible for the given space-time, after
having chosen an arbitrary time-like observer as the origin of the 3-coordinates on the
leaves �τ , which are both [4–7] Cauchy surfaces and instantaneous 3-spaces corres-
ponding to a convention for the synchronization of distant clocks.2 As a consequence
the 3 + 1 splitting identifies a global non-inertial frame centered on the observer,
namely a possible extended physical laboratory with its metrological conventions.

As shown in Refs. [1,3] in this way one gets the rest-frame instant form of metric
and tetrad gravity with the weak ADM energy EADM = ∫

d3σ EADM(τ, �σ) as the
effective Hamiltonian (in accord with Refs. [13,24]).3 The �-� term in the ADM
energy density EADM(τ, �σ) is coordinate-dependent (the problem of energy in general
relativity) because it contains the inertial potentials giving rise to the generalized
inertial effects in the non-inertial frame associated to the chosen 3 + 1 splitting of the
space-time.

In Ref. [25] there is the study of the Hamiltonian linearization of tetrad gravity
without matter in these space-times, where the existence of an asymptotic flat metric
at spatial infinity (asymptotic background with the presence of asymptotic inertial

2 See Ref. [21] for the special relativistic case and Ref. [22,23] for the quantization of particles in
non-inertial frames.
3 Therefore the formulations with a frozen reduced phase space are avoided [4–7]. The super-Hamiltonian
constraint generates normal deformations of the space-like hyper-surfaces, which are not interpreted as
a time evolution (like in the Wheeler–DeWitt approach) but as the Hamiltonian gauge transformations
ensuring that the description of gravity is independent from the 3 + 1 splittings of space-time (i.e. from the
clock synchronization convention) like it happens in parametrized Minkowski theories.
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observers to be identified with the fixed stars) allows to avoid the splitting of the
4-metric into the flat one plus a perturbation. In this way we have obtained post-
Minkowskian background-independent gravitational waves in a special non-harmonic
3-orthogonal gauge where the 3-metric is diagonal. As a consequence these space-
times, after the inclusion of matter, are candidates for a general relativistic model of
the solar system or of the galaxy. Maybe they can also be used in the cosmological
context if the asymptotic inertial observers are identified with the preferred observers
of the cosmic background radiation.

In Refs. [26–28] there is the description of relativistic fluids and of the Klein–
Gordon field in the framework of parametrized Minkowski theories. This formalism
allows to get the Lagrangian of these matter systems in the formulation of tetrad gravity
of Refs. [2,3,25]. The resulting first-class constraints depend only on the mass density
M(τ, �σ) (which is metric-dependent) and the mass-current density Mr (τ, �σ) (which
is metric-independent) of the matter. For Dirac fields the situation is more complicated
due to the presence of second class constraints (see Ref. [29] for the case of parame-
trized Minkowski theories with fermions). It turns out that the point Shanmugadhasan
canonical transformation of Ref. [25], adapted to 13 of the 14 first class constraints is
not suited for the inclusion of matter due to its non-locality. Therefore in this paper
we will look for a local point Shanmugadhasan transformation adapted only to 10 of
the 14 constraints.

The new insight comes from the so-called York-Lichnerowicz conformal approach
[30–33] (see also the book [34] for a review and more bibliographical information)
to metric gravity in globally hyperbolic (but spatially compact4) space-times. The
starting point is the decomposition 3gi j = φ4 3ĝi j of the 3-metric on an instantaneous
3-space �o of a 3 + 1 splitting of space-time in the product of a conformal factor
φ = (det 3g)1/12 and a conformal 3-metric 3ĝi j with det 3ĝi j = 1 (3ĝi j contains 5
of the 6 degrees of freedom of 3gi j ). The extrinsic curvature 3-tensor 3 Ki j of �o

(determining the ADM momentum) is decomposed in its trace 3 K (the York time) plus
the distorsion tensor, which is the sum of a TT5 symmetric 2-tensor 3 Ai j (2 degrees
of freedom) plus the 3-tensor 3Wi; j + 3W j;i − 2

3
3gi j

3W k ;k depending on a cova-
riant 3-vector 3Wi (York gravitomagnetic vector potential; 3 degrees of freedom).
Having fixed the lapse and shift functions of the 3 + 1 splitting and having put
3 K = const., one assigns 3ĝi j and 3 Ai j on the Cauchy surface �o. Then, 3Wi is
determined by the super-momentum constraints on �o and φ is determined by the
super-Hamiltonian constraint on �o. Then, the remaining Einstein’s equations (see
Refs. [12,16,17,30,31] for the existence and unicity of solutions) determine the time
derivatives of 3gi j and of 3 Ki j , allowing to find the time development from the initial
data on �o.

4 This is due to the influence of Mach principle, see for instance Chapter 5 of Ref. [34]. However, let us
remark that the non-locality of the Dirac observables of the non-compact case (all the instantaneous 3-space
is needed for their determination) has a Machian flavor.
5 Traceless and transverse with respect to the conformal 3-metric.
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However, a canonical basis adapted the the previous splittings was never found.
The only result is contained in Ref. [35], where it was shown that, having fixed 3 K ,
the transition from the non-canonical variables 3ĝi j , 3 Ai j , 3Wi to the space of the
gravitational initial data satisfying the constraints is a canonical transformation, named
York map.

In this paper we will show that a new parametrization of the original 3-metric 3gi j

allows to find local point Shanmugadhasan canonical transformation adapted to 10
of the 14 constraints of tetrad gravity, which implements a York map. In particular
one of the new momenta (a gauge variable) will be the York time 3 K . The use of
Dirac theory of constraints introduces a different point of view on the gauge-fixing
and the Cauchy problem. While the gauge fixing to the extra six primary constraints
fixes the tetrads (i.e. the spatial gyroscopes and their transport law), the gauge fixing
to the four primary plus four secondary constraints follows a different scheme from
the one used in the York-Lichnerowicz approach, which influenced contemporary
numerical gravity. Firstly one adds the four gauge fixings to the secondary constraints
(the super-Hamiltonian and super-momentum ones), i.e. one fixes 3 K , i.e.the simul-
taneity 3-surface, and the 3-coordinates on it (namely 3 of the 5 degrees of freedom
of the conformal 3-metric 3ĝi j ). The preservation in time of these four gauge fixings
generates other four gauge fixing constraints determining the lapse and shift func-
tions consistently with the shape of the simultaneity 3-surface and with the choice of
3-coordinates on it (here is the main difference with the conformal approach and most
of the approaches to numerical gravity). While the super-Hamiltonian constraint deter-
mines the conformal factor φ,6 the super-momentum constraint determines 3 momenta
(replacing the York gravitomagnetic potential 3Wi ). The remaining 2 + 2 degrees of
freedom (the genuine tidal effects) are the other two degrees of freedom in 3ĝi j and
the two ones inside 3 Ai j . On the Cauchy surface the 2 + 2 tidal degrees of freedom
are assigned and we have consistency with the initial data of the York-Lichnerowicz
approach.

This is the natural procedure of fixing the gauge and of getting deterministic
Hamilton equations for the tidal degrees of freedom according to Dirac theory of
constraints. Since a completely fixed gauge is equivalent to give a non-inertial frame
centered on some time-like observer, the gauge-fixed gauge variables will describe
the inertial effects (the appearances of phenomena) present in this non-inertial frame,
where the Dirac observables describe the tidal effects of the gravitational field. In par-
ticular, the gauge variable 3 K (τ, �σ) (York time) describes the freedom in the choice
of the clock synchronization convention, i.e. in the definition of the instantaneous
3-spaces �τ .

In Sect. 2 we will find the York map and we discuss some classes of Hamiltonian
gauges. In the York canonical basis it is possible to express both the gauge variables
(inertial effects) and the tidal degrees of freedom in terms of the original variables.

6 The only role of the conformal decomposition 3gi j = φ4 3 ĝi j is to identify the conformal factor φ as
the natural unknown in the super-Hamiltonian constraint, which becomes the Lichnerowicz equation. See
Ref. [1] for a different justification of this result based on constraint theory and the two notions of strong
and weak ADM energy.
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In Sect. 3 we give the general solution of the super-momentum constraints in the
York canonical basis: it is defined modulo the zero modes of the covariant derivative.

In Sect. 4 there is the form of the super-Hamiltonian constraint and the weak
ADM energy in a family of completely fixed 3-orthogonal Schwinger time gauges
parametrized by the gauge variable 3 K (τ, �σ) (it is a family of non-inertial frames
with a fixed pattern of inertial effects) defined by suitable set of primary gauge-fixing
constraints.

In Sect. 5 there are the equations determining the lapse and shift functions of the
3-orthogonal gauges gauges: they arise from the preservation in time of the primary
gauge-fixing constraints. It is shown that, like in Yang-Mills theories, a generalized
Gribov ambiguity arises in the determination of the shift functions and, as a conse-
quence, also of the lapse function. It is induced by the zero modes of the covariant
derivative.

In Sect. 6 there are the final Hamilton equations describing the deterministic evolu-
tion of the dynamical gravitational degrees of freedom (the generalized tidal effects)
both in an arbitrary gauge and in the completely fixed ones. It is shown that only in
a completely fixed gauge we can obtain a deterministic evolution, which, however
depends upon the chosen non-inertial frame with its pattern of relativistic inertial
forces. This frame-dependence derives from the geometrical view of the gravitational
field and is lost when the theory is reduced to a linear spin 2 field on a background
space-time.

In the Conclusions we make a summary of the results, emphasizing the methodolo-
gical and interpretational insights induced by a correct use of constraint’s theory. We
also make some comments on the perspectives of technical developments (for instance
the weak field limit but with relativistic motion) in connection with physical problems
connected with space experiments in the solar system and with astrophysics.

Finally there are four Appendices: Appendix A, with the notations for tetrad gra-
vity; Appendix B, with the calculations for the canonical transformation of Sect. 3;
Appendix C, with the 3-geometry in 3-orthogonal gauges; Appendix D, with Green
functions.

In Ref. [36] there is an expanded version of this paper, containing many Appendices
with the explicit expression of many quantities in the York canonical basis and in
the 3-orthogonal gauge. To have an exposition concentrated on the main theoretical
aspects implied by a coherent and systematic use of constraint’s theory and on the
interpretational issues, we have not given the explicit expression of heavy calculations
and of some cumbersome formulas. They can be found in Ref. [36] at the quoted
positions.

2 The York map from a Shanmugadhasan canonical transformation adapted
only to the rotation constraints

Let us look for a Shanmugadhasan canonical transformation interpretable as a York
map. It can be obtained starting from a natural parametrization of the 3-metric and
then by making an adaptation only to the rotation constraints (and not also the the
super-momentum ones like in Refs. [3,25]).
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2.1 Diagonalization of the 3-metric

The 3-metric 3grs may be diagonalized with an orthogonal matrix V (θr ), V −1 = V T ,
det V = 1, depending on 3 Euler angles θr 7

3grs =
∑

uv

Vru(θn) λu δuv V T
vs(θ

n) =
∑

a

(
Vra(θn)	a) (Vsa(θn)	a)

=
∑

a

3ē(a)r
3ē(a)s

∑

a

3e(a)r
3e(a)s = φ43ĝrs

def= φ4
∑

a

Q2
a Vra(θn) Vsa(θn),

	a(τ, �σ)
def=
∑

u

δau

√
λu(τ, �σ)

def= φ2(τ, �σ) Qa(τ, �σ),

Qa
def= e

∑1,2
ā γāa Rā , Rā =

∑

b

γāb ln
	b

(	1 	2 	3)1/3 , (2.1)

φ = (det 3g)1/12 = (3e)1/6 = (λ1 λ2 λ3)
1/12 = (	1 	2 	3)

1/6,

where the set of numerical parameters γāa satisfies [1]
∑

u γāu = 0,
∑

u γāu γb̄u =
δāb̄,

∑
ā γāu γāv = δuv − 1

3 . The assumed boundary conditions imply
	a(τ, �σ) →r→∞ 1 + M

4r + aa
r3/2 + O(r−3) and φ(τ, �σ) →r→∞ 1 + O(r−1).

Cotriads and triads are defined modulo rotations R(α(a)) on the flat 3-index (a)

3e(a)r = R(a)(b)(α(c))
3ē(b)r ,

3ē(a)r
def= ∑

u
√

λu δu(a) V T
ur (θ

n) = Vra(θn)	a = φ2 Qa Vra(θn),

3ēr
(a) = ∑

u
δu(a)√

λu
Vru = Vra(θn)

	a
= φ−2 Q−1

a Vra(θn).

(2.2)

The gauge Euler angles θr give a description of the 3-coordinate systems on �τ

from a local point of view, because they give the orientation of the tangents to the
3 coordinate lines through each point (their conjugate momenta are determined by
the super-momentum constraints), φ is the conformal factor of the 3-metric, i.e. the
unknown in the super-Hamiltonian constraint (its conjugate momentum is a gauge
variable, describing the form of the simultaneity surfaces �τ ), while the two inde-
pendent eigenvalues of the conformal 3-metric 3ĝrs (with determinant equal to 1)
describe the genuine tidal effects of general relativity (the non-linear “graviton”).

7 Due to the positive signature of the 3-metric, we define the matrix V with the following indices: Vru .
Since the choice of Shanmugadhasan canonical bases breaks manifest covariance, we will use the notation
Vua = ∑

v Vuv δv(a) instead of Vu(a). We use the following types of indices: a = 1, 2, 3 and ā = 1, 2.
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2.2 An intermediate point Shanmugadhasan canonical transformation

Let us consider the following point canonical transformation (realized in two steps)

ϕ(a) n n(a)
3e(a)r

≈ 0 ≈ 0 ≈ 0 3πr
(a)

−→ ϕ(a) α(a) n n̄(a)
3ē(a)r

≈ 0 ≈ 0 ≈ 0 ≈ 0 3 ˜̄πr
(a)

−→ ϕ(a) α(a) n n̄(a) θr 	r

≈ 0 ≈ 0 ≈ 0 ≈ 0 π
(θ)
r Pr (2.3)

where n̄(a) = ∑
b n(b) R(b)(a)(α(e)) are the shift functions at α(a)(τ, �σ) = 0.

This is a Shanmugadhasan canonical transformation adapted also to the rotation
constraints. It allows to separate the gauge variables (α(a), ϕ(a)) of the Lorentz gauge
group acting on the tetrads.

Being a point transformation, we have

3π̃r
(a)(τ, �σ) =

∑

b

K r
(a)b(τ, �σ) Pb(τ, �σ) +

∑

i

Gr
(a)i (τ, �σ) π

(θ)
i (τ, �σ)

+
∑

(c)

Fr
(a)(c)(τ, �σ) π

(α)
(c) (τ, �σ)

≈
∑

b

K r
(a)b(τ, �σ) Pb(τ, �σ) +

∑

i

Gr
(a)i (τ, �σ) π

(θ)
i (τ, �σ). (2.4)

Here π
(α)
(a) (τ, �σ) ≈ 0 are the Abelianized rotation constraints [1,3], canonically conju-

gate to α(a)(τ, �σ).
Let us remark that the Shanmugadhasan canonical transformation identifying the

York map is valid only in the configuration region where the 3-metric 3grs(τ, �σ) has
three distinct eigenvalues everywhere [i.e. aa �= ab for a �= b in the asymptotic
behavior of 	a] except at spatial infinity, where they tend to the common value 1. The
degenerate cases with two or three equal eigenvalues are singular configurations with
less configurational degrees of freedom. To treat these cases we must add by hand
extra first class constraints of the type 	a(τ, �σ) − 	b(τ, �σ) ≈ 0, a �= b, and apply
the Dirac algorithm to the enlarged set of constraints.

The generating function of the canonical transformation is

� =
∫

d3σ
∑

ar

3π̃r
(a)(τ, �σ)

[
∑

b

R(a)(b)(α(e)) Vrb(θ
n)	b

]

(τ, �σ), (2.5)

so that we get (see Ref. [3] for the O(3) Lie algebra-valued matrices A(a)(b)(α(c)),

B(α(c)) = A−1(α(c)), such that ∂ R(b)(c)(α(e))

∂ α(a)
= ∑

da ε(b)(d)(n) R(d)(c)(α(e)) A(n)(a)(α(e)))
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π
(α)
(c) (τ, �σ) = δ �

δ α(c)(τ, �σ)
= −

∑

krab

[
A(k)(c)(α(e)) ε(k)(b)(a)

3e(b)r
3π̃r

(a)

]
(τ, �σ)

= −
∑

k

[
A(k)(c)(α(e)) M(k)

]
(τ, �σ) ≈ 0,

Pb(τ, �σ) = δ �

δ 	b(τ, �σ)
=
∑

ar

[
3π̃r

(a) R(a)(b)(α(e)) Vrb(θ
n)
]
(τ, �σ)

=
∑

ar

3π̃r
(a) R(a)(b)(α(e))

3ē(b)r

	b
(τ, �σ),

π
(θ)
i (τ, �σ) = δ �

δ θ i (τ, �σ)
= −

∑

lmra

[
Ami (θ

n) εmlr
3e(a)l

3π̃r
(a)

]
(τ, �σ). (2.6)

As a consequence of the calculation of Appendix B we have [Eqs. (A10) are used;
3 ˜̄πr

(a) and 3 K̃rs are the cotriad momentum and the extrinsic curvature of �τ after
having used the rotation constraints M(a)(τ, �σ) ≈ 0]

3π̃r
(a)

def=
∑

b

R(a)(b)(α(e)) π̄r
(b),

3π̄r
(a) =

∑

b

πr
(b) R(b)(a)(α(e))

= Vra(θn) Pa +
b �=a∑

b

∑

twi

Vrb(θ
n) εabt Vtw(θn)

	b

(
	b
	a

− 	a
	b

) Biw(θn) π
(θ)
i

−
b �=a∑

b

∑

kti

Vrb(θ
n) εbat R(t)(k)(α(e))

	b

(
	b
	a

− 	a
	b

) B(c)(k)(α(e)) π
(α)
(c)

≈ Vra(θn) Pa +
b �=a∑

b

∑

twi

Vrb(θ
n) εabt Vtw(θn)

	b

(
	b
	a

− 	a
	b

) Biw(θn) π
(θ)
i

def= 3 ˜̄πr
(a) →θn→0 δra Pa + εari

	r

(
	r
	a

− 	a
	r

) π
(θ)
i .

