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Abstract The Klein–Gordon equations are solved for the case of a plane-
symmetric static massless scalar field in general relativity with cosmological
constant, generalizing the solutions found by Taub, Novotny and Horsky, and
Singh. A separate class of solutions is obtained in which the metrics reduce to
flat space in the limit that � → 0. The static solutions can be used to generate
time-dependent cosmological solutions, one of which exhibits rapid inflation
followed by continued exponential expansion at all later times.

Keywords Exact solutions · General relativity · Massless scalar field ·
Dark energy · Domain walls · Cosmology

1 Introduction

A large number of exact solutions have been found of the Einstein Field Equa-
tions for various stress-energies [1]. Of particular interest are solutions that
relate on some level to quantum theory, as such solutions may lead to a better
understanding of how to combine quantum mechanics and general relativity
into a single theory. In this paper, the solution of a static plane-symmetric
minimally-coupled scalar field in general relativity is extended to include the
possibility of a cosmological constant. These solutions can be interpreted as
describing the space-time of domain walls.

Plane-symmetric space-times have been studied by numerous authors. Taub
[2], in 1951, found the general vacuum solution. A generalization to a spacetime
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with cosmological constant was found by Novotny and Horsky [3] in 1974, and
the solution for a plane-symmetric scalar field was found by Singh [4] in the
same year. The generalization of Singh’s solution presented here can be shown
to contain all previous solutions as special cases. Further, a distinct family of
solutions has been found that gives flat space in the limit as � → 0.

Of perhaps greater interest than the static domain wall solutions are cosmo-
logical solutions generated from them. The method is exemplified in a paper
by Vaidya and Som [5]. The solutions can be obtained via complex transforma-
tions, with the resulting spacetimes representing non-isotropic plane-symmetric
cosmologies where the matter is given by the scalar field and cosmological con-
stant term. One presented solution represents a cyclic universe, with alternating
epoques of contraction and expansion, whereas the other exhibits rapid early
inflation and subsequent accelerated expansion, suggesting the action of an
inflaton field and dark energy.

2 Development of the equations

Conventions on curvature follow Carmeli [6]. The general metric for static
plane symmetry can be taken to have the form

ds2 = eνdt2 − eλdz2 − Y2
(

dx2 + dy2
)

(1)

where ν= ν(z), λ= λ(z), and Y = Y(z). The Lagrangian density of the massless
scalar field is

£ = αgcd∇cψ∇dψ
√−g (2)

where α is a constant. The stress-energy can be obtained by varying Eq. 2 with
respect to the metric:

Tab = αM√−g
δ£

δgab
(3)

The constant αM determines how strongly the stress energy creates curvature.
Here, it will be rolled into the constant α. The stress-energy is therefore:

Tab = α∇aψ∇bψ − 1
2

gab
(
α∇cψ∇cψ

)
(4)

Einstein’s equation with cosmological constant is

Gab +�gab = κTab (5)

whereas the equation of the massless scalar field is

∇a∇aψ = 0 (6)
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Equations 2, 3, 4, 5 lead to the following three independent equations for the
metric components:

−eν−λ
(

2Y ′′

Y2 − λ′Y ′

Y
+ Y ′2

Y2

)
+�eν = κα

2
eν−λψ ′2 (7)

Y ′ν′

Y
+ Y ′2

Y2 −�eλ = κα

2
ψ ′2 (8)

1
2

Y2e−λ
(
ν′Y ′

Y
+ 2Y ′′

Y
− λ′Y ′

Y
+ 1

2
ν′2 + ν′′ − 1

2
ν′λ′

)
−�Y2 = −κα

2
Y2e−λψ ′2

(9)

Expanding Eq. 6 gives the static plane-symmetric massless Klein-Gordon
equation:

ψ ′′ + 2Y ′

Y
ψ ′ +

(
ν′

2
− λ′

2

)
ψ ′ = 0 (10)

Multiply Eq. 7 by e−ν+λ and add it to Eq. 8:

(ν′ + λ′)Y ′

Y
− 2Y ′′

Y2 = καψ ′2 (11)

