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Abstract Experimental verification of the existence of gravimagnetic fields gener-
ated by currents of matter is important for a complete understanding and formulation
of gravitational physics. Although the rotational (intrinsic) gravimagnetic field has
been extensively studied and is now being measured by the Gravity Probe B, the
extrinsic gravimagnetic field generated by the translational current of matter is less
well studied. The present paper uses the post-Newtonian parametrized Einstein and
light geodesics equations to show that the extrinsic gravimagnetic field generated by
the translational current of matter can be measured by observing the relativistic time
delay and/or light deflection caused by the moving mass. We prove that the extrinsic
gravimagnetic field is generated by the relativistic effect of the aberration of the gravity
force caused by the Lorentz transformation of the metric tensor and the Levi–Civita
connection. We show that the Lorentz transformation of the gravity field variables is
equivalent to the technique of the retarded Lienard–Wiechert gravitational potentials
predicting that a light particle is deflected by gravitational field of a moving body
from its retarded position so that both general-relativistic phenomena—the aberration
and the retardation of gravity—are tightly connected and observing the aberration
of gravity proves that gravity has a causal nature. We explain in this framework the
2002 deflection experiment of a quasar by Jupiter where the aberration of gravity from
its orbital motion was measured with accuracy 20%. We describe a theory of VLBI
experiment to measure the gravitational deflection of radio waves from a quasar by
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the Sun, as viewed by a moving observer from the geocentric frame, to improve the
measurement accuracy of the aberration of gravity to a few percent.

Keywords Relativity · Gravitation · Gravitational deflection of light · Speed of
light · Speed of gravity · Very long baseline interferometry

1 Introduction

A gravimagnetic field, according to Einstein’s theory of general relativity, arises from
moving matter (mass current) just as the magnetic field arises in Maxwell’s theory from
moving charge (electric current). The weak-field linearized theory of general relativ-
ity unveils a mathematical structure comparable to the Maxwell equations [8,62,88].
Hence, this weak-field approximation splits gravitation into components similar to
the electric and magnetic field. In the case of the gravitational field, the source is the
mass of the body, whereas in the case of the electromagnetic field, the source is the
charge of the particle. Moving the charge particle creates a magnetic field according
to Ampère’s law. Analogously, moving the mass creates a mass current which gen-
erates a gravimagnetic field according to Einstein’s general relativity. Ampère-like
induction of a gravimagnetic field (gravimagnetic induction) in general relativity has
been a matter of theoretical study since the Lense-Thirring paper [19,58,64]. Now,
this problem can be tackled experimentally.

There are two types of mass currents in gravity [47]. The first type is produced by
the intrinsic rotation of matter around body’s center of mass. It generates an intrin-
sic gravimagnetic field tightly associated with body’s angular momentum (spin) and
most research in gravimagnetism has been focused on the discussion of its various
properties [19]. Our recent publications [20,47,52,94] as well as papers by other
researchers [2,5,6,17,18,37,39,65,66,68,71,72,77,78,87,89] give a comprehensive
review of various aspects of the intrinsic gravimagnetism. It is interesting to note
that the intrinsic gravimagnetic field can be associated with the holonomy invariance
group [67]. Some authors [10,11] have proposed to measure the intrinsic gravimag-
netic field by observing quantum effects of coupling of fermion’s spin with the angular
momentum of the Earth. It might be worthwhile to explore association of the intrinsic
gravimagnetism with the classic Hannay precession phase [32].1

The first classic experiment to test the intrinsic gravimagnetic effect of the rotating
Earth has been carried out by observing LAGEOS in combination with other geo-
detic satellites [13,15] (see also [1,16,38]) which verified its existence as predicted by
Einstein’s general relativity. Independent experimental measurement of the intrinsic
gravimagnetic field of the rotating Earth is currently under way by the Gravity Probe
B mission [97] (http://www.einstein.stanford.edu/) that is expected to increment the
accuracy of the preceding LAGEOS measurement.

The second type of the mass current is caused by translational motion of matter.
It generates an extrinsic gravimagnetic field that depends on the frame of reference

1 This question is intriguing but nothing has been done to clarify this issue except of some papers by
Spallicci [84,85].
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Gravimagnetism in the gravitational light-ray deflection experiments 1585

of observer and can be completely eliminated in the rest frame of the matter. This
property of the extrinsic gravimagnetic field is a direct consequence of the Lorentz
invariance of Einstein’s gravity field equations for an isolated astronomical system
[25,26] embedded to the asymptotically-flat space-time and its experimental testing
is as important as that of the intrinsic gravimagnetic field. The point is that both the
intrinsic and the extrinsic gravimagnetic fields obey the same equations and, therefore,
their measurements essentially complement each other [47]. Furthermore, detection
of the extrinsic gravimagnetic field probes the Lorentz invariance of the gravitational
field which determines the gravity null cone (domain of causal influence) on which
the gravity force propagates. Experimental verification of the Lorentz invariance (cau-
sality) of gravity is important for the theory of braneworlds [3] and for setting other,
more stringent limitations on vector-tensor theories of gravity [70].

Ciufolini [14] proposed to distinguish the intrinsic and extrinsic gravimagnetic
fields by making use of two scalar invariants of the curvature tensor

I1 = Rαβµν Rαβµν, (1)

I2 = Rαβ
µν Rαβρσ Eµνρσ , (2)

where Rαβµν is the curvature tensor, Eµνρσ is the fully anti-symmetric Levi–Civita
tensor with E0123 = +√−g, and g = det(gµν) < 0 is the determinant of the metric
tensor. Ciufolini [14] notices that weak gravitational field of an isolated astronomical
system yields I2 = 0 if the intrinsic gravimagnetic field is absent. However, making
use of I2 is just one of many possibilities to single out the intrinsic gravimagnetic
field. This question deserves further, more detailed study probably in the spirit of
Petrov’s algebraic classification [75] of gravitational fields or by making use of other
techniques (see, for example, [65,74]). One should not confuse the invariant I2 with
the gravimagnetic field itself. The gravimagnetic field is generated by any current of
matter. Hence, I2 = 0 does not mean that any gravimagnetic field is absent as assumed
by some researchers [73]. Equality I2 = 0 only implies that the gravimagnetic field is
of the extrinsic origin (I1 �= 0), that is generated by a translational motion of matter.

The goal of the present paper is to show that the extrinsic gravimagnetic field can be
measured in high-precision relativistic time-delay experiments conducted in the Solar
system where light (photon, radio wave) interacts with a moving gravitational field of
a massive body [51]. The relativistic light deflection in the rest (static) frame of the
light-ray deflecting body is well-known and was calculated in optics by Einstein [23].
Shapiro [81] has derived the relativistic time delay for radio waves, and the general
relativistic problem of the gravitational deflection and delay of light by an arbitrary
moving point-like and spinning mass has been solved in our papers [52,54]. Light-ray
deflection experiments conducted in the gravitational field of a moving body allow us
to study the global Lorentz transformation properties of the gravitational field since
the angle of the gravitational light deflection is essentially an integral phenomenon
that is not reduced to a local experiment in a particular laboratory frame where the
effect of the gravitational field is reduced to the tidal force. Because both gravity and
light participate in the gravitational deflection of light, one has to develop a formalism
that is capable to trace the Lorentz transformation of the gravitational field variables
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and to distinguish it from that for light. The problem is that conventionally, in general
relativity the speed of gravity is denoted by the same letter as the speed of light making
an erroneous impression that gravity is associated with electromagnetism. The funda-
mental speed c indeed enters many fundamental equations of modern physics but it
has different physical facets which should be clearly distinguished to avoid confusion
in the interpretation of physical laws observed experimentally [24].

To separate relativistic effects produced by the Lorentz transformation of gravita-
tional field from those caused by the Lorentz transformation of electromagnetic field,
we introduce in Sect. 2 a post-Newtonian parameter ε and put it in front of all time
derivatives of the gravity field variables of Einstein’s equations by making use of their
re-scaling

j → ε j , v → εv,
∂

∂t
→ ε

∂

∂t
, (3)

where j and v are the matter current and velocity respectively. Parameter ε can be
interpreted as a label which goal is to track down the possible deviation of the null
cone in general relativity from that in electrodynamics that can be characterized as the
ratio ε ≡ c/cg with c being the constant speed of light, and cg taking a range of val-
ues from cg = ∞ (Newtonian-like gravity) to cg = c (general relativity) [31,44,45].
This parametrization of general relativity preserves the Newtonian limit (ε = 0) of
the Einstein equations and assumes that gravitational potentials and forces obey
(in the background flat space-time) the Lorentz transformation that is parametrized
by the speed of gravity cg. If ε were different from unity, the relativistic Lorentz
transformation for gravity could be different from that in electrodynamics. This dif-
ference can be tested in the light-ray deflection experiments conducted in the field of
a moving gravitating body because in such kind of experiments light interacts with
time-dependent gravitational field and, hence, both speeds of interaction, c and cg, are
involved. The plausible difference of the speed of gravity, cg, from the speed of light,
c, might be an indicator that the gravity force violates the principle of causality, that
is propagate information faster than light. We demonstrate how to test this principle
in the high-precision light-ray deflection experiments in the time-dependent field of a
moving body.

In Sect. 3 we show that the parameter ε is indeed a marker of the Lorentz group
of transformation of the gravitational field variables, given by the matrix �α

β(ε) that
depends on the speed cg ≡ c/ε. This speed defines the ultimate speed of propagation
of the gravitational field in Minkowski background space-time. The Lorentz group of
the electromagnetic field is described by the matrix λα

β ≡ �α
β(ε = 1), and depends

on the speed of light c in vacuum, so that the effects associated with the null char-
acteristics of the electromagnetic and gravitational fields can be clearly discerned by
measuring the numerical value of the parameter ε.

In Sect. 4 we analyze the propagation of light, using the formalism from the previ-
ous sections. Utilizing this formalism, we show that relativistic equations associated
with the propagation of light distinguish between cg and c already in linear terms of the
order of v/cg and v/c beyond the static Shapiro time delay. The linear v/cg correction
is explained by the relativistic effect of the aberration of gravity force associated with
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the gravimagnetic property of the gravitational force propagating with the fundamental
speed cg from the moving light-ray deflecting body to the light particle (photon) [50].

Although Einstein assumed that the Lorentz groups for gravitational and elec-
tromagnetic field are identical [59,69], this theoretical prediction should be tested
experimentally. The compatibility of the two groups can be measured by an experiment
in which both gravitational and electromagnetic fields are observed and transformed
simultaneously from one inertial frame to another. If the experiment is sufficiently
accurate, then the difference between the two Lorentz-transformation speeds, c and
cg, can be measured. Very Long Baseline Interferometric (VLBI) measurements by
observing the propagation of radio waves (light) in the gravitational field of a mov-
ing massive body does have sufficient sensitivity. In Sect. 5, we discuss the physi-
cal interpretations of the deflection experiments similar to the VLBI experiment in
2002 September during which Jupiter passed within 3.7′ of a bright quasar and the
gravity-aberration term (50 µarcsec) was measured to about 20% accuracy
(10 µarcsec) via retarded spatial coordinates of Jupiter in the gravitational time delay
as observed in the barycentric frame [27,48]. A potentially more accurate experiment
to measure the aberration (causality) of gravity can be done when the Sun occults a
bright radio source like 3C279, and in Sect. 6 we discuss theoretical details of the
experiment.

