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Abstract The present paper reconsiders the Newtonian limit of models of
modified gravity including higher order terms in the scalar curvature in the
gravitational action. This was studied using the Palatini variational principle in
Meng and Wang (Gen. Rel. Grav. 36, 1947 (2004)) and Domínguez and Barrac-
o (Phys. Rev. D 70, 043505 (2004)) with contradicting results. Here a different
approach is used, and problems in the previous attempts are pointed out. It is
shown that models with negative powers of the scalar curvature, like the ones
used to explain the present accelerated expansion, as well as their generaliza-
tion which include positive powers, can give the correct Newtonian limit, as long
as the coefficients of these powers are reasonably small. Some consequences of
the performed analysis seem to raise doubts for the way the Newtonian limit
was derived in the purely metric approach of fourth order gravity [Dick in
Gen. Rel. Grav. 36, 217 (2004)]. Finally, we comment on a recent paper [Olmo
in Phys. Rev. D 72, 083505 (2005)] in which the problem of the Newtonian limit
of both the purely metric and the Palatini formalism is discussed, using the
equivalent Brans–Dicke theory, and with which our results partly disagree.
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1 Introduction

The cosmological puzzle of the late time accelerated expansion of the universe
[1–6] has motivated a lot of authors to consider models of modified gravity for
its theoretical explanation. One type of models is the so-called fourth order
gravity, where the gravitational action involves higher order terms in the scalar
curvature, R (see for example [7,8]). This idea is not new; it has been studied
in the past for explaining early time inflation [9]. The main difference between
the two approaches is that in order to generate early time inflation one needs
positive powers of the scalar curvature in the action, whereas to explain the
present accelerated expansion, negative powers of R should be present.

In [10] Vollick considered a further modification, by using the action of [7]
together with the Palatini variational principle. According to this principle, the
metric and the affine connections are considered as geometrically independent
quantities. The action has to be varied with respect to both of them to give
the field equations. This approach gives identical results to those obtained with
the metric approach, if the standard Einstein–Hilbert action is used, the varia-
tion with respect to the metric giving the Einstein equations and the variation
with respect to the connections giving the expressions for the Christoffel sym-
bols [11]. However, differences arise between the results obtained with the two
approaches when a more general action is used.

The Palatini approach can be viewed as a further generalization of fourth
order gravity. However, standard general relativity does not need the assump-
tion that the connections are the Christoffel symbols of the metric; this can
simply be derived from the variation of the action. In that sense the Palatini
approach seems more appealing since it requires one less assumption than
the metric approach. Another important aspect is that a gravitational action
with higher order terms in R, treated in this formalism, gives a set of second
order pde’s plus an equation involving the connection, which is trivial to solve
and interpret using a conformal transformation [10]. Remarkably, in vacuum,
the theory reduces to standard general relativity plus a cosmological constant.
Fourth order gravity in the metric formalism, however, leads to fourth order
differential equations (hence the name), which are very difficult to treat. Thus,
also from the practical point of view, the Palatini approach seems preferable.
It has also been shown that stringent constraints can be put on models of cos-
mological interest in the metric formalism, like the one discussed in [7], via
confrontation with the solar system experiments [12]. Even though this prob-
lem can be overcome by more sophisticated models [8], this requires significant
fine tuning of the various parameters. Additionally, Dolgov and Kawasaki have
shown in [13] that a violent instability appears in models like [7] in a weak
gravitational regime within matter, when treated within the framework of the
metric formalism, but the Palatini version of the same models is free of such
instabilities (see [14]).

Theories like those presented in [7] or [10] seem to explain the present accel-
erated expansion [7,14] but there are obscure points about their behavior in a
weak gravity regime. Having the correct behavior in the Newtonian limit is, of
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course, fundamental for any proposed theory. In [15] constraints were obtained
for the models in the metric formalism, in order for them to reproduce gravity
as we know it from experiments in weak field. The picture in the Palatini for-
malism is less clear. In [16] Meng and Wang claim that all models with inverse
powers of the scalar curvature in the action give a correct Newtonian limit. On
the other hand, in [17] it is claimed that this is not true and that there are con-
straints on the form of the Lagrangian. During the preparation of this paper the
post-Newtonian expansion of the discussed theories was studied in [18,19] both
for the metric and the Palatini formalism, by using the equivalent Brans–Dicke
theory. The results relevant to the Newtonian limit seem to be in agreement
with those of [15] and [17]. The line of reasoning in [19] is basically no different
from that used in [18], at least for what concerns this study. Thus, from now on,
any reference to [18] will actually include also [19].

