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Abstract An approximate strategy for studying the evolution of binary sys-
tems of extended objects is introduced. The stars are assumed to be polytropic
ellipsoids. The surfaces of constant density maintain their ellipsoidal shape dur-
ing the time evolution. The equations of hydrodynamics then reduce to a system
of ordinary differential equations for the internal velocities, the principal axes
of the stars and the orbital parameters. The equations of motion are given
within Lagrangian and Hamiltonian formalism. The special case when both
stars are axially symmetric fluid configurations is considered. Leading order
gravitational radiation reaction is incorporated, where the quasi-static approx-
imation is applied to the internal degrees of freedom of the stars. The influence
of the stellar parameters, in particular the influence of the polytropic index n,
on the leading order gravitational waveforms is studied.

Keywords Riemann-S binaries · Gravitational waves · Polytropic equation
of state

1 Introduction

The search for gravitational waves is one of the most challenging projects of
twenty first century physics. Inspiraling compact binaries are among the most
promising sources for gravitational waves that could be detected by gravita-
tional waves observatories, such as LIGO, VIRGO and GEO600. During most
of the inspiral time the gravitational waves emitted by a compact binary system
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are much to weak, the frequencies are much to small to be detectable by existing
gravitational wave observatories. However, at orbital distances corresponding
to the last 10 or 15 min of the inspiral time, the orbital frequency increases
from around 1 Hz up to 1,000 Hz, while in the same time the amplitude of the
gravitational waves increases, thus improving the chance of actually detecting
the weak signals.

In order to extract a possible signal from the detector noise the gravitational
waveforms emitted by inspiraling binary systems must be known in great detail,
in particular during the last stages of the inspiral process before the final plunge.
The frequency gap covered by contemporary gravitational wave observatories
ranges from 1 to 1,000 Hz. In this regime post-Newtonian (pN) effects become
important and have to be included into the analysis. For non spinning point-par-
ticle binaries an analytic solution is available up to the 3rd pN approximation
[1]. Incorporating the spin leads to enormeous complifications. Until now there
exists a solution only for point-mass binaries with either two equal masses and
arbitrary spins, or two arbitrary masses and only one spinning object [2].

However, while the components of black hole-black hole binaries can be
treated as pointlike objects eventually up to the innermost stable circular orbit
(ISCO), yet another effect has to be incorporated into the analysis for all other
binary systems: the internal structure of the components. Lai and Wiseman [3]
argue that during most of the final inspiral process even the neutron stars can
be treated as pointlike objects. This is true if one considers only a few orbits.
If, however, one is interested in the long-term evolution of the system, the tidal
interaction of the neutron stars will lead to a phase shift in the gravitational
waveforms, which is not neglegible anymore.

In this paper we shall focus on the problem of including tidal interaction
into the equations of motion and we discuss the influence of the internal stellar
dynamics on the binary’s dynamics as well as on the gravitational waveforms
in leading order approximation. PN effects will be included in a forthcoming
paper.

A detailed description of the tidal interaction and the corresponding changes
in the gravitational waveforms requires the application of three-dimensional
numerical hydrodynamics. This is well beyond the scope of this paper. Instead
we shall consider an approximative formulation of the problem. This strategy
allows an analytic formulation of the equations of motion. Moreover, we are
able to run long-term calculations of the system’s dynamics with sufficient accu-
racy. There are basically two approaches for an approximate description of the
tidal interaction. The first one is based on a linear adiabatic theory, describ-
ing small derivations from equilibrium. Assuming an adiabatic equation of
state, the linearized equations of hydrodynamics have been derived by Ledoux
and Walraven [4] and Dziembowski [5]. Press and Teukolsky [6] developed a
technique for calculating normal modes of non-radial stellar oscillations in the
presence of tidal forces. Using the formulation of Dziembowski [5], Kokkotas
and Schäfer [7] studied the leading order dynamics and gravitational waveforms
of an NS–NS binary system, in particular taking into account the influence of
tidal interaction on the actual waveforms. Resonant tidal excitations of a binary
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neutron star with polytropic equations of state have been investigated by Ho
and Lai [8] in leading order approximation.

