
Gen Relativ Gravit (2007) 39:757–775
DOI 10.1007/s10714-007-0417-3

R E S E A R C H A RT I C L E

Minimum mass–radius ratio for charged gravitational
objects

C. G. Böhmer · T. Harko

Received: 17 June 2006 / Accepted: 14 February 2007 / Published online: 14 March 2007
© Springer Science+Business Media, LLC 2007

Abstract We rigorously prove that for compact charged general relativistic
objects there is a lower bound for the mass–radius ratio. This result follows
from the same Buchdahl type inequality for charged objects, which has been
extensively used for the proof of the existence of an upper bound for the mass–
radius ratio. The effect of the vacuum energy (a cosmological constant) on the
minimum mass is also taken into account. Several bounds on the total charge,
mass and the vacuum energy for compact charged objects are obtained from
the study of the Ricci scalar invariants. The total energy (including the gravi-
tational one) and the stability of the objects with minimum mass–radius ratio
is also considered, leading to a representation of the mass and radius of the
charged objects with minimum mass–radius ratio in terms of the charge and
vacuum energy only.
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1 Introduction

The bag models of hadrons [1–3], proposed in the 1970s, have had a remarkable
phenomenological success (see [4] and [5] for reviews and recent develop-
ments). In these models, hadrons consist of free (or only weekly interacting)
quarks, which are confined to a finite region of space, called the bag. The
confinement is not a dynamical one, but it is put in by hand, imposing some
appropriate boundary conditions. The bag is stabilised by a term of the form
gµνB, which is added to the energy–momentum tensor Tµν inside the bag, which
thus takes the form Tµν = T(fields)

µν + gµνB. By recalling the energy–momentum
tensor of a perfect fluid in its rest-frame, Tµ

ν = diag (ε, −p, −p, −p), where ε is
the energy density and p is the thermodynamic pressure, it immediately follows
that the bag constant B is immediately interpreted as positive contribution to
the energy density ε and a negative contribution to the pressure p inside the
bag. Equivalently, we may attribute a term −gµνB to the region outside the bag.
This leads to a picture of a non-trivial vacuum with a negative energy density
εvac = −B and a positive pressure pvac = +B. The stability of the hadron then
results from balancing this positive vacuum pressure with the pressure caused
by the quarks inside the bag [5].

Therefore, quark bag models in the theories of strong interactions assume
that the breaking of physical vacuum takes place inside hadrons. As a result
the vacuum energy densities inside and outside a hadron become essentially
different and the vacuum pressure B on a bag wall equilibrates the pressure of
quarks thus stabilising the system. The MIT bag model says nothing about the
origin of the non-trivial vacuum, but treats B as a free parameter. Assuming
a static spherical bag of radius R, the mass of the hadron is given by the sum
EBM = 4πBR3/3 − z0/R +∑

q xq/R + · · · , where the first term corresponds to
the volume energy, required to replace the non-trivial vacuum by the trivial one
inside the bag, the second term parameterise the finite part of the zero-point
energy of the bag and the third term is the sum of the rest and kinetic energy
of the quarks [5].

The finite electron self-energy is a puzzling problem in both quantum theory
and classical theory. Quantum electrodynamics, with its remarkable predictive
power, fails to explain the origin of the finite electron mass, and none of the
proposed regularisation schemes have succeeded in predicting the observed
mass. On the other hand, a point charge is incompatible with classical electro-
dynamics, because it has the self-energy and stability problems. An electron of
finite radius was proposed by Abraham and Lorentz, with the particle radius
equal to R = Q2/M, where Q and M are the charge and the mass of the
particle, respectively. This relation has been obtained by assuming that the
electromagnetic potential energy of the particle Q2/R is equal to its mass M,
according to the mass–energy equivalence law. However, an extended charge
distribution interacting with itself cannot be stable and non-electromagnetic
forces are needed to prevent the electron from exploding. Such cohesive non-
electromagnetic forces were suggested by Poincaré [6], and are called Poincaré
stresses.
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On the other hand, the Einstein–Maxwell field equations of general relativity
can be used to construct a Lorentz model of an electron as an extended body
consisting of pure charge and no matter and electromagnetic mass models for
static spherically symmetric charged fluid distributions have been extensively
studied [7–14]. The Poincaré stresses are explained as due to vacuum polarisa-
tion, the vacuum energy density ρV and the vacuum pressure pV satisfying an
equation of state of the form ρV + pV = 0, where in general the vacuum energy
density ρV > 0 and the pressure pV < 0. This type of equation of state implies
that the matter distribution under consideration is in tension, in a state known
as “false vacuum” or “degenerate vacuum”. The gravitational blue-shift of light
is explained as due to repulsive gravitation produced by the negative gravita-
tional mass of the polarised vacuum. In the context of general relativity, the
electron, modelled as a spherically symmetric charged distribution of matter,
must contain some negative rest mass if its radius is not larger than 10−16 cm. In
some extended electron models, the negative energy density distributions result
from the requirement that the total mass of these models remains constant in
the limit of a point particle.