Multiply Eq. 7 by −e−ν+λ and add it to Eq. 8:

2Y ′′

Y2 + (ν′ − λ′)Y ′

Y
+ 2Y ′2

Y2 − 2�eλ = 0 (12)

Now specialize these equations by assuming that Y(z) is used as the
z-coordinate. Equations 9, 10, 11, 12 then read as follows:

1
2

z2e−λ
(
ν′

z
− λ′

z
+ 1

2
ν′2 + ν′′ − 1

2
ν′λ′

)
+�z2 = κα

2
z2e−λψ ′2 (13)

ψ ′′ + 2
z
ψ ′ +

(
ν′

2
− λ′

2

)
ψ ′ = 0 (14)

(ν′ + λ′)
z

= καψ ′2 (15)

(ν′ − λ′)
z

+ 2
z2 − 2�eλ = 0 (16)

This system of equations (in different coordinates) was solved by Singh [4] for
the � = 0 case. The solution is

ds2 = |z|
(
−1+ 1

2 καb2
)
dt2 − |z|

(
1+ 1

2 καb2
)
dz2 − z2

(
dx2 + dy2

)
(17)



624 C. Vuille

The parameter b is a constant of integration. Setting α = 0 in Eq. 17 recovers
the plane-symmetric solution found by Taub [2].

Generalizing the metric given in Eq. 17 to one having a cosmological con-
stant proved intractable in these coordinates, so another way had to be found.
First, divide Eq. 14 by ψ ′:

ψ ′′

ψ ′ = −2
z

+ λ′

2
− ν′

2
(18)

Equation 18 can be integrated, rearranged, and squared:

eλ = z4eνψ ′2

b2 (19)

where again, b is a constant of integration. Substitute this expression for eλ into
the metric, obtaining:

ds2 = eνdt2 − eνz4ψ ′2dz2 − z2(dx2 + dy2) (20)

The constant b has been absorbed into the definition of coordinates by a trivial
coordinate transformation. Set u = ψ(z) so that du = ψ ′dz. With this transfor-
mation, the metric assumes a form

ds2 = eνdt2 − eνW−4du2 − W−2(dx2 + dy2) (21)

where W is an unknown function of u. (A similar coordinate transformation was
used by Wyman [7] in the spherical case, with � = 0.) Einstein’s equations can
again be generated with this form of the metric. Note that in these coordinates
the gradient of the scalar field has components (0,1,0,0). (The various trivial
coordinate changes carried out subsequently have only the effect of changing
these components by an overall constant factor, which can be absorbed into the
definition of α.) The equations are:

−W3W′ν′ + 2W3W′′ − W2W′2 +�eν = 1
2
καW4 (22)

−W′ (ν′W − W′)

W2 −�eνW−4 = 1
2
κα (23)

1
2

e−νW
(−2W′′ + ν′′W + 2W′ν′) −�W−2 = −1

2
καW2e−ν (24)

With a little algebra, these equations can be recast as follows:

−ν′ W′

W
+ 2W′′

W
− W′2

W2 = −�eν

W4 + 1
2
κα (25)
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−ν′ W′

W
+ W′2

W2 = �eν

W4 + 1
2
κα (26)

−W′′

W
+ 1

2
ν′′ + ν′ W′

W
= �eν

W4 − 1
2
κα (27)

Add Eqs. 25 and 26 and divide by 2:

−ν′ W′

W
+ W′′

W
= κα

2
(28)

Now add Eqs. 27 and 28, obtaining the following important result:

1
2
ν′′ = �eν

W4 (29)

The expression in Eq. 29 can be used to eliminate all the�−terms, so the three
Einstein Equations become:

−ν′ W′

W
+ 2W′′

W
− W′2

W2 = −1
2
ν′′ + κα

2
(30)

−ν′ W′

W
+ W′2

W2 = 1
2
ν′′ + κα

2
(31)

−W′′

W
+ ν′ W′

W
= −κα

2
(32)