However, there are scenarios when the linear adiabatic theory is not appli-
cable. In particular the theory fails when the stellar oscillations cannot be con-
sidered as small derivations from equilibrium. Thus far only little investigation
has been undertaken in this direction. For a rotating, oscillating disk of dust
there exists an analytic solution up to first PN order [9]. A system of an rotating,
osillating dusty disk and a point-mass object has been studied by the author in
a recent paper [10]. A so-called ‘affine stellar model’ for polytropic, ellipsoi-
dal configurations has been developed by Carter and Luminet [11]. Here the
density contours in the star are assumed to form homologeous ellipsoids. The
model allows for the discussion of arbitrary large amplitudes of the tidally gen-
erated oscillations, but fails to give accurate results for small oscillations. The
excited mode roughly corresponds to the f -mode of the oscillations (see also
[12]). Later on Lai and Shapiro [13] extended this model to allow for the investi-
gation of Riemann-S binaries. In this paper we shall follow the approach of Lai
and Shapiro [13], pointing out some discrepancies in the authors’ formulation
of the equations of motion as well as for the gravitational waveforms.

The paper is organized as follows: In Sect. 2 we briefly recapitulate the
Lagrangian formulation of the dynamics of Riemann-S binaries derived by Lai
and Shapiro in a series of papers [13–15]. In this model the stars are consid-
ered as rotating and oscillating triaxial ellipsoids with a polytropic equation of
state. To keep the analysis as simple as possible, the tidal interaction potential
is truncated, only the leading order (i.e. quadrupole) tidal interaction is taken
into account. For later reasons we shall also present the Hamiltonian formu-
lation of this problem. In particular we shall specialize to axially symmetric
polytropic stars.1 Section 3 is devoted to the derivation of the leading order
gravitational reaction terms appearing in the dynamical equations. We shall
point out some discrepancies between our approach and the approach taken
by Lai and Shapiro. The leading order gravitational waveforms are derived
in Sect. 4. In particular we shall apply the quasi-static approximation to the
internal stellar dynamics. The corresponding equations are derived for general
triaxial Riemann-S binaries, but for simplicity we restrict ourselves to axially
symmetric configurations in the numerical calculations. The numerical results
and some possible physical applications of our model are discussed in Sect. 5.
In particular we study the influence of the polytropic index and hence of the
equation of state on the dynamics as well as on the leading order gravitational
waveforms. We shall show that the effect of the internal stellar structure on
the long term evolution of the binary is quite significant. We argue that the
exact knowledge of the polytropic equation of state is essential in order to cal-
culate the leading order gravitational waveforms emitted by the binary system
correctly.

1 Just setting a1 = a2 in the equations of motions gives rise to divergent terms.
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2 The Newtonian dynamics of Riemann-S binaries

2.1 Lagrangian formalism

On Newtonian order the Lagrangian equations of motion for compressible
Riemann-S binaries have been derived by Lai and Shapiro in several papers
(see [13–15]) and we shall therefore only shortly recapitulate their strategy. We
then turn our attention to the Hamiltonian formulation of the problem which
will be more suitable for numerical calculations. The case of axially symmetric,
polytropic stars is of particular interest for us, but requires some special care
in order not to overcount the degrees of freedom. Consider a binary consisting
of two ellipsoidal fluid configurations M and M′, assuming the stellar matter to
obey a polytropic equation of state,

P = K ρ1+1/n, P′ = K′ρ′1+1/n′
. (1)

Here n and n′ are the polytropic indices, while K and K′ represent constants
which are determined by the equilibrium radii of non-rotating, spherically sym-
metric polytropes of the same mass. A Riemann-S ellipsoid is characterized by
the angular velocity� = �ez of the ellipsoidal figure around the principal axes
and the internal vorticity ζ = ζez. The model is based on two assumptions:
First, we shall require the vorticity to be uniform, and second, the surfaces of
constant density inside the stars are assumed to form self-similar ellipsoids. In
other words, each star is described by only five degrees of freedom: the three
semi-major axes a1, a2, a3 and a′

1, a′
2, a′

3 respectively, and the two angles ψ and
γ , which are introduced in Fig. 1.