2 Linearized gravity and gravimagnetism

Our cg-parametrized approach allows us to work out successive approximations to
solve the parametrized Einstein gravity field equations by iterations with respect to
various small parameters. We shall use the linearized approximation of the Einstein
equations of general relativity, expanded with respect to the universal gravitational
constant G. The linearized approximation is currently sufficient for analysis of gravi-
tational experiments within the solar system. Terms of the quadratic order in G may be
detected in some future missions [22]. When discussing the astrometric applications,
the additional post-Newtonian expansion will be done with respect to the parameter
characterizing the ratio of spatial to temporal derivatives of the metric tensor. For
slowly moving bodies and test particles this ratio is

∣
∣
∣
∣

∂/∂x0

∂/∂xi

∣
∣
∣
∣
= ε

v

c
= βε, (4)

while for light-ray particles (for which v = c)

∣
∣
∣
∣

∂/∂x0

∂/∂xi

∣
∣
∣
∣
= ε, (5)

where parameter ε = c/cg. If cg → ∞ (that is ε → 0), the general relativity col-
lapses to the Newtonian-like theory in which gravitational waves have infinite speed
so that the aberration of gravity force is absent and all other gravimagnetic phenom-
ena also vanish because the gravitational interaction is instantaneous. We retain in
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the post-Newtonian expansion of observable astrometric quantities all terms up to the
order of ε3, and neglect terms of the higher order since they are not detectable with
the current astrometric accuracy.

In the linearized gravity the metric tensor perturbation hαβ = gαβ −ηαβ of the grav-
itational field contains only the gravielectric, h00 = (2/c2)�, and the gravimagnetic,
h0i = −(4/c2)Ai , potentials [8,19,62]. The space-space components of the metric
tensor perturbation hi j = (2/c2)�δi j , and the higher order terms are neglected. In
the approximation under consideration the gravielectric, E, and the gravimagnetic, B,
fields are formally defined as [8,19,62]

E = −∇� − ε

c

∂ A
∂t

, (6)

B = ∇ × A, (7)

where ∇ ≡ ∂/∂i is a spatial gradient and parameter ε appears in accordance to equation
(3).

We choose to work in the harmonic gauge [26] imposed on the metric tensor. It
does not restrict physical applicability and interpretation of our subsequent results for
the light ray deflection angle and the proper time delay which are directly observable
and, hence, gauge-invariant quantities. In the linearized approximation the harmonic
gauge condition is reduced to the Lorentz gauge, imposed on the potentials � and A,

ε

c

∂�

∂t
+ ∇ · A = 0. (8)

In this gauge the linearized Einstein equations can be written down as a system of the
gravimagnetic field equations [62]

∇ · E = 4πGρ, (9)

∇ · B = 0, (10)

∇ × E = −ε

c

∂ B
∂t

, (11)

∇ × B = ε

c

∂ E
∂t

+ 4πGε

c
j , (12)

where ρ and j are the mass-density and mass-current of the gravitating matter defined
in terms of the energy-momentum tensor Tαβ of matter as ρ = T 00/c2, and j i = T 0i/c
respectively [59,69].

Equations (6), (8), (9) and (12) are equivalent to wave equations for the gravielectric
and gravimagnetic potentials

(

− 1

c2
g

∂2

∂t2 + ∇2

)

�(t, x) = −4πGρ(t, x), (13)

(

− 1

c2
g

∂2

∂t2 + ∇2

)

A(t, x) = −4πG

cg
j(t, x). (14)
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Future gravity cone

Past gravity cone

time

space

space

r

Observer

Light−ray Deflecting Body

World line of the body

Fig. 1 Gravitational field of a moving body is a retarded solution of the gravity-field wave equation (13),
(14). In general relativity, gravitational field originates at the body location at each instant of time s on
its world line at the point z(s), and progresses on the hypersurface of a null cone, attached by its vertex
to the point z(s), from the past to the future. Directions of the propagation restricting the domain of the
causal influence of the gravitational field of the body located at the point z(s), are shown by arrows. The
conventional interpretation of this drawing is that the moving body “emits” the gravitational field at time
s, and observer measures the gravitational field at time t , when the body is located at the retarded position
z(s) on its orbit at the retarded time s = t − r/cg, which is a null characteristic of the gravitational field as
follows from equation (18). For simplicity, the picture shows only one null cone of gravity field. Effectively,
the entire sequence of null cones must be shown for each instant of time corresponding different positions
of the body on its world line

These equations are of the hyperbolic type and describe the propagation of the gravi-
tational field with the speed cg = c/ε. Their physically relevant (causal) solution are
the retarded potentials taken over volume of the body under consideration

�(t, x) = G
∫

Vbody

ρ(s, y)d3 y

|x − y| , (15)

A(t, x) = G

cg

∫

Vbody

j(s, y)d3 y

|x − y| , (16)

where

s = t − 1

cg
|x − y|, (17)

is the retarded time due to the finite speed of propagation of gravity from the body to
the observer (see Fig. 1). In the case of a point-like (or spherically symmetric) massive
body the point y → z, where z is the coordinate of the body’s center of mass. In this
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case the retarded time equation (17) is reduced to

s = t − 1

cg
|x − z(s)|, (18)

where the body’s center-of-mass coordinate z must be calculated at the retarded time s.
This complicates solution of equation (18). Only in case of a uniform and rectilinear
motion of the body, when z(s) is a linear function of time s, equation (18) can be
solved exactly [45].

Solutions (15), (16) are fully compatible with the matrix �α
β(ε) of the Lorentz

transformation (aberration) of the gravitational field, which depends on the funda-
mental speed cg as well. Indeed, equations (13), (14) are invariant with respect to the
Lorentz transformation of the space-time coordinates, the gravitational potentials and
the source variables using the matrix �α

β(ε) (see §III and §IV for more detail). Thus,
measuring the aberration of gravitational force would allow us to measure its relativ-
istic properties such as the strength of gravimagnetic field [47], the speed of gravity
propagation [27,48], etc. In the case of the instantaneous speed-of-gravity theory,
where cg = ∞, equations (13), (14) are reduced to a single Laplace-type equation for
the scalar potential � and both the gravimagnetic potential, A, and the gravimagnetic
field, B, vanish. The Lorentz invariance of the gravitational field in such theory is
totally broken and is not defined.

The retarded potentials can be expanded in the post-Newtonian series. Formally, it
is expansion in the Taylor series with respect to the parameter ε (that is, with respect
to the speed of gravity cg). It yields

�(t, x) = G
∫

Vbody

ρ(t, y)d3 y

|x − y| + O
(

ε2
)

, (19)

A(t, x) = G

cg

∫

Vbody

j(t, y)d3 y

|x − y| + O
(

ε3
)

. (20)

Notice that the post-Newtonian expansion (20) of the gravimagnetic potential A com-
mences on the term being proportional to the speed of gravity cg. This is because
the gravimagnetic field does not exist in the alternative theories of gravity where the
gravity field propagates instantaneously, like the magnetic field would not exist in a
hypothetical electromagnetic theory with the speed of light being equal to infinity.2

It is important to understand that the effects of the finite speed of gravity reveal them-
selves not only through the retardation effects associated with second time derivatives
in wave equations (13), (14), but also through the first time derivatives in equations
(6)–(12). It makes sense since the first time derivatives control the gravimagnetic
and aberrational effects of the gravitational field in the near zone which are matched
smoothly to the radiative-zone effects of emission and propagation of free gravitational
waves generated by the isolated system.

2 We keep the speed of light, c, constant.
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For a point-like massive body the mass current j = ρv, and the integrals (19), (20)
are reduced to

� = −G M

r
+ O

(

ε2
)

, A = v

cg
� + O

(

ε3
)

, (21)

where r = |r|, r = x − z(t), and z(t) is a coordinate of the body’s center of mass
in the global frame of reference. In Sect. 3 we show that the potential A appears as
a consequence of the Lorentz transformation of the gravitational field from the static
frame of the body to the global (barycentric) frame. This establishes a correspondence
between two ways of calculation of the gravimagnetic potential—directly from the
field equations in the global frame, and by making use of the Lorentz transformation
of the potential � from the static to a moving frame.

3 Lorentz invariance and aberration of gravity

The transformation between two reference frames moving with a constant velocity
with respect to each other, is described by the Lorentz transformation. The gravity
field equations (13), (14) are invariant with respect to the Lorentz group with the
matrix of transformation �α

β(ε) having the “standard” form [59,69]

�0
0(ε) = γε ≡

(

1 − β2
ε

)−1/2
, (22)

�0
i (ε) = �i

0(ε) = −γεβ
i
ε, (23)

�i
j (ε) = δi j + (γε − 1)

β i
εβ

j
ε

β2
ε

, (24)

where the boost parameter β i
ε = εvi/c = v/cg, and v ≡ (vi ) is the relative velocity of

observer with respect to the gravitating body. The matrix of the inverse transformation
�̄α

β(ε) = �α
β(−ε). Moreover, the transformation preserves the form of the Minkowski

metric

ηαβ = �µ
α(ε)�ν

β(ε)ηµν. (25)

The Maxwell equations are invariant with respect to the Lorentz group of electrody-
namics with the matrix of transformation λα

β , given by [59,69]

λ0
0 = γ ≡

(

1 − β2
)−1/2

, (26)

λ0
i = λi

0 = −γβ i , (27)

λi
j = δi j + (γ − 1)

β iβ j

β2 , (28)
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where the boost parameter β i = vi/c. The matrix of the inverse transformation
λ̄

µ
ν (β) = λ

µ
ν (−β). Notice that λα

β = �α
β(ε = 1).

If ε �= 1, the Lorentz transformation of the gravitational field, given by the matrix
�α

β(ε), is different from that of the electromagnetic field equations, given by the
matrix λα

β . Physically, this means that gravitational interaction has the speed cg that
differs from the speed c for electromagnetic field. In the case of the instantaneous
speed-of-gravity theory, when ε = 0, the transformation (22)–(24) degenerates to
�α

β(ε = 0) = δα
β because the space-time manifold is split in the Newtonian-like

absolute time and absolute space with a single gravitational potential � residing on it.
Lorentz transformation between two inertial frames, xα and x ′α , in gravity and

electromagentic field equations are given by two different equations

x ′α = �α
β(ε)xβ, (29)

x ′α = λα
β xβ. (30)

Equation (29) transforms coordinates in the gravity field equations (13), (14) while
equation (30) transforms coordinates in the Maxwell equations. It is important to
observe that in the limiting case of a very slow velocity v the spatial part of the two
boosts (29) and (30) is reduced to two Galilean transformations [59] that are not
identical because cg �= c. Specifically, equation (29) yields

x ′i = xi − εvi t + O(β2
ε ), (31)

while the slow-velocity limit of equation (30) is reduced to

x ′i = xi − vi t + O(β2). (32)

If one deals only with gravity field equations, the spatial coordinates xi can be rescaled,
xi → εxi , so that the parameter ε = c/cg in equation (31) can be eliminated from
linear terms and the difference between cg and c will reveal itself only in the post-
Newtonian terms of order of (v/c)2 and higher.3 Gravitational light-ray deflection
experiments observe interaction between light and gravity which depends on the spa-
tial distance |x − z| between coordinate x of the light particle and that z of a massive,
light-ray deflecting body. Transformation from one to another reference frame changes
their coordinates differently according to equations (31) and (32). Hence, the parame-
ter ε can not be eliminated from the Galilean transformation of the relativite distance
|x − z| by the re-scaling of the spatial coordinates z of the body. Thus, it can be
measured already in the linear post-Newtonian correction of order of εv/c caused by
translational motion of the body and appearing explicitly beyond the static part of the
Shapiro time delay and/or standard Einstein’s light-ray deflection equation [46,49].