It can be readily shown, now, that any one of Eqs. 30, 31, 32 can be obtained
from the other two, so Eqs. 31, 32 will be carried forward. Adding them, arrive
at

1
2
ν′′ = W′2

W2 − W′′

W
= −

(
W′

W

)′
(33)

Equation 33 can be readily integrated, yielding the following relationship
between ν and W:

ν = ln W−2 + c1u + c2 (34)

or
W = e−ν/2+ 1

2 c1u+ 1
2 c2 (35)

The constant c2 can be eliminated by trivial coordinate transformations, hence
will be dropped. The expression for W in Eq. 35 and its first and second deriv-
atives can be used to replace W in Einstein’s equations in favor of ν and its
derivatives. All three of Eqs. 30, 31, 32 then assume the same form, which is:

ν′′ − 3
2
ν′2 + 2c1ν

′ − c2
1

2
+ κα = 0 (36)
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3 Solution of the field equations

There are a number of tricks that can be tried in solving Eq. 36, but it’s important
to choose the correct one, because some tries, such as choosing c2

1/2 = κα, lead
to contradictions, typically that� = 0. This failing also occurs with the obvious
guess ν = Au+B, which in fact is a solution of the� = 0 equations. Completing
the square (see Sect. 3.2) yields solutions that do not generalize previous work.

3.1 First solution: ansatz on the form of ν

The difficulty in integrating Eq. 36 lies in the accompanying constant terms. As
the try c2

1/2 = κα fails, it’s natural to introduce a new parameter, β, and an
associated function f :

ν = f + βu (37)

Substituting this expression into Eq. 36, obtain:

f ′′ − 3
2

f ′2 + (2c1 − 3β) f ′ +
(

2c1β − 3
2
β2 + κα − 1

2
c2

1

)
= 0 (38)

To proceed, choose c1 and β so that the constant expression is identically zero:

2c1β − 3
2
β2 + κα − 1

2
c2

1 = 0 (39)

It turns out later that a relationship between the constants c1,β, and κα must
be derived in order to give the proper connections to less general metrics. Next,
divide Eq. 38 through by f ′:

f ′′

f ′ − 3
2

f ′ + γ = 0 (40)

where γ = 2c1 − 3β. The resulting equation can be integrated, yielding:

ν = ln
(
Ae−γu + B

)−2/3 + βu (41)

Substituting this expression back into the field equation,it is found that a solu-
tion results, but only when the γ = 2c1 − 3β and κα = 3

2β
2 + 1

2 c2
1 − 2c1β hold

identically, as they should. Simple coordinate transformations can eliminate one
of the two constants A and B, so the constant A will be dropped. The metric
can then be written:

ds2 = eβu

(
e−γu + B

)2/3 dt2 − e−γu

(
e−γu + B

)2 du2 − e(− 1
2β− 1

2 γ )u

(
e−γu + B

)2/3

(
dx2 + dy2)

(42)
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where from Eq. 39 the condition

β = −γ
3

±
(

4γ 2

9
− 8

3
κα

) 1
2

(43)

must be satisfied. Hence the metric in Eq. 42 is a one-parameter family of solu-
tions for a minimally-coupled plane-symmetric massless scalar field in general
relativity, with cosmological constant. Equation 29 yields a condition on γ :

−1
3
γ 2B = � (44)

For concreteness, the cosmological constant may be assumed to be carried by
the constant B. It is of value to check that previously-found metrics can be
obtained from this one.

3.1.1 Case 1: Reduction to Taub’s metric, � = 0,α = 0

If � = 0, then B = 0, and further, β = − 1
3γ ± 2

3γ . Hence there are two possi-
bilities, β = 1

3γ and β = −γ . It turns out that the minus sign, giving β = −γ ,
leads to the Taub metric. Substitution leads to

ds2 = e− γ
3 udt2 − eγudu2 − e

2
3 γu(

dx2 + dy2) (45)

The substitution z = e
γ
3 u then gives Eq. 17 with α = 0, which is the Taub metric.

