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Abstract We construct thin shell Lorentzian wormholes in higher dimensional
Einstein–Maxwell theory applying the ‘Cut and Paste’ technique proposed by
Visser. The linearized stability is analyzed under radial perturbations around
some assumed higher dimensional spherically symmetric static solution of the
Einstein field equations in presence of Electromagnetic field. We determine the
total amount of exotic matter, which is concentrated at the wormhole throat.

Keywords Thin shell wormholes · Electromagnetic field · Higher Dimension ·
Stability

1 Introduction

In a pioneer work, Morris and Thorne [1] have found traversable Lorentzian
wormholes as the solutions of Einstein’s field equations. These are hypothetical
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shortcuts between two regions (of the same Universe or may be of two separate
Universes) connected by a throat. The throat of the wormholes is defined as
a two dimensional hypersurface of minimal area and to hold such a wormhole
open, violations of certain energy conditions are unavoidable i.e. the energy
momentum tensor of the matter source of gravity violates the local and aver-
aged null energy condition Tµνkµkν ≥ 0, kµkν = 0 . Thus all traversable worm-
holes require exotic matter that violates the null energy condition. Recently, it
has been shown that the requirements of exotic matter for the existence of a
wormhole can be made infinitesimally small by a suitable choice of the geometry
[2–3].

In recent past, Visser [4] has proposed another way, which is known as ‘Cut
and Paste’ technique, of minimizing the usage of exotic matter to construct a
wormhole in which the exotic matter is concentrated at the wormhole throat. In
‘Cut and Paste’ technique, the wormholes are theoretically constructed by cut-
ting and pasting two manifolds to obtain geodesically complete new manifold
with a throat placed in the joining shell [5]. Using Darmois–Israel [6] formalism,
one can determine the surface stresses of the exotic matter (located in thin shell
placed at the joining surface). Though we do not know about the equation of
state of exotic matter, yet it is possible to investigate the stability of these thin
wormholes. Following references [5–6], one can analyze the stability of these
thin wormholes through linearized perturbations around static solutions of the
Einstein field equations. Several authors have used surgical technique (Cut and
Paste) to construct thin wormholes. Poisson and Visser [5] have analyzed the
stability of a thin wormhole constructed by joining two Schwarzschild space-
times. Eiroa and Romero [7] have extended the linearized stability analysis to
Reissner–Nordström thin spacetimes. Eiroa and Simeone[8] have constructed
the wormholes by cutting and pasting two metrics corresponding to a charged
black hole which is a solution of low energy bosonic string theory, with vanish-
ing antisymmetric field but including a Maxwell field. Also the same authors
have analyzed cylindrically symmetric thin wormhole geometry associated to
gauge cosmic strings [9]. Recently, Thibeault et al.[10] have studied the stabil-
ity and energy conditions of five dimensional spherically symmetric thin shell
wormholes in Einstein–Maxwell theory with addition of a Gauss Bonnet term.
In this article, we study thin shell wormholes in higher dimensional Einstein–
Maxwell theory i.e. wormholes constructed by cutting and pasting two metrics
corresponding a higher dimensional Reissner–Nordström black hole. We are
interested only to study the geometry of these objects. We do not explain about
the mechanism that provide the exotic matter to them, but rather we focus on
the total amount of exotic matter.

2 Reissner–Nordström black holes in higher dimension

The Reissner–Nordström black hole is a solution of the Einstein equation cou-
pled to the Maxwell field. From the Einstein–Maxwell action in (D+2) dimen-
sion [11]
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S =
∫

dD+2√−g
[

R − k
8π

FabFab
]

(1)

where

k = 8πG (2)

Fab = Aa;b − Ab;a (3)

One can obtain the following Einstein–Maxwell equations:

Rab − 1
2

gabR = k
4π

[
Fc

aFbc − 1
4

gabFcdFcd
]

(4)

Fc
a;c = 0 (5)

Fab;c + Fbc;a + Fca;b = 0 (6)

The only non-trivial components of Fab are

Ftr = −Frt = Q
rD (7)

where Q represents an isolated point charge.
These equations admit a spherically symmetric static solution given by [11]

ds2 = −f (r)dt2 + dr2

f (r)
+ r2d�2

D (8)

where d�2
D is the line element on the D unit sphere i.e.

d�2
D = dθ2

1 + sin2 θ1dθ2
2 + · · · +

D−1∏
n=1

sin2 θndθ2
D (9)

The volume of the D unit sphere is given by

�D = 2
π

D+1
2

�(D+1
2 )

(10)

The expression of f(r) is [11]

f (r) = 1 − µ

rD−1
+ q2

r2(D−1)
(11)

.
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Here, µ is related to the mass M of the black hole as

µ = 16πGM
D�D

(12)

q2 = 8πGQ
D(D − 1)

(13)

There are two roots of equation f (r) = 0 as

r± =
[
µ

2
± µ

2

(
1 − 4q2

µ2

)] 1
D−1

(14)

When µ2 < 4q2, we have two positive roots, one of which is an outer horizon
r+ while the other is inner horizon.