Consider now an isolated star M. If the assumptions given above are to be
fullfilled, it is immediately clear that the fluid velocity in the body fixed system,
which rotates with angular velocity� = �e3 (� = γ̇ ) with respect to an inertial
system centered at M, obeys the following ansatz:

uc = Q1x2e1 + Q2x1e2. (2)

Here Q1, Q2 are constants and x1, x2 denote coordinates in the body fixed frame.
The second requirement yields

Q1 = − a2
1

a2
1 + a2

2

ζ = a1

a2
�, Q2 = a2

2

a2
1 + a2

2

ζ = −a2

a1
�,

where ζ is the vorticity in the body fixed frame and � = ψ̇ is the angular
velocity of the internal fluidal motion. The angle ψ describes the rotation of the
x1̄-axis of the figure of the body with respect to a matter-fixed system. On the
other hand, observing the stellar matter in an inertial system centered at M it’s
velocity is given by

uIS = uc +� ∧ r. (3)
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Fig. 1 The figure shows the
coordinate systems used
throughout this paper. The
x1̄-axes of the comoving
system �̄ is chosen along the
axes between the centers of M
and M′ and includes with the
X-axes of the inertial system
the angle φ. Dotted lines
represent the axes of the
body-fixed system. COM
denotes the center of mass

The rotational energy of the star reads

Trot = 1
2

∫
ρ uIS · uISdV

= κnM
10

(
a2

1 + a2
2

) (
�2 +�2

)
− 2

5
κnMa1a2��, (4)

where κn ≤ 1 is a constant, which can be obtained from the Lane–Emden equa-
tion (see Appendix). It can be easily seen that the inertial tensor Iij = ∫ ρxixjdV
in the body fixed system takes a very simple form,

Iij =
∫
ρxixjdV = κnM

5
a2

i δij, κn := 5
3

∫ ξ1
0 θnξ4dξ

ξ4
1 |θ ′

1|
. (5)

In particular, for a1 ≡ a2 the rotational energy reduces to

Trot = κnM
5
(�−�)2a2

1. (6)

Note that if the angular velocity � of the ellipsoidal figure and the angular
velocity � of the internal fluidal motion are equal, the rotational energy of an
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axially symmetric star vanishes. The total kinetic energy of star M is given by

Ts = κnM
10

(
a2

1 + a2
2

) (
�2 +�2

)
− 2

5
κnMa1a2��+ κnM

10

(
ȧ2

1 + ȧ2
2 + ȧ2

3

)
, (7)

and the Lagrangian Ls of the star reads

Ls = Ts − U − W. (8)

The gravitational self-energy W, and U, the internal energy of the star, have
been computed by [13,19]. They are given by

U =
∫

n
P
ρ

dm = k1KMρ
1/n
c , (9)

where k1 = n(n + 1)ξ1|θ ′
1|/(5 − n) is constant, and

W = − 3
5 − n

GM2

2R3 J . (10)

Here R = (a1a2a3)
1/3 is the mean radius of the ellipsoid and J is given by

J = a2
1A1 + a2

2A2 + a2
3A3. The coefficients Ai, defined by Chandrasekhar [16],

are given in the Appendix.
Now let us come back to the binary system. The tidal interaction potential is

clearly dominated by the quadrupole interaction, which will be the only terms
to be included into our calculations. Thus the orbital Lagrangian reads

Lorb = μ

2
ṙ2 + μr2

2
φ̇2 − Wint, (11)

where μ = MM′/(M + M′) is the reduced mass, and the interaction potential
Wint is

Wint = −GMM′

r
− GMM′κn

10r3

[
a2

1

(
3 cos2 α − 1

)
+ a2

2

(
3 sin2 α − 1

)
− a2

3

]