In the present paper, we reconsider the weak field regime in the Palatini for-
malism and show that any reasonable model gives the correct Newtonian limit,
following a different approach from both [16–18]. This is done in Sect. 2. Section
3 is dedicated to detailing the points at which our analysis disagrees with that
in [18]. The discussion in Sect. 2 raises doubts about whether the studies of the
Newtonian limit within the metric formalism performed by Dick [15] and Olmo
[18], are viable. We comment on this in Sect. 4. Section 5 contains conclusions.

2 Palatini formalism

We will consider theories of gravity coming from an action of the form

S = 1
2κ

∫
d4x

√−gf (R) + SM, (1)

where f (R) is a polynomial including both positive and negative powers of R,
κ = 8πGN , and SM represents the matter action. The energy momentum tensor
is given by

Tµν = − 2√−g
δSM

δgµν
(2)

In the Palatini formalism, when we vary with respect to the metric we get

f ′(R)Rµν − 1
2

f (R)gµν = κTµν , (3)

and contracting,

f ′(R)R − 2f (R) = κT, (4)

where the prime denotes differentiation with respect to R and T is the trace of
the stress energy tensor.
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In [16] and [17] the authors expand around de Sitter in order to derive the
Newtonian limit. We write

R = R0 + R1, (5)

where R0 is the scalar curvature of the background de Sitter spacetime and R1 is
the correction to R0, including all possible terms, with R1/R0 being considered
as a small quantity. We will need to calculate f (R0 + R1) and f ′(R0 + R1). The
usual approached is to Taylor expand around R = R0 and keep only the leading
order terms in R1 but we will show that this cannot be done in the present
context because R1/R0 is not small.

Take as an example the CDTT model [7], studied by Vollick [10] in the
Palatini formalism. Then

f (R) = R − a2

R
, (6)

and a ∼ 10−67(eV)2 ∼ 10−53m−2. Expanding we get

f (R) = f (R0) + f ′(R0)R1 + 1
2

f ′′(R0)R2
1 + · · · (7)

and using (6) we get

f (R) = f (R0) +
(

1 + a2

R2
0

)
R1 − 1

2
2a2

R3
0

R2
1 + · · · (8)

where now R0 = a. It is easy to see then that the second term on the right
hand side of the above equation is of the order of R1, whereas the third term is
of the order of R2

1/a. Therefore, in order to truncate the third term one needs
R1 � R2

1/a or

a � R1. (9)

Note that this is not any exceptional constraint. R0 = a and so this is the usual
condition for being able to truncate non-linear terms in a Taylor expansion.

Let us now return to Eq. (4). For the CDTT model [Eq. (6)] this gives

R = 1
2

(
−κT ±

√
κ2T2 + 12a2

)
. (10)

When discussing whether a theory has a good Newtonian limit, we are in practice
checking whether the field equations reduce to a high precision to the Poisson
equation, under certain assumptions: energy densities should be small enough
so that there are no strong gravity effects and velocities related to the motion
of the matter should be negligible compared to the velocity of light. At the
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same time energy densities should be high enough so that the system under
investigation can be considered gravitationally bound.1 As a typical example
of a density satisfying the above criteria we can take the mean density of the
solar system, ρ ∼ 10−11 gr/cm3.2 This estimate now implies that |a/κT| ∼ 10−21,
where T ∼ −ρ (c is taken to be equal to 1). The “physical” branch of the solu-
tion given in Eq. (10) seems to be the one with the plus sign in front of the
square root. In fact, given that T < 0, this branch ensures that the matter leads
to a standard positive curvature in a strong gravity regime. Then

R ∼ −κT − 3a2/κT (11)

and R1 ∼ −κT ∼ κρ. Thus a/R1 ∼ 10−21 and it is now evident that condition
(9) does not hold for the typical densities related to the Newtonian limit.

