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Abstract Symmetric hyperbolic systems of equations are explicitly constructed
for a general class of tensor fields by considering their structure as r-fold forms.
The hyperbolizations depend on 2r − 1 arbitrary timelike vectors. The impor-
tance of the so-called “superenergy” tensors, which provide the necessary sym-
metric positive matrices, is emphasized and made explicit. Thereby, a unified
treatment of many physical systems is achieved, as well as of the sometimes
called “higher order” systems. The characteristics of these symmetric hyper-
bolic systems are always physical, and directly related to the null directions
of the superenergy tensor, which are in particular principal null directions of
the tensor field solutions. Generic energy estimates and inequalities are pre-
sented too. Examples are included, in particular a mixed gravitational-scalar
field system at the level of the Bianchi equations.

1 Introduction

First order symmetric hyperbolic systems of partial differential equations are
of paramount importance in mathematical physics. Since the pioneering work
by Friedrichs [29], many such systems have been studied in different areas.
In gravitational physics, they are relevant both in studying particular physical
systems on given spacetime backgrounds, and in considering the gravitational
field equations themselves—be them Einstein’s field equations or more gen-
eral possibilities. Their importance resides on the availability of very powerful
theorems of existence and uniqueness of solutions, under mild continuity or
differentiability assumptions.
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Hyperbolicity of a system of partial differential equations is a concept which
generally implies the well-posedness of the appropriate Cauchy problem, that
is to say, a well-defined initial value formulation. The general reason behind this
is the existence of norms—on the space of solutions—which are well-behaved
under the evolution defined by the system. One of the purposes of this short
paper is to bring out the relevance that the so-called ‘superenergy’ tensors have
in the definition of these norms and on the hyperbolizations of general systems
in Lorentzian backgrounds of arbitrary dimension.

Symmetric hyperbolic systems for most of the known physical fields can be
set up, in both flat and non-flat spacetimes, with more or less difficulty. For
an account of these, one can consult [2,32,37] and references therein. In these
cases, the background spacetime is a given Lorentzian manifold and the field
equations can be written with the metric, connection and curvature variables as
known data. A much more difficult problem is that of solving the field equations
for a physical field coupled to gravity, for the background spacetime (metric,
connection, etc.) must be built at the same time by solving the corresponding
field equations. In this case, the causal structure inherent in the symmetric hyper-
bolic systems and that corresponding to the spacetime thus constructed should
agree, leading to causal propagation of gravity and physical fields. The impor-
tance of superenergy tensors in the study of causal propagation was already
made explicit in [6,10].

In recent years there has been an increase of attention concerning symmet-
ric hyperbolic systems for Einstein’s field equations due to the exigencies of
the developing area known as Numerical Relativity, see e.g. [8,28,38,43] and
references therein, where initial data are evolved by numerical integration of
the appropriate field equations. As a matter of fact, the history of symmet-
ric hyperbolic systems in General Relativity is largely related to the different
developments concerning the Cauchy problem for the Einstein field equations,
see [19,25,28] and references therein. For very good recent surveys of the grav-
itational Cauchy problem, see [28,33]. A new input to this problem came with
the work by Friedrich [26,27] where the Bianchi identities for the Weyl curva-
ture tensor were included in the system, and the Bel-Robinson ‘superenergy’
tensor was utilized to estimate its strength. This was later improved in [20],
where only physical characteristics were obtained and matter sources could
be included. These results relied on an ‘electric-magnetic’ decomposition of
the Riemann tensor, and on its derived “superenergy”, both introduced by
Bel [3] in 4 dimensions many years ago. Improved results of this approach
were found in [1], where an integral inequality for the Bel superenergy was
introduced and causal propagation of the Riemann tensor in vacuum was also
obtained. In these and later papers [21,22], all the results were derived in four
dimensions.

An interesting approach to these results was given in [9], by just presenting
direct hyperbolizations—in the sense of [32]—of the Bianchi equations. Again
the results were obtained in 4 dimensions. However, the whole argument in [9]
is valid, mutatis mutandis, in arbitrary dimensions except for the crucial final step
where the positivity properties of the system’s symmetric matrix was proved.
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To that end, in [9] spinors were used,1 which restricts the result to 4 dimensions
exclusively.

This is a key point in the present paper: for some time now it has been known
that the electric-magnetic decomposition of the Riemann tensor, and actually
of arbitrary tensors, as well as the superenergy construction and the positivity
properties of the superenergy tensors, hold in arbitrary dimensional Lorentzian
manifolds and furthermore, universally, that is to say, for arbitrary tensor fields.
The basic references for this are [39,40] and references therein.

By using those facts, I am going to show how to construct, in general
Lorentzian manifolds of arbitrary dimension, first-order symmetric hyperbolic
systems of equations for general tensor fields subject to suitable field equations,
and the crucial role that the positivity properties of the superenergy tensors
play. Let (V , g) be an n-dimensional Lorentzian manifold with metric tensor g
and signature (−, +, . . . , +). The archetypical system to be hyperbolized is

∇[µ0 Aµ1...µs]µs+1...µm = Jµ0...µm , ∇ρA[ρµ2...µs]µs+1...µm = jµ2...µm (1)

where the unknown Aµ1,...,µm is an arbitrary rank-m tensor field, Jµ0...µm =
J[µ0...µs]µs+1,...,µm and jµ2...µm = j[µ2...µs]µs+1...µm are given and may depend on
the background Lorentzian manifold and on the tensor field Aµ1,...,µm (but not
on its first derivatives), and s is any natural number such that 0 ≤ s ≤ min{m, n}.
This is not the only type of system susceptible of study by superenergy tech-
niques, but it will serve to make the main points. Other more general systems
can also be treated in the same manner, and some comments and examples will
be made in Sect. 7. In particular, one can deal with several, possibly interacting,
fields by either (i) letting Aµ1...µm to be an inhomogeneous ‘multi-tensor’ as
in [36] or (ii) by adding systems similar to (1) for the other fields. The latter
possibility will be adopted here, see Sect. 7.3. The Bianchi equations with and
without sources, in arbitrary dimension, will be dealt with in Sect. 7.7.

The approach presented herein has the virtues of (i) unifying many different
systems of equations, (ii) opening new possible applications for yet unexplored
cases, (iii) providing a simple interpretation of the characteristics of the sys-
tems, (iv) providing in a direct general manner integral inequalities for the
“energy” of the systems (which is nothing but the “superenergy density” [40]),
(v) allowing us to deal with systems with only one of the two expressions in (1)
by adding ‘gauge’ equations, and (vi) giving, under some circumstances, natural
divergence-free tensor fields as well as conserved quantities.