3 Equation (31) can be also presented in the Newtonian-like form by replacing time t → τ = εt . If ε �= 1
the dynamic time τ = εt in gravity is different from atomic time t in electrodynamics. Hence, measuring
motion of photons in time-dependent gravitational field allows us to find out the presumable difference
between the two times, τ and t , that is to measure ε = c/cg (see [44] for more detail).
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Since the current light deflection experiments are not sensitive enough to measure
the deflection of light caused by the body’s spin, we shall neglect the intrinsic gravi-
magnetic field associated with the rotation of the body in the remainder of this paper.
This approximation eliminates from equations (9)–(14) all rotational currents. (see
[19] for more discussion of this intrinsic rotation field). The equations (9)–(14) solved
in the static frame of the light-ray deflecting body show that in this frame the potentials,
�′ = (c2/2)h′

00 = −G M/r ′, A′ = −(c2/4)h′
0i = 0, and the fields, E′ = −∇�′ �= 0,

B′ = ∇ × A′ = 0, where r ′ = |x′| is the radial coordinate of a field point in the static
frame, and M is mass of the body. Transformation of the static field potentials to the
moving frame is obtained by applying the Lorentz transformation to the metric tensor
(gravitational field) perturbation

hαβ = �µ
α(ε)�ν

β(ε)h′
µν, (33)

and is given more explicitly by equations

� = γ 2
ε

[(

1 + β2
ε

)

�′ + 4
(

βε · A′)] , (34)

A = γε A′ + γ 2
ε

[

�′ + 2γε + 1

γε + 1

(

βε · A′)
]

βε . (35)

We emphasize that the gravitational potentials are transformed in accordance with
the law of the Lorentz transformation of the gravitational field (33) so that it is the
gravity null cone which enters these transformations. The light cone enters the law
of the Lorentz transformation of the electromagnetic field (light). The presence of the
gravity null-cone terms is traced by the parameter ε in all equations, and each phys-
ical effect directly associated with the finite speed of gravity can be unambiguously
distinguished from that coupled to the light cone.

Comparison with the PPN metric [95] shows that our approach formally yields
the following values of the PPN parameters [45]: γ = β = 1, α1 = 8(ε − 1),
ξ = ζ1 = ζ2 = ζ3 = ζ4 = α2 = α3 = 0. We emphasize, however, that measurement
of ε is not equivalent to an independent measurement of α1 in the PPN formalism
framework [96], since the PPN formalism assumes that ε = 1 while α1 �= 0. This
means that the two parameters have different physical origin (see next section) and
coincide with each other accidentally due to the specific of the parameterizations
adopted in [95] and in the present paper. Besides the measurement of α1 is impossible
without making an assumption about the existence of a global preferred frame, usually
associated with the isotropy of the cosmic microwave background radiation (CMBR)
[96]. Existence of such a “preferred frame” in cosmology should not be related to a
possible violation of the Lorentz invariance of gravitational field. It simply confirms
that our universe is homogeneous and isotropic on large cosmological scales. In con-
trast to the PPN formalism, the existence of the relativistic effects parametrized by ε

do not depend upon the “preferred-frame” assumption. Evaluation of the numerical
value of ε itself is rendered through the measurement of the retardation of gravity
effect in the gravitational time delay of light by moving bodies as shown in [27,45,48]
and in equations (67)–(69) of this paper.
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The Lorentz transformation (35) generates the gravimagnetic potential A and the
gravimagnetic field B associated with the translational motion of the (non-rotating)
light-ray deflecting body. Neglecting the quadratic terms in equations (34), (35) one
obtains in the linear approximation that

� = −G M

r
+ O

(

ε2
)

, A = 1

cg
�v + O

(

ε3
)

, (36)

where r = |r|, r = x − z(t), and z(t) is a coordinate of the body’s center of mass in
the barycentric frame. We emphasize that the Lorentz transformation (34), (35) of the
gravimagnetic potentials assumes that at each instant of time the motion of the body is
approximated by a straight line with constant velocity v = d z/dt . We also bring the
reader’s attention that the equations (36) are fully compatible with, and have the same
physical content as the post-Newtonian solutions (19), (20) of the wave equations (13),
(14).

The Lorentz transformation of the static field E′ of the body generates the gravi-
magnetic field

B = 1

cg
(v × E) , (37)

where E = −∇�. Equation (37) results from definition (7) and equation (36). The
Lorentz transformation (34), (35) describes change (aberration) in the arrangement of
the gravitational field lines of the body, measured in two different frames. Equations
(36), (37) describe this gravimagnetic effect of the extrinsic gravimagnetic field in the
linear approximation with respect to the parameter ε = c/cg.

To summarize this section, in classical electrodynamics a uniformly moving charge
generates magnetic field. This is because the Lorentz transformation generates electric
current which produces the magnetic field. The resulting magnetic field is real, since it
couples to electric field in a gauge-invariant way, and can be measured. Its observation
confirms that electromagnetic field is Lorentz-invariant and its speed of propagation
is c [40]. Similarly, the gravimagnetic potential (36) and the gravimagnetic field (37)
are solutions of the Einstein equations and lead to gauge-invariant observable effects
which can be measured in gravitational experiments. It provides a test of the Lorentz
invariance of gravitational field and measurement of the fundamental speed of grav-
ity cg = c/ε which controls the causal property of gravity (see Sect. 5.6) and the
gravimagnetic effects.

4 Lorentz transformation of gravity and light in the Shapiro time delay

4.1 Equation of light propagation and its Lorentz transformation

In the general theory of relativity, the equations of motion for light propagating in
vacuum are null geodesics, and the general relativistic equations of light propagation
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parameterized by coordinate time t are [45]

d2xi

dt2 = c2kµkν
(

ki�0
µν − �i

µν

)

, (38)

where kµ = (1, k) is a null four-vector (ηµνkµkν = 0) of a photon, and k = (ki ) is
the unit Euclidean vector that is tangent to the unperturbed photon trajectory. The null
vector kµ is transformed in accordance to the Lorentz group of the transformation of
electromagnetic field

K µ = λ̄µ
νkν, (39)

where K µ and kµ are components of the null vector of photon in the static and moving
reference frames, respectively, and λ̄

µ
ν is the matrix inverse with respect to λ

µ
ν . The

Levi–Civita connection describes the force of gravitational attraction and is trans-
formed in accordance with the Lorentz group of transformation of gravitational field,
that is

�α
βγ = �α

σ (−ε)�
µ
β(ε)�ν

γ (ε)�′σ
µν. (40)

If the parameter ε �= 1, the Lorentz group of electromagnetic field does not coincide
with that of gravitational field. Hence, the equation (38) must be modified in order to
keep it form-invariant. It is beyond the scope of this paper to derive this generalized
equation of light propagation in a particular theory of gravity with broken Lorentz
invariance of gravitational field. This problem has been tackled in our papers [49,56].
The goal of the present paper is to test whether the Lorentz group of transformation
of gravitational field coincides with that of electromagnetic field. To achieve this goal
we assume that equation (38) is valid in the observer frame with respect to which a
light-ray deflecting body is moving. Then, we take electromagnetic and gravitational
field variables in the static frame of the body and apply the Lorentz transformation with
ε = 1 for light and ε �= 1 for gravity, thus, obtaining their transformed values which
are substituted to equation (38). The obtained equation is parametrized by parameter
ε, and measuring ε in gravitational time-delay experiments allows us to measure the
speed of gravity cg with respect to the speed of light.

Final notice relates to the nature of the light-ray geodesic equation (38). Some
researchers (see [96,98] and references therein) state that because this equation
describes propagation of light it can not contain any information about the speed
with which gravity propagates. Such statement is valid only in case when the light-ray
deflecting body is at rest both with respect to observer and to the source of light.
However, the right side of equation (38) is the gravity force acting on a light particle,
and in case when the body is moving, the force of gravity does not propagate instanta-
neously from the body to the light particle. This propagation of gravity is in the form
of the “acceleration-dependent” gravitational field when the light particle moves in a
far (radiative) zone of the body where transverse-traceless gravitational waves domi-
nate. In the near (non-radiative) zone of the body’s gravitational field the gravitational
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interaction propagates to the light particle in the form of the “velocity-dependent” grav-
itational field. The acceleration-dependent and the velocity-dependent components of
gravitational fields always present together in the most general case of accelerated
worldline of the light-ray deflecting body. In case of a uniformly moving body, the
acceleration-dependent part of gravitational field of the body is absent and transverse-
traceless gravitational waves are not emitted. The radiative zone is absent and the light
particle always moves in the near zone of the body described by its velocity-dependent
component. But it does not mean that the interaction of the light particle with the veloc-
ity-dependent component is instantaneous. The gravitational field still obeys the causal
property and the light particle can “feel” the gravitational field only after it crosses the
gravity null cone as shown in Fig. 2 which is based on the result of the integration of
the light-ray propagation equation (38) as shown in Sect. 4.3.

Some researchers also states erroneously that the principle of equivalence tells us
nothing about the speed of gravity [96,98]. This is because the principle of equivalence
eliminates gravitational force acting on a test particle at each point of its world line
by making a local coordinate transformation to a free-falling coordinate system. This
statement is true, but it is not applicable to the light-ray deflection experiments which
are essentially non-local and, as such, test the global properties of the gravitational
field which cannot be measured in local experiments. Gravitational field cannot be
eliminated along the entire light-ray trajectory by a single coordinate transformation.
Therefore, when the body is moving, a light particle propagates through non-zero,
time-dependent gravitational field which cannot interact with the particle instanta-
neously if the speed of gravity is finite. The light particle (photon) propagates through
a sequence of the gravity null cones depicted in Fig. 2 which describes the interaction
of the light particle with the gravitational field of the body in the background flat
space-time. Gravitational light-ray deflection angle and time delay are integrals taken
along the unperturbed light null cone but the gravity null cone enters this calculation
as well through the time derivatives in the Christoffel symbols normalized to the speed
of gravity cg (see next Section). Our calculations reveal, that numerical values of the
time delay and the deflection angle of the light particle, after it passes the light-ray
deflecting body, are determined at each point of the light-ray trajectory (for instance,
points 3, 4, 5 in Fig. 2) by the retarded positions of the body (positions C, D, E in
Fig. 2) connected to the light particle by the gravity null cone. The retarded position
of the body must not be confused with the point of the closest approach of the light
particle to the body. The point of the light’s closest approach lies on the light null
cone and can be spatially close to the retarded position of the body at the time of
observation. However, the equation defining the point of the closest approach does not
follow from the result of the integration of the light ray in the gravitational field of a
moving body, and appears nowhere in the mathematical description of the observable
quantities like the time delay and the total deflection angle of light.