If µ2 = 4q2, both horizons coincide at

r+ = r− =
[

8πGM
D�D

] 1
D−1

(15)

3 The Darmois–Israel formalism and ‘Cut and Paste’ construction

From the higher dimensional Reissner–Nordström geometry, we can take two
copies of the region with r ≥ a:

M± = (x | r ≥ a)

and paste them at the hypersurface

� = �± = (x | r = a)

We take a > r+ to avoid horizon and this new construction produces a geo-
desically complete manifold M = M+ ⋃

M− with a matter shell at the surface
r = a , where the throat of the wormhole is located. Thus M is a manifold with
two asymptotically flat regions connected by the throat. We shall use the Dar-
mois–Israel formalism to determine the surface stress at the junction boundary.
Now we choose the coordinates ξ i(τ , θ1, θ2, . . . , θD) in � where the throat is
located with τ is the proper time on the shell.

To analyze the dynamics of the wormhole, we let the radius of the throat be
a function of the proper time a = a(τ ).

The parametric equation for � is given by

� : F(r, τ) = r − a(τ ) (16)
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The intrinsic surface stress energy tensor, Sij is given by the Lanczos equation
in the following form:

Si
j = − 1

8π

(
κ i

j − δi
jκ

k
k

)
(17)

where κij = K+
ij − K−

ij i.e. the discontinuity in the second fundamental forms or
extrinsic curvatures.

The extrinsic curvature associated with the two sides of the shell are

K±
ij = −n±

ν

[
∂2Xν

∂ξ i∂ξ j + �ν
αβ

∂Xα

∂ξ i

∂Xβ

∂ξ j

] ∣∣∣∣
�

(18)

where n±
ν are the unit normals to �,

n±
ν = ±

∣∣∣∣gαβ ∂F
∂Xα

∂F
∂Xβ

∣∣∣∣
− 1

2 ∂F
∂Xν

(19)

with nµnµ = 1.
The intrinsic metric on � is given by

ds2 = −dτ 2 + a(τ )2d�2
D (20)

From Lanczos equation, one obtain the surface stress energy tensor Si
j =

diag(−σ , pθ1 , pθ2 , . . . , pθD), where σ is the surface energy density and p is the
surface pressure as

σ = − D
4πa

√
f + ȧ2 (21)

pθ1 = pθ2 = · · · = pθD = p = −D − 1
D

σ + 1
8π

2ä + f ′√
f + ȧ2

(22)

where over dot and prime mean, respectively, the derivatives with respect to τ

and r.
From Eqs. (21) and (22), one can verify the energy conservation equation:

d
dτ

(σaD) + p
d

dτ
(aD) = 0 (23)

or

σ̇ + D
ȧ
a
(p + σ) = 0 (24)

The first term represents the variation of the internal energy of the throat
and the second term is the work done by the throat’s internal forces. Negative
energy density in Eq. (21) implies the existence of exotic matter at the shell.
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4 Linearized stability analysis

Rearranging Eq. (21), we obtain the thin shell’s equation of motion

ȧ2 + V(a) = 0 (25)

Here the potential is defined as

V(a) = f (a) − 16π2a2σ 2(a)

D2 (26)

Linearizing around a static solution situated at a0, one can expand V(a)
around a0 to yield

V = V(a0) + V′(a0)(a − a0) + 1
2

V′′(a0)(a − a0)
2 + 0[(a − a0)

3] (27)

where prime denotes derivative with respect to a.
Since we are linearizing around a static solution at a = a0, we have V(a0) = 0

and V′(a0) = 0. The stable equilibrium configurations correspond to the con-
dition V′′(a0) > 0. Now we define a parameter β, which is interpreted as the
speed of sound, by the relation

β2(σ ) = ∂p
∂σ

∣∣∣∣
σ

(28)

Using conservation Eq. (24), we have

V′′(a) = f ′′ − 32π2a2σ 2

D2 − 128π2aσσ ′

D2 − 32π2a2(σ ′)2

D2

−32π2a2σ

D2

[
D
a2 (p + σ) − D

a
σ ′ (1 + β2

)]
(29)

The wormhole solution is stable if V′′(a0) > 0 i.e. if

β2
0 <

1
D(a0f ′

0 − 2f0)

[
a0f ′

0 − 2f0 − a2
0f ′′

0 + a2
0(f

′
0)

2

2f0

]
− 1 (30)

or

β2
0 <

1
D

− 1 +

[
2µ(D−1)(D−2)

aD−1
0

+ µ2(D−1)(9D−15)

a2D−2
0

− 2µq2(D−1)(4D−7)

a3D−3
0

+ 4q4(D−1)(D−2)

a4D−4
0

]

2
(

1 − µ

aD−1
0

+ q2

a2(D−1)
0

) (
2 − µ(D+1)

aD−1
0

+ 2q2D

a2(D−1)
0

)

(31)
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Thus if one treats a0, D and the parameters related to the Reissner–Nord-
ström black hole are specified quantities, then the stability of the configuration
requires the above restriction on the parameter β0.