2 The ‘superenergy’ construction

First of all, some fundamental properties of the superenergy construction
and the superenergy tensors need to be recalled. Everything is based on the

1 Actually, by using spinors the hyperbolizations of the Bianchi identities, and of quite general
spinor fields, are rather obvious, see [27,28,32].
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following basic result [39,40], see also [24]: any tensor Aµ1...µm can be consid-
ered, in a precise and unique way, as an r-fold form, that is to say, as a tensor
belonging to �n1 ⊗ · · · ⊗ �nr where �p is the set of p-forms. The number r is a
well defined natural number called the form-structure number of Aµ1...µm and,
obviously, r ≤ m. Similarly, the set of r natural numbers n1, . . . , nr is uniquely de-
fined, and each nϒ is called the ϒ-th block rank. It is trivial that

∑r
ϒ=1 nϒ = m,

and nϒ ≤ min{n, m} for all ϒ = 1, . . . , r hence m/n ≤ r ≤ m. Tensors seen in
this way are called r-fold (n1, . . . , nr)-forms and denoted by A[n1]...[nr] [40]. A
tilde on a tensor (Ãµ1...µm , or equivalently, Ã[n1]...[nr]) indicates that the indices
have been permutted so that the first n1 indices of Ãµ1...µm are those precisely
in [n1], the next n2 indices are those in [n2], and so on.2

Once the indices are split into skew-symmetric blocks, the canonical
‘Electric-Magnetic’ (E-H in short) decomposition of the tensor, associated with
any unit timelike vector �u, is immediately obtained. Probably the most natural
way to do this is by using the Hodge dual operators ∗ϒ acting on each block
[24,39,40]. Thus, there are exactly 2r electric-magnetic parts of a given tensor
whose form structure number is r.3 For each block, the contraction with �u pro-
duces the electric part in that block, and the contraction with the dualized block
the corresponding magnetic part. Another way of seeing this is by contracting
each block with �u (electric) and then taking the wedge or exterior product of
that block with �u (magnetic). Yet another even simpler way of thinking of this is
by taking, in any orthonormal basis {�e0, �e1, . . . , �en−1} with �u = �e0, the 0i2 . . . inϒ -
components (electric) and the i1 . . . inϒ -components (magnetic) in the selected
block, where Latin small indices take the values 1, . . . , n − 1. All the E-H parts
are spatial tensors (orthogonal to �u) and they completely characterize the tensor
field.

Given any tensor Aµ1...µm with form structure number r, its basic superen-
ergy tensor Tλ1µ1...λrµr{A} has 2r indices, and it is symmetric on each of the r
pairs [40]. The standard definition of the basic superenergy tensor is given with
Hodge duals, but a very useful property is that they can be written, actually,
independently of the dimension n and without any duals, see Sect. 3 in [40]. This
implies that one can actually define a ‘superenergy operator’, valid in arbitrary
dimension n, whose outcome when applied to the tensor product A ⊗ A is the

2 Some simple examples are: any p-form �µ1...µp = �[µ1...µp] is trivially a single (that is, 1-fold)
p-form, while ∇ν�µ1...µp is a double (1, p)-form. The Riemann tensor Rαβλµ is a double sym-
metric (2,2)-form and the Ricci tensor Rβµ is a double symmetric (1,1)-form. In general, any
completely symmetric rank-m tensor is an m-fold (1,1,…,1)-form. A rank-3 tensor Aαβγ with the
property Aαβγ = −Aγβα is a double (2,1)-form and the corresponding Ã is clearly given by
Ãαβγ = Ã[αβ]γ ≡ Aαγβ .
3 Of course, if the original tensor has extra symmetries, or if some of its traces vanish, then there
may be some relations between different E-H parts. Thus, for instance, the two mixed E-H parts
of the Riemann tensor are related, and there are some extra properties for the Weyl tensor Cαβλµ.
The fact that in n = 4 there are only one electric and one magnetic part of Cαβλµ is a purely
dimensional result; for further results and explanations, see [40,41].
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basic superenergy tensor of A. This operator reads

Eλ1µ1...λrµr

σ1...σn1 ...τ1...τnr
ρ1...ρn1 ...ν1...νnr

≡ 1
(n1 − 1)!δ

σ2...σn1
ρ2...ρn1

(

2δ
σ1
(λ1

gµ1)ρ1 − 1
n1

δσ1
ρ1

gλ1µ1

)

× · · ·

× 1
(nr − 1)!δ

τ2...τnr
ν2...νnr

(

2δ
τ1
(λr

gµr)ν1 − 1
nr

δτ1
ν1

gλrµr

)

(2)

where
δ
µ1...µp
ν1...νp ≡ p!δµ1[ν1

· · · δµp
νp]

is the Kronecker symbol of order p. In other words, the operator consists of a
factor

1
(nϒ − 1)!δ

σ2...σnϒ
ρ2...ρnϒ

(

2δ
σ1
(λϒ

gµϒ)ρ1 − 1
nϒ

δσ1
ρ1

gλϒµϒ

)

for each antisymmetric block [nϒ ] of the tensor A[n1]...[nr]. The basic superen-
ergy tensor of Aµ1...µm is then simply

Tλ1µ1...λrµr{A} = 1
2

Eλ1µ1...λrµr

σ1...σn1 ...τ1...τnr
ρ1...ρn1 ...ν1...νnr

Ãσ1...σn1 ...τ1...τnr
Ãρ1...ρn1 ...ν1...νnr . (3)

Observe, as remarked above, that this is independent of the dimension n. Note
also that once this formula is known, one may let the operator act on two differ-
ent tensors Aµ1...µm and Bµ1...µm as long as they have the same form structure
number and the same block ranks, thus defining an operator acting on the tensor
product A ⊗ B:

Tλ1µ1...λrµr{A, B} = 1
2

Eλ1µ1...λrµr

σ1...σn1 ...τ1...τnr
ρ1...ρn1 ...ν1...νnr

Ãσ1...σn1 ...τ1...τnr
B̃ρ1...ρn1 ...ν1...νnr .

An equivalent way of defining this operation is (suppressing indices)

T{A, B} ≡ 2 T
{

A + B
2

}

− 1
2

T{A} − 1
2

T{B}

so that T{A, B} = T{B, A} and T{A, A} = T{A}.

3 Hyperbolizations

There are three inequivalent possibilities for the system (1) according to whether
s is lower, equal, or greater than the first block rank n1 of A. (Of course, one
could also study the system (1) by antisymmetrizing over any chosen s indices of
the tensor field, and not necessarily those including the first one. The argument
will work just the same, so that this must be understood as a way of making the
reasoning clearer without affecting the generality.) If s < n1 (including the case
s = 0), then in fact the system is equivalent to
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∇µ0 Aµ1...µm = (s + 1)Jµ0[µ1...µn1 ]µn1+1...µm − (−1)n1 sJ[µ1...µn1 ]µ0µn1+1...µm , (4)

so that the divergence equation ∇ρAρµ2...µm = jµ2...µm follows from (4) and thus

jµ2...µm = (s + 1)Jρ [ρµ2...µn1 ]µn1+1...µm − (−1)n1 sJ[ρµ2...µn1 ]ρµn1+1...µm

for consistency. Equations (4) are very simple and easily hyperbolized—see
footnote 5 below. If s > n1 then there are equations only for the new ten-
sor field Ã′

µ1...µm
≡ Ã[µ1...µs]µs+1...µm which now has s = n′

1. Finally, the most
interesting case is precisely when s = n1, which includes the previous one.4

In order to find hyperbolizations of (1) in this case, recall a very impor-
tant property of the basic superenergy tensors: the tensor (3) is the essentially
unique (i.e., unique up to index permutations; see Sect. 5 of [40]) rank-2r ten-
sor quadratic on Aµ1...µm which satisfies the dominant property [7,40], see also
[42]. A convenient way of stating this fundamental property for the purposes
of this paper is that, for any set of arbitrary timelike future-directed vectors
{uλ1

1 , vµ1
1 , . . . , uλr

r , vµr
r },

Tλ1µ1...λrµr{A}uλ1
1 vµ1

1 . . . uλr
r vµr

r > 0 (5)

(for non-zero Aµ1...µm ). An equivalent statement is that the vectors

Pα = −Tα
µ1...λrµr{A}vµ1

1 . . . uλr
r vµr

r

are causal and future directed. It follows that the vector-valued matrices (endo-
morphisms acting on the set of r-fold (n1, . . . , nr)-forms) defined, for arbitrary
timelike future-directed vectors {vµ1 , uλ2