This mathematical prediction of the retarded position of the body in the expressions
for the time delay and the deflection angle follows from the causal nature of the gravity
field equations, and it leads to the inevitable conclusion that at the time of observation,
t , the photon received by observer (point 5 in Fig. 2) is deflected and delayed by the
body’s gravitational field from the retarded position (point E in Fig. 2) of the body,
z(s), taken on the “last” gravity null cone (see equations (67) and (69 below). If the
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the "last" gravity cone
the "la

st" 
gravity cone

Time

Space

Observer Light−ray−deflecting body’s worldline

Star/Quasar

3

4

2

5

1

A

E

D

B

C

Fig. 2 A photon is emitted by a source of light (star/quasar) and propagates along a hypersurface of light
null cone (solid red line) toward observer. Gravitational field of a light-ray deflecting body propagates along
the gravity null cone (dashed green lines) and interacts with the photon at the points of intersection of the
light and gravity null cones (points 1 through 5). Gravitational light-ray deflection angle and time delay
are integrals along the light null cone but their numerical values are determined by the retarded position
of the body on the gravity null cone connecting the body and the photon as follows from equations (67)
and (69). Observer measures the time delay and the deflection angle of the photon at time t corresponding
to point 5. At this time the time delay and the deflection angle are determined by the body position taken
on the “last” gravity null cone at point E. Notice that the point of the closest approach of light ray and/or
the time of the closest approach of the photon to the body are irrelevant to the process of interaction of
light with gravitational field of a moving body, as follows from the result of integration of the light-ray
propagation equation. This picture illustrates the case when the gravity and light null cones are formally
different (cg �= c). In general relativity the gravity null cone coincides with the light null cone and the
photon, after it passes the body, moves in the gravitational field of the body which is practically “frozen”
for this photon [54] because the speed of gravity is the same as the speed of light

speed of gravity cg is infinite, the body deflects (and delays) light by its gravitational
field taken at the time t , when it reaches observer, which means that the gravity prop-
agates information about position of the body instantaneously, and does not obey the
causality principle. This consideration reveals that the gravity null cone (determined
by the speed of gravity) is an essential part of the light-ray deflecting experiments
conducted in the field of a moving massive body (see Sect. 5.6; Fig. 3 for further
details) which space-time structure can be measured in the ultra-precise observation
of the deflection of light coming to observer from a star/quasar. This study refutes the
arguments presented in [96,98] that are based on misconceptions in understanding of
the interaction of electromagnetic and gravitational fields.
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Observer

Star/Quasar

space

time

space

r

Light−ray Deflecting Body

Past light cone

Future gravity cone

Fig. 3 Gravitational field of a moving body affects only the particles lying on the hypersurface of the future
gravity null cone due to the gravity causal nature. A photon emitted by a source of light (star, quasar) at time
t0 arrives to observer at time t along a null direction of the past light cone with the observer located at its
vertex. As explained in Sect. 5 and in caption to Fig. 2, the photon detected at time t , is deflected by planet’s
gravity force from the planet’s retarded position taken at time s = t −r/cg that is a null characteristic of the
retarded solution of the gravity-field wave equations (13), (14). This effect of the retardation of gravity can
be observed by measuring the amount and direction of the gravitational deflection of starlight by a moving
body. In general relativity cg = c, hence, the future gravity null cone of the body and the past light cone of
the observer must coincide along the null direction which is simultaneously characteristic of the Maxwell
and Einstein equations. This bi-characteristic nature of general relativity led to the confusing statements in
literature (see [96,98] and references therein) that the Jovian light-ray deflection experiment measured the
speed of light coming from the quasar. In fact, the light was used to measure the amount and direction of
its gravitational deflection from which the orbital position of the Jupiter was derived as predicted by the
equations (67), (68) [27]

4.2 Lorentz transformation of the Levi–Civita connection

The Levi–Civita connection �′α
µν in a static frame is given by the equations

�′0
00 = �′0

i j = �′i
0 j = 0, (41)

�′0
0i = �′i

00 = − ∂�′

∂x ′i , (42)

�′i
j p = −δ j p

∂�′

∂x ′i + δi p
∂�′

∂x ′ j
+ δi j

∂�′

∂x ′p , (43)

where �′ = (c2/2)h′
00 = −G M/c2r ′, and r ′ = |x′|. As follows from equations

(41)–(43), the Levi–Civita connection is associated in the static frame with the force
of gravitational attraction [59,69]: it is not associated with electromagnetism. There-
fore, its transformation in equation (40) from the static to a uniformly moving frame
must be done with the matrix �α

β(ε) pertained to the Lorentz transformation of the
gravitational field. Substituting the matrix of the Lorentz transformation (22)–(24) to
equation (40) and making use of equations (41)–(43) along with equations (34) and
(35), yield the components of the Levi–Civita connection in the moving frame

�0
00 = − 1

cg

∂�

∂t
, (44)
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�0
0i = − ∂�

∂xi
, (45)

�0
i j = +2

(
∂ A j

∂xi
+ ∂ Ai

∂x j

)

+ 1

cg

∂�

∂t
δi j , (46)

�i
00 = − ∂�

∂xi
− 4

cg

∂ Ai

∂t
, (47)

�i
0 j = −2

(
∂ Ai

∂x j
− ∂ A j

∂xi

)

+ 1

cg

∂�

∂t
δi j , (48)

�i
j p = −δ j p

∂�

∂xi
+ δi p

∂�

∂x j
+ δi j

∂�

∂x p
, (49)

where the parameter ε = c/cg explicitly appears in front of the time derivatives
in equations (44), (46)–(48) as a direct consequence of the Lorentz transformation
law (40). Its appearance complies with the phenomenological parametrization rule
in equation (3), tracking the presence of the fundamental speed of gravity in various
gravitational equations.

It is important to compare equations (44)–(49) with the definition of the Levi–Civita
connection adopted in the PPN formalism [95] which postulates that the transformation
of the connection obeys the “electromagnetic” rule

�α
βγ = λ̄α

σ λ
µ
βλν

γ �′σ
µν, (50)

where λα
σ is the matrix of the Lorentz transformation of electromagnetic field. Straight-

forward calculations reveal that

�0
00 = −1

c

∂�

∂t
, (51)

�0
0i = − ∂�

∂xi
, (52)

�0
i j = +2

(
∂ A j

∂xi
+ ∂ Ai

∂x j

)

+ 1

c

∂�

∂t
δi j , (53)

�i
00 = − ∂�

∂xi
− 4

c

∂ Ai

∂t
, (54)

�i
0 j = −2

(
∂ Ai

∂x j
− ∂ A j

∂xi

)

+ 1

c

∂�

∂t
δi j , (55)

�i
j p = −δ j p

∂�

∂xi
+ δi p

∂�

∂x j
+ δi j

∂�

∂x p
, (56)

which should be compared with equations (44)–(49). One can see that the PPN-defined
Levi–Civita connection (51)–(56) assumes explicitly that the parameter ε = 1, which
excludes it from the set of the parameters that probes the relativistic transformation
properties of the gravitational force (the Levi–Civita connection).

Obviously, our ε-parametrization of the Einstein equations [45] will make all time
derivatives of the gravitational potentials vanish if the speed of gravity cg → ∞.
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This is intuitively pleasing since the limit cg → ∞ corresponds to the case of the
infinite speed-of-gravity theory where the gravitational interaction is instantaneous,
and both the gravity field equations and equations of motion of test particles, which
depend on the Levi–Civita connection, should not contain any time derivatives of the
gravitational field.

In contrast, the PPN formalism [95] demands that the equations of motion of test
particles depend on the connection (51)–(56) that contains non-vanishing first time
derivatives of the gravitational field even in the limit cg → ∞ because equations (51)–
(56) do not depend on the fundamental speed of gravity cg explicitly. In other words,
the PPN formalism orders that the gravitational force propagates with the speed of
light and in this framework, the speed of gravity cannot be tested. We, thus, consider
the PPN equations (51)–(56) essentially incomplete because the degree of freedom
corresponding to the propagation of gravitational force that may differ from the speed
of light is missing.

4.3 Gravitational time delay and deflection of light

The double integration of equation (38) along the unperturbed light ray yields the time
of propagation of light from the point xi

0 to the point, xi = xi (t), on the trajectory of
the light ray

t − t0 = 1

c
|x − x0| + �(ε), (57)

where the relativistic time delay [45]

�(ε) = c

2
kµkνkα

t∫

t0

dτ

τ∫

−∞
dσ

[

�α
µν(σ, x)

]

x=xN (σ )
(58)

is a function of the coordinates of emission, xi
0, and the point, xi , where the light

particle is located at the time t . Integration in equation (58) is along a straight line of
unperturbed propagation of the photon

xN (t) = x0 + ck(t − t0), (59)

where t0 is time of emission, x0 is the coordinate of the source of light at time t0.
By substituting equations (44)–(49) into the time delay equation (58) and making use
of the gauge condition in equation (8) in order to replace the time derivative of the
potential � to the divergence of the potential A, we obtain the following form

�(ε) = 2

t∫

t0

�(τ, xN (τ ))dτ − 2

(

1 − 1

ε

)

×
t∫

t0

dτ

τ∫

−∞

[

∇ · A(σ, x)
]

x=xN (σ )
dσ + O

(

δ2
)

, (60)
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where δ ≡ ε − 1 and all terms of order δ2 or higher are omitted. The potentials �

and A are given by equation (36) and are taken on the unperturbed light-ray trajectory
(59); that is, x = xN (t). We emphasize that the standard PPN formalism, with ε = 1,
ignores the possible presence of the second term in the right side of equation (60)
which comes from the explicit dependence of �α

µν on cg in the right side of equa-
tions (44)–(49). For this reason the PPN formalism is not sensitive to violation of
the Lorentz-invariance of the gravitational force associated with the transformation
of the Levi–Civita connection [45], and is helpless in physical interpretation of the
gravitational light-ray deflection experiments.

When light propagates through a gravitational field, it is not only delayed but
deflected as well. Let us denote αi the angular coordinates of the deflection vector
referred to the plane of the sky that is orthogonal to the unit vector ki that defines
propagation of the unperturbed light ray. In general relativity, the deflection vector αi

is defined as a spatial derivative of the relativistic perturbation of the electromagnetic
phase [59,69] that is proportional to the time delay (60), plus the observer-dependent
relativistic correction taking into account non-integral (local) interference of the light-
ray particle with the gravitational field perturbations.4 We use this definition in our
parametrized approach, and define the parametrized value of the deflection angle as

αi (ε) = −cPi j
[
∂�(ε)

∂xi
− kαhiα

]

, (61)

where Pi j = δi j − ki k j is operator of projection on the plane of the sky orthogonal
to vector ki .

4.4 Characteristic time interval and spatial domain of the gravitational deflection
of light

In the evaluation of equation (60), the duration of the time integration interval is
important for better understanding of the gravitational physics of the light-ray deflec-
tion experiments. The region of space and time interval during which the interaction
of light particle with gravitating body is relevant can be estimated as follows: A light
particle is deflected (scattered) by a long-range gravitational force whose potential
� decreases basically as 1/r , where r is the distance of the light particle from the
light-ray deflecting body. The approximate expression for the deflection angle α of a
light particle emitted at infinity is obtained from equation (61), if one neglects motion
of the light ray-deflecting body. For an observer located behind the body with respect
to the source of light, the result is [59,69]

α(r) = 4G M

c2d

r√
r2 − d2

, (62)

4 Exact Lorentz-invariant equation for the total light-ray deflection angle αi in the framework of general
relativity for the case ε ≡ 1 has been derived in our paper [54] and is given by equation (67) in there.
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where d is the impact parameter of the light ray with respect to the body that is fixed
in space at some instant of time.5 Let us assume that the astrometric accuracy for the
angular measurements is �α. Then, the region of radius rs from the body where the
gravitational interaction of light with the body is significant is determined by solving
equation

α∞ − α(rs) = �α, (63)

where α∞ = 4G M/c2d. We assume that d < rs so that we can solve equation (63)
by expanding it in a Taylor series with respect to the parameter d/rs , which gives

rs � d
( α∞

2�α

)1/2
. (64)

The time that it takes light to cross this region is

ts = 2rs

c
� d

c

(
2α∞
�α

)1/2

, (65)

which gives us a characteristic time of the gravitational interaction of light with the
body under consideration, assuming an angular tolerance of �α.