The mass–radius–charge relation for elementary particles,compact astro-
physical objects or black holes plays an important role in many physical pro-
cesses. The pressure and the density of the matter inside the stars are large, and
the gravitational field is intense. This indicates that electric charge and a strong
electric field may also be present. The effect of electric charge in compact stars
assuming that the charge distribution is proportional to the mass density was
studied in [15]. In order to see any appreciable effect on the phenomenology
of the compact stars, the electric fields have to be huge (1021 V/m), which im-
plies that the total charge is Q ≈ 1020 Coulomb. The star can then collapse
to form a charged black hole. Charged stars have the potential of becoming
charged black holes or even naked singularities. A set of numerical solutions of
the Tolman–Oppenheimer–Volkov equations that represents spherical charged
compact stars in hydrostatic equilibrium were obtained in [16]. Charged boson
stars in scalar–tensor gravitational theories have been studied in [17]. In these
models there is a maximum charge to mass ratio for the bosons above which
the weak field solutions are not stable. This charge limit can be greater than
the general relativistic limit for a wide class of scalar–tensor theories. The black
hole formation in the head-on collision of ultra-relativistic charges was studied
in [18]. The formation of the apparent horizon was analysed and a condition was
obtained, indicating that a critical value of the electric charge is necessary for
black hole formation to take place. By evaluating this condition for character-
istic values at the LHC, it was found that the presence of the charge decreases
the black hole production rate in accelerators. Mass–charge limits are impor-
tant for the study of the quasi-local energy measured by observers who are
moving around in the space-time. The quasi-local formalism for gravitational
energy was extended in [19] to include electromagnetic and dilaton fields and to
also allow for spatial boundaries that are not orthogonal to the foliation of the
space-time. The distribution of energy around Reissner–Nordström and naked
black holes was investigated as measured by both static and infalling observers.
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The study of naked black holes reveals an alternate characterisation of this class
of space-times in terms of the quasi-local energies.

The observations of high redshift supernovae [20,21] and the Boomerang/
Maxima data [22,23] showing that the location of the first acoustic peak in the
power spectrum of the microwave background radiation is consistent with the
inflationary prediction � = 1, have provided compelling evidence for a net
equation of state of the cosmic fluid lying in the range −1 ≤ w = p/ρ < −1/3.
To explain these observations, two dark components are invoked: the pressure-
less cold dark matter (CDM) and the dark energy (DE) with negative pressure.
CDM contributes �m ∼ 0.25, and is mainly motivated by the theoretical inter-
pretation of the galactic rotation curves and large scale structure formation.
DE provides �DE ∼ 0.7 and is responsible for the acceleration of the distant
type Ia supernovae. The best candidate for the dark energy is the cosmological
constant �, which is usually interpreted physically as a vacuum energy. Its size
is of the order � ≈ 3 × 10−56 cm−2 [24,25].

However, the WMAP data also allow the possibility that the Universe may
be slightly above/below the �CDM model, in the so called phantom region
(see [26] and references therein). In the phantom scenario the acceleration
of the Universe is explained by the presence of some phantom matter, with
negative energy density. The similarity of phantom matter with quantum CFT
indicates that the phantom scalar may be the effective description for some
quantum field theory [26]. For phantom/tachyonic matter the standard energy
conditions of general relativity, the null energy condition (NEC) ρ + p ≥ 0, the
weak energy condition (WEC) ρ ≥ 0 and ρ+p ≥ 0, the strong energy condition
(SEC) ρ + 3p ≥ 0 and ρ + p ≥ 0 and dominant energy condition (DEC) ρ ≥ 0
and ρ ± p ≥ 0 are violated [27]. Such a model naturally admits two de Sitter
phases where the early universe inflation is produced by quantum effects and
the late time accelerating universe is caused by phantom/tachyon. The typical
final state of a dark energy universe where a dominant energy condition is vio-
lated is a finite-time, sudden future singularity (a big rip). For a number of dark
energy universes (including scalar phantom and effective phantom theories as
well as specific quintessence models) the quantum effects play the dominant
role near a big rip, driving the universe out of a future singularity [28]. Black
hole mass loss due to phantom accretion is very different from the standard gen-
eral relativistic case: masses do not vanish to zero due to the transient character
of the phantom evolution stage [28].