2 , vµ2
2 , . . . , uλr

r , vµr
r }, by

Qα σ1...σn1 ...τ1...τnr
ρ1...ρn1 ...ν1...νnr

≡ Eα
µ1λ2µ2...λrµr

[σ1...σn1 ]...[τ1...τnr ]
[ρ1...ρn1 ]...[ν1...νnr ]v

µ1 uλ2
2 vµ2

2 . . . uλr
r vµr

r (6)

are appropriate candidates for the symmetric positive-definite matrix of a sym-
metric hyperbolic form of (1). Indeed, for arbitrary r-fold (n1, . . . , nr)-forms
A[n1]...[nr] and B[n1]...[nr] one has that

Qα(A, B) ≡ Qα σ1...σn1 ...τ1...τnr
ρ1...ρn1 ...ν1...νnr

Ãσ1...σn1 ...τ1...τnr
B̃ρ1...ρn1 ...ν1...νnr

= Tα
µ1λ2µ2...λrµr{A, B}vµ1 uλ2

2 vµ2
2 . . . uλr

r vµr
r

so that on the one hand

Qα(A, B) = Qα(B, A),

4 The system (1) for s = n1 can be written in an intrinsic manner by using the exterior differential
and co-differential acting on the blocks of r-fold forms, see [24] and references therein. With the
notation introduced in [24], the system reads simply d(1)A = (s + 1)J and δ(1)A = −j.
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and on the other hand, for any timelike future-directed 1-form uα , uαQα(·, ·) is
positive definite as follows from (vµ = vµ

1 )

uαQα(A, A) = −uαPα > 0 .

Of course, these vector-valued matrices are by no means unique and, for
instance, any appropriate positive-definite scalar product on the set of indi-
ces not in the first block could also be used. The possible relevance of the
particular choice (6) is, apart from their explicit expression, their relationship
with the “superenergy” quantities and the implications derived from this fact
in Sects. 5 and 6.

Now it is easy to find hyperbolizations (in the sense of [32]) of the system (1)
for s = n1. First, rewrite (1) as

(

− 1
(s − 1)!gα[σ1δσ2...σs]

µ2...µs
,

1
(s + 1)!δ

ασ1...σs
µ0µ1...µs

)
1

n2!δ
ρ1...ρn2
β1...βn2

· · ·

× 1
nr!δ

τ1...τnr
ν1...νnr

∇αÃσ1...σsρ1...ρn2 ...τ1...τnr

=
(

jµ2...µsβ1...βn2 ...ν1...νnr
, Jµ0µ1...µsβ1...βn2 ...ν1...νnr

)
(7)

and now contract this with

1
2(s − 1)!

(

− 1
(s − 1)!v[γ1δ

µ2...µs
γ2...γs] , − s + 1

s! s
v[µ0δµ1...µs]

γ1...γs

)

× 1
(n2 − 1)!

(

u[β1
2 v2[ε1δ

β2...βn2 ]
ε2...εn2 ] + v[β1

2 u2[ε1δ
β2...βn2 ]
ε2...εn2 ] − uρ

2 v2ρ

n2
δ
β1...βn2
ε1...εn2

)

× · · ·

× 1
(nr − 1)!

(

u[ν1
r vr[ζ1δ

ν2...νnr ]
ζ2...ζnr ] + v[ν1

r ur[ζ1δ
ν2...νnr ]
ζ2...ζnr ] − uσ

r vrσ

nr
δ
ν1...νnr
ζ1...ζnr

)

. (8)

The result is

Qα σ1...σs
γ1...γs

ρ1...ρn2 ...τ1...τnr
ε1...εn2 ...ζ1...ζnr

∇αÃσ1...σsρ1...ρn2 ...τ1...τnr
= Jγ1...γsε1...εn2 ...ζ1...ζnr

where Jγ1...γsε1...εn2 ...ζ1...ζnr
is the contraction of (8) with the righthand side of

(7). This form is manifestly symmetric hyperbolic. Taking into account that the
part of Q which depends on �u2, �v2, . . . , �ur, �vr is non-degenerate when acting on
(r − 1)-fold (n2, . . . , nr)-forms, this system can in fact be written in the simple
form

(s + 1)vρ∇[ρÃγ1...γs]ε1...εn2 ...ζ1...ζnr
+ (−1)ssv[γ1∇ρÃγ2...γs]ρε1...εn2 ...ζ1...ζnr

= (s + 1)vρJργ1...γsε1...εn2 ...ζ1...ζnr
+ sv[γ1 jγ2...γs]ε1...εn2 ...ζ1...ζnr

. (9)

Let us finally remark that the hyperbolicity of the general system (1) is
related to the existence of a wave equation for Aµ1...µm . This is immediate from



368 J. M. M. Senovilla

the definition [24] of the de Rham operator �(1) acting on the first block, which
is given—using the notation of footnote 4—by �(1) = d(1)δ(1) + δ(1)d(1). Thus,
from (1) one deduces

�(1)A = −d(1)j + (s + 1)δ(1) J

which reads, in index notation, [24]

∇ρ∇ρÃµ1...µm − sRρ[µ1 Ãρ
µ2...µs]µs+1...µm + s(s − 1)

2
Rρσ [µ1µ2 Ãρσ

µ3...µs]µs+1...µm

+ s
m∑

i=s+1

Rρ
µiσ [µ1 Ãσ

µ2...µs]µs+1...µi−1ρµi+1...µm

= s∇[µ1 jµ2...µs]µs+1...µm + (s + 1)∇ρJρµ1...µm .

4 Constraint equations and integrability conditions

In order to prove the equivalence of the hyperbolized system (9) with the
original (1), let us do some counting: the number of unknowns is N Cn,s where
N stands for Cn,n2 · · · Cn,nr and Cn,s = n!/(n − s)!s!. The number of equations
in (1) is N (Cn,s−1 + Cn,s+1). There are more equations than unknowns, so that
the system is overdetermined. However there are constraint equations—see
[32]—which are easily computed. These are given, for any (n − 1)-dimensional
hypersurface � with normal 1-form Nµ, by

Nρ
(
∇σ Ãσργ3...γsε1...εn2 ...ζ1...ζnr

− jργ3...γsε1...εn2 ...ζ1...ζnr

)
= 0, (10)

N[σ ∇γ0 Ãγ1...γs]ε1...εn2 ...ζ1...ζnr
− N[σ Jγ0γ1...γs]ε1...εn2 ...ζ1...ζnr

= 0 . (11)

Notice that the first of these is absent if s = n1 ≤ 1, and similarly for the sec-
ond if s = n1 ≥ n − 1. The total number of constraint equations is therefore
N (Cn−1,s−2 + Cn−1,s+1) and given that

Cn−1,s−2 + Cn−1,s+1 = Cn,s−1 + Cn,s+1 − Cn,s

the constraints are complete.5 This leads to the equivalence of the new system
(9) to the original one (1) together with the constraint equations (10,11) referred
to a spacelike hypersurface with timelike normal Nρ . Observe that the system is
causal in the sense that every 1-form uα such that uαQα(·, ·) is positive definite
is timelike. Hence, one can define a well-posed Cauchy problem (or initial value

5 By the way, the very same Qα
σ1...σn1 ...τ1...τnr
ρ1...ρn1 ...ν1...νnr as defined in (6) hyperbolizes directly the system

(4). The resulting system is in fact exactly (9). However, in this case the constraint equations are
not (10,11) but simply N[σ ∇γ0]Ãγ1...γsε1...εn2 ...ζ1...ζnr

= N[σ Jγ0]γ1...γsε1...εn2 ...ζ1...ζnr
and they are

again complete.
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formulation) of the system (1) by giving initial data, subject to satisfying the
constraints, on any spacelike hypersurface.