3 Krs ≈ 3 K̃rs = ε 4π G

c3 	1 	2 	3

[
∑

a

	2
a Vra(θn) Vsa(θn) (2 	a Pa −

∑

b

	b Pb)

+
a �=b∑

ab

	a 	b
(
Vra(θn) Vsb(θ

n) + Vrb(θ
n) Vsa(θn)

)

×
∑

twi

εabt Vtw(θn) Biw(θn) π
(θ)
i

	b
	a

− 	a
	b

]

,

3 K ≈ 3 K̃ = −ε
4π G

c3

∑
b 	b Pb

	1 	2 	3
. (2.7)
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Since in Ref. [3] it was assumed 3π̃r
(a)(τ, �σ) →r→∞ O(r−5/2), from Eqs. (2.4)

and Appendix B we get Pa(τ, �σ) →r→∞ O(r−5/2). However we must have
π

(θ)
i (τ, �σ) →r→∞ O(r−4), since the requirement 	a(τ, �σ) �= 	b(τ, �σ) for a �= b,

needed to avoid singularities, implies aa �= ab for a �= b in their asymptotic behavior,

so that we get
(

	b
	a

− 	a
	b

)−1
(τ, �σ) →r→∞ r3/2

2 (ab−aa)
. As a consequence, consistently

with Eqs. (2.6), we have π
(α)
(a) (τ, �σ) →r→∞ O(r−5/2). Also the angles α(a)(τ, �σ)

and θ i (τ, �σ) must tend to zero in a direction-independent way at spatial infinity.

2.3 The York map

Since from Eq. (2.7) we have 3 K̃ = −ε 4π G
c3

∑
b 	b Pb

	1 	2 	3
, we can introduce the following

pair φ̃, πφ̃ of canonical variables

φ̃ = φ6 =
∏

a

	a, πφ̃ = −ε
c3

12π G
3 K =

∑
b 	b Pb

3 	1 	2 	3
,

{φ̃(τ, �σ), πφ̃(τ, �σ ′
)} = δ3(�σ , �σ ′

), (2.8)

with πφ̃(τ, �σ) →r→∞ O(r−5/2) at spatial infinity.
Let us consider the following point canonical transformation (it is a family of

canonical transformations depending on the set of numerical parameters γāa)

	r

Pr −→ φ̃ Rā

πφ̃ �ā
(2.9)

Since the generating function is � = ∫
d3σ

[∑
b Pb φ̃1/3 e

∑
ā γāb Rā

]
(τ, �σ), we

get

πφ̃(τ, �σ) = δ �

δφ̃(τ, �σ)
=
∑

b 	b Pb

3 	1 	2 	3
(τ, �σ),

(2.10)

�ā(τ, �σ) = δ �

δ Rā(τ, �σ)
=
[

(	1 	2 	3)
1/3

∑

b

γāb Pb e
∑

c̄ γc̄b Rc̄

]

(τ, �σ).

Therefore, besides the definitions in Eqs. (2.1), we get

Pb = φ̃−1/3 Q−1
b

⎡

⎣φ̃ πφ̃ +
∑

b̄

γb̄b �b̄

⎤

⎦ ,

�ā = (	1 	2 	3)
1/3

∑

b

γāb Pb Qb =
∑

b

γāb 	b Pb,

123



The York map as a Shanmugadhasan canonical transformation 2159

∑

b

	b Pb = 3 φ̃ πφ̃,
∑

ā

γāu �ā = 	u Pu − φ̃ πφ̃,

3 ˜̄πr
(a) = φ̃−1/3

⎡

⎣Vra(θn) Q−1
a (φ̃ πφ̃ +

∑

b̄

γb̄a �b̄)

+
l �=a∑

l

∑

twi

Q−1
l

Vrl(θ
n) εalt Vtw(θn)

Ql Q−1
a − Qa Q−1

l

Biw(θn) π
(θ)
i

⎤

⎦ ,

∑

r

3ē(b)r
3 ˜̄πr

(a) = δab [φ̃ πφ̃ +
∑

ā

γāa �ā] +
∑

twi

εabt Vtw(θn) Biw(θn) π
(θ)
i

Qb Q−1
a − Qa Q−1

b

,

3 K̃rs = ε
4π G

c3 φ̃−1/3

⎛

⎝
∑

a

Q2
a Vra(θn) Vsa(θn)

⎡

⎣2
∑

b̄

γb̄a �b̄ − φ̃ πφ̃

⎤

⎦

+
∑

ab

Qa Qb [Vra(θn) Vsb(θ
n) + Vrb(θ

n) Vsa(θn)]

×
∑

twi

εabt Vtw(θn) Biw(θn) π
(θ)
i

Qb Q−1
a − Qa Q−1

b

)

. (2.11)

See Appendix B of Ref. [36] for the explicit expression of the 3-Christoffel symbols
3�r

uv on �τ and for the �-� potential S(τ, �σ) in the York canonical basis.
The sequence of canonical transformations (2.3) and (2.9) realize a York map

because the gauge variable πφ̃ is proportional to York internal extrinsic time 3 K . Its

conjugate variable, to be determined by the super-Hamiltonian constraint, is φ̃ = 3ē,
which is proportional to Misner’s internal intrinsic time; moreover φ̃ is the volume
density on �τ : VR = ∫

R d3σ φ6, R ⊂ �τ .
Equations (2.3), (2.9) and (2.11) identify the two pairs of canonical variables Rā ,

�ā , ā = 1, 2, as those describing the generalized tidal effects, namely the inde-
pendent degrees of freedom of the gravitational field In particular the configuration
tidal variables Rā depend only on the eigenvalues of the 3-metric. They are Dirac
observables only with respect to the gauge transformations generated by 10 of the 14
first class constraints. Let us remark that, if we fix completely the gauge and we go to
Dirac brackets, then the only surviving dynamical variables Rā and �ā become two
pairs of non canonical Dirac observables for that gauge: the two pairs of canonical
Dirac observables have to be found as a Darboux basis of the copy of the reduced
phase space identified by the gauge and they will be (in general non-local) functionals
of the Rā , �ā variables. This shows the importance of canonical bases like the York
one: the tidal effects are described by local functions of the 3-metric and its conjugate
momenta.

Since the variables φ̃ [given in Eq. (2.8)] and π
(θ)
i [given in Eqs. (2.6)] are determi-

ned by the super-Hamiltonian and super-momentum constraints, the arbitrary gauge
variables are α(a), ϕ(a), θ i , πφ̃ , n and n̄(a). As shown in Refs. [4–7], they describe the
following generalized inertial effects:
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(a) α(a)(τ, �σ) and ϕ(a)(τ, �σ) describe the arbitrariness in the choice of a tetrad to
be associated to a time-like observer, whose world-line goes through the point
(τ, �σ). They fix the unit 4-velocity of the observer and the conventions for the
gyroscopes and their transport along the world-line of the observer.

(b) θ i (τ, �σ) [depending only on the 3-metric, as shown in Eq. (2.1)] describe the
arbitrariness in the choice of the 3-coordinates on the simultaneity surfaces �τ of
the chosen non-inertial frame centered on an arbitrary time-like observer. Their
choice will induce a pattern of relativistic standard inertial forces (centrifugal,
Coriolis, etc.), whose potentials are contained in the term S(τ, �σ) of the weak
ADM energy EADM given in Eqs. (A8). These inertial effects are the relativistic
counterpart of the non-relativistic ones (they are present also in the non-inertial
frames of Minkowski space-time).

(c) n̄(a)(τ, �σ), the shift functions appearing in the Dirac Hamiltonian, describe which
points on different simultaneity surfaces have the same numerical value of the
3-coordinates. They are the inertial potentials describing the effects of the non-
vanishing off-diagonal components 4gτr (τ, �σ) of the 4-metric, namely they are
the gravito-magnetic potentials8 responsible of effects like the dragging of iner-
tial frames (Lens-Thirring effect) [34] in the post-Newtonian approximation.

(d) πφ̃(τ, �σ), i.e. the York time 3 K (τ, �σ), describes the arbitrariness in the shape of
the simultaneity surfaces �τ of the non-inertial frame, namely the arbitrariness
in the choice of the convention for the synchronization of distant clocks. Since
this variable is present in the Dirac Hamiltonian,9 it is a new inertial potential
connected to the problem of the relativistic freedom in the choice of the instanta-
neous 3-space, which has no non-relativistic analogue (in Galilei space-time time
is absolute and there is an absolute notion of Euclidean 3-space). Its effects are
completely unexplored. For instance, since the sign of the trace of the extrinsic
curvature may change from a region to another one on the simultaneity surface
�τ , the associated inertial force in the Hamilton equations may change from
attractive to repulsive in different regions.

(e) n(τ, �σ), the lapse function appearing in the Dirac Hamiltonian, describes the arbi-
trariness in the choice of the unit of proper time in each point of the simultaneity
surfaces �τ , namely how these surfaces are packed in the 3 + 1 splitting.

From Eqs. (A4), (A8) and Eq. (B4) of Ref. [36], where Eq. (B1) gives the expression
of the �-� term S, we get the following expression of the super-Hamiltonian constraint

8 In the post-Newtonian approximation in harmonic gauges they are the counterpart of the electro-magnetic

vector potentials describing magnetic fields [25,34]: (a) N = 1 + n, n
def= − 4 ε

c2 �G with �G the gravito-

electric potential; (b) nr
def= 2 ε

c2 AG r with AG r the gravito-magnetic potential; (c) EG r = ∂r �G −
∂τ ( 1

2 AG r ) (the gravito-electric field) and BG r = εruv ∂u AG v = c �G r (the gravito-magnetic field).
Let us remark that in arbitrary gauges the analogy with electro-magnetism [34] breaks down.
9 See Eqs. (2.12) for its presence in the super-Hamiltonian constraint and in the weak ADM energy, and
Eqs. (3.1) for its presence in the super-momentum constraints.
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and of weak ADM energy in the York canonical basis (3 R̂ and 	̂ are the 3-curvature of
�τ and the Laplace-Beltrami operator for the conformal 3-metric 3ĝrs , respectively)

H(τ, �σ) = ε
c3

16π G
φ̃1/6(τ, �σ) [−8 	̂ φ̃1/6 + 3 R̂ φ̃1/6](τ, �σ) − ε

c
M(τ, �σ)

−ε
2π G

c3 φ̃−1

⎡

⎣−3 (φ̃ π
φ̃
)2 + 2

∑

b̄

�2
b̄

+ 2
∑

abtwiuv j

εabt εabu Vtw(θn) Biw(θn) Vuv(θn) B jv(θn) π
(θ)
i π

(θ)
j

[
Qa Q−1

b − Qb Q−1
a

]2

⎤

⎥
⎦ (τ, �σ) ≈ 0,

EADM =
∫

d3σ

⎡

⎣M − c4

16π G
S + 2π G

c2 φ̃−1

⎛

⎝−3 (φ̃ π
φ̃
)2 + 2

∑

b̄

�2
b̄

+ 2
∑

abtwiuv j

εabt εabu Vtw(θn) Biw(θn) Vuv(θn) B jv(θn) π
(θ)
i π

(θ)
j

[
Qa Q−1

b − Qb Q−1
a

]2

⎞

⎟
⎠

⎤

⎥
⎦ (τ, �σ). (2.12)

2.4 Gauges

Once we are in the York canonical basis, it is useful to restrict ourselves to the
Schwinger time gauges implied by the gauge fixing constraints ϕ(a)(τ, �σ) ≈ 0,
α(a)(τ, �σ) ≈ 0, which imply λ(a)(τ, �σ) ≈ 0, λ �ϕ(a)(τ, �σ) ≈ 0 in Eq. (A7). In
this way we can go to Dirac brackets with respect to the primary 6 constraints
π �ϕ (a)(τ, �σ) ≈ 0, π

(α)
(a) (τ, �σ) ≈ 0 [the Abelianized rotation constraints of Eq. (2.6)]

and these gauge fixings (in total there are six pairs of second class constraints). In
this reduced phase space the York canonical basis is formed by the pairs: n(τ, �σ),
πn(τ, �σ) ≈ 0, n̄(a)(τ, �σ), π�n (a)(τ, �σ) ≈ 0, θ i (τ, �σ), π

(θ)
i (τ, �σ), φ̃(τ, �σ), πφ̃(τ, �σ),

Rā(τ, �σ), �ā(τ, �σ). We shall ignore global problems about the validity of the gauge
fixing constraints everywhere in M4: our results will in general be valid only locally.

The CMC gauges (�τ has constant mean curvature 3 K̃ (τ, �σ) = const.) [34] are
those associated to the gauge fixing πφ̃(τ, �σ) ≈ −ε c3

12π G × const . See Ref. [37] for
the existence of surfaces of prescribed mean curvature in asymptotically flat space-
times.

The CMC gauge fixing πφ̃(τ, �σ) = −ε c3

12π G
3 K̃ (τ, �σ) ≈ 0 identifies the special

gauge in which the simultaneity and Cauchy hyper-surfaces �τ are the CMC hyper-
surfaces with 3 K̃ (τ, �σ) ≈ 0.

We shall not use the special CMC gauge πφ̃(τ, �σ) ≈ 0, but we shall consider the

class of gauges with given trace of the extrinsic curvature 3 K̃ (τ, �σ) ≈ ε K (τ, �σ),
so that πφ(τ, �σ) ≈ − c3

12π G K (τ, �σ), to see the dependance of the dynamics on the
shape of the simultaneity surfaces �τ , namely on the convention chosen for clock
synchronization.

Let us remember that the gauge fixings determining the lapse and shift functions
are obtained by requiring the τ -constancy of the gauge fixings determining πφ̃ and
θn .
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The 3-orthogonal gauges correspond to the gauge fixings θn(τ, �σ) ≈ 0 and imply

3ē(a)r = φ̃1/3 δra Qa, 3ēr
(a) = φ̃−1/3 δra Q−1

a ,

3grs = φ̃2/3 Q2
a δrs,

3grs = φ̃−2/3 Q−2
a δrs,

3 ˜̄πr
(a) = φ̃−1/3

⎡

⎣δra Qa (φ̃ πφ̃ +
∑

b̄

γb̄a �b̄) −
∑

i

Q−1
r

εari π
(θ)
i

Qr Q−1
a − Qa Q−1

r

⎤

⎦ ,

3 K̃rs = ε
4π G

c3 φ̃−1/3

×
⎛

⎝δrs Q2
r [2

∑

b̄

γb̄r �b̄−φ̃ πφ̃] + 2 Qr Qs

∑
i εrsi π

(θ)
i

Qs Q−1
r − Qr Q−1

s

⎞

⎠ .

(2.13)

The expression of the super-Hamiltonian constraint and of the weak ADM energy
in the 3-orthogonal gauges is given in Eqs. (4.2) and (4.3).

In Ref. [36] there is the expression for the 3-normal gauges with respect to the
origin of 3-coordinates and for the completely fixed ADM 4-coordinate gauge used
for the ADM post-Newtonian limit in Refs. [38,39] (it is a CMC gauge). In the York
canonical basis these gauge fixings are algebraic equations for πφ̃(τ, �σ) but first-order
elliptic partial differential equations for the three Euler angles θn(τ, �σ).

Instead the family of harmonic gauges, defined by adding the 4 gauge-fixing
constraints χ A = ∑

B ∂B
(
N 3e g AB

) = 0 to the secondary first-class constraints
and used both in theoretical studies [40] and in the post-Newtonian approximation
[41,42], belongs to a different class of gauges at the Hamiltonian level. Their gauge
fixings are neither algebraic conditions nor elliptic equations defined on a single ins-
tantaneous 3-space �τ .

By using the first half (A10) of the Hamilton equations (the kinematical connection
between velocities and phase space variables) associated with the Dirac Hamiltonian
(A7), the gauge-fixing constraints χA(τ, �σ) ≈ 0 can be rewritten as four Hamiltonian
gauge fixings explicitly depending upon the four Dirac multipliers λn = ∂τ n and
λ�n (a) = ∂τ n̄(a) (see Eqs. (6.4) of Ref. [36] for their expression in the York canonical
basis). These unconventional Hamiltonian constraints (χτ ≈ 0 does not define a CMC
gauge) are four coupled equations for πφ and θ i in terms of φ, Rā , �ā , n, λn = ∂τ n,
n̄(a), λ�n(a) = ∂τ n̄(a).

The stability of these gauge fixings requires to impose ∂τ χ̃a(τ, �σ) ≈ 0 and
∂τ χ̃τ (τ, �σ) ≈ 0. In this way we get four equations for the determination of n and
n̄(a). But these are not equations of the “elliptic” type like with ordinary gauge fixings.
They are coupled equations depending upon n, ∂r n, ∂τ n, ∂2

τ n and n̄(a), ∂r n̄(a), ∂τ n̄(a),
∂2
τ n̄(a), namely hyperbolic equations like Eq. (6.3). As a consequence there is a pro-

blem of initial conditions not only for Rā but also for the lapse and shift functions of
the harmonic gauge. Each possible set of initial values should correspond to a different
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completely fixed harmonic gauge, since once we have a solution for n and n̄(a) the
corresponding Dirac multipliers are determined by taking their τ -derivative.