By using the static spherically symmetric gravitational field equations Buch-
dahl [29] has obtained an absolute constraint of the maximally allowable mass
M and radius R for isotropic fluid spheres of the form 2M/R ≤ 8/9 (where
natural units c = G = 1 have been used).

The existence of the cosmological constant modifies the allowed ranges for
various physical parameters, like, for example, the maximum mass of com-
pact stellar objects, thus leading to a modification of the “classical” Buchdahl
limit [30–33], for the effect of anisotropy, see e.g. [34].

The maximum allowable mass–radius ratio in the case of stable charged
compact general relativistic objects was obtained in [35], by generalising to
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the charged case the methods used for neutral stars by Buchdahl [29] and
Straumann [36].

On the other hand, we cannot exclude a priori the possibility that the cosmo-
logical constant, as a manifestation of vacuum energy, may play an important
role not only at galactic or cosmological scales, but also at the level of ele-
mentary particles (the very successful phenomenological bag model of hadrons
requires the existence of the vacuum energy inside and outside strongly inter-
acting particles). With the use of the generalised Buchdahl identity [30–33], it
can be rigorously proven that the existence of a non-negative � imposes a lower
bound on the mass M and density ρ of general relativistic objects of radius R,
which is given by [37]

2M ≥ 8π�

6
R3, ρ = 3M

4πR3 ≥ �

2
=: ρmin. (1)

Therefore, the existence of the cosmological constant implies the existence
of an absolute minimum mass and density in the universe. No object pres-
ent in relativity can have a density that is smaller than ρmin. For � > 0
this result also implies a minimum density for stable fluctuations in energy
density.

It is the purpose of the present paper to consider the problem of the exis-
tence of a minimum mass–radius ratio for compact electrically charged general
relativistic objects. We rigorously prove that a lower bound for the ratio M/R
does exist for charged objects with non-zero electric charge Q. This result
follows from the same Buchdahl type inequality which has been extensively
used for the proof of the existence of an upper bound for the mass–radius
ratio.

The present paper is organised as follows. The generalised Buchdahl inequal-
ity for charged objects in the presence of a vacuum energy (a cosmological
constant) is derived in Sect. 2. In Sect. 3 we obtain some bounds on the total
charge and mass of compact charged objects from the study of the Ricci scalar
invariants. The total energy (including the gravitational one) and the stability of
the objects with minimum mass–radius ratio is considered in Sect. 4. We discuss
and conclude our results in Sect. 5.

Throughout this paper we use the Landau–Lifshitz conventions [38] for the
metric signature (+, −, −, −) and for the field equations, and a system of units
with c = G = h̄ = 1.

2 Generalised Buchdahl inequality for charged objects

For a static general relativistic spherically symmetric configuration the interior
line element is given by

ds2 = eν(r)dt2 − eλ(r)dr2 − r2
(

dθ2 + sin2θ dϕ2
)

. (2)
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The properties of a charged compact general relativistic object can be com-
pletely described by the structure equations, which are given by

dm
dr

= 4πρr2 + Q
r

dQ
dr

, (3)

dp
dr

= −
(
ρ + p

)
[

m + 4πr3
(

p − 2B
3

)
− Q2

r

]

r2
(

1 − 2m
r + Q2

r2 − 8π
3 Br2

) + Q
4πr4

dQ
dr

, (4)

dν

dr
=

2
[

m + 4πr3
(

p − 2B
3

)
− Q2

r

]

r2
(

1 − 2m
r + Q2

r2 − 8π
3 Br2

) , (5)

where ρ (r) is the energy density of the matter, p (r) is the thermodynamic
pressure, m(r) is the mass and

Q(r) = 4π

r∫

0

e
ν+λ

2 r′2j0dr′, (6)

is the electric charge inside radius r, respectively. The electric current
inside the charged object is given by jµ = (

j 0, 0, 0, 0
)
. By analogy with the

bag model of hadrons we also assume the presence of an effective constant
vacuum energy density B (a cosmological constant) inside and outside the
charged object. Equations (3)–(5) represent the generalisation of the struc-
ture equations for general relativistic static charged objects, introduced for the
first time in [39], by taking into account the existence of a non-zero vacuum
energy.

Generally p and ρ are related by an equation of state of the form ρ = ρ(p).
The structure equations Eqs. (3)–(5) must be considered together with the
boundary conditions p(R) = 0, p(0) = pc, ρc = ρ(p = 0) and Q(0) = 0, where
ρc, pc are the central density and pressure, respectively.