The integrability of the constraint equations is not ensured, and depends on
the Lorentzian manifold and on the righthand sides of (1). The integrability
conditions are ruled by the squares of the operators d(1), δ(1)—see footnote 4,
which are in turn governed by the Ricci identity. Using formulas (23) and (24)
in [24] these integrability conditions are

∇[λJµµ1...µs]µs+1...µm = −1
2

m∑

i=s+1

Rρ
µi[λµÃµ1...µs]µs+1...µi−1ρµi+1...µm , (12)

∇ρ jρµ3...µm = 1
2

m∑

i=s+1

Rρ
µiλµÃλµ

µ3...µsµs+1...µi−1ρµi+1...µm . (13)

From general results follows that the correct propagation of the constraints
(10–11), considered as restrictions on the initial data for a Cauchy problem of
the original system (1), is ensured whenever these integrability conditions are
satisfied. Observe that (12) or (13) can be seen as a system of equations for J or
j of the same type as the generic one (1) by simply adding the necessary gauge
equations (see Sect. 7.6), and thus one can try to construct higher order systems
along the lines of Sect. 7.5 and the corresponding hyperbolizations in case there
is some available freedom on the data J, j.

In flat spacetimes the integrability conditions (12–13) are rather simple (and
easily satisfied), but they may set very strong restrictions on the form of J and j
depending on the algebraic properties of the Riemann tensor. The exceptional
cases are (i) when n1 ≤ 1, in which case the second condition is absent; (ii) the
case n1 ≥ n − 1, so that the first condition is trivial; and (iii) when the unknown
A has r = 1, i.e., it is a single m-form and thus n1 = m. Then the previous
integrability conditions are simply ∇[λJµµ1...µm] = 0 and ∇ρ jρµ3...µm = 0, which
can be enforced in any Lorentzian manifold—for instance by setting J = dK
and j = δk for arbitrary m-forms K, k—; see Sect. 7.1.

The integrability conditions (12–17) are reminiscent of the well-known
Buchdahl compatibility conditions which arise for spin greater than one in
four dimensions [12,13], see also the discussions in [6,35]. Of course, they may
drastically reduce the number of solutions, or even forbid their existence com-
pletely. As a matter of fact, the system (1) contains the natural generalization
of spin-S fields for any value of S to arbitrary dimension n.

5 Characteristics

Let us now consider the important question of the characteristics of the system
(1). By definition the characteristics are given by the directions cα such that
there are non-trivial solutions A[s][n2]...[nr] of
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cαQα σ1...σs
γ1...γs

ρ1...ρn2 ...τ1...τnr
ε1...εn2 ...ζ1...ζnr

Ãσ1...σsρ1...ρn2 ...τ1...τnr
= 0.

This condition can be proven to be equivalent to (setting {�} = ε1 . . . εn2 . . . . . .

ζ1 . . . ζnr to alleviate the notation)

svρc[γ1 Ãρ
γ2...γs]{�} + scρv[γ1 Ãρ

γ2...γs]{�} − vρcρ Ãγ1...γs{�} = 0 (14)

whose more general solution is given by either

i. the null 1-forms cρ such that cρÃργ2...γs{�} = 0 and c[γ0 Ãγ1...γs]{�} = 0, so that
the solutions have the form Ãγ1...γs{�} = c[γ1 xγ2...γs]{�} with cρxρ...γs{�} = 0.

ii. the spacelike 1-forms cρ such that vρcρ = 0 so that the solutions take
the form Ãγ1...γs{�} = v[γ1 cγ2 yγ3...γs]{�} where, without loss of generality,
yγ3...γs{�} can be taken orthogonal to both �c and �v in the first block.

As a first conclusion, all these directions cα define null, or timelike, hypersur-
faces of propagation. A more interesting conclusion is that these cα can be
characterized, in all cases, by well-defined null directions associated with the
solutions. In order to prove this, let us define for the case ii two null directions
{�+

µ , �−
µ } such that Span{�c, �v} = Span{��+, ��−} and �+µ�−µ = −1. Then

�+
ρ �+

[γ1
Ãρ

γ2...γs]{�} = 0, �−
ρ �−

[γ1
Ãρ

γ2...γs]{�} = 0,

which implies that both {�+
µ , �−

µ } are in particular principal null directions (see
e.g. Definition 2 in [31]) of the tensor A[s][n2]...[nr]. The same can be said of the
null �c in the first case i above. It is known [36] that �k is a principal null direc-
tion of A[s][n2]...[nr] if and only if it defines a principal direction—see Definition
A.2 in [30,31]—of its basic superenergy tensor Tλ1µ1...λrµr{A}; that is to say, if
and only if kλ1 kµ1 · · · kλr kµr Tλ1µ1...λrµr{A} = 0. Due to the general properties
of causal tensors [7,30,31], these principal directions are necessarily null. Fur-
thermore, in the case under consideration one is dealing with a special type of
principal directions, because they are related to the first block exclusively. This
implies that the characteristics of the hyperbolized system (9) are defined by
the—necessarily null—kρ such that

kλ1 kµ1 Tλ1µ1...λrµr{A} = 0

where kρ stands for either cρ in case i or �±ρ in case ii.
The actual characteristics of the original system (1) are all physical, and given

by the null cα of case i above. The corresponding solutions are of the particular
type mentioned there. In summary, all characteristics of the system (1) are phys-
ical and they, together with the extra characteristics of the system (9), are directly
related to special principal null directions of the corresponding solutions.
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6 General energy estimates and inequalities

The hyperbolizations defined by (6) depend on 2r − 1 arbitrary timelike future-
directed vectors (thus, on one timelike vector for m-forms, on three timelike
vectors for double forms such as the Riemann tensor, and so on). Selecting all
of these vectors identical and thus equal to a unique (unit for convenience)
timelike vector, say �u, then uαQα(A, A) is exactly the “superenergy” density6

of the tensor Aµ1...µm . This is denoted by WA(�u), it can be defined alternatively
as

WA
(�u) ≡ Tλ1µ1...λrµr{A}uλ1 uµ1 . . . uλr uµr

or as

WA
(�u) = 1

2

(
r∏

ϒ=1

1
nϒ !

)

Ãµ1...µn1 ,...ρ1...ρnr

×Ãν1...νn1 ...σ1...σnr
hµ1ν1 . . . hµn1 νn1 . . . hρ1σ1 . . . hρnr σnr

where
hµν

(�u) ≡ gµν + 2uµuν ,

and it is equal to half the sum of the positive squares of all the electric-magnetic
parts of the tensor Aµ1...µm [40]. The super energy density is also equal to half
the sum of the squares of all the independent components of Aµ1...µm in any
orthonormal basis {�eµ} with �e0 = �u (this is the typical mathematical ‘energy’ of
the tensor Aµ1...µm ):

WA(�e0) = T00...0{A} = 1
2

(
r∏

ϒ=1

1
nϒ !

)
n−1∑

µ1,...,µm=0

|Aµ1...µm |2 .