3.1.2 Case 2: Reduction to Novotny and Horsky’s metric: � �= 0,α = 0

This time B �= 0, but again β = 1
3γ or β = −γ . As before in Case 1, β = −γ ,

leads to the less general metric. Making the substitutions results in:

ds2 = e−γu

(
e−γu + B

)2/3 dt2 − eγu

(
e−γu + B

)2 du2 − (
e−γu + B

)−2/3 (
dx2 + dy2)

(46)
Setting e−γu + B = B csc2(az) then leads to Novotny and Horsky’s metric.

3.1.3 Case 3: Reduction to Singh’s metric: � = 0 and α �= 0

This time taking the negative root in Eq. 43 leads to γ = 0 and an imaginary
β. The positive root, however, leads to the Singh metric. Representing the root
term by C for convenience, the metric is:

ds2 = e
(

1
3 γ+C

)
u
dt2 − eγudu2 − e

(
γ
3 − C

2

)
u(

dx2 + dy2) (47)
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Choose z = e
(
γ
6 − C

4

)
u
. The metric becomes

ds2 = z
γ /3+C
γ /6−C/4 dt2 − z

(2/3)γ+C/2
γ /6−C/4 dz2 − z2(dx2 + dy2) (48)

Set
1
3γ + C

γ /6 − C/4
= −1 + D (49)

and
2
3γ + 1

2 C

γ /6 − C/4
= 1 + D (50)

The latter two substitutions are made in order to see if it is possible to get the
metric in the form of Eq. 17. A little algebra shows that Eqs. 49 and 50 are in
fact identical, so that the two equations can be solved consistently, obtaining
the same answer for D in terms of the other constants. Setting D = καb2, it can
be shown that γ 2 = (

καb2 + 3
)2
/2b2 yields Singh’s metric in the coordinates

of Eq. 17.

3.2 Second solution: completing the square

A second solution for the metric can be found by completing the square. This
method of solution would appear to be the most natural choice, but leads to a
solution unrelated to the less general exact solutions. Start again from Eq. 36
and complete the square:

ν′′ = 3
2

(
ν′ − 2

3
c1

)2

− 1
6

c2
1 − κα (51)

Now define p′ = ν′ − 2
3 c1. The above equation becomes:

p′′ = 3
2

p′2 − |γ | (52)

where γ = c2
1
6 + κα. Note here that γ is positive definite, because one term is

squared and α must be positive so as to yield a positive energy for the scalar
field stress energy. (Relaxing this condition, which may serve some function in
studies of exotic matter or fields, would lead to two other solutions. See also
Sect. 3.3, where negative energy gives rise to inflationary cosmologies.) This
differential equation is mathematically similar to the problem of an object fall-
ing under constant acceleration in the presence of air friction. To solve Eq. 52,
substitute

p′ =
√

2|γ |
3

coth θ (53)
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Obtain

dθ
du

= −
√

3|γ |
2

and

θ = −
√

3|γ |
2

u + b

and finally

ν = 2
3

c1u − 2
3

ln

∣∣∣∣∣sinh

(
−

√
3|γ |

2
u + b

)∣∣∣∣∣ + c0 (54)

The constant of integration c0 can be eliminated by trivial coordinate trans-
formations. The metric is given by

ds2 = e
2
3 c1u

|sinh (−δu + b)|2/3 dt2 − du2

|sinh (−δu + b)|2

− e− 1
3 c1u

|sinh (−δu + b)|2/3
(
dx2 + dy2) (55)

where δ = √
3|γ |/2. Metric and Riemann tensor components diverge at u = b/δ.

Equation 29 yields the following condition:

c2
1

6
+ κα = 2� (56)

From Eq. 56 it is evident only � > 0 is permitted, and that as � → 0, c1,α,
γ → 0, yielding flat space. In view of this last relationship it appears this solution
is special and distinct from the previous class. This solution does not generalize
those of Taub, Singh, and Novotny and Horsky, which led to the investigation
of the first class.