With the use of Eqs. (3)–(5) it is easy to show that the function ζ = exp (ν/2) >

0, ∀r ∈ [0, R], obeys the equation

√

1− 2m
r

+ Q2

r2 − 8π

3
Br2 1

r
d
dr

⎡

⎣

√

1− 2m
r

+ Q2

r2 − 8π

3
Br2 1

r
dζ

dr

⎤

⎦= ζ

r

[
d
dr

m
r3 + Q2

r5

]

.

(7)

For Q = 0 and B = 0 we obtain the equation considered in [36]. Since the
density ρ does not increase with increasing r, the mean density of the matter
〈ρ〉 = 3m(r)/4πr3 inside radius r does not increase either. Therefore we assume
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that inside a compact general relativistic object the condition

d
dr

m
r3 < 0, (8)

holds, independently of the equation of state of dense matter and of the electric
charge distribution inside the object.

By defining a new function

η(r) =
r∫

0

r′
√

1 − 2m(r′)
r′ + Q2(r′)

r′2 − 8π
3 Br′2

×
⎡

⎢
⎣

r′∫

0

Q2 (r′′) ζ
(
r′′)

r′′5
√

1 − 2m(r′′)
r′′ + Q2(r′′)

r′′2 − 8π
3 Br′′2

dr′′

⎤

⎥
⎦dr′, (9)

denoting � = ζ −η, and introducing a new independent variable ξ (r) by means
of the transformation [35,36]

ξ (r) =
r∫

0

r′
[

1 − 2m(r′)
r′ + Q2 (r′)

r′2 − 8π

3
Br′2

]− 1
2

dr′, (10)

from Eq. (9) we obtain the basic result that inside all stable stellar type charged
general relativistic matter distributions the condition

d2�

dξ2 < 0, (11)

must hold for all r ∈ [0, R]. Using the mean value theorem [36] we conclude
that

d�

dξ
≤ � (ξ) − �(0)

ξ
, (12)

or, taking into account that �(0) > 0 it follows that,

�−1 d�

dξ
≤ 1

ξ
. (13)

In the following we denote

α(r) = 1 − Q2(r)
2m(r)r

+ 4π

3
B

r3

m(r)
. (14)
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In the initial variables the inequality (13) takes the form

1
r

√

1 − 2α (r) m(r)
r

⎧
⎪⎨

⎪⎩

1
2

dν

dr
e

ν(r)
2 − r

√
1 − 2α(r)m(r)

r

r∫

0

Q2 (r′) e
ν(r′)

2

r′5
√

1 − 2α(r′)m(r′)
r′

dr′

⎫
⎪⎬

⎪⎭

≤
e

ν(r)
2 −∫ r

0 r′
[
1− 2α(r′)m(r′)

r′
]− 1

2

⎧
⎨

⎩

∫ r′
0

[
1− 2α(r′′)m(r′′)

r′′
]− 1

2 Q2(r′′)e
ν(r′′)

2

r′′5 dr′′
⎫
⎬

⎭
dr′

∫ r
0 r′

[
1 − 2α(r′)m(r′)

r′
]− 1

2
dr′

.

(15)

For any stable charged compact objects m/r3 does not increase outwards. We
suppose that for all r′ ≤ r we have

α
(
r′)m(r′)

r′ ≥ α (r) m(r)
r

(
r′

r

)2

, (16)

or, equivalently,

2m
(
r′)

r′ − 2m(r)
r

(
r′

r

)2

≥ Q2(r′)
r′2 − Q2(r)

r2

(
r′

r

)2

. (17)

We also assume that inside the compact stellar object the charge Q(r) satisfies
the general condition

Q2(r′′)e
ν(r′′)

2

r′′5 ≥ Q2(r′)e
ν(r′)

2

r′5 ≥ Q2(r)e
ν(r)

2

r5
, r′′ ≤ r′ ≤ r. (18)

Therefore, we can evaluate the terms in Eq. (15) as follows. For the term in
the denominator of the right hand side of Eq. (15) we obtain:

⎧
⎨

⎩

r∫

0

r′
[

1 − 2α
(
r′)m

(
r′)

r′

]− 1
2

dr′
⎫
⎬

⎭

−1

≤ 2α(r)m(r)
r3

[

1 −
√

1 − 2α(r)m(r)
r

]−1

.