5 Energy condition and exotic matter

Weak energy condition (WEC) implies that for all time like vectors xµ, Tµνxµxν

≥ 0. In an orthonormal basis WEC reads ρ ≥ 0, ρ +pi ≥ 0 ∀i, where ρ is the en-
ergy density and pi , the principal pressures. Null energy condition (NEC) states
that Tµνkµkν ≥ 0 for all null vectors kµ. In an orthonormal frame Tµνkµkν ≥ 0
takes the form ρ + pi ≥ 0∀i. (The WEC implies by continuity the NEC). In the
case of thin wormhole constructed above, we have [from Eqs. (21) and (22)]
σ < 0 and σ + p < 0 i.e. matter occupies in the shell violates WEC and NEC,
in other words, shell contains exotic matter. The only contributor in the stress
tensor out side the shell is electromagnetic field. Now from the field equations
Rab − 1

2 gabR = 8πGTab, we can write Tab = TEM
ab = 1

4π
[Fc

aFbc − 1
4 gabFcdFcd].

Now, the energy density ρ = Ttt , the radial pressure pR = Trr and the

tangential pressure pt = pθ = pφ are given by ρEM = pEM
t = −pEM

r = q2

r2D .
Thus ρEM > 0 , ρEM + pEM

t > 0 and ρEM + pEM
r = 0 i.e. the NEC and WEC

are satisfied out side the shell. Hence the exotic matter is confined within the
shell. The total amount of exotic matter can be quantified by the integrals [3]∫

ρ
√−gdD+1x ,

∫ [ρ + pi]√−gdD+1x , where g is the determinant of the metric
tensor. To quantify the amount of exotic matter, we use the following integral
(NEC violating matter is related only on pr and not the transverse components):

� =
∫

[ρ + pr]
√−gdD+1x (32)

Following Eiroa and Simone [8], we introduce new radial coordinate
R = ±(r − a) in M (± for M±, respectively) as

� =
2π∫

0

π∫

0

· · ·
π∫

0

∞∫

−∞
[ρ + pr]

√−gdRdθ1dθ2 · · · dθD (33)

Since the shell does not exert radial pressure and the energy density is located
on a thin shell surface, so that ρ = δ(R)σ0, then we have

� =
2π∫

0

π∫

0

....

π∫

0

[ρ√−g]|r=a0dθ1dθ2 · · · dθD

= aD
0 σ0 × area of the unit D-sphere

= 2aD
0 σ0

π
D+1

2

�(D+1
2 )
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Thus one gets

� = −DaD−1
0

√
f0

π
D+1

2

2�(D+1
2 )

(34)

Using Eq. (10), we have

� = −DaD−1
0

√√√√1 − µ

aD−1
0

+ q2

a2(D−1)
0

π
D+1

2

2�(D+1
2 )

(35)

Since the total amount of exotic matter � is proportional to
√

f0, then �

approaches to zero when wormhole radius tends to the event horizon (i.e. when
a0 → r+). So one can get vanishing amount of exotic matter by taking a0
near r+.

6 Concluding remarks

Recently, several theoretical physicists are interested to obtain wormholes by
surgically grafting two identical copies of various well known spacetimes. In
this report, we have constructed thin wormhole in higher dimensional Ein-
stein–Maxwell theory. We analyze the dynamical stability of the thin shell,
considering linearized radial perturbations around stable solutions. To analyze
this, we define a parameter β2 = p′

σ ′ as a parametrization of the stability of equi-
librium. We have obtained a restriction on β2 to get stable equilibrium of the
thin wormhole [see eq.(31)]. We have shown that matter within the shell vio-
lates the WEC and NEC but matter out side the shell obeys the NEC and WEC.
Thus the exotic matter is confined only within the shell. Since the viability of
traversable wormholes are linked to the total amount of exotic matter for their
construction, we have calculated an integral measuring of the total amount
of exotic matter. Finally, we have shown that total amount of exotic matter
needed to support traversable wormhole can be made infinitesimal small by
taking wormhole radius near the throat.
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