This function allows us to obtain estimates because the dominant property
implies [40] that WA(�u) = T00...0{A} ≥ |Tµ1...µm | in any given orthonormal
basis. One can also obtain integral (in)equalities related to the system (1). As
a matter of fact, this quantitiy and the properties of the full superenergy ten-
sors were already used to prove the causal propagation of the gravitational
field in [10], and of general physical fields in arbitrary dimension in [6]. (The
causal propagation along characterisitics can also be deduced from the study
of the propagation of discontinuities; see [34,39], Sect. 7.3 in [40], and refer-
ences therein.) Of course, the Bel-Robinson and Bel tensors in four dimensions

6 This name may be inappropriate sometimes, because this is the traditional energy in relevant
cases such as the electromagnetic 2-form, or in the case of the massless scalar field φ by using dφ

as the tensor A. However, is some other cases the relevant quantity has been traditionally called
“superenergy”, starting with the Bel-Robinson definition for the Weyl tensor [4] or the Bel one
for the Riemann tensor [5,11], and also especially for higher order superenergies such as the one
defined by using the covariant derivative of the electromagnetic 2-form, see [18,40], or the second
derivative of the scalar field, see [40], references therein, and Sect. 7.7.
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[4,5,11] have been repeatedly used to obtain estimates [33], and to prove the
hyperbolicity of Einstein-Bianchi equations [1,20–22,26,27] and the non-linear
stability of flat spacetime [23]. Generic integral inequalities are derived by first
defining [6,10]

w(t) ≡
∫

D+(�t0 )∩J−(�t)

Tλ1µ1...λrµr{A}Nλ1 Nµ1 . . . Nλr Nµr η

=
t∫

t0






∫

�t′

Tλ1µ1...λrµr{A}Nµ1 . . . Nλr Nµr dσλ1 |�t′




 dt′ ≥ 0

where �t0 is a compact achronal set (usually—a piece of—a hypersurface),
D+(�t0) its future domain of dependence and η denotes the volume ele-
ment n-form. Due to its global hyperbolicity, D+(�t0) is foliated by spacelike
hypersurfaces �t = {t = constant} with future normal N = −dt whose vol-
ume element (n − 1)-form pointing along �N is denoted by dσλ|�t . Observe that
w(t) = 0 only if Tλ1µ1...λrµr{A} = 0, which is equivalent to Aµ1...µm = 0, on
D+(�t0)∩J−(�t). It is very simple to see that dw(t)/dt ≥ 0 and moreover, using
the Gauss theorem one derives for some constant M [6]

dw(t)
dt

≤ Mw(t) +
∫

�t0

Tλ1µ1...λrµr{A}Nµ1 . . . Nλr Nµr dσλ1 |�t0

+
∫

J−(�t)∩D+(�t0 )

∇ρTρµ1...λrµr{A}Nµ1 . . . Nλr Nµrη (15)

so that the divergence of the superenergy tensor controls the growth of w(t).
But this divergence can be obtained easily using (3) and (2)

∇ρTρ
µ1λ2µ2...λrµr{A} = 1

2
Eλ1µ1...λrµrσ1 . . . σn1 . . . τ1 . . . τnr ρ1...ρn1 ...ν1...νnr

×
[
jβ2...βn1 σ1...σn2 ...τ1...τnr

Ãµ1
β2...βn1 ρ1...ρn2 ...ν1...νnr

+ jβ2...βn1ρ1...ρn2 ...ν1...νnr Ãµ1β2...βn1 σ1...σn2 ...τ1...τnr

− n1 + 1
n1

(
Jµ1β1...βn1 σ1...σn2 ...τ1...τnr

Ãβ1...βn1 ρ1...ρn2 ...ν1...νnr

+ Jµ1β1 . . . βn1ρ1 . . . ρn2 . . . ν1 . . . νnr

× Ãβ1...βn1σ1...σn2 ...τ1...τnr

)]
.

Notice that a sufficient condition for the superenergy tensor to be divergence-
free is that j = 0 and J = 0, see also [36]. In this particular case, for instance,
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as well as in the variety of cases in which the last integral in (15) vanishes, (15)
can be easily resolved by using the Gronwall Lemma so that

w(t) ≤ 1
M

(
eMt − 1

) ∫

�t0

Tλ1µ1...λrµr{A}Nµ1 . . . Nλr Nµr dσλ1 |�t0
.

Similar arguments can be used whenever j and J are polinomic on the tensor
Aµ1...µm , or even in more general cases.

Observe finally that Tλ1µ1...λrµr{A}Nµ1 . . . Nλr Nµr is conserved—that is to say,
it is divergence-free—if ∇ρTρ

µ1λ2µ2...λrµr{A} = 0 and �N is a Killing vector [40].

7 Examples and applications

In this section some selected applications and relevant cases of the general
system (1) are presented.

7.1 m-forms

The simplest application of the results is to the case with r = 1. The equations
are simply

dA = (m + 1)J, δA = −j

which are Maxwell-like equations for ordinary m-forms Aµ1...µm = A[µ1...µm].
These are of interest in higher dimensional theories such as string theory, super-
gravity, etcetera. Of course, they include the electromagnetic field equations in
any curved background of any dimension by setting m = 2, J = 0 and letting j
to be independent of the 2-form A.

From the previous equations one also gets a wave equation

�A = −dj + (m + 1)δJ

where � is the de Rham operator.
As remarked at the end of section 4 the integrability conditions are satisfied

whenever dJ = 0 and δj = 0. The symmetric hyperbolic systems (9) read in this
case

(m + 1)vρ∇[ρAγ1...γm] + (−1)mm v[γ1∇ρAγ2...γm]ρ
= (m + 1)vρJργ1...γm + m v[γ1 jγ2...γm]

for any timelike vector field �v, which in fact provide all possible hyperboliza-
tions. They are determined by

Tλµ{A, B} = 1
(m − 1)!

(

A(λ
ρ2...ρmBµ)ρ2...ρm − 1

2m
Aρ1ρ2...ρmBρ1ρ2...ρm

)
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which defines the standard energy-momentum tensor of A by Tλµ{A} = Tλµ

{A, A}.
Observe that the characteristics of this system are determined by the null

eigenvectors of Tλµ{A} [7,30,31].

7.2 Extra algebraic relations

For the general case of r-fold forms with r > 1, apart from the antisymmetries
of each of the r blocks one may have to deal with some additional symme-
tries involving indices of different blocks. A typical example is that of the
Riemann tensor, which is a double (2,2)-form satisfying the first Bianchi iden-
tity Rα[βλµ] = 0 which implies the symmetry between the two pairs of indices.
Trace-free properties are also in this category. Another typical possibility, in the
case of having several fields, is an algebraic relation between them. An example
of this is the second Bianchi identity with sources for the gravitational field; see
below in Sect. 7.7.

The optimal way to deal with these algebraic properties is to simply ignore
them on the unknowns, so that the tensor A is not assumed to satisfy them,
and add them as initial conditions of the Cauchy problem defined by the sys-
tem of equations. If these properties are preserved by the evolution, then the
corresponding solutions will satisfy them.

The strategy, schematically, is as follows. Suppose that A is an r-fold
(n1, n2, . . . , nr)-form, and assume that there is an extra symmetry property mix-
ing (say) the first and second block, such as

Ã[µ1...µn1ν1...νq]νq+1...νn2 ......τ1...τnr
= 0.