Note that the situation does not improve even if we choose the “unphysical”
branch of Eq. (10) which has a minus sign in front of the square root. In fact in
this case R1 ∼ a(3a/κT − 1/3) so the correction to the background curvature is
of the order a and not much smaller than that as required in order to truncate
the higher order terms in the expansion Eq. (8).

In [17], this fact was overlooked and only linear terms in R1 were kept in
the expansion of f (R) and f ′(R) around R0. In [16] even though they notice it
in the final stages of their analysis and they use it to truncate some terms, the
authors do not take it into account properly from the beginning, keeping again
only first order terms (Eq. (11) of [16] for example).

An alternative way to attack the problem of the Newtonian limit is the fol-
lowing. We already know from relevant literature [10] that the connections are
the Christoffel symbols of the metric

hµν = f ′(R)gµν . (12)

For the CDTT model then, and if we define ε = a2/R2, Eq. (3) takes the form

(1 + ε)Rµν − 1
2
(1 − ε)Rgµν = κTµν , (13)

and

hµν = (1 + ε)gµν . (14)

1 For example, in the cosmological constant model one could consider, even on non-cosmological
scales, densities low enough so that the correction coming from the cosmological constant domi-
nates with respect to the matter density in the Poisson equation. This of course would not imply
that this model does not have a correct Newtonian limit.
2 One could imagine that this would be the density of a dust cloud which, due to some instabilities,
collapsed to form the sub-structures of the solar system (sun, planets, asteroids, etc.) in a fairly
Newtonian way.
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Due to Eq. (4) ε depends only on T. Combining Eqs. (14) and (13) we get

Rµν − 1
2

Rhµν + ε

(
R

1 + ε
hµν + Rµν

)
= κTµν . (15)

Note that up to this point no approximation or truncation was used. We have
merely expressed the left hand side of the structural equation of spacetime with
respect to quantities depending only on the hµν metric, which is conformal to
gµν . However, using Eqs. (10) and (11) we see that ε ∼ 10−42 if we use con-
sider the mean density of the solar system as before and even less for higher
densities. So the two metrics are practically indistinguishable in such cases, due
to Eq. (14). Thus we can use the h metric to derive the Newtonian limit. If we
assume that

hµν = ηµν + h1
µν , |h1| � 1, (16)

then the first two terms of Eq. (15) will give the standard Newtonian limit
and the last two terms will give a negligible contribution, since they are sup-
pressed by the ε coefficient. A deviation of the order of 10−42 is far below the
accuracy of any known experiment. In fact, one can consider densities several
orders of magnitude lower and still get corrections which will be much below
experimental accuracies.

A critical point is that here we assumed that the metric is flat plus a small
correction instead of de Sitter plus a small correction. Note, however, that we
are not claiming that we are expanding around the background or any corre-
sponding maximally symmetric spacetime. We are merely asking for the matter
to account for the deviation from flatness which is the basic concept related to
the Newtonian limit. In any case, de Sitter is essentially identical to Minkowski
for the densities discussed, and the important corrections to the metric come
from the local matter, not from considerations of the universe as a whole.

According to the above the CDTT Lagrangian in the Palatini formalism gives
a perfectly good Newtonian limit. The approach can be extended to more gen-
eral Lagrangians and it is safe to assume that all f (R) theories in this formalism
will give a correct Newtonian limit as long as the extra terms are suppressed by
small enough coefficients. This happens because the form of Eq. (4) is such that
in all such cases, R ∼ κρ for densities relevant to the Newtonian limit.

3 Recovering the Newtonian limit through the equivalent Brans–Dicke theory

The problem considered here has also recently been studied in [18] using the
equivalence between f (R) theories of gravity and Brans–Dicke theories. It is
shown there that the Palatini formalism of any f (R) theory is equivalent to
a Brans-Dicke theory of gravity with Brans–Dicke parameter ω = −3/2 (for
the metric formalism see Sect. 4). Keeping that in mind, one can generalize
known results to obtain the post-Newtonian metric. Olmo used the fact that, for



The nearly Newtonian regime in non-linear theories of gravity 1413

approximately static solutions, one can drop terms involving time derivatives to
the lowest order, and the metric can be expanded about its Minkowskian value.
The final relations giving the post-Newtonian limit of the field equations where

−1
2
∇2

[
h1

00 − 	(T)
]