−GMM′κ ′
n

10r3

[
a′2

1

(
3 cos2 α′ − 1

)
+ a′2

2 (3 sin2 α′ − 1)− a′2
3

]
. (12)

The meaning of the angle α = φ − γ can be read off from Fig. 1. It is now easy
to write down the Lagrangian of a general Riemann-S binary according to
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L = μ

2
ṙ2 + μr2

2
φ̇2 + GμM

r
+ GμMκn

10r3

[
a2

1

(
3 cos2 α − 1

)

+a2
2

(
3 sin2 α − 1

)
− a2

3)
]

+ GμMκ ′
n

10r3

[
a′2

1

(
3 cos2 α′ − 1

)

+a′2
2

(
3 sin2 α′ − 1

)
− a′2

3

]
+ κnM

10

(
a2

1 + a2
2

) (
�2 +�2

)
− 2

5
κnMa1a2��

+κnM
10

(
ȧ2

1 + ȧ2
2 + ȧ2

3

)
− k1KMρ

1/n
c + 3

5 − n
GM2

2R3 J

+κ
′
nM′

10

(
a′2

1 + a′2
2

) (
�′2 +�′2)− 2

5
κ ′

nM′a′
1a′

2�
′�′ − k′

1K′M′ρ′1/n′
c

+κ
′
nM′

10

(
ȧ′2

1 + ȧ′2
2 + ȧ′2

3

)
+ 3

5 − n′
GM′2

2R′3 J ′, (13)

where M = M + M′. It is straightforward to derive the equations of motion
governing the dynamics of the binary system. Let us first focus on the most
general case when all three semi-major axes ai are different. With the central
density ρc being proportional to 1/(a1a2a3) and using

∂J
∂ai

= 1
ai

(
J − a2

i Ai

)

(see Appendix) the equations of motion derived from the Lagrangian (13) read

ä1 = GM′

r3 a1

(
3 cos2 α − 1

)
+ a1

(
�2 +�2

)
− 2a2��+

(
5k1

nκn

Pc

ρc

)
1
a1

− 3GM

κn
(
1 − n

5

) a1A1

2R3 , (14)

ä2 = GM′

r3 a2

(
3 sin2 α − 1

)
+ a2(�

2 +�2)− 2a1��+
(

5k1

nκn

Pc

ρc

)
1
a2

− 3GM

κn
(
1 − n

5

) a2A2

2R3 , (15)

ä3 = −GM′

r3 a3 +
(

5k1

nκn

Pc

ρc

)
1
a3

− 3GM

κn
(
1 − n

5

) a3A3

2R3 , (16)

ψ̈ = 1

a2
1 − a2

2

[
3GM′

r3 a1a2 sin 2α − 2(a1ȧ1−a2ȧ2)�− 2(ȧ1a2 − a1ȧ2)�

]
, (17)

γ̈ = 1

a2
1−a2

2

[
3GM′

2r3

(
a2

1+a2
2

)
sin 2α−2 (a1ȧ1−a2ȧ2)�+2(a1ȧ2−ȧ1a2)�

]
, (18)

r̈ = rφ̇2 − GM
r2 − 3

10
GM

r4

{
κn

[
a2

1

(
3 cos2 α − 1

)
+ a2

2

(
3 sin2 α − 1

)
− a2

3

]

+κ ′
n

[
a′2

1

(
3 cos2 α′ − 1

)
+ a′2

2

(
3 sin2 α′ − 1

)
− a′2

3

]}
, (19)

φ̈ = −2
ṙφ̇
r

− 3
10

GM
r5

{(
a2

1 − a2
2

)
κn sin 2α +

(
a′2

1 − a′2
2

)
κ ′

n sin 2α′}, (20)
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with � = ψ̇ and � = γ̇ . The corresponding equations for a′
i, ψ

′ and γ ′ are
obtained by replacing unprimed variables by primed ones. Note that these
equations apply whenever a1 �= a2.