Current VLBI technology can measure changes in the relative angles between
sources in the sky with an accuracy ∼10 µarcsec [27], and in the next decade the
accuracy may approach ∼ 1 µarcsec = 5 × 10−12 rad [28,79] (http://www.planet-
quest.jpl.nasa.gov/SIM/, http://www.gaia.esa.int/). As an example, consider the Sun
as a light-ray deflecting body with the light-ray impact parameter d = R
 = 7×1010

cm—the radius of the Sun. Using a tolerance of �α = 10µarcsec, we obtain from
equation (64) that rs � 300R
 = 2.1 × 1013 cm. This means that a moving parti-
cle of light continuously interacts with the gravitational field of the Sun in a region
around the Sun with the size which is slightly above one astronomical unit (1 AU =
1.5 × 1013 cm). The light travel time across this region is ts ∼ 23 min which gives the
characteristic time of interaction of light particle with the gravitational field of the Sun
for an assumed astrometric accuracy. Similar calculation for the light particle moving
in the gravitational field of Jupiter and grazing its limb, shows that the characteristic
time of light scattering is about ts � 14 s, and the region of the gravitational interaction
of light with Jupiter is about rs � 30 jovian radii.

These estimates elucidate that the characteristic time of interaction of electromag-
netic signal and gravity in the light-ray deflection experiments is sufficiently large so
that this interaction cannot be considered as an instantaneous scattering by a point-like
mass to produce a total deflection angle α∞. This “instantaneous-scattering” point of
view about the gravitational deflection of light is commonly used in the gravitational
lensing theory to map images of the sources of light from the source plane to observer

5 More precisely, the impact parameter of the light ray is the spatial distance of the closest approach of the
ray to the light-ray deflecting body. In general, it depends on the coordinate frame used for calculations.
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[80]. However, it may be a misleading concept for analysis of the light-ray deflection
experiments in the solar system.

5 Summary of the physical interpretations of the deflection experiments
in the field of a moving gravitational body

5.1 Significance of the velocity-dependent corrections caused by motion of the body

Relativistic corrections caused by the motion of the light-ray deflecting body are
directly associated with transformation properties of the gravitational field regulated
by the fundamental speed of gravity cg which defines the null cone of gravity prop-
agation. For example, consider the relativistic deflection of light caused by the Sun
and viewed from the geocentric frame. The Sun moves in this frame with velocity
v
 � 30 km/s and acceleration a
 � 0.6 cm/s2. Let us also assume that position of
the Sun z(t) is fixed at some instant of time tA, z(tA), and that the total angle of the
deflection of light is given by equation for a static gravitating body: α = 4G M
/c2d,
where d is the impact parameter of the light ray with respect to the body referred to
the time tA.

A light ray grazing the solar limb (d � R
) interacts with the Sun during time
ts ≤ 23 min for an assumed angular accuracy of 10 µarcsec. Hence, if one ignores
the geocentric velocity of the Sun it will produce an error δd = v
ts in the value of
the impact parameter, which leads to error δαv in calculation of the angle of the grav-
itational light deflection of δαv ∼ α
(v
ts/R
) � 105 mas, where α
 = 1.75′′. The
geocentric acceleration of the Sun, a
 = v̇
, introduces an error δd = a
t2

s /2 to the
impact parameter and an error δαa ∼ α
(a
t2

s /2R
) � 15 µarcsec to the deflection
angle.6 These estimates clearly show that, if precision of angular measurements is
approaching 10 µarcsec, the relativistic deflection of light and the Shapiro time delay
in the geocentric frame are affected by the geocentric velocity and acceleration of the
Sun and, hence, must be taken into account for adequate physical interpretation of the
results of the solar gravity-deflection experiments.7

Because both light and the gravitating body are moving as the light propagates,
the instant of time tA associated with the impact parameter d (when the deflection is
greatest) requires precise evaluation of appropriate time delay and deflection integrals.
Some claims state [35] that this instant of time is the time of the closest approach of
photon to the light-ray deflecting body. However, these claims were based rather on an
intuitive guess than on precise mathematical calculation of tA. The appropriate calcu-
lation shown below in equations (66)–(69) for the time delay in the field of a moving
gravitating body (see [45,48,49]) shows that it deflects light from the retarded position
z(tA) = z(s) on its world line where the retarded time s is defined by equation (68) for
null characteristics of the gravitational field produced by a moving body. This result

6 Proper physical treatment of the acceleration-dependent relativistic effects in the propagation of light ray
requires more extended mathematical calculations (see, for example [54]).
7 The magnitude of the acceleration-dependent terms in the light-ray deflection experiments shown in [98]
is at the thousandths of a picosecond level (< 10−4 µarcsec). We emphasize that this estimate relates to
terms of higher order than those taken into account in the present paper.
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is in a full agreement with general relativistic prediction that the causality principle
for gravity is valid and that the gravity propagates and interacts with other particles
on the null cone.

5.2 Time delay and deflection of light by a moving body

Integration of equation (60) for the time delay can be performed with sufficient accu-
racy under the assumption of uniform and rectilinear motion of the light-ray deflecting
body with constant velocity v, that is

z(t) = z(tA) + v(t − tA) + O(t − tA)2, (66)

where z(tA) is the position of the body at time tA, with quadratic and acceleration-
dependent terms neglected. Light propagates through time-dependent gravitational
field as shown in Fig. 2 and the time delay is given by an integral along the light-ray
trajectory. The evaluation of the integral in the time delay is tedious but straightfor-
ward, and exhaustive description of this calculation can be found in sections 3 and 4
of our paper [45], so they are not repeated here. The result is given by [44,45]

�(ε) = −(1 + γ )

(

1 − 1

cg
k · v

)
G M

c3 ln (r − k · r) + O
(

δ2
)

, (67)

where δ ≡ ε − 1, r = x − z(s), v = d z(s)/ds is velocity of the body, and the
coordinates and velocity of the light-ray deflecting body in equation (67) are taken at
the retarded time tA = s where

s = t − 1

cg
|x − z(s)|. (68)

Equations (67), (68) were used to draw Fig. 2. It shows that the relativistic time delay
of photon at each consequtive point on its trajectory is determined by the position x
of the photon at time t , and the retarded position of the body z(s) on the gravity null
cone with vertex of the gravity cone on the world line of the body taken at the retarded
time s in accordance with equation (68). Notice that neither the point nor the time of
the closest approach of the photon to the body appear in the expression (67) for the
time delay.

From now on, we shall treat the point x on the light-ray trajectory as taken at the
point of observation, and time t as the time of observation (point 5 in Fig. 2). This is
because we cannot make any measurement of photon before it arrives to observer. It
is remarkable that the retardation time s of gravity is determined only by the “last”
gravity null cone connecting the body and the observer at the time of observation of
the photon t . For this reason, we do not show in Figs. 3 and 4 the entire sequence of
the gravity null cones interacting with light like we did in Fig. 2. The appearance of
the speed of gravity cg in equation (68) reflects the fact that the gravity force generated
by the moving body does not interact with light instantaneously but with a finite speed
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because of its causal nature. Had the gravity propagated instantaneously with cg = ∞,
the time delay equation (67) would depend on the position of the light-ray deflecting
body taken at the time of observation t . Graphical presentation of the gravitational
physics lying behind the time delay equation (67) is shown in Figs. 2 and 3 (see also
graphics in [49]).

The light-ray deflection vector in the plane of the sky is calculated from equation
(61) and is given by

αi (ε) = (1 + γ )
G M

c2

(

1 − 1
cg

k · v
)2

r − 1
cg

v · r

ξ i

r − k · r
− (1 + γ )

2G M

c2r

vi
T

cg
+ O

(

δ2
)

,

(69)

where ξ i = Pi
jr

j is the impact distance of the light ray to the moving body taken at

the retarded instant of time, and vi
T = Pi

jv
j is the transversal velocity of the body

lying in the plane of the sky orthogonal to vector ki . For generality, we have added the
PPN parameter γ in equations (67) and (68) to include possible violations of general
relativity, caused by presence of hypothetical scalar fields remained after epoch of
the cosmological inflation [21]. The addition of γ does not interfere with the Lorentz
transformations [54,55] or contradicts any of the previous formulations.

We emphasize that the velocity-dependent effects (i.e. v/cg) appear both explicitly
in the time delay and light-ray deflection equations (67), (69) and implicitly through
the retarded time equation (68) that displaces the position of the body on its world-
line backward in time with respect to the instant of observation t . This occurs because
equation (68) is a null characteristic of the gravitational field equations (13), (14)
describing the relativistic effect of the propagation of gravity [48]. The appearance
of cg in the time delay equation (67) is a natural consequence of the fact that the
Levi–Civita connection (44)–(49) contains time derivatives which are normalized to
the speed of gravity cg = c/ε in accordance with the Lorentz-invariant properties of
the gravitational field that controls the propagation of gravity force both in the near
and radiative zones in the form of free gravitational waves [7,49]. In other words, the
Lorentz invariance of gravity and its finite speed of propagation are physically tightly
connected and should not be conceptually separated from each other.

The physical interpretations associated with the light deflections experiments in the
gravitational field of moving bodies are also discussed elsewhere (see, for instance,
[27,44,45,49]). However, in the remainder of this section we summarize them for
completeness and for the reader’s convenience.

5.3 Relativistic delay measurement of the gravimagnetic field

Equation (67) describes the relativistic time delay of light (radio waves) caused by a
massive body moving with velocity v with respect to the rest frame of observer located
at the point x. Gravity is a long-ranged field and the time delay given by equation (60)
is effectively an integral of the gravitational force exerted on the photon along its entire
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trajectory. However, the strongest impact of the time-dependent gravitational field on
the photon emitted at time t0 is when the massive body is located in its retarded position
z(s) taken at the retarded time s, determined by equation (68). If general relativity is
correct, then, cg = c and only the gravielectric potential � of the body is essential
for calculation of the time delay (67). However, if cg �= c (hence, general relativity
is not correct), then the gravimagnetic potential A adds a contribution to the delay,
as shown by equation (60). The second term (the double integral) in the right side of
this equation is produced by the gravimagnetic field due to the orbital motion of the
light-ray deflecting body. If general relativity is correct, the contribution of the double
integral in equation (60) to the time delay is identically zero, and the magnitude of the
gravimagnetic field is given by equations (36) and (37) with ε = 1. Hence, measuring
parameter ε is the test of the presence of the extrinsic gravimagnetic field. This point
has been misinterpreted by Pascual–Sánchez [73] who confused the relativistic effect
of the gravimagnetic field caused by the mass current due to the Lorentz transforma-
tion of the gravity field variables with the measurement of the classic (non-relativistic)
Römer delay of light emitted by Jupiter.

5.4 The Lorentz invariance of gravity

The introduction of parameter ε, associated with the Lorentz transformation of gravi-
tational field variables, distinguishes between the gravitational effects due to the fun-
damental speed of gravity cg from the special relativistic effects caused by the speed
of light c. The matrix of the Lorentz transformation of the gravitational field variables,
�α

β(ε), depends on the speed of gravity cg = c/ε which is the same constant as that
entering the parametrized Einstein field equations. If ε �= 1, the Lorentz invariance of
gravity is broken with respect to the Lorentz invariance of electromagnetic field and
contrariwise. Thus, measuring the ratio ε = c/cg allows us to test the fundamental
compatibility of the gravitational field with the causality principle which is postulated
in general relativity but can be violated in alternative theories of gravity [63,95].