3 The super-momentum constraints and their solution

3.1 The super-momentum constraints

By using the results of Ref. [3] for the transformation property 3ωr(a)(b) = [R 3ω̄r RT +
R ∂r RT ](a)(b) of the spin connection (B17) under O(3)-rotations and Eqs. (2.7) and
(2.11), the super-momentum constraints (A4) in presence of matter, to be solved in
π

(θ)
i (τ, �σ), take the form (D̄r(a)(b) is the covariant derivative for α(a)(τ, �σ) = 0)

H(a) = H(o)
(a) − 3ev

(a) Mv =
∑

c

R(a)(c) H̄(c) ≈
∑

c

R(a)(c)
˜̄H (a) ≈ 0,

H(o)
(a)

def=
∑

rb

Dr(a)(b)
3π̃r

(b) =
∑

r

∂r
3π̃r

(a) −
∑

rbc

ε(a)(b)(c)
3ωr(b)

3π̃r
(c)

=
∑

rc

∂r [R(a)(c)
3π̄r

(c)] +
∑

rbc

[R 3ω̄r RT + R ∂r RT ](a)(b) R(b)(c) π̄r
(c)

=
∑

rc

R(a)(c)

[

∂r π̄r
(c) +

∑

d

3ω̄r(c)(d) π̄r
(d)

]

≈
∑

vc

R(a)(c)
3ēv

(c) Mv,

H̄(a)
def=
∑

r

∂r
3π̄r

(a) +
∑

rb

3ω̄r(a)(b)
3π̄r

(b) −
∑

v

3ēv
(a) Mv

≈ ˜̄H(a)
def=

∑

rb

D̄r(a)(b)
3 ˜̄πr

(b) −
∑

v

3ēv
(a) Mv

=
∑

rb

[

δab ∂r + 1

2

∑

ucd

[δac δbd − δad δbc] Vud(θn)

×
⎡

⎣Qc Q−1
d

⎛

⎝1

3
[Vuc(θ

n) ∂r ln φ̃ − Vrc(θ
n) ∂u ln φ̃]

+
∑

b̄

γb̄c [Vuc(θ
n) ∂r Rb̄ − Vrc(θ

n) ∂u Rb̄] + ∂r Vuc(θ
n) − ∂u Vrc(θ

n)

⎞

⎠

+1

2

∑

ve

Q2
e Q−1

d Q−1
c Vvc(θ

n) Vre(θ
n)

×
⎛

⎝1

3
[Vue(θ

n) ∂v ln φ̃ − Vve(θ
n) ∂u ln φ̃]

+
∑

b̄

γb̄e [Vue(θ
n) ∂v Rb̄−Vve(θ

n) ∂u Rb̄]+∂v Vue(θ
n)−∂u Vve(θ

n)

⎞

⎠

⎤

⎦

⎤

⎦
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[

φ̃−1/3

(

Vrb(θ
n) Q−1

b (φ̃ πφ̃ +
∑

c̄

γc̄b �c̄)

+
f �=b∑

f

∑

twi

Q−1
f

Vr f (θ
n) εb f t Vtw(θn)

Q f Q−1
b − Qb Q−1

f

Biw(θn) π
(θ)
i

⎞

⎠

⎤

⎦

− φ̃−1/3
∑

v

Vva(θn) Q−1
v Mv ≈ 0. (3.1)

3.2 Their solution

The solution of Eqs. (3.1) in terms of the matter mass-current Mr is

3 ˜̄πr
(a)(τ, �σ) ≈ gr

(a)(τ, �σ) −
∫

d3σ1

∑

c

ζ̄ r
(a)(c)(�σ , �σ1; τ) J(c)(τ, �σ1)

def=
∑

b

3ēr
(b)(τ, �σ)

[
g(a)(b) + j(a)(b)

]
(τ, �σ),

J(a)
def=
∑

r

3ēr
(a) Mr = φ̃−1/3

∑

r

Vra(θn) Q−1
a Mr

=
∑

sd

D̄s(a)(d)

∑

b

3ēs
(b) j(d)(b),

j(a)(b)(τ, �σ) = −
∑

rc

3ē(b)r (τ, �σ)

∫
d3σ1 ζ̄ r

(a)(c)(�σ , �σ1; τ) J(c)(τ, �σ1)

= −
∑

rc

[
φ̃1/3 Vrb(θ

n) Qb

]
(τ, �σ)

×
∫

d3σ1 ζ̄ r
(a)(c)(�σ , �σ1; τ |θn, φ, Rā]

×
∑

s

[
φ̃−1/3 Vsc(θ

n) Q−1
c Ms

]
(τ, �σ1),

gr
(a) =

∑

b

g(a)(b)
3er

(b), g(a)(b) =
∑

r

gr
(a)

3ē(b)r ,

g((a)(b)) = 1

2
(g(a)(b) + g(b)(a)), g[(a)(b)] = 1

2
(g(a)(b) − g(b)(a)),

⇒
∑

r

3ē(b)r
3 ˜̄πr

(a) = g(a)(b)+ j(a)(b) = g((a)(b)) + j((a)(b)) + g[(a)(b)] + j[(a)(b)]

= δab (φ̃ πφ̃+
∑

b̄

γb̄a �b̄)+
∑

twi

εabt Vtw(θn) Biw(θn) π
(θ)
i

Qb Q−1
a − Qa Q−1

b
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=
∑

r

3ē((a)r ˜̄πr
(b)),

⇒ g[(a)(b)] = − j[(a)(b)],

∑

rb

D̄r(a)(b) gr
(b)(τ, �σ) =

[
∑

r

∂r gr
(a) +

∑

rb

3ω̄r(a)(b) gr
(b)

]

(τ, �σ) = 0, (3.2)

where the Green function ζ̄ r
(a)(b) of Ref. [2] is given in Eq. (D1) of Appendix D and

gr
(a) are zero modes of the covariant divergence with the covariant derivative D̄r(a)(b).

Then Eq. (2.6), evaluated in the reduced phase space of the Schwinger time gauge
ϕ(a)(τ, �σ) ≈ 0, α(a)(τ, �σ) ≈ 0, implies

π
(θ)
i (τ, �σ) = −

∑

lmra

[
Ami (θ

n) εmlr
3ē(a)l

3 ˜̄πr
(a)

]
(τ, �σ)

≈ −
∑

lmra

[
Ami (θ

n) εmlr φ̃1/3 Vla(θn) Qa

]
(τ, �σ)

[

gr
(a)(τ, �σ)

−
∫

d3σ1

∑

c

ζ̄ r
(a)(c)(�σ , �σ1; τ) J(c)(τ, �σ1)

]

= −
∑

lmrab

[
Ami (θ

n) εmlr Vla(θn) Vrb(θ
n) Qa Q−1

b

]
(τ, �σ)

× [
g(a)(b) + j(a)(b)

]
(τ, �σ). (3.3)

Let us remark that, in absence of matter (J(a)(τ, �σ) = 0) and with the choice

gr
(a)(τ, �σ) = 0 for the homogeneous solution, we get π

(θ)
i (τ, �σ) ≈ 0.

3.3 The zero modes of the covariant divergence

We have now to see whether we can find the zero modes gr
(a)(τ, �σ) of the operator

D̄r(a)(b).
If we put gr

(a) = ∑
c

3ēr
(c) g(a)(c) in the second of Eqs. (2.6), we can determine

g(a)(a) since, by using Eqs. (3.2), we have

	a Pa =
∑

r

3ē(a)r

∑

c

3ēr
(c) [g(a)(c) + j(a)(c)] = g(a)(a) + j(a)(a),

g(a)(a)(τ, �σ) = [
	a Pa − j(a)(a)

]
(τ, �σ) =

⎡

⎣φ̃ πφ̃ +
∑

b̄

γb̄a �b̄

⎤

⎦ (τ, �σ)

+
∑

sc

[

φ̃1/3 Vsa(θn) Qa

∫
d3σ1 ζ̄ s

(a)(c)(�σ , �σ1; τ)
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×
∑

w

[
φ̃−1/3 Vwc(θ

n) Q−1
c Mw

]
(τ, �σ1)

]

and for a �= b,

g(a)(b) = g((a)(b)) + g[(a)(b)] = g((a)(b)) − j[(a)(b)]

= g((a)(b)) + 1

2
φ̃1/3(τ, �σ)

∑

rc

∫
d3σ1

×
([

Vrb(θ
n) Qb

]
(τ, �σ) ζ̄ r

(a)(c) − [
Vra(θn) Qa

]
(τ, �σ) ζ̄ r

(b)(c)

)

× (�σ , �σ1; τ)
∑

s

[
φ̃−1/3 Vsc(θ

n) Q−1
c Ms

]
(τ, �σ1). (3.4)

As a consequence, the homogeneous equation for gr
(a) in Eq. (3.2) gives rise to an

inhomogeneous equation for g((a)(b)) with a �= b

∑

rb

D̄r(a)(b)(τ, �σ)
∑

c

[
3ēr

(c) g(b)(c)

]
(τ, �σ) = 0,

b �=c∑

rbc

D̄r(a)(b)(τ, �σ)
[

3ēr
(c) g((b)(c))

]
(τ, �σ)

= −
∑

rb

D̄r(a)(b)(τ, �σ)

⎡

⎣3ēr
(b) g(b)(b) +

c �=b∑

c

3ēr
(c) g[(b)(c)]

⎤

⎦ (τ, �σ),

⇓
g((a)(b))(τ, �σ) = ghom

((a)(b))(τ, �σ) +
∫

d3σ1

∑

d

Ḡ((a)(b))(d)(�σ , �σ1; τ)

∑

re

D̄r(d)(e)(τ, �σ1)

⎡

⎣3ēr
(e) g(e)(e) +

f �=e∑

f

3ēr
( f ) g[(e)( f )]

⎤

⎦ (τ, �σ1),

b �=c∑

rbc

[
D̄r(a)((b)

3ēr
(c))

]
(τ, �σ) Ḡ((b)(c))(d)(�σ, �σ1; τ) = −δad δ3(�σ , �σ1),

b �=c∑

rbc

[
D̄r(a)((b)

3ēr
(c))

]
(τ, �σ) ghom

((b)(c))(τ, �σ) = 0, (3.5)

where Ḡ((a)(b))(d)(�σ , �σ1; τ) is the Green function of the operator
∑

r

[
D̄r(a)((b)

3ēr
(c))

]
|b �=c

[see Eq. (D2) and its Minkowski limit given in Eq. (D3)]. In Eq. (3.5) ghom
((a)(b))(τ, �σ) is

an arbitrary zero mode of the operator
∑

r

[
D̄r(a)((b)

3ēr
(c))

]
|b �=c. There are as many

independent such zero modes as independent zero modes gr
(a) of D̄r(a)(b).
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The presence of this second Green function is a consequence of using the Darboux
canonical basis identified by the York map in the solution of the super-momentum
constraints (so that the Green function (D1) is no more sufficient).

Equations (3.5) imply

c �=a∑

ca

[
3ēr

(c) g((a)(c))

]
(τ, �σ)

=
∫

d3σ1

∑

d

η̄r
(a)(d)(�σ , �σ1; τ)

∑

se

⎡

⎣D̄s(d)(e)

⎛

⎝3ēs
(e) g(e)(e)

+
c �=e∑

c

3ēs
(c) g[(e)(c)]

⎞

⎠

⎤

⎦ (τ, �σ1) +
c �=a∑

c

[
3ēr

(c) ghom
((a)(c))

]
(τ, �σ), with

η̄r
(a)(d)(�σ , �σ1; τ)

def=
c �=a∑

c

3ēr
(c)(τ, �σ) Ḡ((a)(c))(d)(�σ, �σ1; τ), (3.6)

so that a lengthy calculation, given in Eqs. (C1)–(C4) of Appendix C of Ref. [36],
and the use of Eq. (3.2) for j(a)(b) and of Eq. (3.3) for π

(θ)
i lead to the following

form for the solution of the super-momentum constraints, which explicitly shows its
non-uniqueness being defined modulo the zero modes of the covariant divergence

π
(θ)
i (τ, �σ) ≈ −

∑

lmrab

[
Ami (θ

n) εmlr
3ē(a)l

3ēr
(b)

]
(τ, �σ)

[
g(a)(b) + j(a)(b)

]
(τ, �σ)

= −
∑

lmrab

[
Ami (θ

n) εmlr Vla(θn) Vrb(θ
n) Qa Q−1

b

]
(τ, �σ)

×
[

ghom
((a)(b))(τ, �σ) −

∑

d

∫
d3σ1 Ḡ((a)(b))(d)(�σ , �σ1; τ)

×
[

φ̃−1/3
∑

w

Vwd(θn) Q−1
d Mw −

∑

s,e

D̄s(d)(e) Vse(θ
n) φ̃−1/3 Q−1

e

×
⎛

⎝φ̃ πφ̃ +
∑

b̄

γb̄e �b̄

⎞

⎠

⎤

⎦ (τ, �σ1)

−
c �=e∑

ec

∫
d3σ1

⎛

⎝δac δbe δ3(�σ , �σ1) +
∑

d,s

Ḡ((a)(b))(d)(�σ , �σ1; τ)

×
[

D̄s(d)(e) Vsc(θ
n) φ̃−1/3 Q−1

c

]
(τ, �σ1)

⎞

⎠
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×
∑

r, f

∫
d3σ2

1

2

[ (
Vre(θ

n) φ̃1/3 Qe

)
(τ, �σ1) ζ̄ r

(c)( f )(�σ1, �σ2; τ)

+
(

Vrc(θ
n) φ̃1/3 Qc

)
(τ, �σ1) ζ̄ r

(e)( f )(�σ1, �σ2; τ)
]

×
(

φ̃−1/3
∑

w

Vw f (θ
n) Q−1

f Mw

)

(τ, �σ2)

]

, (3.7)

Since we have Qa(τ, �σ) Q−1
b (τ, �σ) = 	a(τ, �σ)	−1

b (τ, �σ) →r→∞ 1, the leading

order of Eq. (3.7) is εiab f(ab) = 0, consistently with the vanishing of π
(θ)
i (τ, �σ) at

spatial infinity.
In the final expression of Eq. (3.7) we made explicit the symmetry in e and c.
Let us remark that the zero modes ghom

((a)(b))(τ, �σ) may be written in the following
form

ghom
((a)(b))(τ, �σ) =

c �=e∑

ec

∫
d3σ1

(
δc(a δb)e δ3(�σ , �σ1)

+
∑

ds

Ḡ((a)(b))(d)(�σ , �σ1; τ)
1

2

[
D̄s(d)(e) Vsc(θ

n) φ̃−1/3 Q−1
c

+D̄s(d)(c) Vse(θ
n) φ̃−1/3 Q−1

e

]
(τ, �σ1)

)
g̃(ec)(τ, �σ1), (3.8)

with an arbitrary g̃(ec)(τ, �σ) symmetric in e and c.
If we put Eq. (3.7) into Eq. (2.13), we get the expression of 3 ˜̄πr

(a)(τ, �σ) =[∑
b

3ēr
(b)

(
g(a)(b) + j(a)(b)

)]
(τ, �σ) when restricted to the solution of the super-

momentum constraints (see Eq. (3.10) of Ref. [36]).
Let us remark that both π

(θ)
i (τ, �σ) and 3 ˜̄πr

(a)(τ, �σ) are defined modulo homoge-
neous solutions

(i) of Eq. (D1): ζ̄ r
(a)(b) �→ ζ̄ r

(a)(b) + ζ̄
(hom)r
(a)(b) with

∑
rb D̄r(a)(b)(τ, �σ) ζ̄

(hom)r
(b)(c) (�σ , �σ1; τ) = 0;

(ii) of Eq. (D2): Ḡ((a)(b))(d) �→ Ḡ((a)(b))(d) + Ḡ(hom)
((a)(b))(d) with

∑b �=c
rbc

[
D̄r(a)(b)

3ēr
(c))

]
(τ, �σ) Ḡ(hom)

((a)(b))(d)(�σ , �σ1; τ) = 0.

While these freedoms are connected to the choice of the initial data,10 Eq. (3.8)
connects the freedom g̃(ab)(τ, �σ) to the existence in general relativity of the zero

modes ghom
((a)(b))(τ, �σ) of the operators

∑
r

[
D̄r(a)((b)

3ēr
(c))

]
|b �=c, see Eq. (3.5), and

gr
(a)(τ, �σ) = ∑

b

([
ghom
((a)(b)) + · · ·

]
3ēr

(b)

)
(τ, �σ) of D̄r(a)(b). The associated residual

10 Like the choice of the retarded, advanced or symmetric Green functions in the Lienard-Wiechert solution
for an electro-magnetic field coupled to charged matter.
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gauge freedom is connected to the group of 3-diffeomorphisms and not to a Lie group
like in Yang-Mills theory (see the discussion in Sect. 5).

Due to the distributional nature of the Green function Ḡ (whose flat limit is given
in Eq. (E4) of Ref. [36]), required by the Shanmugadhasan canonical transforma-
tions (2.3) and (2.9), to avoid distributional problems in the expression of the super-
Hamiltonian constraint and in the weak ADM energy we need a suitable choice of the
arbitrary zero mode ghom

((a)(b)), i.e. of g̃(ce), which will be done elsewhere when we will
solve the theory in the weak field limit.