= κρ − V(φ)

2φ
, (17)

−1
2
∇2

[
h1

ij + δij	(T)
]

=
[
κρ + V(φ)

2φ

]
, (18)

where V is the potential of the scalar field φ and 	(T) ≡ log[φ/φ0]. The sub-
script 0 in φ0, and in any other quantity henceforth, denotes that it is evaluated
at T = 0. Note at this point that the normalization by φ0 in this definition is not
required. Olmo probably just added (subtracted) the constant log(φ0) inside
the brackets on the left hand side of Eq. (17) [Eq. (18)] using the fact that it
remains unchanged. Thus we are not going to use it here and we are going to
refer to 	(T) just as 	(T) = log[φ]. The solutions of Eqs. (17) and (18) are

h1
00(t, x) = 2G

M�
r

+ V0

6φ0
r2 + 	(T), (19)

h1
ij(t, x) =

[
2γ G

M�
r

− V0

6φ0
r2 − 	(T)

]
δij, (20)

where M� ≡ φ0
∫

d3x′ρ(t, x′)/φ. The effective Newton’s constant G and the
post-Newtonian parameter γ are defined as

G = κ

8πφ0

(
1 + MV

M�

)
, (21)

γ = M� − MV

M� + MV
, (22)

where MV ≡ κ−1φ0
∫

d3x′ [V0/φ0 − V(φ)/φ]. Note that the κ2 appearing in
these relations in [18] is what we denote here as just κ . Even though we agree
with the approach followed to derive Eqs. (19) and (20) and on their validity,
we disagree with the line of reasoning used by Olmo to argue that models with
inverse powers of the scalar curvature do not have a good Newtonian limit. We
will demonstrate this using again the CDTT model [Eq. (6)].

As stated in different words in [18], if we define the Newtonian mass as
MN ≡ ∫

d3x′ρ(t, x′), the requirement for a theory to have a good Newtonian
limit is that GM� is equal to GNMN , where N denotes Newtonian and γ ∼ 1
up to very high precision. Additionally, the second term on the right hand side
of both Eqs. (19) and (20) should be negligible, since it acts as a term coming
from a cosmological constant. 	(T) should also be small and have a negligible
dependence on T. The above have to be true for the range of densities relevant
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to the Newtonian limit, as discussed before. Using the equation that define V
and φ found in [18] (see also [7]) one can easily show that

φ = 1 + a2

R2 , (23)

V(φ) = 2aκ
√

φ − 1. (24)

Additionally, for T = 0, R = √
3a so,

φ0 = 4/3, (25)

V0 = 2aκ/
√

3. (26)

For the densities we consider we can use the parameter ε defined above. Then

V(φ) = 2κ
a2

R
= 2κa

√
ε, (27)

and MV ∼ a. It is very easy to see using Eqs. (23), (25), (26) and (27) that

G ≈ κ

8πφ0
, (28)

γ ≈ 1, (29)

and φ ≈ 1 plus corrections of order a or smaller, which is well above the limit
of any experiment.

Additionally

	(T) ≡ log[φ] = log
[
1 + ε

] ≈ log
[
1 + a2/κ2T2

]
. (30)

V0 is of the order of a which is a perfectly acceptable value and 	(T) is negligi-
ble at the densities being considered and decreases even more when the density
increases. Therefore, our previous result are valid and theories including inverse
powers of the scalar curvature have a correct Newtonian limit in the Palatini
formalism.

Of course this result contradicts those reported in [18], even though the
approach followed there seems to be satisfactory. The main reason for this
problem seems to be the following. In [18] the fact that 	(T) should have a
mild dependence on T is used to obtain a constraint for the dependence of φ

on T (Eq. (26) of [18]). Taking a number of steps this constraint is turned into
a constraint for the functional from of f (R) (Eq. (37) of [18]) and from that a
conclusion is derived about the its possible non-linearity. We disagree with this
line of thought. Such inequalities constrain merely the value of the relevant
quantity at the point where it is evaluated and not its true functional form.
One could probably use them to make some assumptions about the leading
order term but not to exclude any terms of a different form, as long as they are
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negligible with respect to the leading order for the relevant values of R. This,
for example, is the case for the CDTT model discussed above. Any constraint
placed by the Newtonian limit has to hold over a certain range of relevant
densities (and consequently curvatures), and at not for all densities as implied
in [18].