5.5 The aberration and the speed of gravity

The ε-parameterization of the Einstein equations with the single parameter ε helps
to keep track of any gravitational effect associated with the fundamental speed of
gravity cg = c/ε. If cg = ∞, all terms in the gravity field equations depending on
time derivatives of the gravitational field would be completely suppressed and, hence,
propagation of the gravity force would not be detectable, and the gravimagnetic effect
would be completely unobservable as well. This interpretation is in a full agreement
with the causal (retarded) nature of gravity which is revealed in equation (68) describ-
ing the null characteristic of the gravity field equations (13) and (14) connecting the
field point x with the retarded position z(s) of the light-ray deflecting body. The null
characteristics of gravity must not be physically confused with the null characteristics
of light in the light deflection experiments. Indeed, light propagates from a source of
light to observer while the null vector n = r/r , where r = x − z(s), points from the
observer, located at x, to the gravitating body located at the point z(s) along the null
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cone of gravity. In general relativity cg = c and the characteristic hypersurfaces of the
null cones for gravity and light coincide [100]. Nevertheless, null lines of gravity and
light propagation can be distinguished since they are directed to the source of gravity
field (the body) and to the source of light which are clearly separated in observations
[27,49].

One notices that in some papers the field is considered as a medium in a flat space-
time with a refractive index different from unity [30,61,73,82]. This interpretation
of the gravity field should be accepted with a great care since the refraction index of
any material medium is a scalar and its Lorentz transformation properties are different
from those for the gravitational field which is a tensor of second rank. Ignoring this
subtlety can lead to misinterpretation of gravitational effects.

In light-ray deflection experiments the retarded position of the light-ray deflecting
body is measured not by observing the body itself, but from precise measurement of
the direction of the gravitational force exerted by the moving body on propagating
photons in the plane of the sky [27,45,48]. The retardation of gravity effect can be
obtained theoretically in two independent ways:

(i) by making use of the retarded Lienard–Wiechert potentials of equations (13)–
(14) [48,49,54];

(ii) by solving equations of light propagation in the static frame of the body and,
then, using the Lorentz transformation, as it is done in this paper and in [42].

The two methods lead to the same results given by equations (67) and (68). The
Lorentz transformation of the time delay from a static to a moving frame means
that both light and gravity field variables entering equation (58) must be transformed
simultaneously. The aberration of light transforms vector kα = (1, k) of the light ray
alone. If the aberration of light is taken into account in equation (58) by transforming
the Levi–Civita connection (gravitational force) with cg �= c, the time delay cannot
maintain its invariance, and the terms proportional to δ = c/cg − 1 will emerge in
equations. If the Lorentz transformation matrix of the Levi–Civita connection is the
same as for light, then, δ = 0 and the time delay is Lorentz-invariant with the position
of the light-ray deflecting body taken at the retarded time s given by equation (68) with
cg = c. Thus, the aberration of light is used in the deflection experiments exclusively
as a calibrating standard for which speed c is fixed and not measured. The speed of
gravity cg is then measured with respect to this standard [46]. It is worth emphasizing
that all other gravitational experiments rely exclusively upon the JPL [86] or equiva-
lent EPM2004 [76] ephemerides of the solar system constructed in the metric system
of units with a numerical value of the speed of light c = 299792458 m s−1 precisely
(see also [36,41,57,83,90]).

5.6 The speed of gravity, causality and the equivalence principle

Review article [96] (see also [98] and references therein) argues that the speed of prop-
agation of the gravity force from a moving body to the traversing photon is irrelevant
in the light-ray deflection experiments done in the Solar system, and that the time delay
(67) and the light-ray deflection angle (69) could be calculated correctly even if the
speed of gravity cg would be infinite. In other words, the author of [96] maintains the

123



1608 S. M. Kopeikin, E. B. Fomalont

point that the causal structure of the null cone of the gravity field (see Figs. 2, 3) is not
essential to the calculation of the light-ray deflection angle so far as the acceleration
of the light-ray deflecting body is ignored. This point of view stems from the belief,
explicitly formulated and adopted in the PPN formalism [95], according to which the
principle of equivalence demands nothing about the speed of gravity that determines
the hypersurface of causal influence of gravity. We are told that this is because the
principle of equivalence operates with derivatives of the metric tensor of the first order
(the Christoffel symbols) while the speed of gravity is determined only by the second
time derivatives of the metric that appear in the field equations of each metric theory
of gravity (for more detail see Sect. 10.1 in [95]). Therefore, since the Christoffel
symbols can be transformed away at any point on the space-time manifold, only the
second derivatives (tidal forces) can be locally measured, and only these derivatives
show up speed properties of gravity.

First of all, we notice that the speed of gravity and the (non-local) causal struc-
ture of space-time are tightly connected. Gravitational interaction cannot propagate
information about position of a moving massive body faster than the speed of light if
general relativity is correct. Hence, experimental study of the causal properties of the
curved space-time manifold answers the question if the speed of gravity has the same
numerical value as the speed of light or not. The PPN postulate, mentioned above,
assumes that the causality of gravitational field should be relegated only to the gravity
field equations. However, the causal structure of gravitational field is derived not so
much from the field equations themselves but from the exploration of the behavior of
the set of future directed timelike and/or null geodesics in a given space-time man-
ifold [34,74]. This behavior can be determined, at least in a close neighborhood of
any event, by the geodesic equations without imposing Einstein’s field equations [93].
The light geodesics define the causal past of observer, that is the region bounded by
the past light cone in Fig. 3. The causal future of the gravitational field of a mas-
sive body, that is the region inside the future gravity cone in Fig. 3, is defined by the
null geodesics associated with the propagation of gravity field from the body. Causal
gravitational interaction of the body with the observed photon implies that the causal
future of the gravitational field is not degenerated to a space-like hypersurface that is
the photon is gravitationally deflected by the body not at the time of its observation
but in the past, so that the observer and the light-ray deflecting body are connected
by a null line which must be a solution of the field equations as demonstrated in
Figs. 2 and 3. In general relativity, where cg = c, the past light cone of observer must
touch the future gravity cone along a null line which is a bi-characteristic for the two
null cones.

Second, the equivalence principle tells us that in a local reference frame light moves
along a straight line [59,69]. But gravitational light-ray deflection experiment is not
experiment in a single local frame of reference as photon propagates through a con-
tinuous sequence of local frames, thus, accumulating the pointwise influence of the
gravitational field at different parts of the light-ray trajectory. Photon’s propagator is
an integral of the affine connection that is the gravity force shown in the right-hand
side of equation (38). This propagator contracted with the projection operator Pi j ,
yields the integrated deflection angle (69) which cannot be transformed away if the
space-time is curved, irrespectively of the property of the Christoffel symbols to turn
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body’s worldline body’s worldlinespace

space

time

observer observer

(a) (b)

the gravity conethe gravity cone

the light cone the light cone

observer’s worldlineobserver’s worldline

Fig. 4 Light-ray deflection by a static (a) and moving (b) body. In case (a) the spatial distance between
the body and observer does not change as light propagates. Thus, measuring the deflection of light does
not allow us to determine experimentally whether the gravity force of the body acts with retardation from
position (1), or instantaneously from position (2). In case (b) the spatial distance between the body and the
observer varies as the photon travels toward observer. The retarded interaction of gravity with light becomes
apparent since measuring the angle of the gravitational deflection of light allows us to distinguish between
positions (1) and (2) of the body on its world-line making the causal structure of the gravity cone clearly
discernible and measurable. This kind of gravitational experiments works perfect even if the body moves
uniformly with constant velocity with respect to observer so that the gravitational radiation is not emitted

to zero at the origin of each local frame. Gravitational deflection of light is a global
phenomenon which is not reduced to the test of the principle of equivalence. Notice
that even in the static gravitational field the principle of equivalence is able to explain
only a half of the angle of the gravitational deflection of light while another half of
the effect is due to the curvature of space [59,69,95]. In the case when the light-ray
deflecting body moves with respect to observer the deflection effect gets more sophis-
ticated as the magnitude and direction of the deflection angle become functions not
only of mass but also of the time-dependent position, velocity, etc., of the light-ray
deflecting body. Therefore, by precise measurement of the angle of the light deflection
(or, equivalently, the time delay) one can determine how strong the gravitational field
of the body is, and how fast it interacts with the light ray as it traverses toward observer.
If one is able to derive position of the massive body from the precise measurement of
the deflection angle (69) and to confirm that the body and the observer are connected
by a null line which is a characteristic of the future gravity null cone, it gives a direct
proof of the causal nature of the gravitational field and allows us to measure its finite
speed of propagation [48]. However, this measurement of the causal property of grav-
ity is impossible if the gravitational field is static. Indeed, in case of a static planet
the gravitational field does not change as photon moves from star to observer, and the
causal character of the gravitational field is invisible because the body is always at a
fixed distance from the observer (see Fig. 4a).
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The situation changes dramatically if the body moves with respect to observer
because it makes the distance between the body and the observer depending on time
(see Fig. 4b). In this case, photon traverses through the gravitational field that changes
on the light-ray trajectory due to the motion of the body, even if this motion is uniform.
Had the speed of the propagation of the body’s gravitational field been different from
the speed of light it would have unavoidably led to violation of the causal nature
of gravity that would be inconsistent with the principle of equivalence as shown in
[63]. For example, the instantaneous propagation of gravity would imply that one
could determine current (as opposed to retarded) position of the body on its orbit from
observation of the gravitational deflection of light, that is the gravitational field would
transmit information about the body’s spatial location to observer faster than the light
arriving from the star. This violates the principle of causality, and we conclude that
correct description of the gravitational physics of the light-ray deflection experiment
with a moving body requires taking into account both the light and gravity null cones
as demonstrated in Figs. 1, 2, 3, and 4, and supported by calculations in this paper as
well as by the discussion given in [45]. Additional arguments backing up the concept
of the retardation of gravity in the light-ray deflection experiments by a moving body
are discussed in our paper [49] both in the framework of general relativity and in a
bi-metric theory of gravity proposed by Carlip [12]. The present paper and calcula-
tions given in [49] refute the incomplete understanding of gravitational physics of the
light-ray deflection experiments advocated in the PPN formalism [96,98] and in [12].
The principle of equivalence does imply the principle of causality for gravitational
field and demands the fundamental speed of gravity to be finite (equal to the speed
of light in general relativity) which was confirmed in the Solar system experiment of
starlight’s deflection by the moving Jupiter [27].

5.7 A graphical representation of the aberration of gravity

Two methods of measuring the position of a light-ray deflecting body (gravitational
lens) in the sky are:

(1) directly, by observing light (radio waves) emitted by the body itself. This does
not require any measurement of the gravitational light-ray deflection pattern and
relies upon propagation properties of the electromagnetic field alone;

(2) indirectly, by measuring the pattern of the gravitational bending of light from
stars (radio sources) located in the sky around the lens, and extrapolating vectors
of their gravitational displacement to the common point of intersection which is
the center of mass of the lens (see Fig. 5).

The second method actually traces the lines of the gravitational force exerted on pho-
tons by the body. The force lines become apparently measurable in the plane of the sky
due to the gravitational deflection of light. This allows us to map the center-of-gravity
of the body, regardless of whether the body itself emits light or not. This method of
“weak-gravitational”lensing is used to localize mass-concentration of dark matter in
clusters of galaxies [80,99]. In the solar system the weak-lensing method can be effec-
tively used to determine the aberration of the gravitational force caused by motion of
a light-ray deflecting body through measuring the retardation of gravity effect that
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Fig. 5 Deflection of starlight caused by spherical gravitational field of a body. Arrows show the angular
displacement of stars from their undeflected positions and map the lines of the gravity force deflecting the
starlight. The point of intersection of these lines defines the body’s center of gravity in the sky. Apparent
position of the body visible in optics/radio and that found from the gravitational deflection of starlight
coincide in the static frame

defines position of the body on its orbit [27] and the magnitude of the gravitational
time delay of light, and comparing it against the retarded position of the body obtained
from its direct radio observations given in the JPL ephemeris [86].