4 The final form of the super-Hamiltonian constraint and of the weak ADM
energy in a completely fixed 3-orthogonal Schwinger time gauge

As already said, the gauge fixings ϕ(a)(τ, �σ) ≈ 0, α(a)(τ, �σ) ≈ 0, whose τ -constancy
implies λϕ(a)(τ, �σ) = 0 and λα(a)(τ, �σ) = 0, define a special Schwinger time gauge.
We assume to have eliminated these variables by going to Dirac brackets (we go on
to denote them as Poisson brackets).

Let us now consider the completely fixed 3-orthogonal Schwinger time gauge defi-
ned by the gauge fixing

θ i (τ, �σ) ≈ 0, πφ̃(τ, �σ) ≈ − c3

12π G
K (τ, �σ), (4.1)

i.e. with 3 K̃ (τ, �σ) ≈ ε K (τ, �σ). In this way the function K (τ, �σ) will show explicitly
how the dynamics depends on the shape of �τ , namely on the convention for the
synchronization of clocks.

4.1 The super-Hamiltonian constraint

In these completely fixed 3-orthogonal Schwinger time gauge, by using Eq. (3.8) (or
Eq. (3.10) of Ref. [36]) for the solution of the super-momentum constraints, the super-
Hamiltonian constraint (2.12), i.e. the Lichnerowicz equation for φ̃(τ, σ ) = φ6(τ, �σ),
becomes11

H(τ, �σ) ≈ ε

[
c3

16 π G

(
φ̃1/6 [−8 	̂[Rā] + 3 R̂[Rā] ] φ̃1/6

)
(τ, �σ)

−1

c
M(τ, �σ) + c3

24 π G

(
φ̃ K 2

)
(τ, �σ) − 4π G

c3

⎛

⎝φ̃−1
∑

b̄

�2
b̄

⎞

⎠ (τ, �σ)

−4π G

c3 φ̃−1(τ, �σ) Z(τ, �σ)

]

,

11 The steps to get Eq. (4.2) from Eq. (2.12) are described in Eqs. (B6), (B7), (B8), (C5), (C6), (C7), (C9),
(D10), (D11) of Appendices B, C and D of Ref. [36]. We do not give the final expression (B8) for Z(τ, �σ),
because, being rather complicated, its explicit dependence on φ̃ (either algebraic or under integrals) is
irrelevant for the general discussion.
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Z(τ, �σ) = Zθ (τ, �σ)|θ=0 =
b �=a∑

ab

S2
((a)(b)) |θ=0 (τ, �σ), (4.2)

where the φ̃-dependent function Z takes into account the contribution of the �-� term
S, containing the inertial potentials present in the non-inertial frame. In particular Z
contains terms linear in K (τ, �σ).

Its unknown solution is a functional φ̃(τ, �σ |Rā,�ā,M,Mr , K ] of the gravita-
tional tidal degrees of freedom Rā , �ā , of both the mass density M and mass-current
density Mr of the matter and of the gauge parameter K describing the shape of
the hyper-surfaces �τ (the convention for clock synchronization and for the Cauchy
surface) having the given 3-orthogonal 3-coordinate system.

Even if Eq. (4.2) is a non-linear integro-differential equation for φ̃, the presence of
the Laplace-Beltrami operator on �τ (with its associated theory of harmonic functions)
suggests the plausibility that the assumed behavior φ̃(τ, �σ) →r→∞ 1 + O(r−1) at
spatial infinity will identify a unique solution.

4.2 The weak ADM energy

In these completely fixed 3-orthogonal Schwinger time gauges, by using Eq. (C9) of
Ref. [36] for the term quadratic in the momenta and Eq. (C1) for the �-� term S, the
weak ADM energy (2.12) becomes [Z has been defined in Eq. (4.2)]

EADM =
∫

d3σ

⎡

⎣M − c4

24 π G
φ̃ K 2 + 4π G

c2 φ̃−1

⎡

⎣
∑

b̄

�2
b̄

+ Z

⎤

⎦

− c4

16π G
φ̃1/3

∑

a

Q−2
a

⎛

⎝20 (∂a ln φ̃1/6)2

− 4
∑

r

(∂r ln φ̃1/6)2 + 8 ∂a ln φ̃1/6
∑

b̄

γb̄a ∂a Rb̄

− 2
∑

r

∂r ln φ̃1/6
∑

b̄

(γb̄a + γb̄r ) ∂r Rb̄ +
(∑

b̄

γb̄a ∂a Rb̄

)2

+
∑

b̄

(∂a Rb̄)
2−

∑

r

(∑

b̄

γb̄r ∂r Rb̄

)(∑

c̄

γc̄a ∂r Rc̄

)
⎞

⎠

⎤

⎦ (τ, �σ), (4.3)

While the terms coming from the �-� term S describe the relativistic version of
the standard inertial potentials in this 3-coordinate system (expressed as functions of
φ̃(τ, �σ) and of the tidal effects Rā(τ, �σ)), the first line contains the dependence on the
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inertial potential K (τ, �σ) (both explicitly, K 2, and inside Z ) describing the choice of
the instantaneous 3-space.

4.3 The rest-frame conditions and the spin of the 3-universe

By using Eqs. (A6), the rest-frame conditions for the 3-universe [3] in the York basis
and in the completely fixed gauge (4.1) are [S((a)(b))|θ=0 is the contribution of the �-�
term]

Pr
ADM ≈ Pr

ADM |θ=0=
∫

d3σ
[
φ̃−2/3 Q−2

r Mr

]
(τ, �σ)

−
∫

d3σ
∑

uv

⎡

⎣φ̃−2/3

⎛

⎝δuv Q−2
v

(∑

b̄

γb̄v �b̄ − c3

12π G
φ̃ K

)

+ Qu Qv S((u)(v)) |θ=0

⎞

⎠

(

δru

(
1

3
∂v ln φ̃ +

∑

c̄

γc̄r ∂v Rc̄

)

+ δrv

(
1

3
∂u ln φ̃ +

∑

c̄

γc̄r ∂u Rc̄

)

− δuv

(
1

3
∂r ln φ̃ +

∑

c̄

γc̄r ∂r Rc̄

)

Qu Q−1
v

)⎤

⎦ (τ, �σ) ≈ 0. (4.4)

Like in special relativity [43], these 3 first class constraints imply that 3 variables
qr

ADM[Rā,�ā, . . .], describing the internal canonical 3-center of mass of the
3-universe, are gauge variables (they describe the arbitrariness in the choice of the
observer used as origin of the 3-coordinates on �τ ). As shown in Ref. [43], the natu-
ral gauge fixings to eliminate them is to ask the vanishing of the boost generators
in Eqs. (A6), i.e. J τr

ADM ≈ 0. These conditions imply the vanishing of the internal
Møller 3-center of energy so that it can be shown that then Eqs. (4.4) imply also
qr

ADM ≈ 0. In this way the observer may be identified with the decoupled 4-center of
mass (more exactly with the covariant non-canonical Fokker-Pryce 4-center of inertia)
of the universe.

See Eq. (4.5) of Ref. [36] for the expression of the spin (A6) of the 3-universe in
the rest frame.

5 The shift and lapse functions

Let us now determine the lapse and shift functions of the completely fixed 3-orthogonal
Schwinger time gauges of Sect. 4. In all the equations of this section φ̃(τ, �σ) should be
replaced by the unknown solution φ̃(τ, �σ |Rā,�ā,M,Mr , K ] of the Lichnerowicz
equation (4.2).
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5.1 The 3-orthogonal gauges, the shift functions and a generalized Gribov ambiguity

If we use Eqs. (2.12) for the super-Hamiltonian constraint and the weak ADM energy in
Eqs. (A7) and (A9), the Dirac Hamiltonian in the York basis can be written in the form

HD =
∫

d3σ [(1 + n)M] (τ, �σ)

− c4

16π G

∫
d3σ

[
S + n φ̃1/6

(
−8 	̂ + 3 R̂

)
φ̃1/6

]
(τ, �σ)

+ 2π G

c2

∫
d3σ

⎡

⎣(1 + n) φ̃−1

⎛

⎝−3 (φ̃ πφ̃)2 + 2
∑

b̄

�2
b̄

+ 2
∑

abtwiuv j

εabt εabu Vtw(θn) Biw(θn) Vuv(θ
n) B jv(θ

n) π
(θ)
i π

(θ)
j

[
Qa Q−1

b − Qb Q−1
a

]2

⎞

⎟
⎠

⎤

⎥
⎦ (τ, �σ)

+
∫

d3σ

[
∑

a

n̄(a)
˜̄H(a) + λn πn +

∑

a

λ�n(a) π�n(a)

]

(τ, �σ), (5.1)

where the super-momentum constraints ˜̄H(a)(τ, �σ) ≈ 0 are given by Eqs. (3.1), S in
Eq. (B1) and 3 R̂[θn, Rā] in Eq. (B2) of Appendix B of Ref. [36] [for θn(τ, �σ) ≈ 0 see
Eqs. (C1) and (C2)]. The Hamilton equations of motion must be evaluated with this
Dirac Hamiltonian (see Sect. 6) and the solution (3.8) [or Eq. (3.10) of Ref. [36]] of
the super-momentum constraints can be used only after having evaluated the Poisson
brackets.

With the Hamiltonian (5.1) the time-constancy of the gauge fixings θn(τ, �σ) ≈ 0,
determining the shift functions, implies [here ≈ means by using these gauge fixings,
the one of Eq. (4.1) and the solution (C3) of the super-momentum constraints]

∂τ θ i (τ, �σ) = {θ i (τ, �σ), HD}
=
∑

a

∫
d3σ1 n̄(a)(τ, �σ1) {θ i (τ, �σ), ˜̄H(a)(τ, �σ1)}

+
{

θ i (τ, �σ), EADM − ε c
∫

d3σ1 n(τ, �σ1)H(τ, �σ1)

}

≈
∑

a

∫
d3σ1 n̄(a)(τ, �σ1) Z̃(a)i (τ, �σ1) δ3(�σ , �σ1) − Wi (τ, �σ)

=
∑

a

Z(a)i (τ, �σ) n̄(a)(τ, �σ) − Wi (τ, �σ) ≈ 0,

Z̃(a)i (τ, �σ)
def=
∑

rb

[(
δab ∂1r + ε(a)(b)(c)

3ω̄r(c)

)
G(o)r

(b)i

]
(τ, �σ)

=
∑

rb

[
D̄r(a)(b) G(o)r

(b)i

]
(τ, �σ),
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Z(a)i (τ, �σ)
def= −

∑

arb

[
G(o)r

(b)i D̄r(b)(a)

]
(τ, �σ),

Wi (τ, �σ)
def= −

[
δ

δ π
(θ)
i (τ, �σ)

(

EADM +
∫

d3σ1 (−ε c n H) (τ, �σ1)

)]

, (5.2)

where we used Eq. (3.1) and Eq. (2.13) but with the notation G(o)r
(a)i =

−φ̃−1/3 Q−1
r

εrai

Qr Q−1
a −Qa Q−1

r
of Eq. (B16).

Equations (3.8) and (C3) imply the following expression for Wi (τ, �σ) [with the
substitution φ̃ πφ̃ �→ − c3

12π G φ̃ K into the functions F(ab) of Eq. (C3) in accord with
Eq. (4.1): let us remark that these functions have a linear dependence on πφ̃ , namely
they know the sign of K (τ, �σ)]

Wi (τ, �σ) =
⎡

⎣−8π G

c2 φ̃−1 (1 + n)
∑

abj

εabi εabj π
(θ)
j

[Qa Q−1
b − Qb Q−1

a ]2

⎤

⎦ (τ, �σ)

≈ −16π G

c2 φ̃−1(τ, �σ) (1 + n(τ, �σ))

×
∑

ab

εiab

Qa Q−1
b − Qb Q−1

a
(τ, �σ) F(ab)(τ, �σ). (5.3)

Since Eqs. (B16) with H (o)
(b)ri = 1

2 εbri φ̃1/3 Qr (Qr Q−1
b − Qb Q−1

r ), imply
∑

ar H (o)
(a)r j G(o)r

(a)i = δi j and
∑

ri H (o)
(b)ri G(o)r

(a)i = δab, we get

∑

a

Z(a)i n̄(a) =
∑

ar

[
∑

b

G(o)r
(b)i

(

∂r δba +
∑

c

ε(b)(a)(c)
3ω̄r(c)

)]

n̄(a)

=
∑

s

∂s

(
∑

a

G(o)s
(a)i n̄(a)

)

−
∑

sd

(
∑

bc

ε(b)(c)(d) G(o)s
(b)i

3ω̄s(c) + ∂s G(o)s
(d)i

)

×
∑

a

⎛

⎝
∑

r j

H (o)
(d)r j G(o)r

(a) j

⎞

⎠ n̄(a)

def=
∑

jr

D̃ri j

(
∑

a

G(o)r
(a) j n̄(a)

)

≈ Wi , (5.4)
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where we have introduced the modified covariant derivative operator

D̃ri j = δi j ∂r − Tri j , Z(a)i = −
∑

arb

G(o)r
(b)i D̄r(b)(a) =

∑

jr

D̃ri j G(o)r
(a) j ,

Tri j =
∑

sd

(
∑

bc

ε(b)(c)(d) G(o)s
(b)i

3ω̄s(c) + ∂s G(o)s
(d)i

)

H (o)
(d)r j

= −
∑

abcds

εabc εasi εcr j εsbd Qr Q−1
d ∂d

(
1

3
ln φ̃ + �(1)

s

)
Qr Q−1

c − Qc Q−1
r

Qs Q−1
a − Qa Q−1

s

−
∑

as

εasi εar j Qr Q−1
s

Qr Q−1
a − Qa Q−1

r

Qs Q−1
a − Qa Q−1

s

[

∂s (
1

3
ln φ̃ + �(1)

s )

+ Qr Q−1
a + Qa Q−1

r

Qs Q−1
a − Qa Q−1

s
∂s (�(1)

s − �(1)
a )

]

,

Qa = e�
(1)
a , �(1)

a =
∑

ā

γāa Rā,
∑

a

�(1)
a = 0. (5.5)

By using the Green function of the operator D̃ri j , defined in Eq. (D4), the shift
functions can be determined and have the following expression as functions of the
lapse function and of the dynamical variables (it is linear in n)

n̄(a)(τ, �σ) = N(a)(τ, �σ |φ̃, n, Rā,�ā,M,Mr , K ]
= f(a)(τ, �σ) +

∑

ri

H (o)
(a)ri (τ, �σ)

×
∑

j

∫
d3σ1 ζ̃ r

i j (�σ , �σ1; τ) W j (τ, �σ1),

∑

a

[
Z(a)i f(a)

]
(τ, �σ)

def= −
∑

abr

[
G(o)r

(b)i D̄r(b)(a) f(a)

]
(τ, �σ)

=
∑

r j

[

D̃ri j

∑

a

G(o)r
(a) j f(a)

]

(τ, �σ)

def=
∑

jr

[
D̃ri j f̃ r

j

]
(τ, �σ) = 0, (5.6)

with f(a)(τ, �σ) = ∑
r j

[
H (o)

(a)r j f̃ r
j

]
(τ, �σ) zero modes of Z(a)i (τ, �σ), namely with

f̃ r
j (τ, �σ) =

[∑
a G(o)r

(a) j f(a)

]
(τ, �σ) zero modes of the operator D̃ri j (τ, �σ).

Naturally the shift functions are defined modulo homogeneous solution of
Eqs. (D4): ζ̃ r

i j �→ ζ̃ r
i j + ζ̃

(hom)r
i j with

∑
r j D̃ri j (τ, �σ) ζ̃

(hom)r
jk (�σ , �σ1; τ) = 0. Again

this is a problem of choice of the initial conditions.
When the operator Z(a)i has zero modes,

∑
a

[
Z(a)i f(a)

]
(τ, �σ) = 0, also its adjoint

operator Z̃(a)i = ∑
rb D̄r(a)(b) G(o)r

(b)i , appearing in Eq. (5.2), has zero modes hi (τ, �σ),
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i.e.
∑

i

[
Z̃(a)i hi

]
(τ, �σ) = 0. Then Eq. (5.2) imposes the following restriction on Wi

∫
d3σ

∑

i

Wi (τ, �σ) hi (τ, �σ) = 0. (5.7)

Therefore, in the 3-orthogonal gauges there is a residual gauge freedom or gene-
ralized Gribov ambiguity in the determination of the shift functions associated to the
zero modes of the operator Z(a)i (or of D̃ri j ). Since in general relativity the Gauss law

constraints ˜̄H(a)(τ, �σ) ≈ 0 are a suitable reformulation of the constraints�r (τ, �σ) ≈ 0
generating 3-diffeomorphisms [see after Eq. (A4)], this extra ambiguity is connected
to the group of 3-diffeomorphisms.