It should be clarified, of course, that the approach followed in [18,19] is broad
enough to investigate, apart from the Newtonian limit of the models discussed,
also their post-Newtonian behavior and the confrontation with the solar system
experiments. Solar system tests (light deflection, Shapiro time delay, etc.) are
much more sophisticated than the Newtonian limit of a theory and at the same
time very different. They do not examine gravitationally bound systems, but are
essentially vacuum tests, in which the presence of matter ( e.g. solar winds) has
to be taken into account as a correction. Therefore the relevant densities can be
many orders of magnitude smaller than those associated with the Newtonian
limit. The approach which we followed here only considered densities relevant
for the latter and our objections to [18,19] are confined to the discussion about
the Newtonian limit. For discussions of constraints derived using solar system
experiments see, apart from [18,19], also [20–22].

4 Metric formalism

As already mentioned in the introduction, the Palatini and the metric formal-
ism give rise to different theories. Starting with the same action, (1), we get the
following field equations within the metric approach:

f ′(R)Rµν − 1
2

f (R)gµν − ∇µ∇νf ′(R) + gµν∇2f ′(R) = κTµν , (31)

where ∇µ is the covariant derivative, and ∇2 = ∇µ∇µ. Contracting we get

f ′(R)R − 2f (R) + 3∇2f ′(R) = κTµν . (32)

For the CDTT Lagrangian, (6), we get from (32)

−R + 3a2

R
− 6a2

R3 ∇2R + 18a2

R4 ∇µR∇µR = κT. (33)

The above equation relates the scalar curvature with the stress energy tensor
in a dynamical way. This makes any analysis a lot more complicated than in the
Palatini approach, where Eq. (4) was just an algebraic equation.

In [15] Dick expanded around the de Sitter solution to derive the Newtonian
limit in fourth-order gravity. In order to do so, he used a Taylor expansion for
f (R) and f ′(R), keeping only first order terms in the correction to the scalar
curvature δR. As we showed in the previous section, truncating higher order
terms is not something trivial when models with terms inversely proportional to
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R are considered. The condition to be fulfilled is δR � a for the CDTT model,
which is the simplest and most typical example. Note that this condition has
to hold both in the metric and the Palatini formalism. We have already shown
that this condition does not hold in the Palatini version of the theory by using
Eq. (10). The metric formalism is, of course, totally different, and one would
have to use Eq. (33) to make predictions on the value of δR. The dynamical
nature of this equation requires a different treatment from the one used in the
previous section. What is clear, however, even without going any further in the
analysis is that it not at all safe to assume that in all cases δR � a. No proof
that this condition holds is given in [15], and therefore, one has to assume that
higher order terms in the expansion of f (R) and f ′(R) were actually truncated
ad hoc, which leaves doubts about whether the analysis presented there really
applies in such models. This indicates that, the question of whether fourth-order
gravity models with inverse powers of the scalar curvature give good Newtonian
limits, is still not answered, at least not rigorously. However, since, as already
mentioned, the analysis of this problem seems to be completely different from
the one we used for the Palatini approach, we intend to address it separately in
future work.

As already mentioned, in [18] the Newtonian limit of fourth order gravity
was reconsidered using the equivalent Brans–Dicke theory. In the metric for-
malism, an f (R) theory corresponds to an ω = 0 Brans–Dicke theory. In this
approach no expansion of f (R) is formally needed. However, one has to expand
the potential of the scalar field V(φ) around φ0 to derive Eqs. (11) and (12) of
[18]. V(φ) is given in terms of f (R) by

V(φ) = Rf ′(R) − f (R), (34)

(see Eq. (9) of [18]). Therefore, it is safe to assume that any problematic behav-
ior in the expansion of f (R) and f ′(R) will be inherited by the expansion of
V(φ). This indicates that our concerns, stated in the previous paragraph and
involving the approach presented in [15], remain relevant also for the approach
followed in [18].