The apparent (optical) and gravitational positions of the light-ray deflecting body
from which it deflects light by its gravity force, should coincide in the frame where
the body is static. However, in a moving frame, the apparent position of the body is
shifted in the plane of the sky, because of the aberration of light, by the angle β = v/c.
The gravitational position of the body should be also shifted because of the aberration
of the gravity force lines by the angle βε = εv/c = v/cg, as explained in Fig. 6. If
general relativity is correct, the aberration of gravity force and that of light must be
equal and both apparent and gravitational positions of the body should coincide in any
frame irrespectively of its motion. If the Lorentz invariance of gravity is broken, the
apparent and gravitational positions of the light-ray deflecting body will coincide in a
static frame but differentiate in a moving one by the angle δβ = βε − β.

Our interpretation of the aberration of gravity arises naturally because the distance
r = x − z(s) from observer to the gravitating body can be considered as a spatial part
of the null vector rα = (

r0, r
)

with r0 = cg(t − s), where t is time of observation, and
s is retarded time defined by equation (68). The null vector rα transforms in accor-
dance with the group of the Lorentz transformation of gravitational field described
by the matrix �α

β(ε) and its direction defines the null direction of the propagation of
gravitational force from the light-ray deflecting body to the light particle. This null
direction of the gravity force propagation changes (aberrates) when one goes from
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Optical position of the lens in a moving frame
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Gravitational position of the lens in a moving frame

Position of the lens in the static frame

The aberration of light angle β

The aberration of gravity angle β ε

Fig. 6 Deflection of light in a moving frame. The apparent optical positions of the stars and the light-ray
deflecting body are shifted by the aberration of light from their static-frame positions. If the Lorentz invari-
ance of gravity is broken, the body’s center of gravity, determined from the gravitational deflection of light,
will not coincide with its optical position. Light-ray deflection experiment conducted in a moving frame
measures the difference δβ = βε − β defined in equation (78). In general relativity δβ = 0

one frame to another. The magnitude of the aberration of gravity effect is linear with
respect to v/cg like the aberration of light is linear with respect to the ratio of v/c.

This reasoning makes it evident that the measurement of the aberration of gravity
can be obtained by measuring the deflection of light (radio waves) in a frame that is
not stationary with respect to the light-ray deflecting body. Our 2002 Jupiter deflection
experiment [27] was specifically designed to measure the speed of gravity force by
observing the magnitude of its aberration via excess to the gravitational Shapiro time
delay caused by retardation in propagation of gravity from Jupiter to radio photons from
quasar (see text below). Future optical deflection observations by space missions SIM
(http://www.planetquest.jpl.nasa.gov/SIM/) or Gaia (http://www.gaia.esa.int/) of stars
near the limb of Jupiter or Saturn, should bring about more accurate results. Combining
VLBA and Square Kilometer Array [79] to the interferometer with inter-continental
baseline can be also used to conduct this type of the gravitational experiments with
unparalleled degree of precision [28].

The Sun is another moving body with respect to the earth as observed from the
geocentric frame, but only radio observations of radio sources near the Sun that can
reach accuracy being sufficient to measure the aberration of gravity effect, are cur-
rently feasible (see [56] for future prospects). Previous solar bending observations
have been always analyzed in the barycentric frame (with respect to which the Sun
is almost static so that the gravity aberrational term is negligibly small) because the
main goal was the precise measurement of the PPN parameter γ [29,60]. However,
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the analysis of the experiments directly in the geocentric frame, where the Sun moves
with velocity 30 km/s, can determine not only the PPN parameter γ , but the gravity
aberration term proportional to δα(ε), derived below and shown in equation (80). This
is because the Lorentz transformation from the barycentric to geocentric frame probes
transformation properties of the gravitational force which are controlled by the speed
of gravity cg.

6 Experimental VLBI measurement of the aberration of gravity

6.1 The magnitude of the aberration

The formulae for the aberration term can be determined from equations (68) and (69).
Let us assume that the impact distance d of the light ray to the massive body is small
(d � r ) so that we can expand equation (69) in a Taylor series with respect to the
parameter d/r . Then, we obtain [52,54]

r − k · r = d2(ε)

2r
+ O

(
d4

r3

)

, (70)

where d(ε) = |ξ(ε)| is the impact distance of the light ray with respect to the retarded
position z(s) of the body, ξ(ε) = k × [r(s) × k], r(s) = x − z(s), r(s) = |r(s)|, x
is the position of observer at the time of observation t , the retarded time s = s(ε) is
calculated from equation (68) that, after accounting for definition cg = c/ε, acquires
the following form

s = t − ε
r(s)

c
. (71)

Using equation (70) and neglecting the explicit velocity-dependent terms, we can
simplify equation (69) for the total angle of the light deflection and reduce it to the
form

α(ε) = 2(1 + γ )
G M

c2

ξ(ε)

d2(ε)
, (72)

where the gravitational deflection of light vector α ≡ (

αi
)

, and M is mass of the body.
If the speed of gravity cg = c/ε is different from the speed of light c (ε �= 1) the

Lorentz-invariance of gravity is broken and the aberration of gravity differs from that of
starlight. This would produce a small tangential (in the plane of the sky) displacement

δα(ε) = α(ε) − α (73)

of star’s position, deflected by the body as measured in the moving frame, compared
with that α ≡ α(ε = 1) expected from general relativity. The approximate position
and motion of the body, however, must be known in order to estimate an accurate value
for α which is taken as a reference in measuring ε = c/cg. For solar system objects,
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Gravitational position of the sun Optical position of the sun
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Deflected Position of 3C279 inDeflected Position of 3C279 
in general relativity  the theory of gravity with broken Lorentz invariance

θ

Fig. 7 The difference between the aberration angles for gravity force and light in the plane of the sky in the
geocentric frame. The angular separation of 3C279 from the Sun is θ = d/(1AU). The apparent position
of the quasar is shifted in the sky by the force of solar gravity at the angle α if cg = c. In case of cg �= c the
quasar is displaced by gravimagnetic force in the direction of orbital motion of the earth at a small angle
δα given by equation (79). It corresponds to the angle δβ = (ε − 1)(v
/c) between the directions to the
gravitational and optical positions of the Sun. The relationship δα/α = δβ/θ is held

exceedingly accurate ephemerides are available [76,86], so that α can be predicted
with an accuracy being sufficient to set a stringent upper limit on the Lorentz violation
of gravity field and its fundamental speed cg, which is not limited by the uncertainty
in position and/or velocity of the body.

The aberration of gravity effect is estimated after expansion of α(ε) in a Taylor
series around ε = 1 and making use of equations (71) and (73). One has (see Fig. 7)

α(ε) = α +
[
∂α(ε)

∂ε

]

ε=1
(ε − 1) + O

[

(ε − 1)2
]

, (74)

that after substitution to equation (73) and taking the derivative yields

δα(ε) = α

θ
δβ(ε), (75)

α = 2(1 + γ )
G M

c2d
, (76)

θ = d

r
, (77)

δβ(ε) = βε − β = (ε − 1)
vT

c
, (78)

where vT = k × (v × k) is the transversal velocity of the light-ray deflecting body in
the plane of the sky and all values of the functions entering equations (75)–(78) are
taken at the retarded instant of time for ε = 1. Clearly, the equation (78) compares the
aberration of gravity, βε = vT /cg, with respect to the aberration of light, β = vT /c
which are both linear with respect to body’s velocity v but have different physical
origin associated with the transformation properties of the gravitational and electro-
magentic field. Measuring presumable tangential displacements δα in the gravitational
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deflection of starlight sets a stringent limit on the aberration of gravity βε and, hence,
on a possible discrepancy between the speed of gravity cg and that of light c.

Equation (75) was used in our papers [27,48] to estimate the aberration of the grav-
ity force in the light bending experiment with Jupiter as the gravitational lens. We
analyzed the data in the barycentric frame of the solar system where Jupiter has an
orbital speed of 4.5 × 10−5 c. The maximal magnitude of the aberration of gravity
force caused by the motion of Jupiter reaches δα � 10 mas when Jupiter is at the
distance 6 astronomical units (6 AU) from the earth and light passes near Jupiter’s
limb. For the 2002 experiment, the quasar passed 3.7′ from Jupiter and the deflection
of light caused by the aberration of gravity force was 0.05 mas. It was measured to an
accuracy of 20% [27], thus, disproving experimentally the erroneous statements by T.
van Flandern [91,92] about the nature of gravity and its speed of propagation.

Most of the previous radio gravitational bending experiments occurred in early
October when the Sun passed in the plane of the sky closely in front of the strong
quasar 3C279. The aberration of gravity term as viewed in the Shapiro time delay
computed in the earth-centered frame is relatively large since the Sun moves with a
v
 � 30 km/s in this frame. The estimate of the tangential component in the gravita-
tional bending of light caused by the aberration of gravity relative to the aberration of
light effect, yields

δα(ε) = α

(

1 + γ

2

)(
A

R


) (
R

d

)2

δβ(ε), (79)

where α
 = 1.75′′ is the light deflection on the solar limb, A ≡ 1 AU is one astro-
nomical unit, R
 = 7 × 1010 cm is radius of the Sun. Substituting in the numbers one
obtains

δα(ε) = 37.5(ε − 1)

(
1 + γ

2

) (
R

d

)2

mas. (80)

If we assume the minimal value of the impact parameter that is permitted in radio
observations by the solar corona as d � 4R
, the maximal value of the aberration of
gravity effect (see Fig. 7) is δα � 2344 µarcsec for ε = 0. Assuming that the precision
of VLBI measurement of the quasar’s position is 20 µarcseconds we shall be able to
measure the aberration of gravity effect in the solar light-ray deflection observations
with the accuracy approaching, in principle, to 1% as contrasted to 20% in the case of
the Jovian deflection experiment.

6.2 Lorentz transform between frames

The fundamental measurable of VLBI is the difference in the arrival time of radio
waves from an external source impinging on each telescope (station) in the array. This
time difference is inferred by the phase difference of the two radio waves. The source
of radio waves can be a quasar at cosmological distance or a spacecraft in the solar
system. The former produces plane waves and is stationary in the sky, whereas the
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latter is in the solar system which adds minor complications to the analysis that are
not considered here.

Let us consider two frames, the barycentric frame of the solar system and the geocen-
tric frame, on which VLBI array analyses are done. As a quasar signal passes by a radio-
wave deflecting body (Sun, planet) on its way to the array, the major components of the
observed delay (difference in the arrival time between two stations, as measured the
phase difference of the two signals) in the barycentric frame are given by equation (67)

T2 − T1 = −1

c
K · B + H(T, X) + E(T, X, ν), (81)

H(T, X) = −(1 + γ )

(

1 − 1

cg
K · V

)
G M

c3 ln

(
R1 − K · R1

R2 − K · R2

)

, (82)

Ri = Xi − Z(Si ), (i = 1, 2), (83)

Si = Ti − Ri

cg
, (i = 1, 2). (84)

where we use capital letters T and X to denote the time and spatial coordinates in this
frame, Ti (i=1,2) is the time of arrival of radio wave to i th VLBI stations, K is the
unit vector toward the radio source, H is the gravitational time delay, E represents
all additional sources of delay error and is (radio) frequency ν dependent (e.g. solar
coronal refraction), Xi = X(Ti ) is coordinate of i-th VLBI station at the time Ti , with
B = X2 − X1 as the baseline between the two VLBI stations, Z(Si ) is a retarded
coordinate of the light-ray deflecting body at the retarded time Si , V (S) = d Z(S)/d S
is the barycentric velocity of the body taken at the retarded time, and Ri is the distance
between the station i and the retarded position of the light-ray deflecting body. The
solar light-deflection experiments neglect the slow motion of the Sun with respect to
the barycenter, so that its coordinate Z is considered as fixed during the time of the
experiment. The static-field relativistic correction H to the time delay was derived by
[81]. Note that the static-field approximation cannot be applied in the deflection exper-
iment of Jupiter in the barycentric frame for it moves with respect to this frame rather
rapidly; hence, the aberration of gravity effect from its velocity in this frame was taken
into account in the analysis of the September 2002 experiment with Jupiter [27,48].