Define the r-fold (n1 + q, n2 − q, . . . , nr)-form

Pµ1...µn1+qν1...νn2−q...τ1...τnr
≡ Ã[µ1...µn1µn1+1...µn1+q]ν1...νn2−q...τ1...τnr

and derive differential equations for this tensor field from the original system
(1). For example,

∇[µ0 Pµ1...µn1+q]ν1...νn2−q...τ1...τnr
= J[µ0µ1...µn1µn1+1...µn1+q]ν1...νn2−q...τ1...τnr

or

∇ρPρµ2...µn1+qν1...νn2−q...τ1...τnr

= Cn1+q−1,q jµ2...µn1+qν1...νn2−q...τ1...τnr

+ (−1)n1+q(n1 + 1)Cn1+q−1,q−1 Jρ [µ1...µn1+q]ρν2...νn2−q...τ1...τnr

− (−1)n1+qn1Cn1+q−1,q−1 ∇[µ1 Ãρ
µ2...µn1+q]ρν2...νn2−q...τ1...τnr

.
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The goal would be to get an homogeneous system whose unique solution,
given initial conditions such as the vanishing of P, is the zero solution.
In this particular example a necessary condition is, for instance,
J[µ0µ1...µn1µn1+1...µn1+q]ν1...νn2−q...τ1...τnr

= 0.

7.3 Mixed, or interacting, systems

As explained in the Introduction, one can deal with as many fields satisfying
(1) as desired, and the righthand sides may then depend on all of them. For
example, consider the system (1) together with

∇[µ0 Âµ1...µq]µq+1...µp = Ĵµ0...µp , ∇ρÂ[ρµ2...µq]µq+1...µp = ĵµ2...µp (16)

where now Jµ0...µm , jµ2...µm , Ĵµ0...µp , ĵµ2...µp may in fact depend on both tensor

fields Aµ1...µm and Âµ1...µp . Of course, this can be done for as many fields as
desired.

The hyperbolization of this mixed system is achieved by just hyperbolizing
each of the systems separately as shown in Sect. 3, so that the relevant tensors
are the corresponding superenergy tensors of A and Â. If r̂ is the form structure
number of Â, then they depend in general on 2(r + r̂ − 1) arbirary timelike
vectors. The total superenergy density—and hence the total function w(t)— is
just the sum of the respective superenergy densities of the tensor fields A and
Â. Note, however, that the corresponding superenergy tensors have different
ranks, 2r and 2r̂ respectively, if r 
= r̂. Thus, in these cases one simply cannot
add them tensorially. Nevertheless, when r = r̂ this can be done and in fact this
happens in many cases of physical relevance; see Sect. 7.7.

In the case of a mixed system (1)–(16), there may be some algebraic relations
between the different fields, such as

FL(A, Â, x) = 0, L = 1, . . . , l .

These relations should be treated as extra algebraic relations in the manner
explained in Sect. 7.2, and thus assumed as initial conditions, checking their
preservation by the evolution of the system.

7.4 Rank-1 blocks

Now, let us consider the important case in which the tensor field Aµ1...µm has one
index with no antisymmetry properties with any other index. In other words,
there is a block, say the first, with n1 = 1. This always includes 1-forms and fully
symmetric tensors. It will also be useful in the study of ‘higher order’ systems,
see Sect. 7.5. Specializing (1) to this case the system reads

∇[µ0 Aµ1]µ2...µm = Jµ0µ1...µm , ∇ρAρµ2...µm = jµ2...µm (17)
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where Jµ0µ1...µm = J[µ0µ1]...µm . This system is always hyperbolizable as

2vρ∇[ρAµ1]µ2...µm − vµ1∇ρAρµ2...µm = 2vρJρµ1...µm + vµ1 jµ2...µm

for any timelike vector �v and this is equivalent to (17) if the constraint equations

N[σ ∇µ0 Aµ1]µ2...µm − N[σ Jµ0µ1]µ2...µm = 0

are added, where �N is the normal to any (n − 1)-dimensional hypersurface.
These constraints are integrable only if

∇[λJµµ1]µ2...µm = −1
2

m∑

i=2

Rρ
µi[λµAµ1]µ2...µi−1ρµi+1...µm .

Observe that jµ2...µm is missing in the constraint equations and their integrability
conditions, and thus it is not restricted in any way. This has important impli-
cations. For instance, suppose that only the first equation in (17) is given. One
can obtain a symmetric hyperbolic system in this case by simply supplementing
the second equation in (17) for an arbitrary tensor field jµ2...µm . In other words,
the divergence on the first index of Aµ1...µm can be considered as a gauge, not
appearing in the original equations, and therefore it can be prescribed at will.
The resulting system is always hyperbolizable as shown in section 3, and one
can find the solutions to an initial value problem either depending on jµ2...µm ,
or alternatively, for any given particular explicit jµ2...µm .

This type of gauge equations can be considered in general, not only for rank-1
blocks; but then the supplementary equations are subject to the corresponding
integrability conditions. This general case will be commented upon in Sect. 7.6.

7.5 Higher order systems

In this subsection two kinds of ‘higher-order’ systems will be considered. First, a
standard and rather obvious construction of a symmetric hyperbolic system for
the first derivative of any tensor field is presented. Then, the question of higher-
order partial differential equations is analyzed using the typical procedure to
rewrite them as a first-order system.

7.5.1 The elementary higher-order systems

Given any tensor field Hµ1...µm−1 , subject or not to any differential equations, a
symmetric hyperbolic system of equations for its covariant derivative

∇µ1 Hµ2...µm ≡ Aµ1...µm (18)

can always be built. If the original Hµ1...µm−1 is an r-fold (n1, . . . , nr)-form, then
Aµ1...µm is an (r + 1)-fold (1, n1, . . . , nr)-form. In particular, the rank of its first
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block is 1 and this block has no (anti)-symmetries in general with any other
index. Furthermore, the Ricci identity implies that

∇[µ0 Aµ1]µ2...µm = −1
2

m∑

i=2

Rρ
µiµ0µ1 Hµ2...µi−1ρµi+1...µm . (19)

Therefore, the situation is that described in the previous Sect. 7.4. By adding
the gauge equations

∇ρAρµ2...µm = jµ2...µm (20)

for arbitrarily chosen jµ2...µm —depending on the background, A and H—, one
obtains a first-order mixed symmetric hyperbolic system constituted by the
Eqs. (18,19,20). I will call this system the “basic higher-order system” for H.
(Observe, by the way, that the last equation (20) is equivalent to a wave equa-
tion ∇ρ∇ρHµ2...µm = jµ2...µm ). The basic higher-order system is mixed in the
sense of subsection 7.3 and the corresponding parts are given by (i) Eq. (18) by
itself and (ii) the two Eqs. (19,20) for Aµ1...µm . The part (i) is of type (4) and
thus hyperbolized in the way outlined in footnote 5. Besides, its integrability
conditions are always satisfied by virtue of (19). The second part (ii) is of the
generic type (1) treated in this paper, and belongs to the particular case dis-
cussed in the previous subsection. Its integrability conditions are also satisfied
by virtue of the second Bianchi identity for the Riemann tensor and (18) itself.

A more drastic way of building a symmetric hyperbolic system is to give the
whole symmetric derivative of Aµ1...µm , and not only its trace. Thus, instead of
(20) one can add

∇(µ0 Aµ1)µ2...µm = χµ0µ1µ2...µm (21)

for arbitrary χµ0µ1µ2...µm = χ(µ0µ1)µ2...µm . This leads, together with (19), to a
system of type (4).