A particularly simple situation occurs, when the semi-major axes a1 and a2 are
equal. In this case the corresponding star degenerates to an axially symmetric
ellipsoid and the meaning of the angle α is obsolete. Although our analysis can
be easily extended to the triaxial case, we shall restrict ourselves to the axially
symmetric one in Sect. 4 and 5, since this is the simplest model which exhibits,
nevertheless, the most important features of general Riemann-S binaries. The
assumption a1 = a2 is of course only an approximation, since tidal interaction
would inavoidably disturb an originally axially symmetric star. If, however, the
angular velocity of the stellar rotation is considerably larger than the orbital
angular velocity, the tidally induced deformation of the star can be neglected.
Considering the equations of motion (17)–(20) it is easy to see that one cannot
just set a1 = a2 here. This is due to the fact that the original variables a1, a2
and γ respectively ψ are not suitable variables in the limit a2 → a1. Instead
one should implement a1 ≡ a2 already in the Lagrangian level. In that case the
Lagrangian (13) simplifies to

L = μ

2
ṙ2 + μr2

2
φ̇2 + GMM′

r
+ GMM′

10r3

[
κn

(
a2

1 − a2
3

)
+ κ ′

n

(
a′2

1 − a′2
3

)]

+κnM
5

a2
1β̇

2 + κ ′
nM′

5
a′2

1 β̇
′2 + κnM

10

(
2ȧ2

1 + ȧ2
3

)
+ κ ′

nM′

10

(
2ȧ′2

1 + ȧ′2
3

)

−k1KMρ
1/n
c − k′

1K′M′ρ′1/n′
c + 3

5 − n
GM2

2R3 J + 3
5 − n′

GM′2

2R′3 J ′, (21)

where we introduced a new variable β := γ −ψ . The number of degrees of free-
dom of the binary system is thus reduced from 12 to 8, resulting in an enormeous
simplification of the numerical calculations. Using Eq. (94), the equations of
motion for binary systems with axially symmetric stars become

ä1 = GM′

2r3 a1 + a1β̇
2 +
(

5k1

κnn
Pc

ρc

)
1
a1

− 3GM

κn
(
1 − n

5

) a1A1

2R3 , (22)

ä3 = −GM′

r3 a3 +
(

5k1

nκn

Pc

ρc

)
1
a3

− 3GM

κn
(
1 − n

5

) a3A3

2R3 , (23)

r̈ = rφ̇2 − GM
r2 − 3

10
GM

r4

{
κn(a2

1 − a2
3)+ κ ′

n(a
′2
1 − a′2

3 )
}

, (24)

φ̈ = −2
ṙφ̇
r

, (25)

β̈ = −2
ȧ1

a1
β̇. (26)

To derive this result from Eqs. (14)–(20) one has to introduce new variables
(a1 + a2)/2 and γ − ψ before taking the limit a2 → a1.
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Later on we shall study the gravitational waves emitted by binaries with axi-
ally symmetric components in detail, but first we shall derive the Hamiltonian
formalism for general Riemann-S binaries.

2.2 Riemann-S binary systems in Hamiltonian formalism

In the previous section we have revisited the derivation of the Lagrangian
equations of motion for a Riemann-S binary. For the following analysis it is,
however, more suitable to apply the Hamiltonian formulation of the problem.
The generalized momenta pi = ∂L/∂q̇i derived from the Lagrangian (13) are
given by

pr = μṙ, pφ = μr2φ̇, pai = κnM
5

ȧi,

pψ = κnM
5

[(
a2

1 + a2
2

)
ψ̇ − 2a1a2γ̇

]
, (27)

pγ = κnM
5

[(
a2

1 + a2
2

)
γ̇ − 2a1a2ψ̇

]
.

For a1 �= a2 it is possible to invert these equations in order to express the
generalized velocities in terms of generalized momenta:

ṙ = pr

μ
, φ̇ = pφ

μr2 , ȧi = 5
κnM

pai ,

γ̇ = 5
κnM

[
a2

1 + a2
2(

a2
1 − a2

2

)2 pγ + 2
a1a2(

a2
1 − a2

2

)2 pψ

]
, (28)

ψ̇ = 5
κnM

[
a2

1 + a2
2(

a2
1 − a2

2

)2 pψ + 2
a1a2(

a2
1 − a2

2

)2 pγ

]
.