The Lorentz transformation of the electromagnetic and gravitational fields to a
frame moving with velocity v with respect to the barycentric frame, using equa-
tion (67), gives the following components for the gravitational delay in the moving
frame

t2 − t1 = −1

c
k · b + h(t, x) + e(t, x, ν′), (85)

h(t, x) = −(1 + γ )

(

1 − 1

cg
k · v

)
G M

c3 ln

(
r1 − k · r1

r2 − k · r2

)

, (86)

ri = xi − z(si ), (i = 1, 2), (87)

si = ti − ri

cg
, (i = 1, 2). (88)
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where t and x denote the time and spatial coordinates in this moving frame, ti (i=1,2)
is the time of arrival of radio wave to i-th VLBI stations, k is the unit vector toward
the radio source, h is the gravitational time delay, e represents all additional sources of
delay error and is frequency ν′ dependent (notice that ν′ �= ν because of the Lorentz
transformation), xi = x(ti ) is coordinate of i-th VLBI station at the time ti , with
b = x2 − x1 as the baseline between the two VLBI stations. In converting to the
moving frame, the speed of gravity, cg, appears as a consequence of transformation of
the gravitational field variables in two places: first, in the aberrational term k · v/cg in
front of the logarithm; and second, in the retarded term ri , the distance between the
station i and the light-ray deflecting body taken at the retarded time si .

The general form of the time delay equation which takes into account not only
linear but quadratic and high-order velocity-dependent corrections as well, has been
derived in [52,54] and [42] under assumption that cg = c.

6.3 Measuring the PPN parameter γ

The gravitational time delay is proportional to (1+γ ), where the parameter γ is a static
measure of space curvature and is unity in general relativity and zero in the Newtonian
gravity [95]. The quantity (γ − 1) measures the degree to which gravity is not a pure
geometric phenomenon and other gravity-generating scalar fields are involved [55].
These fields might dominate in the early Universe, but would have now weakened so
as to produce tiny, but presumably detectable effects [21,55].

Although all VLBI experiments are done on or near the earth, most astrometric
quantities, including γ , are more conveniently analyzed in the solar system barycen-
tric reference frame (T, X) because most velocity-dependent relativistic corrections
are zero in this frame. Hence, VLBI reduction systems use this frame [36,41,83,90]
where the gravitational time delay is given by equation (88) with V = 0, since this
velocity is very small. Thus, in the solar light-ray deflection experiments, we should
analyze the measurements of the gravitational delay as a function of the Sun-quasar
angular separation in the barycentric frame to determine γ . The estimated accuracy
in measuring γ − 1 each observing day for this kind of experiments with 3C279 that
passes near the Sun each October, is given in Table 1 and is expected to be about
7×10−5. The best previous measurement of γ = 2.3×10−5 was achieved during the
conjunction of the Sun and Cassini spacecraft in 2002 using the gravitational-induced
frequency change of the spacecraft transmitters as Cassini went behind the Sun on its
way to Saturn [4].

6.4 Measuring the aberration of gravity and its fundamental speed

In the 2002 Jupiter deflection experiment, the aberration of gravity in the retarded
position of Jupiter was measured in the barycentric frame by making use of equations
(81)–(84) because Jupiter moves with respect to the barycenter of the solar system [27].
But, the barycentric velocity of the Sun is rather small, so its gravity-field aberration
in the barycentric frame is not easy detectable. However, the aberration of the solar
gravity field, is measurable from the earth-center frame since the deflecting object,
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Table 1 Estimated experimental sensitivity to γ and aberration

Datea Sol Radb masc masd mase masf 10−5 g 10−2 h

October 1 28.9 35 0.0 0.039 0.015 – –

October 5 10.0 176 0.1 0.375 0.015 21 4.0

October 6 6.3 279 0.3 0.945 0.015 12 1.5

October 7 2.5 704 9.1 6.000 0.090 33 1.5

October 9 5.2 338 2.1 1.386 0.025 13 1.8

October 10 9.0 196 0.2 0.363 0.015 13 4.1

October 11 12.8 137 0.1 0.229 0.015 19 6.6

October 18 39.6 40 0.0 0.018 0.015 – –

All days 7 1.0
a Mean observing time
b Sun-3C279 separation
c Gravitational bending of light
d Estimate coronal bending at 23 GHz
e Gravitational aberration of Sun
f Expect positional sensitivity; 0.015 + 1% of coronal bending
g Accuracy of γ − 1
h Accuracy of aberration of gravity ε − 1

the Sun, is moving about 30 km/s with respect to this frame and its gravitational field
contains the gravimagnetic component that drags photons in the direction of its motion
[44].

The experimental observable is the measured delay difference of the electromag-
netic wave between two stations. This delay (technically, it is a phase difference, but
can be converted into delay) is a scalar function of time and baseline. In the absence
of gravity field this delay is Lorentz invariant, that is [43,49,53]

T2 − T1 + 1

c
K · B = t2 − t1 + 1

c
k · b. (89)

Therefore, the gravitational part of the time delay difference must be also independent
of the observing frame used in the analysis (because it is a scalar),

H(T, X) = h(t, x), (90)

where the conversion of all relevant quantities from the barycentric to the geocentric
frame must be done precisely.

In the following description of the conversion of the reference frames, we will
denote the barycentric coordinates of the Sun Z
, those of the geocenter Z⊕, and the
geocentric coordinates and velocity of the Sun are z
 = Z
 − Z⊕ and v
 = V
 −V⊕
respectively. Relativistic corrections to these definitions are quadratic with respect to
v/c [41,55,83] and can be neglected in current practical application of equation (90).
The barycentric coordinates and velocity of the Sun and the geocenter are also known
as functions of the barycentric time T from accurate solar system ephemerides [76,86].
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The barycentric time T is related to the geocentric time t measured on the earth by
a time transformation in which the difference is quadratic with respect to v/c terms
[9,33], and, thus, negligibly small in dealing with equation (90). The Lorentz trans-
formations needed for the frame conversions in equation (90) are as follows.

First, the two unit vectors K and k, characterizing the direction of the propagation
of light in two different frames, are connected by the Lorentz transformation equa-
tion (39) for electromagnetic field. In the linear approximation this transformation is
reduced to the classic expression for the aberration of starlight

k = K − 1

c
K × (V⊕ × K ) + O

(
v2

c2

)

. (91)

Barycentric earth’s velocity V⊕ and the astrometric coordinates of the vector K for
3C279 and the other calibrators are accurately known, so the coordinates of the unit
vector k in the geocentric frame can be easily calculated from equation (91), and vice
versa.

Second, the retarded geocentric coordinate of the moving Sun, z
(si ), entering
equation (86), can be represented in the first approximation as a difference between
the barycentric coordinates of the Sun, Z
, and the geocenter, Z⊕,

z
(si ) = Z
(si ) − Z⊕(si ) + O

(
v2

c2

)

, (92)

where the retarded time

si = ti − 1

cg
|x(ti ) − z
(si )|. (93)

Next, the coordinates of the VLBI station in the moving and static frames are related
by equation

xi = Xi (ti ) − Z⊕(ti ) + O

(
v2

c2

)

, (94)

taken at the time of observation ti . The retardation in the barycentric coordinate of
the center of mass of the Sun Z
(si ) does not affect its value significantly because
it moves very slowly around the barycenter of the solar system; hence equalities
Z
(si ) = Z
(ti ), V
(si ) = V
(ti ) can be used, although the precise correction for
the retardation is made in the analysis software to eliminate any possible error. On the
other hand, the orbital motion of the earth around the barycenter of the solar system
is significant and the effect of the retardation of the force of gravity (as it propagates
in the geocentric frame from the Sun to the earth) in the coordinates of the geocenter
must be taken into account. It yields for the retarded barycentric coordinate of the
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geocenter,

Z⊕(si ) = Z⊕(ti ) + V⊕(ti )(si − ti ) + O
[

(si − ti )
2
]

(95)

= Z⊕(ti ) − 1

cg
V⊕(ti )|xi − z
(si )| + O

(
v2

c2

)

,

where the retardation of gravity correction proportional to si − ti , is linear with respect
to the orbital velocity of the earth and has the same order of magnitude as that for
the aberration of light given in equation (91), if cg = c. Finally, transformation of the
spatial coordinates from equation (87) to (83) becomes

ri = Ri − 1

cg
V⊕ Ri + O

(
v2

c2

)

. (96)

Introducing unit vectors ni = ri/ri and Ni = Ri/Ri we can re-write equation (96) to
the following form

ni = Ni − 1

cg
Ni × (V⊕ × Ni ) + O

(
v2

c2

)

. (97)

Note, that the transformation of the retarded coordinates of the earth and the Sun
relates exclusively to the transformation of the gravitational field variables, while the
transformation of electromagnetic field (radio wave from the quasar) is associated
with the change (91) in the direction of its propagation. Thus, equation (97) describes
the aberration of gravity, while equation (91) is the aberration of starlight (see Fig. 6).
These aberrations could be different if the fundamental speed of gravity cg were not
equal to the speed of light c. This difference would lead to the gravitational deflection
of light coming from a quasar, different than the prediction of general relativity as
shown in Fig. 7.

The velocity-dependent term in front of the logarithmic function in equation (82)
is proportional to the radial velocity of the Sun with respect to the barycenter, K · V
.
This velocity is too small and its effect on the time delay H in the barycentric frame is
not currently detectable. On the other hand, the radial velocity-dependent term in front
of the logarithm in equation (86) is k · (V
 − V⊕). It includes the orbital velocity V⊕
of the geocenter and, in principle, could be measured. However, the orbital velocity of
the geocenter is projected on the direction to the source of light k, and reduces its effect
on the time delay to the size of about 1 µarcsecond which is somewhat too small for
current VLBI technology. Therefore, we shall neglect the velocity-dependent terms in
front of the logarithmic functions.

After the Lorentz transforms are made from the barycenter to the earth-center frame,
we can measure the fundamental speed of gravity cg by solving equations (85)–(88)
for the gravity Lorentz-invariance violating parameter ε. An estimate of its measured
accuracy from the solar deflection experiment is a few percent and depends on how
accurately the coronal refraction is removed.
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We emphasize that the above transformations must be made as accurately as possi-
ble, given the desired accuracy of the observations. For example, the unperturbed light
particle moves in vacuum with constant velocity c in any frame. Since time can be
measured presently with much better accuracy than space intervals, this led to aban-
doning the measurement of the speed of light c in vacuum more and more precisely.
Thus, the numerical value of the speed of light has been fixed c = 299792458 m·s−1,
and it is this value which is used to measure distances in the solar system. The
most accurate barycentric coordinates of the solar system bodies—Sun, planets, and
their satellites—are normalized to this numerical value of the speed of light c and
are tabulated in the solar system ephemeris [76,86]. We should adopt this met-
ric system of units and consider the speed of light c as known parameter that is
not subject to measurement. This point is of paramount importance for unambig-
uous physical interpretations of gravitational experiments in the solar system and
beyond [46].
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