5 Conclusions

The Palatini version of modified models of gravity including higher order terms
in the scalar curvature has been studied in a nearly Newtonian regime. This has
been done mainly, using as an example the characteristic model of [10], but the
results obtained were shown to be general. It has been shown that such models
can give a good Newtonian limit, as long as the coefficients of the higher order
terms are reasonably small. Additionally, some of the present results seem to
indicate that there is doubt on whether the approach used in [15] and involved
first order expansions with respect to the scalar curvature, or equivalently the
approach presented in [18], are adequate to study the Newtonian limit of models
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with terms inversely proportional to the scalar curvature in the gravitational
action, in the purely metric approach.

Acknowledgments The author would like to thank Stefano Liberati and John Miller for valuable
discussions and comments.

References

1. Supernova Search Team Collaboration, Riess G.A., et al.: Observational evidence from super-
novae for an accelerating universe and a cosmological constant. Astron. J. 116, 1009 (1998)

2. Supernova Cosmology Project Collaboration, Perlmutter, S., et al.: Measurements of 	 and �

from 42 high-Redshift Supernovae. Astrophys. J. 517, 565 (1999)
3. Tonry, J.L., et al.: Cosmological results from high-z supernovae. Astrophys. J. 594, 1 (2003)
4. Bennett, C.L., et al.: First-Year Wilkinson microwave anisotropy probe (WMAP) observations:

preliminary maps and basic results. Astrophys. J. Suppl. Ser. 148, 1 (2003)
5. Boomerang Collaboration, Netterfield, C.B., et al.: A measurement by BOOMERANG of

multiple peaks in the angular power spectrum of the cosmic microwave background. Astro-
phys. J. 571, 604 (2002)

6. Halverson, N.W., et al.: Degree angular scale interferometer first results: a measurement of the
cosmic microwave background angular power spectrum. Astrophys. J. 568, 38 (2002)

7. Carroll, S.M., Duvvuri, V., Trodden, M., Turner M.S.: Is cosmic speed-up due to new gravita-
tional physics? Phys. Rev. D 70, 043528 (2004)

8. Nojiri, S., Odintsov, S.: Modified gravity with negative and positive powers of curvature: Unifi-
cation of inflation and cosmic acceleration. Phys. Rev. D 68, 123512 (2003)

9. Starobinsky, A.A.: A new type of isotropic cosmological models without singularity.
Phys. Lett. B 91, 99 (1980)

10. Vollick, D.N.: 1/R curvature corrections as the source of the cosmological acceleration.
Phys. Rev. D 68, 063510 (2003)

11. Wald, R.M.: General Relativity. The University of Chicago Press, Chicago (1984)
12. Chiba, T.: 1/R gravity and scalar–tensor gravity. Phys. Lett. B 575, 1 (2003)
13. Dolgov, A.D., Kawasaki, M.: Can modified gravity explain accelerated cosmic expansion? Phys.

Lett. B 573, 1 (2003)
14. Meng, X., Wang, P.: Modified Friedmann equations in R−1-modified gravity. Class. Quant.

Grav. 20, 4949 (2003)
15. Dick, R.: On the Newtonian limit in gravity models with inverse powers of R. Gen. Rel. Grav. 36,

217 (2004)
16. Meng, X., Wang, P.: Gravitational potential in the palatini formulation of modified gravity.

Gen. Rel. Grav. 36, 1947 (2004)
17. Domínguez, A.E., Barraco, D.E.: Newtonian limit of the singular f (R) gravity in the Palatini

formalism. Phys. Rev. D 70, 043505 (2004)
18. Olmo, G.J.: Post-Newtonian constraints on f (R) cosmologies in metric and Palatini formalism.

Phys. Rev. D 72, 083505 (2005)
19. Olmo, G.J.: The Gravity Lagrangian according to solar system experiments. Phys. Rev. Lett. 95,

261102 (2005)
20. Allemandi, G., Francaviglia, M., Ruggiero, M.L., Tartaglia, A.: Post-newtonian parameters from

alternative theories of gravity. Gen. Rel. Grav. 37, 1891 (2005)
21. Capozziello, S., Troisi, A.: Parametrized post-Newtonian limit of fourth order gravity inspired

by scalar–tensor gravity. Phys. Rev. D 72, 044022 (2005)
22. Capozziello, S., Stabile, A., Troisi, A.: Higher order gravity compatible with experimental con-

straints on Eddington parameters, arXiv: gr-qc/0603071 (2006)