Given θ i (τ, �σ) and its modification θ i (τ, �σ) + ∑
a Z

′
ai (τ, �σ) βa(τ, �σ)

(Zai = Z
′
ai |θr =0) induced by a (modified) 3-diffeomorphism [generated by

∫
d3σ

∑
a βa(τ, �σ) ˜̄H (a)(τ, �σ)], we have that the vanishing of the first as a gauge

fixing, θ i (τ, �σ) ≈ 0, implies the vanishing also of the modified one θ i (τ, �σ) +∑
a Zai (τ, �σ) βa(τ, �σ) ≈ 0 when βa coincides with one of the zero modes f(a). The

same happens in Yang-Mills (YM) theory: for certain gauge potentials arising from
special connections the gauge fixing �∂ · �Aa ≈ 0 (so that �Aa = �Aa⊥) implies that there
are transformed gauge potentials �AU

a = �Aa + U−1 �D( �A) U , U = eiα also satisfying
�∂ · �AU

a ≈ 0 if K ( �A⊥) α = 0 [K ( �A⊥) = −�∂ · �D( �A⊥)]. In these cases the connection
originating the gauge potential �Aa has gauge symmetries (stability subgroup of gauge
transformations) implying the existence of zero modes of the Faddeev-Popov opera-
tor K ( �A⊥) and of the operator 	( �A⊥) = �D( �A⊥) · �D( �A⊥). This leads to the Gribov
ambiguity (see Ref. [19,20] for a review).12

Since the shift functions determine which points on different �τ ’s have the same
numerical value of the chosen 3-orthogonal 3-coordinates �σ (and then the inertial
gravito-magnetic potential), we see that, when Z(a)i has zero modes, there are as
many independent 3-orthogonal gauges, and, therefore, non-inertial frames, as zero
modes (each one with the gauge freedom in the choice of πφ̃ , i.e. in the form of
�τ ). It is an open problem whether this generalized Gribov ambiguity (gauge

12 In the YM case the canonical variables are Ao
a , πo

a , �Aa , �πa and the Gauss laws �∂ · �πa ≈ 0 are secondary
constraints implied by the primary ones πo

a ≈ 0. In ordinary Sobolev spaces the Gribov ambiguity creates
problems in the analogue of Eq. (5.2), namely ∂τ �∂ · �Aa ≈ 0, needed for the determination of the gauge
variables Ao

a ’s. The YM constraint manifold is a stratification of Gribov copies labeled by a winding
number with the different sectors separated by Gribov horizons. In suitable weighted Sobolev spaces [18]
the Faddeev-Popov does not have zero modes, and there is no Gribov ambiguity (the connections with
gauge symmetries have a constant limit at spatial infinity not allowed in these spaces) and we have that
the only solution of

∑
b Drab fb = 0 is fa = 0. In these spaces is also absent the other aspect of the

Gribov ambiguity, i.e. the existence of special field strengths stable (F = FU ) under a subgroup of gauge
transformations (the problem of gauge copies). However also in YM, the absence of zero modes of the
Faddeev-Popov operator does not fix the Green function appearing in the solution of the Gauss laws (the
non-Abelian generalization of ζ̄ r

(a)(b)
of Eq. (D1) in flat space-time): there is the usual freedom (connected

to the choice of the initial data) in the choice of homogeneous solutions.
See Refs. [18,44–49] for the known results on the zero modes of operators like Z(a)i and Z̃(a)i in the case
of Yang-Mills and Einstein equations.
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symmetries of the gauge variables θ i (τ, �σ), i.e. existence of a stability subgroup of
passive 3-diffeomorphisms, whose group-manifold has a mathematical structure not
yet under control), whose possibility was noted in Ref. [13] (see p. 765), can be elimi-
nated by a suitable restriction of the function space like it happens in the YM case (but
here the gauge group is a Lie group with a well understood theory of associated prin-
cipal bundles) with the restriction to suitable weighted Sobolev spaces [18]. Since our
class of non-compact space-times does not admit [16,17] asymptotically vanishing
Killing vectors, the only known result (see the first of Refs. [16,17], pp. 133–136)
is that in weighted Sobolev spaces suitable elliptic operators acting on the simulta-
neity surfaces �τ have no zero modes. If it is possible to apply these results to the
covariant divergence D̄r(a)(b) and to the operator Z(a)i , given the assumed behavior
n̄(a)(τ, �σ) →r→∞ O(r−ε), ε > 0, at spatial infinity, also the zero modes (3.8) would
be absent in these function spaces.

The time-constancy of Eq. (5.6), i.e. the time-constancy of the induced gauge
fixings, determining the shift functions, determines the Dirac multiplier λ�n (a)(τ, �σ),
since we have

∂τ

[

n̄(a)(τ, �σ) − f(a)(τ, �σ) −
∑

ri

H (o)
(a)ri (τ, �σ)

×
∑

j

∫
d3σ1 ζ̃ r

i j (�σ , �σ1; τ) W j (τ, �σ1)

⎤

⎦ ≈ 0,

λ�n (a)(τ, �σ) ≈ ∂ f(a)(τ, �σ)

∂ τ

+
⎧
⎨

⎩

∑

ri

H (o)
(a)ri (τ, �σ)

∑

j

∫
d3σ1 ζ̃ r

i j (�σ , �σ1; τ) W j (τ, �σ1), HD

⎫
⎬

⎭
.

(5.8)

Therefore λ�n(a)(τ, �σ) inherits the arbitrariness of n̄(a)(τ, �σ).

5.2 The lapse function in the 3-orthogonal Schwinger time gauges

The time constancy of the other gauge fixing (4.1), evaluated with the Dirac Hamil-
tonian (5.1) determines the lapse function [the calculations can be found in Eqs. (D8)
and (D9) of Appendix D of Ref. [36]]

∂τ

[

πφ̃(τ, �σ) + c3

12π G
K (τ, �σ)

]

= c3

12π G

∂ K (τ, �σ)

∂ τ
+ {πφ̃(τ, �σ), HD}

= c3

12π G

∂ K (τ, �σ)

∂ τ
− δ

δ φ(τ, �σ)

123



The York map as a Shanmugadhasan canonical transformation 2177

×
(

EADM +
∫

d3σ1 [−ε c n H

+
∑

a

N(a)[φ̃, n, Rā,�ā,M,Mr , K ] ˜̄H(a)

]

(τ, �σ1)

)

≈ 0,

⇓
n(τ, �σ) ≈ N (τ, �σ |φ̃, Rā,�ā,M,Mr , K ]. (5.9)

The explicit expression for this linear integro-differential equation for the lapse func-
tion is given in Eq. (5.9) of Ref. [36].

It is impossible to judge whether Eq. (5.9), with the assumed behavior
n(τ, �σ) →r→∞ O(r−(2+ε)), ε > 0 at spatial infinity, admits a further residual gauge
freedom (ambiguity in the determination of the proper time element n(τ, �σ) dτ in each
point of �τ , giving the packing of the �τ ’s in the foliation), besides the generalized
Gribov ambiguity for the shift functions.

The time-constancy of the induced gauge fixing (5.9) determines the Dirac multi-
plier λn(τ, �σ)

∂

∂τ
[n(τ, �σ) − N (τ, �σ |φ̃, Rā,�ā,M,Mr , K ] ] ≈ 0,

↓
λn(τ, �σ) ≈ {N (τ, �σ |φ̃, Rā,�ā,M,Mr , K ], HD}. (5.10)

6 Equations of motion for the tidal effects Rā and �ā in Schwinger time gauges

In this section we shall consider the Hamilton equations in the York basis both in
arbitrary Schwinger time gauges and in a completely fixed 3-orthogonal Schwinger
time gauge.

6.1 Equations of motion in the York basis

In the York canonical basis in an arbitrary Schwinger time gauge the effective Dirac
Hamiltonian is given in Eq. (5.1). As a consequence the first half of Hamilton equations
becomes [the equations for ∂τ θ i are written using the results in Eq. (5.2)]

∂τ n(τ, �σ) = λn(τ, �σ),

∂τ n̄(a)(τ, �σ) = λ�n(a)(τ, �σ),

∂τ φ̃1/6(τ, �σ) =
[

−2π G

c2 (1 + n) φ̃−1/6 πφ̃

−1

6
φ̃−1/6

∑

rb

Vrb(θ
n) Q−1

b

∑

a

D̄r(b)(a) n̄(a)

]

(τ, �σ),
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∂τ θ i (τ, �σ) =
[

8π G

c2 (1 + n) φ̃−1

×
∑

abtwuv j

εabt εabu Vtw(θn) Biw(θn) Vuv(θ
n) B jv(θ

n) π
(θ)
j

[Qa Q−1
b − Qb Q−1

a ]2

+
∑

a

Z(a)i n̄(a)

]

(τ, �σ),

∂τ Rā(τ, �σ) =
[

4π G

c2 (1 + n) φ̃−1 �ā

−φ̃−1/3
∑

rb

γāb Vrb(θ
n) Q−1

b

∑

a

D̄r(b)(a) n̄(a)

]

(τ, �σ),

⇓

�ā(τ, �σ) =
[

c2

4π G

φ̃2/3

1 + n

(

∂τ Rā + φ̃−1/3
∑

rb

γāb Vrb(θ
n) Q−1

b

×
∑

a

D̄r(b)(a) n̄(a)

)]

(τ, �σ),

πφ̃(τ, �σ) =
[

− c2

2π G

φ̃−1/6

1 + n

(

∂τ φ̃1/6 + 1

6
φ̃−1/6

∑

rb

Vrb(θ
n) Q−1

b

×
∑

a

D̄r(b)(a) n̄(a)

)]

(τ, �σ). (6.1)

In the last two lines we have given �ā and πφ̃ in terms of the velocities and of

the configuration variables. Also π
(θ)
i could be expressed in the same way, so that the

solution (3.8) of the super-momentum constraints could be transformed on a statement
about the velocities ∂τ θ i . As said in the previous section, the vanishing of these
velocities become the equations for the shift functions of 3-orthogonal gauges.

The second half of Hamilton equations, to which the unsolved first class constraints
have to be added, is

∂τ πφ̃(τ, �σ) = − δ HD

δ φ̃(τ, �σ)
, H(τ, �σ) ≈ 0,

∂τ π
(θ)
i (τ, �σ) = − δ HD

δ θ i (τ, �σ)
, ˜̄H(a)(τ, �σ) ≈ 0,

∂τ �ā(τ, �σ) = − δ HD

δ Rā(τ, �σ)
, (6.2)

where the super-Hamiltonian and super-momentum constraints have the forms given
in Eqs. (2.12) and (3.1), respectively. The equation for ∂τ πφ̃ may be obtained by using
Eq. (5.9).
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The content of the equations for ∂τ φ̃ in Eqs. (6.1) and for ∂τ π
(θ)
i in Eqs. (6.2) is

the preservation in time of the super-Hamiltonian and super-momentum constraints,
respectively.

By using the expression of �ā(τ, �σ) given in Eqs. (6.1) and Eq. (D12) of Appendix
D of Ref. [36] for δ HD/δ Rā(τ, �σ), the equations ∂τ �ā(τ, �σ) = −δ HD/δ Rā(τ, �σ)

assume the following form [Qa = e
∑

ā γāa Rā , Q1 Q2 Q3 = 1]

⎡

⎣∂2
τ Rā +

∑

rsb̄

Arsāb̄ ∂r ∂s Rb̄

⎤

⎦ (τ, �σ)

=
⎡

⎣
∑

b̄

Bāb̄ ∂τ Rb̄ +
∑

r b̄c̄

Brāb̄c̄ ∂τ Rb̄ ∂r Rc̄

+
∑

rsb̄c̄

Crsāb̄c̄ ∂r Rb̄ ∂s Rc̄ +
∑

r b̄

Crāb̄ ∂r Rb̄ + Fā

⎤

⎦ (τ, �σ),

Arsāb̄ functions of Qa, φ̃, n, θ i , ∂u φ̃, ∂u n, ∂u θ i , ∂u ∂v φ̃, ∂u ∂v n, ∂u ∂v θ i ,

Bāb̄, Brāb̄c̄, Crāb̄, Crsāb̄c̄ functions of the same variables and of πφ̃, π
(θ)
i ,

n̄(a), ∂u n̄(a),

Fā functions of the previous variables and of M, Mv. (6.3)

The hyperbolic equations (6.3) show explicitly that the equations of motion for
the two tidal degrees of freedom Rā(τ, �σ) of the gravitational field depend upon the
arbitrary gauge variables (the inertial effects) n, n̄(a), θ i , πφ̃ , and on the unknowns

φ̃ and π
(θ)
i in the super-Hamiltonian and super-momentum constraints. In particular

the term in δ HD/δ Rā(τ, �σ) coming from the super-momentum constraints (3.1) (see
Eq. (D12) of Ref. [36] for its expression in the 3-orthogonal gauges) depends linearly
on πφ̃ : since its sign (i.e. the sign of the trace of the extrinsic curvature of the simul-
taneity surface) is not fixed, πφ̃ describes a relativistic inertial force which may vary
from attractive to repulsive from a region of �τ to another one with an opposite sign
of 3 K (τ, �σ).

Therefore, to get a deterministic evolution we must go to a completely fixed gauge.
The same holds for Einstein’s equations, but only at the Hamiltonian level it can be
made explicit.

A naive background-independent linearization of Eqs. (6.3) along the lines of
Ref. [25] could be attempted by requiring |Rā(τ, �σ)| � 1 [so that Qa ≈ 1 +
∑

ā γāa Rā]13 producing equations of the type
[
∂2
τ Rā + A(o)

rs ∂r ∂s Rā + · · · +
M (o) Rā + F (o)

]
(τ, �σ) = 0 (the quantities A(o)

rs , . . . , are evaluated for Qa → 1) with
a pseudo-squared-mass term M (o) depending upon M(o) (the metric-independent part

13 The presence of the denominators (Qa Q−1
b − Qb Q−1

a )−k , k = 1, 2, 3, in Eqs. (6.1) and Eq. (D12) of
Appendix D of Ref. [36] suggests the necessity of a point canonical transformation from the tidal variables
Rā to new variables more suitable for the linearization. This problem will be studied elsewhere.
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of M), Mr and the gauge variables, i.e. upon the inertial effects.14 This type of term
will appear also in completely fixed gauges. Let us remark that in the standard lineari-
zation on a background one ignores the dependence of the matter energy-momentum
tensor T µν on the 4-metric: it too would generate a similar pseudo-squared-mass term.

In conclusion Eqs. (6.3) show that the refusal of particle physicists15 to accept
the geometrical view of the gravitational field with its reduction to a spin 2 (massless
graviton) theory in an inertial frame of the background Minkowski (or DeSitter) space-
time, is not acceptable as already noticed long time ago in Ref. [51]. Inertial effects
and the coupling to matter give a non-inertial-frame-dependent description of the tidal
degrees of freedom even in the limit of the relativistic linearized theory, which has
to be defined and understood before going to the post-Newtonian limit, the only one
required till now by the solar system tests of general relativity.

6.2 Equations of motion in the 3-orthogonal Schwinger time gauges

Let us now look at the Hamilton equations in the completely fixed 3-orthogonal time
gauge.

Let us remark that it is not convenient to use the Dirac brackets eliminating the super-
Hamiltonian and super-momentum constraints and their respective gauge fixings (4.1),
because otherwise the tidal variables Rā and �ā would not be any more canonical
and the search of the final canonical Dirac observables R̃ā , �̃ā , would be extremely
difficult. Therefore we can use these constraints and the final gauge fixing for πφ̃(τ, �σ)

and θ i (τ, �σ) only after the evaluation of the Poisson brackets.
Therefore the Hamilton equations of motion with the Dirac Hamiltonian (5.1) are

∂τ Rā(τ, �σ) = {Rā(τ, �σ), HD} = δ HD

δ �ā(τ, �σ)

=
[

4π G

c2 (1 + n) φ̃−1 �ā − φ̃−1/3
∑

rb

γāb Vrb(θ
n) Q−1

b

×
∑

a

D̄r(b)(a) n̄(a)

]

(τ, �σ),

∂τ �ā(τ, �σ) = {�ā(τ, �σ), HD} = − δ HD

δ Rā(τ, �σ)
. (6.4)

where now the functional derivatives, given by Eqs. (D12) of Appendix D of Ref. [36],
are evaluated by using the gauge fixings (4.1) and the solution (5.6) for the shift
functions n̄(a) (after a choice for the residual gauge freedom). To these equations we
must add:

14 Since the sign of the non-inertial-frame-dependent term M(o)(τ, �σ) is unknown and may vary from a
region of �τ to another one, we have not used a notation like in the Klein-Gordon equation (�+m2) φ = 0.
15 See Feynman’s statement [50] that the geometrical interpretation is not really necessary or essential to
physics.
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(i) the coupled Hamilton equations for the matter;
(ii) the Lichnerowicz equation (4.2) for φ̃;

(iii) the equation (5.9) for the lapse function n.

All these equations depend on the solution (3.8) (or Eq. (3.10) of Ref. [36]) of the
super-momentum constraints, on the choice of the zero modes (3.8), (5.6) and on the
choice of the three Green functions (D1), (D2) and (D4).

Having completely fixed the gauge, we have chosen a well defined non-inertial
frame and a well defined pattern of inertial potentials in the density of the weak ADM
energy (the �-� term S), in terms of the generalized tidal effects Rā(τ, �σ), �ā(τ, �σ).
As a consequence in Eqs. (6.4) there are relativistic inertial forces associated to the
chosen gauge and a well defined deterministic evolution.

Modulo the ambiguities in the shift functions and in the solution of the equations
(ii) and (iii), the resulting Hamilton equations (6.4) and (i) are a hyperbolic system of
partial differential equations ensuring a deterministic evolution for τ ≥ τo of the tidal
effects Rā(τ, �σ), �ā(τ, �σ) and of the matter from a set of Cauchy data for Rā(τo, �σ),
�ā(τo, �σ) and the matter on a Cauchy surface �τo .

The solution of all these equations is equivalent to a solution 4gµν of Einstein’s equa-
tions written in the radar 4-coordinate system associated to the chosen 3-orthogonal
non-inertial frame. This leads to an Einstein space-time, whose chrono-geometrical
structure ds2 = 4gµν(x) dxµ dxν is dynamically determined by the solution. In parti-
cular, there is a dynamical emergence of 3-space [4–7]: the leaves of the 3+1 splitting
determined by the solution in the adapted radar 4-coordinates (i.e. the dynamically
selected non-inertial frame centered on some time-like observer) are the instantaneous
3-spaces (the 3-universe) corresponding to a dynamical convention for the synchroni-
zation of distant clocks. One of the leaves is the Cauchy surface of the solution.