Of course, if Hµ1...µm−1 was subject to some differential equations, then the
choice of jµ2...µm in (20) or χµ0µ1µ2...µm in (21) must be done accordingly, in a
compatible manner. From the perspective of the basic higher-order system, any
differential equations on H can be seen as extra algebraic relations in the sense
of Sect. 7.2, and they simply read

FL(A, H, x) = 0, L = 1, . . . , l

for some functions FL. Thus, as a first criterion for the solvability of any
equations on Hµ1...µm−1 , one can always construct its basic higher-order sys-
tem, hyperbolize it, and check if the original equations, considered now as
initial conditions of the previous type, are preserved by the evolution of the
system.
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7.5.2 Higher order partial differential equations

Consider now the case of a system of higher-order partial differential equations
for an unknown tensor field Lµ1...µm . Assume that the order of the system is k
so that it can be written as

K�
ρ1...ρk

µ1...µm∇ρ1 · · · ∇ρkLµ1...µm = I� (22)

for some functions I�, K�
ρ1...ρk

µ1...µm depending on the background Lorentzian
manifold, and on Lµ1...µm and its covariant derivatives up to order k−1. Without
loss of generality assume that K�

(ρ1...ρk)
µ1...µm = K�

ρ1...ρk
µ1...µm . By introducing

auxiliary fields corresponding to each of the symmetrized derivatives of Lµ1...µm

up to order k − 1 as follows [32]

∇ν1 Lµ1...µm ≡ Aν1µ1...µm , (23)

∇(ν1 Aν2...νi)µ1...µm ≡ Aν1...νiµ1...µm , i = 2, . . . , k − 1

one can then construct k − 2 basic higher-order systems in the sense above by
using the corresponding Ricci identities when needed:

∇ν2 Aν1µ1...µm = Aν1ν2µ1...µm + 1
2

m∑

j=1

Rρ
µjν2ν1Lµ1...µj−1ρµj+1...µm , (24)

∇ν3 Aν2ν1µ1...µm = Aν1ν2ν3µ1...µm +
m∑

j=1

Rρ
µjν3(ν2 Aν1)µ1...µm − 2

3
Rρ

(ν1ν2)ν3 Aρµ1...µm

+1
3

m∑

j=1

(
∇ν1 Rρ

µjν3ν2 + ∇ν2 Rρ
µjν3ν1

)
Lµ1...µj−1ρµj+1...µm (25)

...
...

...
...

...
...

and so on for all i = 1, . . . , k − 2, together with the last equation derivable from
a Ricci identity, namely

∇[ν1 Aν2]ν3...νkµ1...µm = Fν1ν2ν3...νkµ1...µm (26)

where Fν1ν2ν3...νkµ1...µm = F[ν1ν2](ν3...νk)µ1...µm is a known function depending
on the background spacetime and the Aν1...νiµ1...µm for i = 1, . . . , k − 2. The
result is a mixed first-order system formed by (23–26) together with the original
higher-order equation (22) rewritten as

K�
ρ1...ρk

µ1...µm∇ρ1 Aρ2...ρkµ1...µm = I� (27)

where I�, K�
ρ1...ρk

µ1...µm are now considered as functions of Lµ1...µm and
Aν1...νiµ1...µm for i = 1, . . . , k − 1. Each of the systems (23), (24), (25), etcetera,
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are of the type (4), and thus easily hyperbolized as indicated in the footnote 5.
The constraint equations for these systems are complete and integrable by vir-
tue of (24,25, ..... ,26), respectively. The remaining system is formed by (26) and
(27), for which the constraints are complete and integrable too. The question
of whether this system is hyperbolizable or not depends on the explicit form
of K�

ρ1...ρk
µ1...µm . Some simple hyperbolizable examples leading to symmetric

hyperbolic systems obtained by the procedure explained in Sect. 3 are (see also
[32])

K�
ρ1...ρk

µ1...µm = gρ1(ρ2δρ3
σ3

· · · δρk)
σk

�β1...βm
µ1...µm

or
K�

ρ1...ρk
µ1...µm = δ(ρ1

σ1
· · · δρk)

σk
�β1...βm

µ1...µm

where in both cases �
β1...βm
µ1...µm represents the product δ

β1
µ1 · · · δβm

µm with the appro-
priate (anti)-symmetrizations on the indices µ1 . . . µm according to the r-fold
form structure of Lµ1...µm or the symmetries between its indices.

Of course, a particular explicit very simple example of the above is the mass-
less scalar field φ which satisfies the second order equation

∇ρ∇ρφ = 0 .

Then, one can construt a first order system on the variables (φ, φµ) by means of

∇µφ ≡ φµ, ∇[νφµ] = 0, ∇ρφρ = 0.

This is the case of a 1-form, m = 1 in Sect. 7.1. The hyperbolizations are defined
by the energy-momentum tensor of the scalar field

Tλµ{∇φ} = φλφµ − 1
2

gλµφρφρ . (28)

Thus, the characteristics of this system are determined by the null eigenvectors
of Tλµ{∇φ} [7,30,31], and they depend on the causal character of φµ.

7.6 Adding ‘gauge’ equations

Consider the case when only the first part of the system (1) is given, namely

∇[µ0 Aµ1...µs]µs+1...µm = Jµ0...µm

and assume, without loss of generality, that s = n1 is the first block rank of A
seen as an r-fold form. These equations by themselves are underdetermined if
s > (n − 1)/2, because there are N Cn,s unknowns and only N Cn,s+1 equations.
Therefore, for these values of s, there are no possible hyperbolizations of these
equations as they stand [32].
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However, a feasible procedure for general values of s is the following. Observ-
ing that the symmetric part (with respect to an index in the first block) of the
covariant derivative of A is not restricted in any way by the given equations, one
can add these, fully or partly, arbitrarily as ‘gauge’ equations. Thus, for instance,
one could add either of

∇(µ0 Aµ1)µ2...µsµs+1...µm = Ĵµ0...µm , ∇ρAρµ2...µm = jµ2...µm

for arbitrary Ĵµ0µ1µ2...µm = Ĵ(µ0µ1)[µ2...µs]µs+1...µm or jµ2...µsµs+1...µm =
j[µ2...µs]µs+1...µm . This leads, in the first case, to a system of type (4), and in the
second to a system of type (1). Any of these completed systems can be hyper-
bolized as explained in previous sections. The only restrictions to be placed on
Ĵµ0µ1µ2...µm or jµ2...µsµs+1...µm are the necessary integrability conditions written
down in Sect. 4. Then, one can find the solutions to an initial value problem
depending on the presribed jµ2...µm (or Ĵµ0µ1µ2...µm ). Alternatively, one can solve
the system, depending on initial data, for any given particular explicit jµ2...µm

(or Ĵµ0µ1µ2...µm ).
Similarly, if only the second in (1) is given, one can add the first in (1) as a

gauge for arbitrary Jµ0...µm , subject to its integrability conditions.

7.7 Bianchi identities with and without sources in arbitrary dimension

As an important physical application of all of the above, let us consider the
so-called higher-order field equations for the gravitational field, see [34], which
are essentially the Bianchi identities for the Riemann tensor. Letting Kαβλµ =
K[αβ][λµ] be any double (2,2)-form, not necessarily satisfying any extra symmetry
property such as K[αβλ]µ = 0, the ‘Bianchi’ equations are

∇[γ Kαβ]λµ = 0. (29)

This is an underdetermined system when n = 4, but not for higher values of the
dimension n. In any case, as explained in the previous Sect. 7.6, one can add for
arbitrary n a ‘gauge’ part

∇ρKρβλµ = jβλµ (30)

where jρλµ = jρ[λµ] is restricted to satisfy the integrability conditions

∇ρ jρλµ = 1
2

(
Rρ

λτνKτν
ρµ + Rρ

µτνKτν
λρ

)
(31)

but is otherwise arbitrary.
These equations can be attacked in two completely different ways, both from

the mathematical and physical points of view. The first possibility is taking the
background Lorentzian manifold as given—and therefore its Riemann tensor
is known data, and treating Kαβλµ as an unknown tensor field to be determined.
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This has some interest from (i) the mathematical point of view, as one of the
solutions is the Riemann tensor itself and (ii) from the physical viewpoint,
because it serves the purpose of studying “spin-2” fields on given spacetimes,
such as a linearized field in flat spacetime and similar cases. The second pos-
sibility, which is much more difficult to handle and has a richer structure and
more physical interest, is the case when the background spacetime is not given,
but one wants to find the metric tensor field and corresponding connection
alongside the solutions for the higher-order equations (29). In this case, one
has to build a hyperbolic reduction of the Einstein’s field equations for some
matter content where the unknowns contain metric components, connection
variables, and curvature components. The way to do this in four dimensions,
which can be translated in principle to higher dimensions, can be consulted in
[1,20–22,26,27].