(19)
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For the second term in the bracket of the left hand side of Eq. (15) we have

r∫

0

[

1 − 2α
(
r′)m

(
r′)

r′

]− 1
2 Q2 (r′) e

ν(r′)
2

r′5 dr′

≥ Q2(r)e
ν(r)

2

r5

r∫

0

[

1 − 2α (r) m(r)
r

(
r′

r

)2
]− 1

2

dr′

= Q2(r)e
ν(r)

2

r5

[
2α(r)m(r)

r3

]− 1
2

arcsin

[√
2α(r)m(r)

r

]

. (20)

The second term in the nominator of the right hand side of Eq. (15) can be
evaluated as

r∫

0

r′
[

1 − 2α
(
r′)m

(
r′)

r′

]− 1
2

⎧
⎪⎨

⎪⎩

r′∫

0

[

1− 2α
(
r′′)m

(
r′′)

r′′

]− 1
2 Q2 (r′′) e

ν(r′′)
2

r′′5 dr′′

⎫
⎪⎬

⎪⎭
dr′

≥
r∫

0

r′
[

1 − 2α
(
r′)m

(
r′)

r′

]− 1
2 Q2 (r′) e

ν(r′)
2

r′4

[
2α(r′)m(r′)

r′

]− 1
2

× arcsin

[√
2α(r′)m(r′)

r′

]

dr′

≥ Q2(r)e
ν(r)

2

r5

r∫

0

r′2
[

1 − 2α(r)m(r)
r3 r′2

]− 1
2
[

2α(r)m(r)
r3 r′2

]− 1
2

× arcsin

[√
2α(r)m(r)

r3 r′
]

dr′

= Q2(r)e
ν(r)

2

r
1
2 (2α(r)m(r))

3
2

{√
2α(r)m(r)

r
−
√

1− 2α(r)m(r)
r

arcsin

[√
2α(r)m(r)

r

]}

.

(21)

In order to obtain the inequality (21) we have also used the property of
monotonic increase in the interval x ∈ [0, 1

]
of the function arcsin x/x.



766 C. G. Böhmer, T. Harko

Using Eqs. (19)–(21), Eq. (15) becomes:

[

1 −
√

1 − 2α(r)m(r)
r

]
m(r) + 4πr3

(
p − 2

3 B
)

− Q2

r

r3
√

1 − 2α(r)m(r)
r

≤ 2α(r)m(r)
r3 + Q2

r4

⎧
⎪⎪⎨

⎪⎪⎩

arcsin

[√
2α(r)m(r)

r

]

√
2α(r)m(r)

r

− 1

⎫
⎪⎪⎬

⎪⎪⎭

. (22)

The Buchdahl type inequality given by Eq. (22) is valid for all r inside the
electrically charged object. It naturally leads to the existence of a maximum
mass-radius ratio for general relativistic objects.

Consider first the neutral case Q = 0 and assume that the vacuum energy is
zero, B = 0. We assume that at the surface of the compact object, defined by a
radius r = R, the thermodynamical pressure p vanishes, p(R) = 0. By evaluating

(22) for r = R we obtain (1 − 2M/R)−1/2 ≤ 2
[
1 − (1 − 2M/R)−1/2

]−1
, lead-

ing to the well-known result 2M/R ≤ 8/9 [29,36]. The maximum mass–radius
ratio for charged object, representing the generalisation to the charged case of
the Buchdahl limit, was considered, and extensively discussed, in the case of a
vanishing vacuum energy B = 0, in [35].

3 Minimum mass–radius ratio for charged general relativistic objects

Equation (22) also implies the existence of a minimum mass–radius ratio for
compact charged general relativistic objects. This can be shown as follows. For
small values of the argument the function arcsin x/x−1 can be approximated as
arcsin x/x − 1 ≈ x2/6. Therefore, at the vacuum boundary r = R of the charged
object, Eq. (22) can be written in an equivalent form as

√

1 − 2M
R

+ Q2

R2 − 8π

3
BR2 ≥ M − Q2

R − 8π
3 BR3

3M − 2 Q2

R + Q2

6R2

(
2M − Q2

R + 8π
3 BR3

) . (23)

By introducing a new variable u defined as

u = M
R

− Q2

2R2 + 4π

3
BR2, (24)

Equation (23) takes the form

√
1 − 2u ≥ u − a

bu − a
, (25)
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where we denoted

a = Q2

2R2 + 4πBR2, (26)

and

b = 3 + Q2

3R2 , (27)

respectively. Then, by squaring, we can reformulate the condition given by
Eq. (25) as

u
[

2b2u2 −
(

b2 + 4ab − 1
)

u + 2a
(
a + b − 1

)
]

≤ 0, (28)

or, equivalently,
u
(
u − u1

)(
u − u2

) ≤ 0, (29)

where

u1 = b2 + 4ab − 1 − (1 − b)
√

(1 + b)2 − 8ab
4b2 , (30)

and

u2 = b2 + 4ab − 1 + (1 − b)
√

(1 + b)2 − 8ab
4b2 , (31)

respectively.
Since u ≥ 0, Eq. (29) is satisfied if u ≤ u1 and u ≥ u2, or u ≥ u1 and u ≤ u2.