Since Eqs. (4.2), (5.6) and (5.9) imply that both n and n̄(a) depend upon the momenta
�ā , it becomes non trivial to re-express them in terms of the velocities ∂τ Rā , of Rā

and of the matter, like it was possible in Eqs. (6.1) before fixing the gauge. This is
the price to be paid to have deterministic evolution. As a consequence the analogue
of Eq. (6.3) becomes extremely complicated and much more non-linear. However the
background-independent linearization of Eqs. (6.4) will lead to a linearized equation
with the same type of behavior as the linearization of Eq. (6.3).

7 Conclusions

As shown in Ref. [4–7], ADM canonical gravity is sufficiently developed on both the
theoretical and interpretational levels so that it is now possible to see which are the
implications of a coherent and systematic use of constraint theory. We can finally give
the Hamiltonian re-interpretation of all the procedures developed till now in the cova-
riant Lagrangian approach, even if some of them are understood only at the theoretical
level without suitable approximation schemes for practical calculations (for instance
a weak field background-independent Post-Minkowskian approximation with relati-
vistic matter motion is now under investigation). In this paper we give an alternative
formulation of the York-Lichnerowicz conformal approach clarifying all its aspects
like the elusive York map and which is the natural scheme for gauge fixing. Regarding
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this last point, so relevant for numerical gravity, we show that the determination of
the lapse and shift functions is implied by the gauge fixing constraints for the super-
Hamiltonian and super-momentum secondary constraints and should not be given
independently as it happens in most of the treatments of numerical gravity.16 Also
the harmonic gauges, so relevant for the covariant approach and its Post-Newtonian
approximations, have been shown to belong to a peculiar family of Hamiltonian gauge
fixings without analog in finite-dimensional constrained systems.

As a consequence, we now have a good understanding of the Hamiltonian frame-
work and we can try to face concrete problems ranging from 1

c3 relativistic effects near
the geoid [52] (inertial effects, clock synchronization) to the notion of simultaneity
to be used in astrophysics and cosmology (with the associated problem of which is
the 1-way propagation velocity of electromagnetic and gravitational signals) and to
the weak field approximation but with relativistic motion (fast binaries and relativistic
quadrupole emission formula).

The rest-frame instant form of tetrad gravity developed in Refs. [2,3,25] for the
canonical treatment of vacuum Einstein’s equations in Christodoulou-Klainermann
space-times and emphasizing the role of the non-inertial frames (the only one allowed
by the equivalence principle), has been modified in this paper so to allow the inclu-
sion of matter. A new parametrization of the 3-metric has made possible the explicit
construction of a York map as a partial Shanmugadhasan canonical transformation.
This map, end point of the Lichnerowicz–York conformal approach [30,31,34], had
been shown to correspond to a canonical transformation [35], but no-one had been
able to build it.

In the York canonical basis we have the identification of three groups of variables
(all of them have a well defined expression in terms of the original variables, diffe-
rently from the canonical basis of Refs. [3,25] for which only the inverse canonical
transformation was explicitly known):

(i) The conformal factor φ(τ, �σ) of the 3-metric or, better, the volume element
φ̃ = φ6 on �τ (the unknown in the super-Hamiltonian constraint, namely the
Lichnerowicz equation), and three momenta π

(θ)
i (τ, �σ) (the unknowns in the

super-hamiltonian constraints).
(ii) The 14 gauge variables describing generalized inertial effects in the non-inertial

frames identified by the admissible 3 + 1 splittings of space-time. They are 13
configurational variables plus the momentum πφ̃(τ, �σ) proportional to the York

time 3 K (τ, �σ), whose fixation amounts to a convention for the synchroniza-
tion of distant clocks and to the identification of the instantaneous 3-space.
The meaning of the other 13 gauge variables α(a)(τ, �σ), ϕ(a)(τ, �σ), θ i (τ, �σ),
N (τ, �σ) = 1+n(τ, �σ), n(a)(τ, �σ) has been clarified in Subsection C of Sect. 2.

(iii) two pairs of canonical (in general non-covariant) variables describing the
genuine physical degrees of freedom of the gravitational field (generalized
tidal effects). The two configurational ones are determined by the eigen-values

16 A priori any set of gauge fixing constraints, satisfying an orbit condition, is possible. However, as it
happens using coordinates not adapted to the existing structures, in this way there the risk that coordinate
singularities will develop in the time evolution, as often happens in numerical gravity.
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of the 3-metric. Since the Shanmugadhasan canonical transformation is adapted
only to 10 of the 14 first-class constraints, they are not the final Dirac obser-
vables. However, if we fix completely the gauge freedom and we go to Dirac
brackets, they become 4 functions of the Dirac observables of that gauge, whose
identification amounts to find a Darboux basis for the Dirac brackets.

In the rest-frame instant form of tetrad gravity [1,3] the Dirac Hamiltonian contains
also the weak ADM energy EADM = ∫

d3σ EADM(τ, �σ), besides all the first class
constraints. The ADM energy density EADM(τ, �σ) depends on all the gauge variables.
Since a completely fixed Hamiltonian gauge corresponds to the choice of a global
non-inertial frame, in which the observers have fixed metrological conventions, it is
natural that the ADM energy density is a gauge-dependent quantity (the problem of
energy in general relativity): it contains the inertial potentials generating the inertial
effects (for instance the �-� term S give rise to the coordinate-dependent pattern of
relativistic Coriolis, centrifugal . . . forces).

We have given the general solution of the super-momentum constraints in the York
canonical basis and the explicit form of the super-Hamiltonian constraint, of the weak
ADM energy and of the Hamilton equations for the tidal degrees of freedom of the
gravitational field in a family of completely fixed 3-orthogonal Schwinger time gauges
(the 3-metric is diagonal; θ i (τ, �σ) ≈ 0) parametrized by the gauge function 3 K (τ, �σ)

(so that the convention for clock synchronization varies smoothly from one gauge to
another one). Unfortunately till now we do not yet know how to make calculations in
the family of Hamiltonian harmonic gauges, so that it is not possible to compare the
results with those in harmonic coordinates.

The study of the equations for the shift functions, emerging from the preservation
in time of the gauge fixings θ i (τ, �σ) ≈ 0 of the 3-orthogonal gauges, shows the
appearance of a generalized Gribov ambiguity connected to the gauge freedom in the
choice of the 3-coordinates on the simultaneity surfaces �τ (the 3-diffeomorphism
subgroup of the gauge transformations), like the ordinary Gribov ambiguity of Yang-
Mills theory is connected to the freedom of non-abelian gauge transformations. It is
connected to the existence of zero modes of the covariant divergence, which imply the
non-uniqueness of the momenta π

(θ)
i (τ, �σ) given by the solution (3.7) of the super-

momentum constraints [see the ghom
((a)(b))(τ, �σ)’s in Eq. (3.8)].

The possibility of such an ambiguity in general relativity is pointed out in Ref. [13]
(see p. 765). As a consequence, the 3-orthogonal 3-coordinate system is identified
on the Cauchy surface �τo not only by the gauge fixings θ i (τ, �σ) ≈ 0, but also by
gauge fixings modified by the addition of zero mode terms as shown in Subsection A of
Sect. 5. Since to each such gauge fixing are associated different shift functions17 (5.6),
whose difference is connected with the the zero modes f(a)(τ, �σ) of the operator Z(a)i

of Eqs. (5.2), (5.4), and since this ambiguity is inherited by the lapse function, it turns
out that there are inequivalent 3+1 splittings (i.e. non-inertial frames) of M4 (Gribov
copies) with the same 3-orthogonal 3-coordinates. In the copies with f(a)(τ, �σ) �= 0
there are the restrictions (5.7) on the dynamical variables.

17 This is a byproduct of the natural scheme for the gauge fixings implied by constraint theory.
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Till now we were able to identify the generalized Gribov ambiguity only in the
3-orthogonal gauges. It would be important to check whether it arises also in other
gauges, to exclude the possibility that the 3-orthogonal gauges are globally ill-defined
due to some unknown pathology.

While in Yang-Mills theory the choice [18] of suitable weighted Sobolev spaces
eliminates the ordinary Gribov ambiguity , it is not clear if the assumed direction-
independent behavior of the various fields at spatial infinity (required by the absence
of super-translations) is enough to eliminate the generalized Gribov ambiguity of
canonical gravity. In canonical gravity, where there are no asymptotically vanishing
Killing vectors [16,17] in our class of space-times, the use of weighted Sobolev spaces
(see the first paper in Ref. [16,17], pp. 133–136) implies the absence of zero modes
for suitable elliptic operators acting on the simultaneity surfaces �τ . It is an open
problem whether there are weighted Sobolev spaces compatible with the assumed
direction-independent behavior at spatial infinity for the cotriads and the lapse and
shift functions and such that the zero modes gr

(a)(τ, �σ) of the covariant divergence and
the asymptotically vanishing ones f(a)(τ, �σ) of the operator Z(a)i are expelled from
the function space.

To find the suitable function space for gravity plus the standard model of elementary
particles, in which there are neither ordinary or generalized Gribov ambiguities nor
Killing vectors, could be a difficult task, since the group manifold in large of the
diffeomorphisms is not under mathematical control and we do not have the well
understood topological properties of the principal fiber bundles of Yang-Mills theory.

Three independent Green functions,18 each one defined modulo solutions of the
corresponding homogeneous equation, appear inside the Hamilton equations, we will
have to specify not only the initial data for the dynamical variables but also which
type of conditions we have to assume on the gravitational fields at τ → −∞ (in the
linearized theory in harmonic coordinates one usually uses retarded conditions on the
incoming radiation at minus null infinity).

Then we have written the Hamilton equations for the tidal variables in the York
canonical basis in arbitrary Schwinger time gauges for tetrad gravity and explicitly
shown that to get a deterministic evolution we must completely fix the gauge, i.e. we
must choose a well defined non-inertial frame with its pattern of inertial forces. Given
Cauchy data for the tidal variables (and matter, if present) on an instantaneous 3-space
�τo , one Einstein space-time is identified by solving these equations.

There are strong indications that in a generic gauge the background-independent
linearization along the lines of Ref. [25] will lead to the appearance of a gauge-
dependent pseudo-square-mass term. This result, joined with Ref. [51], makes the
refusal of the geometrical view of the gravitational field, with its replacement with a
linear spin 2 theory in an inertial frame of a flat background space-time, unacceptable.
This refusal is induced by the fact that till now we are able to define the creation and
annihilation operators for quantum fields only in such inertial frames, where there is a
well posed notion of Fourier transform. The first step towards a better approximation,
even if still with a background, would be the definition of quantum fields in non-inertial

18 Two are needed for the solution of the super-momentum constraint and one for the determination of the
shift functions in the 3-orthogonal gauges.
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frames in Minkowski space-time. But this is still an unsolved problem due to the Torre–
Varadarajan no-go theorem [53,54], showing that in general there is no unitary evolu-
tion in the Tomonaga–Schwinger formalism. The open problem, discussed in Ref. [22,
23] treating the quantization of particles in non-inertial frames, is to identify the family
of non-inertial frames admitting a unitary evolution. But then the effective non-inertial
Hamiltonian density will be frame-dependent also in flat space-time, due to the inertial
potentials like it happens in general relativity, with the same interpretational problems.

As shown in Refs. [4–7], each independent solution of Einstein equations corres-
ponds to an equivalence class of gauge equivalent Cauchy data on simultaneity sur-
faces leaves of the 3+1 splittings connected by the gauge transformations admitted by
the solution. Therefore each solution admits preferred dynamical non-inertial frames
corresponding to the dynamical chrono-geometrical structure of the solution (inclu-
ding dynamically determined conventions for the synchronization of clocks implying a
dynamical emergence of a notion of instantaneous 3-space, absent in special relativity).

Let us add a final remark on the dependence of the Hamilton equations (6.4) on the
gauge function K (τ, �σ), both explicitly as a consequence of Eq. (3.1) and implicitly
through the shift and lapse functions, in the family of 3-coordinate systems where
3 K (τ, �σ) = ε K (τ, �σ) [see Eqs. (4.1)]. Each choice of 3 K (τ, �σ) corresponds to the
presence of inertial forces, attractive or repulsive according to the sign of 3 K (τ, �σ),
dictated by the convention chosen for the synchronization of distant clocks, i.e. for
the identification of the instantaneous 3-space. This non-local effect has no non-
relativistic counterpart, because Newtonian physics in Galilei space-time makes use
of an absolute notion of simultaneity and there is an absolute Euclidean 3-space. Since
the post-Newtonian calculations in harmonic coordinates [41,42] agree with the ADM
ones [38,39] using 3 K (τ, �σ) = 0 at the 3PN order and since there are no calculations
at fixed 3-coordinates but with varying 3 K (τ, �σ), we do not know the influence of this
inertial effect on the gravitational dynamics.

It is important to find a relativistic solution of the Hamilton equations in these
gauges, for instance in the weak field approximation but with relativistic motion, so to
be able to understand this effect. Such a solution would allow to study the motion of a
test particle along a time-like geodesic spiralling around a compact mass distribution
visualized in an instantaneous 3-space �τ in a family of completely fixed gauges like
the ones of Eqs. (4.1) depending in a continuous way on the function K (τ, �σ). As
a consequence, we would find how the velocity of the test particle depends on the
instantaneous distance inside �τ (along a space-like 3-geodesic) of the test particle
from the center of mass of the matter distribution and how this dependence changes
as a function of K (τ, �σ), i.e. of the definition of the instantaneous 3-space (the clock
synchronization convention). Therefore, for the first time we could explicitly check
which are the (weak field) general relativistic deviations from the Kepler virial theo-
rem, which is used in the interpretation of the observational data about the rotation
curves of galaxies [55]. Furthermore, in this calculation one should replace the instan-
taneous distance in �τ , the general relativistic alternative to the absolute Euclidean
distance of Newton theory, with the luminosity distance (a property of a congruence of
light rays), the only one definable from the observed electro-magnetic signals. Do the
general relativistic deviations go in the direction of reducing the quantity named dark
matter? Or does it (or part of it) correspond to an inertial appearance, as it happens for
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the gravito-magnetic frame dragging? Which is the dependence of these deviations
on the clock synchronization convention, i.e. on the definition of the instantaneous
3-spaces and of the associated pattern of inertial forces? Are we sure that the till now
undetected WIMPs are the explaination of dark matter or, in other words, are we
sure that the prevailing interpretation of the observational data is the correct one? If
the quoted deviations will turn out to be negligible, this would reduce the strength
of points of view like the relativistic version [56–58] of the non-relativistic MOND
model19 [59,60] or like the gravito-magnetic relativistic inertial effect of Ref. [61,62].
Otherwise there should be some coordinate-independent signature of dark matter (for
instance an effective mass higher of the rest mass for ordinary matter), like it happens
with the Lense-Thirring effect, a consequence of the gravito-magnetic gauge variables
in presence of matter.

Moreover, the gauge dependence [including a dependence upon 3 K (τ, �σ)] of the
ADM energy density EADM(τ, �σ), namely its dependence on the chosen non-inertial
frame,20 should play some role in the understanding of what is the dark energy, which
in some way has to take into account the gravitational energy. We have to understand
whether our results may help to clarify the kinematical back-reaction effects appearing
in the scenario of Ref. [63], where cosmology is seen as an effective description
emerging from a coarse graining starting from the gravitational field at small scales
and going to larger and larger scales.

A general open problem in the astrophysical and cosmological contexts is what
has to be understood with the word “observable”: usually it is said that it must be
4-coordinate independent (see the description of quantities connected with obse-
ved light rays). In the context of general relativity this means independent from the
4-diffeomorphisms at the Lagrangian level, i.e. independent from the Hamiltonian
gauge transformations (namely independent from the inertial effects) at the canonical
level. But, apart from Einstein’s point-coincidence quantities (what do they mean
in cosmology?), we do not yet have control on this subject: also the coordinate-
independent Weyl scalars of the Newman–Penrose approach [64] (used in the fra-
mework of gravitational waves) are gauge-dependent on the chice of the null tetrads.
We are just beginning to understand the non-covariant coordinate-dependent Dirac
observables, invariant under Hamiltonian gauge transformations, but we are still far
away from identifying the coordinate- and Hamiltonian-gauge-transformation inde-
pendent Bergmann observables (see Refs. [4–7,10,11] about what is known on the
four eigenvalues of the Weyl tensor). As a conclusion, it is not clear to us how many
interpretational problems are hidden behind the empirical notions of dark matter and
dark energy.

19 It is based on a modification of Newton’s law in an inertial frame of the absolute Euclidean 3-space of
Newton physics. While in the MOND model one modifies the acceleration side of the equations of motion,
in general relativity it is the force side to be modified by the inertial effects.
20 Let us remark that this already happens for the Hamiltonian describing the evolution of both relativistic
and non-relativistic particles in non-inertial frames [22,23].
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Appendix A: Notations for tetrad gravity

A.1 Tetrads, cotetrads and the 4- and 3- metric

We shall use the signature ε (+ − −−) for the 4-metric, with ε = ±, according to
particle physics and general relativity conventions respectively.

After an admissible 3+1 splitting of space-time with space-like hyper-surfaces �τ ,
we introduce adapted coordinates, namely the radar 4-coordinates σ A = (τ ; σ r )21

adapted to the 3 + 1 splitting and centered on an arbitrary time-like observer (they
define a non-inertial frame centered on the observer, so that they are observer and
frame- dependent).