In both cases, the hyperbolization of the Bianchi equations by themselves, or
as part of a larger mixed system, should be achieved. Considering the system
(29–30), and by the general results of this paper, the constraint equations are
complete, a symmetric hyperbolization is provided by the superenergy tensor
of Kαβλµ (its Bel tensor, see [5,11,40]):

Tαβλµ

{
K[2][2]

} = Kαρλσ Kβ
ρ

µ
σ + Kαρµσ Kβ

ρ
λ
σ − 1

2
gαβKρτλσ Kρτ

µ
σ

−1
2

gλµKαρστ Kβ
ρστ + 1

8
gαβgλµKρτσνKρτσν (32)

and the characerisitics of the system (29–30) are determined by the principal
directions of Tαβλµ

{
K[2][2]

}
such that

�α�βTαβλµ

{
K[2][2]

} = 0

which are the principal null directions of the corresponding K[2][2], defined by

�ρ�[αKβ]ρλµ = 0.

Furthermore, the divergence of Tαβλµ

{
K[2][2]

}
can be easily computed usign

(29–30) to give

∇αTαβλµ

{
K[2][2]

} = jρλσ Kβ
ρ

µ
σ + jρµσ Kβ

ρ
λ
σ − 1

2
jρτσ Kβ

ρτσ .

and this rules, as explained in Sect. 6, the (super)-energy estimates.
All of the above can be said in general. Nevertheless, one can consider the

important particular case of Einstein’s field equations

Rµν − 1
2

Rgµν + �gµν = 8πG
c4 Tµν , R = Rρ

ρ
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or similar problems for most general equations relating the Ricci tensor Rµν

and the energy-momentum tensor Tµν of the gravitational sources, which must
be divergence-free by assumption

∇ρTρµ = 0. (33)

Given that the Riemann tensor satisfies

Rα[βλµ] = 0 �⇒ Rαβλµ = Rλµαβ (34)

from (29) one immediately deduces

∇ρRρβλµ = 2∇[λRµ]β

so that an appropriate choice for the arbitrary jβλµ of (30) is

jβλµ = 16πG
c4

(

∇[λTµ]β − 1
n − 2

gβ[µ∇λ]T
)

, T = Tρ
ρ .

This choice is needed if one wishes that the solutions of (29–30) include the
Riemann tensor of the Lorentzian metric. The integrability condition (31)
reduces now, due to (33) which implies ∇ρ jρλµ = 0, to

Rρ
λτνKτν

ρµ + Rρ
µτνKτν

λρ = 0 (35)

while the integrability conditions of the original (29) are

Rρ
λ[τνKαβ]ρµ + Rρ

µ[τνKαβ]λρ = 0 . (36)

The extra algebraic relations (34) can be treated in the manner explained in
Sect. 7.2, by defining the tensor

Pαβλµ ≡ K[αβλ]µ

and imposing Pαβλµ = 0 as initial conditions. This can be shown to be preserved
by the evolution, see [1,9].

Similarly, the Einstein equations themselves can be treated as initial con-
ditions by the method of Sect. 7.3, whenever the explicit form of the energy-
momentum tensor in terms of the gravitating physical fields is given. (This has
been done in 4 dimensions for some cases in [21,22].) I am going to illustrate
the method by considering the case in which there is only a massless scalar field
φ on the spacetime.

The energy-momentum tensor of the scalar field is given by (28), hence the
needed choice for jβλµ is, using the notation introduced at the end of Sect. 7.5,

jβλµ = 16πG
c4 ∇βφ[λφµ] .
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This suggests that the proper thing to do is going one step higher for the scalar
field defining

φµν = ∇µφν , φµν = φ(µν)

whose field equations are easily determined using the method of subsection 7.5:

∇[λφµ]ν = −1
2
φρRρ

νλµ , ∇ρφρν = −φρRρν .

The Einstein field equations read simply

Rµν − 8πG
c4 φµφν + 2

n − 2
�gµν = 0 .

Therefore, the system to be considered is a mixed system, for the unknowns
(Kαβλµ, φµν , φµ) where Kαβλµ is a double (2,2)-form, φµν is a double symmetric
(1,1)-form and φµ is a one-form. The equations are (on a given background)

∇µφν = φµν , ∇[λφµ]ν = −1
2
φρRρ

νλµ ,

∇ρφρν = φν

(
2

n − 2
� − 8πG

c4 φρφρ

)

,

∇[γ Kαβ]λµ = 0 ,

∇ρKρβλµ = 16πG
c4 φβ[λφµ] .

This must be supplemented with the extra algebraic relations (35), (36) together
with

φρ
ρ = 0, K[αβλ]µ = 0, Kρ

(µν)ρ + 8πG
c4 φµφν + 2

n − 2
�gµν = 0

all of which can be considered as initial conditions for the data on an initial
spacelike hypersurface �. Of course, this data must be restricted to satisfy the
constraint equations provided by (10–11):

N[λ
(∇µ]φν − φµ]ν

) = 0, N[τ∇λφµ]ν + 1
2
φρRρ

ν[λµNτ ] = 0,

N[τ∇γ Kαβ]λµ = 0, Nβ

(

∇ρKρβλµ − 16πG
c4 φβ[λφµ]

)

= 0

where �N is the normal to �. This system of equations is directly hyperbolizable
as shown in previous sections by using superenergy tensors. Here, apart from
the Bel tensor (32) mentioned above, one has to use the superenergy tensor of
the scalar field ([40] and references therein):

Tαβλµ

{
φ[1][1]

} = 2φα(λφµ)β − gαβφλ
ρφµρ − gλµφα

ρφβρ + 1
2

gαβgλµφσρφσρ .
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Observe that both needed superenergy tensors have the same number of indices
and the same symmetry properties. They can in fact be added into one single,
mixed, superenergy tensor

T(tot)
αβλµ ≡ Tαβλµ

{
K[2][2]

} + Tαβλµ

{
φ[1][1]

}

whose total superenergy density relative to a timelike unit vector �u, and the
total w(t) of Sect. 6, is the sum of the separate corresponding quantities for each
of the two fields involved. It is very interesting to remark that the inequalities
computed in Sect. 6 can then be easily estimated by using the divergence of
the total tensor above [40]. Furthermore, in cases with Killing vectors, the cor-
responding total, mixed, superenergy currents are divergence free, and provide
conserved quantities, see Sect. 7.2 in [40].

A similar procedure can be used to couple the Bianchi equations to other
matter fields, such as the electromagnetic one. In that case, one must use the
symmetrized superenergy tensor associated with the covariant derivative of the
Maxwell 2-form, which is the Chevreton tensor [18,40]. As a matter of fact,
one can go to higher-order derivatives of all the fields involved (the Riemann
tensor, the scalar field, the electromagentic 2-form, etcetera) and find hyperb-
olizations of the new variables by using the different (super)k-energy tensors,
for all natural numbers k, introduced in [40].
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