However, the condition u ≥ u1 contradicts the upper bound which follows from
Eq. (22), and which has been discussed in detail in [35]. Therefore, Eq. (29) is
satisfied if and only if for all values of the physical parameters the condition
u ≥ u2 holds. This is equivalent to the existence of a minimum bound for the
mass–radius ratio of compact anisotropic objects, which is given by

u ≥ 2a
1 + b

, (32)

where we have taken into account that (1+b)2 
 8ab. Using the expressions of
a, b and u as defined above yields the minimum mass–radius ratio for electrically
charged general relativistic objects as

2M
R

≥ 3
2

Q2

R2

1 + 8π
9 B R4

Q2 − 4π
27 BR2 + Q2

18R2

1 + Q2

12R2

. (33)
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Let us neglect the dark energy component (B = 0) for the moment, then the
minimum mass–radius ration (33) takes the following form

2M
R

≥ 3
2

Q2

R2

1 + Q2

18R2

1 + Q2

12R2

, (34)

which can be Taylor expanded in the term Q2/R2. The assumption Q2/R2 � 1
is natural since the total charge is always many orders smaller than the radii of
charged stellar objects. Therefore we find

2M
R

≥ 3
2

Q2

R2

(

1 − Q2

36R2 + O
(
Q2/R2)4

)

, (35)

that in the lowest order in Q2/R2 the mass–radius ration is bounded from below
by 2M/R ≥ 3Q2/2R2. For Q = 0 and B �= 0 the minimum mass for neutral
objects in the presence of the vacuum energy is found, see (1) in Sect. 1.

If in Eq. (33) we neglect the term containing the product BQ2 and again
assume that Q2/R2 � 1, the minimum mass of a charged particle can be gen-
erally represented in an approximate form as

M ≥ 4π

6
BR3 + 3

4
Q2

R
. (36)

Furthermore, the mass of a spherically symmetric object can be written in terms
of its mean density

〈ρ〉 ≥ B
2

+ 9
16π

Q2

R4 , (37)

which represents a lower bound on the mean density. It should be noted that in
the absence of charge, the lower bound (37) only depends on the dark energy
component B and is independent of the object’s radius R. Hence, the bound
due to dark energy must be regarded as an absolute bound, valid on all scales of
interest. On the other hand, the additional contribution on the minimal density
due to the presence of charge depends on the radius. For large astrophysical
objects, the additional charge term is suppressed by four orders of magnitude
in the radius. Therefore, the charge term can only have an effect if relatively
small objects and highly charge objects are considered. To further elucidate this
point, let us introduce the surface charge density given by

σ = Q
4πR2 , (38)

where it should be noted that the charge term Q takes the total charge of the
stellar object into account. Using this definition, Eq. (37) leads to

〈ρ〉 ≥ B
2

+ 9σ . (39)
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It is now obvious that the charge can have a significant effect on the allowed
mean density of the stellar like object. In particular, configurations where the
charge is mainly located near the surface of the object yield a strong lower
bound on the mean density of those general relativistic objects.

4 Mass–radius ratio constraints from the Ricci invariants

In order to find a general restriction for the total charge Q a compact stable
object can acquire in the presence of a cosmological constant we consider the
behaviour of the three Ricci invariants

r0 = gijRij = R, r1 = RijRij, r2 = RijklR
ijkl, (40)

respectively.
If the general static line element is regular, satisfying the conditions eν(0) =

constant �= 0 and eλ(0) = 1, then the Ricci invariants are also non-singular
functions throughout the compact object. In particular for a regular space-time
the invariants are non-vanishing at the origin r = 0. For the invariant r2 we find

r2 =
[

8π (ρ + p) − 4m
r3 − 16π

3
B + 6Q2

r4

]2

+ 2
(

8πp + 2m
r3 − 16π

3
B − 2Q2

r4

)2

+2
(

8πρ − 2m
r3 + 16π

3
B + 2Q2

r4

)2

+ 4
(

2m
r3 + 8π

3
B − Q2

r4

)2

. (41)

For a monotonically decreasing interior electric field Q2/8πr4, the function
r2 is regular and monotonically decreasing throughout the star. Therefore it sat-
isfies the condition r2(R) < r2(0), leading to the following equation quadratic
in Q2/R4

(
Q2

R4

)2

+
(

Q2

R4

)
16π

7
B − 24

7
π2p2

c − 16
7

π2pcρc − 40
21

π2ρ2
c

+32
21

π2〈ρ〉2 + 32
7

π2pcB − 32
21

π2ρcB < 0, (42)

where we assumed that at the surface of the star the matter density vanishes,
ρ(R) = 0. We rewrite this in the form