Namely, instead of local coordinates xµ for M4, we use local coordinates σ A on
R × � ≈ M4 with � ≈ R3 [xµ = zµ(σ ) with inverse σ A = σ A(x)], i.e. a �τ -
adapted holonomic coordinate basis for vector fields ∂A = ∂

∂σ A ∈ T (R × �) �→
bµ

A(σ )∂µ = ∂zµ(σ)

∂σ A ∂µ ∈ T M4, and for differential one-forms dxµ ∈ T ∗M4 �→
dσ A = bA

µ(σ )dxµ = ∂σ A(z)
∂zµ dxµ ∈ T ∗(R × �).

As shown in Ref. [2], the general cotetrads 4 E (α)
µ (dual to the tetrads 4 Eµ

(α)), appea-

ring in the 4-metric of the ADM action principle, are connected to the cotetrads 4
◦
E

(α)

A
(and tetrads) adapted to the 3 + 1 splitting (the time-like tetrad is normal to �τ ) by a
point-dependent standard Lorentz boost for time-like orbits acting on the flat indices

(it sends the unit future-pointing time-like vector
o
V

(α)

= (1; 0) into the unit time-like

vector V (α) = l A 4 E (α)
A =

(√
1 +∑

a ϕ2
(a);ϕ(a) = −ε ϕ(a)

)
, where l A is the unit

future-pointing normal to �τ )

4 E (α)
A = L(α)

(β)(ϕ(a))
4

◦
E

(β)

A , 4 E A
(α) = 4

◦
E

A

(β) L(β)
(α)(ϕ(a)),

gAB = 4gAB = 4 E (α)
A

4η(α)(β)
4 E (β)

B = 4
◦
E

(α)

A
4η(α)(β)

4
◦
E

(β)

B (A1)

The adapted tetrads and cotetrads (corresponding to the Schwinger time gauge of
tetrad gravity) are expressed at the Hamiltonian level in terms the lapse N = 1+n > 0
(so that N dτ is positive from �τ to �τ+dτ ) and shift n(a) = 3e(a)r Nr = 3er

(a) Nr

functions and of cotriads 3e(a)r (dual to the triads 3er
(a)) on �τ

4
◦
E

A

(o) = 1

N
(1;−n(a)

3er
(a)) = l A, 4

◦
E

A

(a) = (0; 3er
(a)),

4
◦
E

(o)

A = N (1; 0) = ε lA, 4
◦
E

(a)

A = (n(a); 3e(a)r ), (A2)

21 For the sake of simplicity we shall use the notation �σ for {σ r }. (α) and (a) are flat 4- and 3-indices,
respectively; µ is a world 4-index; A is a �τ -adapted world 4-index.
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As a consequence, our configuration variables for tetrad gravity are n, n(a), 3e(a)r

and the boost parameters ϕ(a). The future-oriented unit normal to �τ is lA = ε N (1; 0)

(g AB lA lB = ε), l A = ε N g Aτ = 1
N (1;−nr ) = 1

N (1;−n(a)
3er

(a)).

As shown in Ref. [2], the induced 4-metric 4gAB and the inverse 4-metric 4g AB

become in the adapted basis22

gττ = 4gττ = ε [N 2 − 3grs nr ns] = ε [N 2 − n(a) n(a)],
gτr = 4gτr = −ε nr = −ε n(a)

3e(a)r ,

grs = 4grs = −ε 3grs = −ε 3e(a)r
3e(a)s,

gττ = 4gττ = ε

N 2 , gτr = 4gτr = −ε
nr

N 2 = −ε

3er
(a) n(a)

N 2 ,

grs = 4grs = −ε

(
3grs − nr ns

N 2

)

= −ε 3er
(a)

3es
(b)

(
δ(a)(b) − n(a) n(b)

N 2

)
. (A3)

The 3-metric 3grs has signature (+ + +), so that we will put all the flat 3-indices
down.

A.2 The constraints and the Dirac Hamiltonian

As shown in Refs. [2,3,25–28], in presence of matter with Hamiltonian mass-energy
density M(τ, σ ) and 3-momentum density Mr (τ, �σ) (M depends on the 4-metric
but not on its gradients) the primary and secondary constraints are23

πn(τ, �σ) ≈ 0, π�n(a)(τ, �σ) ≈ 0, π �ϕ(a)(τ, �σ) ≈ 0,

M(a)(τ, �σ) =
∑

bcr

ε(a)(b)(c) [3e(b)r
3π̃r

(c)](τ, �σ) ≈ 0,

H(τ, �σ) = ε

[
c3

16π G
3e 3 R − 1

c
M

− 2π G

c3 3e
3Go(a)(b)(c)(d)

3e(a)r
3π̃r

(b)
3e(c)s

3π̃ s
(d)

]

(τ, �σ) ≈ 0,

H(a)(τ, �σ) =
[
∑

rb

Dr(a)(b)
3π̃r

(b) − 3ev
(a) Mv

]

(τ, �σ) ≈ 0, (A4)

In Ref. [2] it is shown that the super-momentum constraints H(a)(τ, �σ) ≈ 0 are
not the Hamiltonian generators of passive 3-diffeomorphims: the actual generators

22 If 4γ rs is the inverse of the spatial part of the 4-metric (4γ ru 4gus = δr
s ), the inverse of the 3-metric is

3grs = −ε 4γ rs (3gru 3gus = δr
s ).

23 3Go(a)(b)(c)(d) = δ(a)(c) δ(b)(d) + δ(a)(d) δ(b)(c) − δ(a)(b) δ(c)(d) is the flat Wheeler-DeWitt super-

metric. The covariant derivative is Dr(a)(b) = δab ∂r + ε(a)(b)(c)
3ωr(c), where 3ωr(a) is the (cotriad

dependent) 3-spin connection.
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are �r (τ, �σ) = ∑
as

[
3π̃ s

(a) ∂r
3e(a)s − ∂s (3e(a)r

3π̃ s
(a))

]
(τ, �σ) ≈ 0 and that we have

H(a)(τ, �σ) = −
[

3er
(a)

(
�r +∑

b
3ωr(b) M(b)

)]
(τ, �σ).

The constraints M(a)(τ, �σ) ≈ 0 generate O(3)- rotations, which vary the angles
α(a)(τ, �σ) hidden inside the cotriads. The boost parameters ϕ(a)(τ, �σ) and the angles
α(a)(τ, �σ) describe the O(3,1) gauge freedom of the tetrads in their flat indices (α)

in each point of �τ . The constraints M(a)(τ, �σ) ≈ 0 and π �ϕ (a)(τ, �σ) ≈ 0 replace
the standard generators of the O(3,1) (proper Lorentz group) gauge transformations
(ϕ(a) and α(a) are our parametrization of the six gauge variables also appearing in the
Newman-Penrose formalism, where they label the arbitrariness in the choice of the
null tetrads).

Therefore, with our parametrization the independent configuration variables and
the conjugate momenta of our canonical basis are

ϕ(a) n n(a)
3e(a)r

≈ 0 ≈ 0 ≈ 0 3π̃r
(a)

(A5)

This is a Shanmugadhasan canonical basis already naturally adapted to seven of the
primary constraints. See Refs. [1,3] for the assumed (direction independent) behavior
at spatial infinity of these variables: the basic information is 3e(a)r (τ, �σ) →r →∞
(1 + M

2r )δ(a)r + O(r−3/2), N (τ, �σ) = 1 + n(τ, �σ) →r →∞ 1 + O(r−(2+ε)) (ε > 0),
nr (τ, �σ) = n(a)(τ, �σ) 3e(a)r (τ, �σ) →r →∞ O(r−ε) (r = |�σ |).

From Eqs. (25) of Ref. [3] the weak or volume form of the ADM Poincaré charges
of metric gravity is [γ = |det 3grs | = (3e)2 = φ12, 3e = det 3e(a)r ]

EADM = −ε c Pτ
ADM =

∫
d3σ

[

M− c4

16π G

√
γ
∑

rsuv

3grs(3�u
rv

3�v
su −3�u

rs
3�v

vu)

+ 8π G

c2 √
γ

∑

rsuv

3Grsuv
3�̃rs 3�̃uv

]

(τ, �σ),

Pr
ADM = −2

∫
d3σ

[
∑

su

3�r
su(τ, �σ) 3�̃su − 1

2

∑

s

3grsMs

]

(τ, �σ),

J τr
ADM = −Jrτ

ADM =
∫

d3σ

(

σ r

[
c3

16π G

√
γ
∑

nsuv

3gns(3�u
nv

3�v
su − 3�u

ns
3�v

vu)

− 8π G

c3 √
γ

∑

nsuv

3Gnsuv
3�̃ns 3�̃uv − 1

c
M
]

+ c3

16π G

∑

nsuv

δr
u(3gvs − δvs)∂n

[√
γ (3gns 3guv − 3gnu 3gsv)

]
)

(τ, �σ),
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Jrs
ADM =

∫
d3σ

[
∑

uv

(σ r 3�s
uv − σ s 3�r

uv)
3�̃uv

−1

2

∑

u

(σ r 3gsu − σ s 3gru)Mu

]

(τ, �σ). (A6)

These weak Poincaré charges are expressed in terms of cotriads 3e(a)r and their conju-
gate momenta 3π̃r

(a), by using 3grs = ∑
a

3e(a)r
3e(a)s , 3�̃rs = 1

4

∑
a [3er

(a)
3π̃ s

(a) +
3es

(a)
3π̃r

(a)] (see Eq. (12) of Ref. [3]).

The Dirac Hamiltonian is (the λ’s are arbitrary Dirac multipliers24)

HD = EADM +
∫

d3σ
[−ε c n H + n(a) H(a)

]
(τ, �σ)

+
∫

d3σ
[
λn πn + λ�n(a) π�n(a) + λ �ϕ(a) π �ϕ(a) + λ(a) M(a)

]
(τ, �σ), (A7)

where the explicit form of the weak ADM energy in tetrad gravity is

EADM =
∫

d3σ

[

M − c4

16π G
S + 2π G

c2 3e

×
∑

abcd

3Go(a)(b)(c)(d)
3e(a)r

3π̃r
(b)

3e(c)s
3π̃r

(d)

]

(τ, �σ),

S(τ, �σ) =
[

3e
∑

rsuv

3er
(a)

3es
(a)

(
3�u

rv
3�v

su − 3�u
rs

3�v
uv

)
]

(τ, �σ). (A8)

It is the sum of the matter mass density, of the �-� potential term
− c4

16π G

∫
d3σ S(τ, �σ) and of the kinetic term quadratic in the momenta.

As a consequence we have

EADM +
∫

d3σ [−ε c n H] (τ, �σ)

=
∫

d3σ [(1 + n)M] (τ, �σ)

− c4

16π G

∫
d3σ

(
S + 3e n 3 R

)
(τ, �σ) + 2π G

c2

∫
d3σ

[
1

3e
(1 + n)

×
∑

abcd

3Go(a)(b)(c)(d)
3e(a)r

3π̃r
(b)

3e(c)s
3π̃r

(d)

]

(τ, �σ). (A9)

24 In canonical metric gravity they are only 4 (not 8), namely the Hamiltonian gauge group has 8 generators
(both the primary and secondary constraints) but the same number of parameters (i.e. arbitrary functions)
like the 4-diffeomorphism group of the covariant Lagrangian approach. The configurational lapse and shift
variables in front of the secondary constraints are the effective parameters, because the kinematical part of
the Hamilton equations implies that the Dirac multipliers are their τ -derivatives.
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The extrinsic curvature of the hyper-surface �τ and the first half of Hamilton
equations are [2] (see Sect. 2 for the definition of the α(a) -independent “barred”
variables)

3 Krs = ε
4π G

c3 3ē

∑

abu

[(
3ē(a)r

3ē(b)s + 3ē(a)s
3ē(b)r

)

×3ē(a)u π̄u
(b) − 3ē(a)r

3ē(a)s
3ē(b)u π̄u

(b)

]
,

3 K = −ε
4π G

c3

∑
ar

3ē(a)r π̄r
(a)

3ē
,

∂τ n(τ, �σ) = {n(τ, �σ), HD} = λn(τ, �σ),

∂τ n(a)(τ, �σ) = {n(a)(τ, �σ), HD} = λ�n(a)(τ, �σ),

∂τ ϕ(a)(τ, �σ) = {ϕ(a)(τ, �σ), HD} = λ �ϕ(a)(τ, �σ),

∂τ
3e(a)r (τ, �σ) = {3e(a)r (τ, �σ), HD} =

[

ε(a)(b)(c) λ(b)
3e(c)r

−N
∑

s

3 Krs
3es

(a) + ∂r n(a)

+
∑

bs

n(b)
3es

(b) (∂s
3e(a)r − ∂r

3e(a)s)

]

(τ, �σ),

⇒ ∂τ
3grs(τ, �σ) =

[
nr |s + ns|r − 2 N 3 Krs

]
(τ, �σ). (A10)

The gauge-fixing procedure illustrated in the Introduction implies that at the end
the Dirac multipliers are consistently determined by the preservation in time of the
gauge-fixing constraints [3].

Appendix B: The canonical transformation (2.3)

B.1 Its determination

By putting Eq. (2.4) into Eqs. (2.6) we get the following three sets of equations for
the kernels K , G, F

∑

sha

ε(k)(h)(a)
3e(h)s(τ, �σ) K s

(a)b(τ, �σ) = 0,

∑

sha

ε(k)(h)(a)
3e(h)s(τ, �σ) Gs

(a)b(τ, �σ) = 0,

∑

khsa

[
A(k)(c)(α(e)) ε(k)(h)(a)

3e(h)s Fs
(a)(b)

]
(τ, �σ) = −δ(b)(c),

∑

ar

K r
(a)c(τ, �σ) R(a)(b)(α(e)(τ, �σ)) Vrb(θ

n(τ, �σ)) = δcb,
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∑

ar

Gr
(a)i (τ, �σ) R(a)(b)(α(e)(τ, �σ)) Vrb(θ

n(τ, �σ)) = 0,

∑

ar

Fr
(a)(b)(τ, �σ) R(a)(b)(α(e)(τ, �σ)) Vrb(θ

n(τ, �σ)) = 0,

∑

rla

εmlr
3e(a)l(τ, �σ) K r

(a)c(τ, �σ) = 0,

∑

rla

εmlr
3e(a)l(τ, �σ) Gr

(a)i (τ, �σ) = −Bmi (θ
n(τ, �σ)),

∑

rla

εmlr
3e(a)l(τ, �σ) Fr

(a)(c)(τ, �σ) = 0. (B1)

The solutions of the first three equations (B1) are

K s
(a)b =

∑

h

3es
(h) K̃(h)(a)b, K̃(h)(a)b = K̃(a)(h)b = K̃((h)(a))b,

Gs
(a)i =

∑

h

3es
(h) G̃(h)(a)i , G̃(h)(a)i = G̃(a)(h)i = G̃((h)(a))i ,

Fs
(a)(b) = −1

2

∑

kh

ε(h)(a)(k) B(b)(k)(α(e))
3es

(h) +
∑

h

	̃(h)(a)(b)
3es

(h)

def=
∑

h

3es
(h)

[
Z(h)(a)(b) + 	̃(h)(a)(b)

]
,

	̃(h)(a)(b) = 	̃(a)(h)(b) = 	̃((h)(a))(b), Z(h)(a)(b) = −Z(a)(h)(b) = Z[(h)(a)](b).

(B2)

The second set of three equations (B1) may be rewritten in the form

∑

ha

M(h)(a)b K̃((h)(a))c = δbc,

∑

ha

M(h)(a)b G̃((h)(a))i = 0,

∑

ha

M(h)(a)b

[
Z[(h)(a)](c) + 	̃((h)(a))(c)

]
= 0,

with

M(h)(a)b =
∑

r

3er
(h) R(a)(b)(α(e)) Vrb(θ

n)

= R(a)(b)(α(e)) R(h)(b)(α(e))

	b
= M((h)(a))b, (B3)

and has the following solutions

K̃((h)(a))c =
∑

lm

R(h)(l)(α(e)) R(a)(m)(α(e)) K
′
((l)(m))c
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=
l �=m∑

lm

R(h)(l)(α(e)) R(a)(m)(α(e)) K
′
((l)(m))c+R(h)(c)(α(e)) R(a)(c)(α(e))	c,

K
′
(l)(l)c = δlc 	c,

G̃((h)(a))i =
l �=m∑

lm

R(h)(l)(α(e)) R(a)(m)(α(e)) G
′
((l)(m))i , G

′
(l)(l)i = 0,

	̃((h)(a))c =
l �=m∑

lm

R(h)(l)(α(e)) R(a)(m)(α(e))	
′
((l)(m))c, 	

′
(l)(l)c = 0,

Z[(h)(a)](c) = −1

2
ε(h)(a)(k) B(c)(k)(α(e))

=
l �=m∑

lm

R(h)(l)(α(e)) R(a)(m)(α(e)) Z
′
[(l)(m)](c). (B4)

By defining

N m
(h)(a) =

∑

rl

εmlr
3e(a)l

3er
(h) =

∑

bk

R(a)(b)(α(e)) R(h)(k)(α(e))N ′ m
(b)(k),

with

N ′ m
(b)(k) =

[
∑

rl

εmlr Vlb(θ
n) Vrk(θ

n)

]
	b

	k

def= Qm
bk

	b

	k
, Qm

bk = −Qm
kb = Qm

[bk],

(B5)

the third set of three equations (B1) may be written in the form

b �=k∑

bk

N ′ m
(b)(k) K

′
((k)(b))c = 0,

b �=k∑

bk

N ′ m
(b)(k) G

′
((k)(b))i = −Bmi (θ

n), (B6)

b �=k∑

bk

N ′ m
(b)(k)

[
Z

′
[(k)(b)](c) + 	

′
((k)(b))(c)

]
= 0,

which does not contain the already known components K
′
(b)(b)c = δbc 	b, G

′
(b)(b)i =

0, 	
′
(b)(b)(c) = 0.