A second, distinct solution can be obtained by making the substitution

p′ =
√

2|γ |
3

tanh θ (57)

Just as in the problem of an object falling under constant acceleration through a
gravity field, this assumption leads to a different solution that is complementary
to that obtained previously.
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The solution is

ds2 = e
2
3 c1u

|cosh (−δu + b)|2/3 dt2 − du2

|cosh (−δu + b)|2

− e− 1
3 c1u

|cosh (−δu + b)|2/3
(

dx2 + dy2
)

(58)

Unlike the sinh solution, this solution does not result in divergences in the
metric components when the argument goes to zero.

3.3 Cosmological solutions

It is conceivable that some of these solutions are related to cosmological solu-
tions with a time-dependent scalar field and cosmological constant. In certain
cases, such as the plane-symmetric perfect fluid solution of Taub and Tabensky
[8], a fluid equation of state can admit a formulation as a scalar potential. The
solutions derived above can be converted to time-dependent metrics via the
complex transformation u → iw and t → iv, as in Vaidya and Som [5]. Fur-
ther, to avoid imaginary terms in the metric, one or more constants would also
have to be chosen to be imaginary. The resulting spacetimes are non-isotropic
plane-symmetric cosmologies.

The cosmological solutions merit a more complete study, but two interesting
examples will be presented here. Start with the cosh solution given by Eq. 58.
First, make the analogous Vaidya–Som coordinate transformations t → iv,
u → iw, and δ → iδ, setting c1 = 0 to make the solution isotropic. The metric
can then be converted to Robertson–Walker form with

dw
cosh(δw + b)

= dτ

After some algebra, the metric is given by

ds2 = dτ 2 − cos2/3(δ(τ − c0))
(

dv2 + dx2 + dy2
)

(59)

where c0 is an arbitary constant. Arriving at this form requires the implicit
assumption that the scalar field contributes negative stress energy, as follows
from c1 = 0 and δ → iδ. Further, by Eq. 56, the cosmological constant would
have to be negative. Equation 59 is a cyclic universe similar to the Robertson–
Walker dust cosmology.

The sinh solution yields a very different cosmology. After making the same
substitutions as before, convert to Robertson–Walker form with

−dw
sinh(δw + b)

= dτ (60)



Exact solutions for the massless plane symmetric scalar field 631

This results in a metric given by

ds2 = dτ 2 −
(

e2δτ − 1
)1/3 (

dv2 + dx2 + dy2
)

(61)

This solution of Eq. 61 exhibits rapid inflation in the early universe, followed
by continued exponential expansion at all later times. (The sign in Eq. 60 can
be chosen otherwise, and results in the time-reverse of this solution.) In this
way, the massless scalar field acts as both a source for an inflaton field and
dark energy. The more general solution based on an ansatz may allow a tun-
ing of these results so as to fit observations. Further study of the cosmological
implications of these solutions will be explored in subsequent work.

4 Concluding remarks

Two distinct classes of solutions to the problem of a plane-symmetric static field
in general relativity with cosmological constant have been found. The first of
these solutions involves two parameters, β and γ , which are related to a non-
trivial integration constant, designated c1. Various choices of β as a function of
γ (and implicitly, of c1) demonstrated that the presented solution was a gener-
alization of the metrics previously derived by Taub, Novotny and Horsky, and
Singh. The solutions are static domain wall spacetimes.

By analytic continuation, corresponding time-dependent solutions can be
found. One of these spacetimes was shown to exhibit very rapid inflation in the
early universe followed by continued exponential inflation. In these solutions
the cosmological constant and scalar field are mutually dependent, each vanish-
ing if the other does. Further study of these spacetimes would be of interest, as
they appear to have some of the features required by cosmological observations.

Analogous exact solutions for spherical and hyperbolic symmetry would be
desirable. The current work, for example, bears similarity to work done on
spherically-symmetric scalar fields by Wyman [7] and others [9]–[12] who inde-
pendently found solutions for spherically-symmetric scalar fields with � = 0.
These equations have been examined and are at a higher level of complexity.
Nonetheless, there is hope for such solutions, and an effort is underway.
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