(
Q2

R4 − q+
)(

Q2

R4 − q−
)

< 0, (43)
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where the two roots are given by

q± = −24πB
21

± 2πρc
√

6
21

×
√

35 + 42
pc

ρc

(

1 − 2B
ρc

)

+ 63
p2

c

ρ2
c

− 28
〈ρ〉2

ρ2
c

+ 28
B
ρc

+ 24
B2

ρ2
c

. (44)

Since the term Q2/R4 is positive definite, Eq. (43) can only be satisfied if

q− <
Q2

R4 and q+ >
Q2

R4 . (45)

This first condition is simply the positivity of Q2/R4, whereas the second con-
dition yields the upper bound

Q2

R4 <
2πρc

√
6

21

√

35+42
pc

ρc

(

1− 2B
ρc

)

+ 63
p2

c

ρ2
c

−28
〈ρ〉2

ρ2
c

+ 28
B
ρc

+ 24
B2

ρ2
c

− 24πB
21

,

(46)

which for vanishing dark energy simplifies to

Q2

R4 <
2πρc

√
6

21

√

35 + 42
pc

ρc
+ 63

p2
c

ρ2
c

− 28
〈ρ〉2

ρ2
c

. (47)

Another condition on Q(R) can be obtained from the study of the scalar

r1 =
(

8πρ + 8πB + Q2

r4

)2

+ 3
(

8πp − 8πB − Q2

r4

)2

+ 64πpQ2

r4 − 64πBQ2

r4 .

(48)

Under the same assumptions of regularity and monotonicity for the function
r1 and considering that the surface density is vanishing we obtain for the surface
value of the monotonically decreasing electric field the upper bound

Q2

R4 < 4πρc

√

1 + 3
p2

c

ρ2
c

+ 2
(

1 − 3
pc

ρc

)
B
ρc

. (49)

For negligible dark energy (B = 0) this condition becomes

Q2

R4 < 4πρc

√

1 + 3
p2

c

ρ2
c

. (50)
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Let us furthermore assume that the equation of state near the centre is stiff mat-
ter (p = ρ) or radiation (p = ρ/3) like, then for the respective cases Eq. (50)
yields the two conditions

σ 2 <
ρc

2π
, stiff matter, (51)

σ 2 <
ρc

2π
√

3
, radiation. (52)

The invariant r0 leads to the trace condition ρc + B > 3pc − 3B of the
energy–momentum tensor that holds at the centre of the fluid spheres.

5 Total energy and stability of charged objects with minimum mass–radius
ratio

As another application of the obtained minimum mass–radius ratio for charged
objects we derive an explicit expression for the total energy of compact charged
general relativistic objects with minimum mass–radius ratio.

The total energy E (including the gravitational field contribution) inside an
equipotential surface S of radius R can be defined, according to [40,41], to be

E = EM + EF = 1
8π

ξs

∫

S

[K]dS, (53)

where ξ i is a Killing vector field of time translation, ξs its value at S and [K] is
the jump across the shell of the trace of the extrinsic curvature of S, considered
as embedded in the two-space t = constant. EM = ∫

S Tk
i ξ i√−gdSk and EF

are the energy of the matter and of the gravitational field, respectively, with
Tk

i the energy–smomentum tensor of the matter. This definition is manifestly
coordinate invariant.

For a static charged spherically symmetric system in the presence of a cos-
mological constant the total energy inside the radius R is

E = R

[

1 −
(

1 − 2M
R

+ Q2

R2 − 8π

3
BR2

)1/2](

1 − 2M
R

+ Q2

R2 − 8π

3
BR2

)1/2

.

(54)

For the minimum mass–radius ratio charged object, with 2M/R = (3/2)

Q2/R2 + 4πBR2/3, the total energy can be expressed in terms of the radius,
charge and vacuum energy only as

E = R
[

1 − (
1 − Q2

2R2 − 4πBR2)1/2
](

1 − Q2

2R2 − 4πBR2
)1/2

. (55)
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For a stable configuration, the energy should have a minimum,

∂E
∂R

= 0, (56)

a condition which gives the following algebraic equation determining R as a
function of B and Q:

1 + Q2

2R2 − 12πBR2 + 1 − 8πBR2
√

1 − Q2

2R2 − 4πBR2
= 0. (57)

By Taylor-expanding the square root and keeping only the first order terms
in Q2 and B we obtain the radius of the stable minimum mass charged configu-
ration as

R = (24π)−1/4
√

Q

B1/4
. (58)

Therefore the minimum mass of a charged object can be expressed as a function
of the vacuum energy density B and the electric charge in the form