The solution of Eqs. (B6) are

k �= b

Z
′
[(k)(b)](c) = −1

2

∑

m

B(c)(m)(α(e))
∑

ha

ε(h)(a)(m) R(h)(k)(α(e)) R(a)(b)(α(e)),

123



2194 D. Alba, L. Lusanna

W
′
(k)(b)i = −1

2

∑

tuw

εtuw Biw(θn)
	k

	b
Vuk(θ

n) Vtb(θ
n), W

′
(b)(b)i = 0,

K
′
((k)(b))c = 0, 	

′
((k)(b))(c) =

	k
	b

+ 	b
	k

	k
	b

− 	b
	k

Z
′
[(k)(b)](c),

G
′
((k)(b))i = 2 	b

	k

	k
	b

− 	b
	k

W
′
(k)(b)i =

∑

tw

εbkt Vtw(θn) Biw(θn)
	k
	b

− 	b
	k

. (B7)

Therefore the kernels in Eq. (2.4) are

K r
(a)b =

∑

h

3er
(h) R(h)(b)(α(e)) R(a)(b)(α(e))	b = R(a)(b)(α(e)) Vrb(θ

n),

Gr
(a)i =

m �=l∑

ml

∑

htuw

3er
(h) R(h)(l)(α(e)) R(a)(m)(α(e))

εtuw Biw(θn) Vul(θ
n) Vtm(θn)

	l
	m

− 	m
	l

=
l �=b∑

lb

∑

tw

R(a)(b)(α(e))
Vrl(θ

n) εblt Vtw(θn) Biw(θn)

	l

(
	l
	b

− 	b
	l

) ,

Fr
(a)(c) = −

l �=m∑

lm

∑

huvk

3er
(h)

	l
	m

	l
	m

− 	m
	l

×R(h)(l)(α(e)) R(a)(m)(α(e)) R(u)(l)(α(e)) R(v)(m)(α(e)) ε(u)(v)(k) B(c)(k)(α(e))

= −
l �=b∑

lb

R(a)(b)(α(e))
∑

t

Vrl(θ
n) ε(l)(b)(t) R(t)(k)(α(e)) B(c)(k)(α(e))

	l

(
	l
	b

− 	b
	l

) . (B8)

B.2 Inversion of Gr
(a)i

Let us look for a kernel H(a)r j , which is an inverse of Gr
(a)i in the following sense

(Eqs. (B2) and (B4) are used)

δi j =
∑

ar

H(a)r j Gr
(a)i

=
∑

ar

H(a)r j

∑

h

3er
(h)

l �=m∑

lm

R(h)(l)(α(e)) R(a)(m)(α(e)) G
′
((l)(m))i

=
l �=m∑

lm

H
′
(l)(m) j G

′
((l)(m))i , (B9)
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where we have introduced the kernel H
′
(l)(m) j

H
′
(l)(l) j = 0, H

′
(l)(m) j =

∑

arh

H(a)r j
3ēr

(l) R(a)(m)(α(e)), f or l �= m. (B10)

Since G
′
(l)(l)i = 0, we can define the following 3 × 3 matrix

Gli = G
′
((b)(k))i , l �= b, l �= k, b �= k. (B11)

Since the first two lines of Eqs. (B6) suggest the following ansatz

H
′
(l)(m) j = H

′
((l)(m))i = −1

2

∑

t

A jt (θ
n)
[
N ′ t

(l)(m) + N ′ t
(m)(l)

]
, (B12)

we can also define the 3 × 3 matrix

H jl = H
′
((b)(k)) j , l �= b, l �= k, b �= k. (B13)

As a consequence Eqs. (B9) are satisfied because the second of Eqs. (B6) implies

∑

l

H jl Gli = −
∑

tbk

A jt (θ
n)N ′ t

(b)(k) G
′
((b)(k))i =

∑

t

A jt (θ
n) Bti (θ

n) = δi j .

(B14)
Then the first of Eqs. (B6) implies

∑

j

v j H jl = 0 ⇒ v j = 0 ⇒ det (H jl) �= 0, (B15)

so that we have also det (Gli ) �= 0, i.e. Gli vi = 0 implies vi = 0.
Therefore we get (also the expressions in the 3-orthogonal gauges θ i (τ, �σ) ≈ 0 are

given)

H(a)r j =
l �=m∑

lm

R(a)(m)(α(e))
3ē(l)r H

′
((l)(m)) j

= −1

2

l �=m∑

lm

R(a)(m)(α(e))
3ē(l)r ×

∑

t

A jt (θ
n)
[
N ′ t

(l)(m) + N ′ t
(m)(l)

]

= −1

2

l �=m∑

lm

R(a)(m)(α(e)) Vrl(θ
n)	l

∑

t

A jt (θ
n)

×
∑

uv

εtvu

[
	l

	m
Vum(θn) Vvl(θ

n) + 	m

	l
Vul(θ

n) Vvm(θn)

]

→α(e),θ
n→0 H (o)

(a)r j = 1

2
εar j 	r

(
	r

	a
− 	a

	r

)

= 	r H
′
((r)(a)) j |α(e)=θn=0,
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Gr
(a)i →α(e),θ

n→0 G(o)r
(a)i = εari

	r

(
	r
	a

− 	a
	r

) ,

∑

ar

H(a)r j |θn=0 Gr
(a)i |θn=0 = δi j ,

∑

ri

H(b)ri |θn=0 Gr
(a)i |θn=0 = δab.

(B16)

B.3 The spin connection in the York basis

When α(a)(τ, �σ) = 0, the spin connection on �τ is given by (also its expression in
the 3-orthogonal gauges is given)

3ω̄r(a) = 1

2

∑

bc

ε(a)(b)(c)
3ω̄r(b)(c) = 1

2
ε(a)(b)(c)

∑

u

[
3ēu

(b)(∂r
3ē(c)u − ∂u

3ē(c)r )

+1

2

∑

v

3ēu
(b)

3ēv
(c)

3ē(d)r (∂v
3ē(d)u − ∂u

3ē(d)v)

]

= 1

2

∑

bcu

ε(a)(b)(c) Vub(θ
n)

[

Qc Q−1
b

×
(

1

3
[Vuc(θ

n) ∂r ln φ̃ − Vrc(θ
n) ∂u ln φ̃]

+
∑

b̄

γb̄c [Vuc(θ
n) ∂r Rb̄ − Vrc(θ

n) ∂u Rb̄]

+∂r Vuc(θ
n) − ∂u Vrc(θ

n)

)

+ 1

2

∑

vd

Q2
d Q−1

b Q−1
c Vvc(θ

n) Vrd(θn)

×
(

1

3
[Vud(θn) ∂v ln φ̃ − Vvd(θn) ∂u ln φ̃]

+
∑

b̄

γb̄d [Vud(θn) ∂v Rb̄ − Vvd(θn) ∂u Rb̄]

+∂v Vud(θn) − ∂u Vvd(θn)

)]

→θn→0 −
∑

b

εrab Qr Q−1
b ∂b

⎛

⎝1

3
ln φ̃ +

∑

b̄

γb̄r Rb̄

⎞

⎠ . (B17)

Appendix C: The 3-geometry in the 3-orthogonal gauges

As shown in Appendices B, C and D of Ref. [36], in the 3-orthogonal gauges we have
the following expression for the 3-Christoffel symbols and the �-� potential (in this
appendix we use φ = φ̃1/6)
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3�r
uv → θn→0 δru

(

2 ∂v ln φ +
∑

ā

γār ∂v Rā

)

+ δrv

(

2 ∂u ln φ +
∑

ā

γār ∂u Rā

)

−δuv

(

2 ∂r ln φ +
∑

ā

γār ∂r Rā

)

Qu Q−1
r ,

∑

v

3�v
uv → θn→0 6 ∂u ln φ,

S → θn→0

φ2
∑

a
Q−2

a

⎛

⎝20 (∂a ln φ)2−4
∑

r
(∂r ln φ)2+8 ∂a ln φ

∑

b̄

γb̄a ∂a Rb̄

−2
∑

r
∂r ln φ

∑

b̄

(γb̄a + γb̄r ) ∂r Rb̄ +
⎛

⎝
∑

b̄

γb̄a ∂a Rb̄

⎞

⎠

2

+
∑

b̄

(∂a Rb̄)2 −
∑

r

⎛

⎝
∑

b̄

γb̄r ∂r Rb̄

⎞

⎠

(
∑

c̄

γc̄a ∂r Rc̄

)⎞

⎠ . (C1)

From Eqs. (223) of Appendix A of Ref. [3] for θn = 0 we get25

3ĝrs = Q2
r δrs, det 3ĝrs = 1, ⇒

∑

r

3�̂r
rs = 0,

3 R[φ, Rā] = 3 R[θn = 0, φ, Rā] = φ−5 [−8 	̂[Rā] φ + 3 R̂[Rā]φ]

= −
∑

uv

⎛

⎝
(

2 ∂v ln φ +
∑

ā

γāu ∂v Rā

) (
4 ∂v ln φ −

∑

b̄

γb̄u ∂v Rb̄

)

+φ−4 Q2
v

[
2 ∂2

v ln φ +
∑

ā

γāu ∂2
v Rā

+ 2
(

2 ∂v ln φ +
∑

ā

γāu ∂v Rā

) ∑

b̄

(γb̄u − γb̄v) ∂v Rb̄

−
(

2 ∂v ln φ +
∑

ā

γāv ∂v Rā

) (
2 ∂v ln φ +

∑

b̄

γb̄u ∂v Rb̄

)]
⎞

⎠

+φ−4
∑

u

Q2
u

[
− 2 ∂2

u ln φ + 2
∑

ā

γāu ∂2
u Rā

+
(

2 ∂u ln φ +
∑

ā

γāu ∂u Rā

) (
2 ∂u ln φ − 2

∑

b̄

γb̄u ∂u Rb̄

)]
,

25 The conformal decomposition 3grs = φ4 3 ĝrs implies (see Eqs. (189)–(190) of Ref. [3]) 3�u
rs =

3�̂u
rs + 2

(
δur ∂s ln φ + δus ∂r ln φ −∑

abv Vra(θn) Vsa(θn) Vub(θn) Vvb(θn) Q2
b Q−2

a ∂v ln φ
)

and

3 R[θn, φ, Rā ] = φ−5
[
−8 	̂ φ + 3 R̂ φ

]
, where 3 R̂ = 3 R̂[θn , Rā ] and 	̂ = ∂r (3 ĝrs ∂s ) are the sca-

lar curvature and the Laplace-Beltrami operator associated with the 3-metric 3 ĝrs , respectively. 	̂ − 1
8

3 R̂
is a conformally invariant operator.
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3 R̂[Rā] = lim
φ →1

3 R[φ, Rā]

=
∑

u

⎛

⎝1 − 2 Q−2
u

∑

b̄

(∂u Rb̄)
2

⎞

⎠

+ 2
∑

u

Q−2
u

∑

ā

γāu

[
∂2

u Rā +
∑

b̄

γb̄u ∂u Rā ∂u Rb̄

]
,

	̂[Rā] = ∂r [3ĝrs ∂s] = 3ĝrs 3∇̂r
3∇̂s =

∑

r

Q−2
r

[
∂2

r − 2
∑

b̄

γb̄r ∂r Rb̄ ∂r

]
.

(C2)

Let us remark that we have 3 R[φ, Rā = 0] = −24
∑

u(∂u ln φ)2 −
8φ−4 ∑

u[∂2
u ln φ − 2 (∂u ln φ)2] →φ →1

3 R[1, 0] = 0.
The solution (3.8) of the super-momentum constraints becomes

π
(θ)
i (τ, �σ) →θn→0

∑

ab

[
εiab Qa Q−1

b

]
(τ, �σ)

×
[
∑

d

∫
d3σ1 Ḡ((a)(b))(d)(�σ , �σ1; τ)

[
φ̃−1/3 Q−1

d Md

−
∑

e

D̄e(d)(e) φ̃−1/3 Q−1
e

⎛

⎝φ̃ πφ̃ +
∑

b̄

γb̄e �b̄

⎞

⎠

⎤

⎦ (τ, �σ1)

+
c �=e∑

ec

∫
d3σ1

(

δc(a δb)e δ3(�σ , �σ1)

+
∑

d

Ḡ((a)(b))(d)(�σ , �σ1; τ)
1

2

[
D̄c(d)(e) φ̃−1/3 Q−1

c +D̄e(d)(c) φ̃−1/3 Q−1
e

]
(τ, �σ1)

)

×
⎛

⎝−g̃ce(τ, �σ1) +
∑

f

∫
d3σ2

1

2

[ (
φ̃1/3 Qe

)
(τ, �σ1) ζ̄ e

(c)( f )(�σ1, �σ2; τ)

+
(

φ̃1/3 Qc

)
(τ, �σ1) ζ̄ c

(e)( f )(�σ1, �σ2; τ)
] (

φ̃−1/3 Q−1
f M f

)
(τ, �σ2)

⎞

⎠

⎤

⎦

def=
∑

ab

[
εiab Qa Q−1

b F(ab)

]
(τ, �σ), (C3)

where the last line defines the function F(a)(b).
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The expression in the York basis of the extrinsic curvature (2.12) (after having used
the solution of the super-momentum constraints) is given in Eq. (C8) of Appendix C
of Ref. [36].

Appendix D: The Green functions

The Green function ζ̄ r
(a)(b) of Ref. [3] in the 3-orthogonal gauges is

ζ̄ r
(a)(b)(�σ , �σ1; τ) = ζ̄ r

(a)(b)(�σ , �σ1; τ |θn, φ, Rā]

= dr
γP P1

(�σ , �σ1)

(

PγP P1
e
∫ �σ

�σ1
dσw

2
3ω̄w(c)(τ,�σ2)R̂(c)

)

(a)(b)

=dr
γP P1

(�σ , �σ1)

∞∑

n=0

1∫

0

dsn · · ·
1∫

0

ds1
dσ

in
2 (sn)

dsn

3ω̄in(cn)(τ, �σ2(sn)) · · ·

× dσ
i1
2 (s1)

ds1

3ω̄i1(c1)(τ, �σ2(s1))
(

R̂(cn) · · · R̂(c1)
)

(a)(b)
,

(
R(c)

)

(a)(b)
= ε(a)(b)(c),

�σ2(s) geodesics γP P1, �σ2(s = 0) = �σ1, �σ2(s = 1) = �σ ,

θn = Rā = 0 → dr
γP P1

(�σ , �σ1)|Rā=0

(
PγP P1

e
2
∫ �σ

�σ1
dσw

2 ε(c)(m)(n)δ(m)w

∑
u δ(n)u∂uln φ(τ,�σ2)R̂(c) )

(a)(b)
,

θn = Rā = 0, φ = 1 → ζ
(o)r
(a)(b)(�σ , �σ1) = −δ(a)(b) cr (�σ − �σ1),

∑

r

∂r cr (�σ) = −δ3(�σ), cr (�σ) = − σ r

4π |�σ |3 ,

∑

rb

D̄r(a)(b)(τ, �σ) ζ̄ r
(b)(c)(�σ , �σ1; τ) = −δ(a)(c) δ3(�σ , �σ1), (D1)

where dr is the Synge bitensor tangent to the geodesics γP P1 , joining the point �σ to a
generic point �σ1 on the same �τ . The Green function is defined modulo solutions of
the homogeneous equation

∑
rb D̄r(a)(b)(τ, �σ) ζ̄

(hom)r
(b)(c) (�σ , �σ1; τ) = 0.
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The Green function appearing in Eqs. (3.5) satisfies the following equation

b �=c∑

rbc

[
D̄r(a)((b)

3ēr
(c))

]
(τ, �σ) Ḡ((b)(c))(d)(�σ , �σ1; τ)

= φ̃−1/3(τ, �σ)

b �=c∑

rbc

[

D̂r(a)((b) − 2

(

δ(a)((b) ∂r ln φ+
∑

u

(3ê(a)r
3êu

((b)

− 3ê((b)r
3êu

(a)) ∂u ln φ

)]

(τ, �σ) 3êr
(c))(τ, �σ)

Ḡ((b)(c))(d)(�σ , �σ1; τ) = −δad δ3(�σ , �σ1). (D2)

Its explicit form is not yet known. However we know an inhomogeneous solu-
tion d((b)(c))(d)(�σ , �σ1) (see Eq. (E4) of Ref. [36]) in the flat Minkowski limit, where
Eq. (D2) becomes

b �=c∑

bc

(δab ∂c + δac ∂b) d((b)(c))(d)(�σ , �σ1) = −2 δad δ3(�σ , �σ1). (D3)

The Green function of the modified covariant derivative operator D̃ri j of Eq. (5.5)
is

∑

rk

D̃rik(τ, �σ) ζ̃ r
k j (�σ , �σ1; τ) = δi j δ3(�σ , �σ1),

ζ̃ r
i j (�σ , �σ1; τ) = dr

γP P1
(�σ , �σ1)

∞∑

n=0

1∫

0

dsn

1∫

0

dsn−1 · · ·
1∫

0

ds1
dσ

rn
2 (sn)

dsn
Trni jn (τ, �σ2(sn))

× dσ
rn−1
2 (sn−1)

dsn−1
Trn−1 jn jn−1(τ, �σ2(sn)) · · ·dσ

r1
2 (s1)

ds1
Tr1 j1 j (τ, �σ2(s1)),

(D4)
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