M = 7
9
(24π)1/4Q3/2B1/4. (59)

By eliminating the vacuum energy between Eqs. (58) and (59) we obtain the
following mass–radius–charge relation:

M = 7
9

Q2

R
. (60)

The surface charge density of the stable objects with minimum mass–radius
ratio can be expressed in terms of the vacuum energy only as

σ =
√

3B
2π

. (61)

6 Discussions and final remarks

In the present paper we have shown that a minimum mass–radius ratio for
charged stable compact general relativistic objects do exist, and it is the direct
consequence of the same Buchdahl inequality giving the upper bound for the
mass–radius ratio. In the case of the minimum mass–radius ratio it is also possi-
ble to obtain explicit inequalities giving the lower bound for 2M/R as an explicit
function of the charge Q and of the vacuum energy density B. The condition
of the thermodynamic stability of the minimum mass object leads to an explicit
representation of the mass and radius in terms of the charge Q and of the
vacuum energy B only.
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The results obtained in the present paper are general and they can be easily
extended to the case of other dark energy models, like, for example, the phan-
tom fluid case with negative energy density. In the simplest case we can model
phenomenologically the phantom fluid as having an energy density B < 0.
Then, as one can see from Eq. (36), a negative B will lead to a decrease in
the mass of charged phantom-like particle. Since it is reasonable to assume
the condition M ≥ 0, we obtain a general constraint on the magnitude of the
phantom energy density of the form B ≤ (9/8π) Q2/R4. On the other hand,
if the fluid is phantom like, then the mass should tend to zero in the big rip
singularity [28]. Our results show that in general the phantom energy and also
the charge contribute to the minimal energy density. Therefore, for arbitrary
charged phantom fluid particles the mass cannot become zero. Actually some
minimal energy objects should remain, even if their spatial extension is of the
order of the Planck length. Hence, our work suggests that in the big rip sin-
gularity (which appears in scalar phantom or effective phantom theories) [28],
some remnants will remain, asking in the end whether such a big rip can occur
and is not stopped by quantum effects.

A very interesting and long debated question is the possible applicability of
general relativity to describe elementary particles, and, in particular, the elec-
tron. In 1919 Einstein [42] suggested a modification of the geometrical terms
of the gravitational field equations of general relativity with only the energy–
momentum tensor of the electromagnetic field being present in place of the
energy–momentum tensor of matter. In this theory the self-stabilising stresses
are of non-electromagnetic origin, the gravitational forces providing the nec-
essary stability of the electron and also contributing to its mass. However, the
breaking of the vacuum energy inside and outside charged particles may pro-
vide an alternative mechanism for the stabilisation of the charged elementary
particles.

With respect to the scaling of the parameters B and Q of the form B →
kB and Q → lQ, the minimum mass and radius have the following scaling
behaviours:

R → l3/2k−1/4R, M → l3/2k1/4M. (62)

For a constant charge l = 1 particles with different masses can be con-
structed for different values of the vacuum energy by starting from a minimum
mass configuration.

In the case of an electron, with mass me = 0.51 MeV and charge e = α1/2 =
137−1/2, where α is the fine structure constant, from Eq. (59) it follows that the
value of the vacuum energy Be necessary to stabilise the configuration is B1/4

e =
8.91 MeV. In the case of quarks and hadrons, the value of the vacuum energy
(bag constant) necessary to stabilise the bag is B1/4

QCD = 145 MeV [5]. On the

other hand, the radius of the electron obtained with the use of B1/4
e = 8.91 MeV,

given by Eq. (58), is Re = 0.011 MeV−1 = 2.19 fm (1 MeV = 5.064×10−3 fm−1).
Therefore Eqs. (58) and (59) can give a satisfactory description of the basic clas-
sical physical parameters of the electron.
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By interpreting the charge Q in Eq. (59) as a generalised charge, we can apply
it even for strongly interacting particles. In the case of strong interactions, the
strong coupling constant αs is a function of the particle momenta. The quark-
quark-gluon coupling constant for the simplest hadrons is αs ≈ 0.12, and, by
defining the generalised charge as QQCD ≈ α

1/2
s , with the use of the value of

the bag constant as obtained in quantum chromodynamics, we obtain for the
mass of the quarks a reasonable value of the order of mq = 67.75 MeV.

The possibility that general relativity or a similar geometric description may
play an important role at the scale of elementary particles is still very con-
troversial. On the other hand, the possibility of the estimation of the mass of
the charged elementary particles from general relativistic considerations in the
framework of a broken vacuum model can perhaps give a better understanding
of the deep connection between micro- and macro-physics.
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