The corresponding equations for a′
i, ψ

′ and γ ′ are obtained by replacing un-
primed variables by primed ones. For a1 ≡ a2 the generalized momenta pψ and
pγ are not independent variables, as can be easily seen from Eqs. (27). This
is reflected by the observation that the inversion problem pi(q̇i) → q̇i(pi) is
ill defined in this case. We shall turn to this later on, but for now we focus on
the most general case, assuming a1 �= a2. A Legendre transformation of the
Lagrangian (13) leads to the Hamiltonian

H = p2
r

2μ
+ p2

φ

2μr2 + 5
2κnM

3∑
i=1

p2
ai

+ 5
2κ ′

nM′
3∑

i=1

p′2
ai

+ 5
2κnM

a2
1 + a2

2(
a2

1 − a2
2

)2
(

p2
γ + p2

ψ

)
+ 10
κnM

a1a2(
a2

1 − a2
2

)2 pγ pψ
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+ 5
2κ ′

nM′
a′2

1 + a′2
2(

a′2
1 − a′2

2

)2
(

p′2
γ + p′2

ψ

)
+ 10
κ ′

nM′
a′

1a′
2(

a′2
1 − a′2

2

)2 p′
ψp′

γ

+k1KMρ
1/n
c − 3

5 − n
GM2

2R3 J + k′
1K′M′ρ′1/n′

c − 3
5 − n′

GM′2

2R′3 J ′

−GMμ

r
− GMμκn

10r3

[
a2

1

(
3 cos2 α − 1

)
+ a2

2

(
3 sin2 α − 1

)
− a2

3

]

−GMμκ ′
n

10r3

[
a′2

1

(
3 cos2 α′ − 1

)
+ a′2

2

(
3 sin2 α′ − 1

)
− a′2

3

]
. (29)

Once the Hamiltonian is given, the corresponding equations of motion

q̇i = ∂H
∂pi

, ṗi = −∂H
∂qi

are easy to calculate using the relation for ∂J/∂ai derived in the appendix. With
the equations for the q̇i already given in Eqs. (28) the remaining equations read

ṗa1 = 5
κnM

[
a1(3a2

2 + a2
1)(

a2
1 − a2

2

)3
(

p2
γ + p2

ψ

)
+ 2a2

a2
2 + 3a2

1(
a2

1 − a2
2

)3 pψpγ

]

+GMμ

5r3 κna1

(
3 cos2 α − 1

)
+ k1M

na1

Pc

ρc
− 3GM2

5 − n
a1A1

2R3 , (30)

ṗa2 = − 5
κnM

[
a2
(
3a2

1 + a2
2

)
(
a2

1 − a2
2

)3
(

p2
ψ + p2

γ

)
+ 2a1

a2
1 + 3a2

2(
a2

1 − a2
2

)3 pψpγ

]

+GMμ

5r3 κna2

(
3 sin2 α − 1

)
+ k1M

na2

Pc

ρc
− 3GM2

5 − n
a2A2

2R3 , (31)

ṗa3 = k1M
na3

Pc

ρc
− 3GM2

5 − n
a3A3

2R3 − GMμ

5r3 κna3, (32)

ṗψ = 0, (33)

ṗγ = 3
10

GMμ

r3 κn(a2
1 − a2

2) sin 2α, (34)

ṗr = −GMμ

r2 + p2
φ

μr3 − 3
10

GMμκn

r4

[
a2

1(3 cos2 α − 1)+ a2
2(3 sin2 α − 1)− a2

3

]

− 3
10

GMμκ ′
n

r4

[
a′2

1

(
3 cos2 α′ − 1

)
+ a′2

2

(
3 sin2 α′ − 1

)
− a′2

3

]
, (35)

ṗφ = − 3
10

GMμ

r3

[
κn

(
a2

1 − a2
2

)
sin 2α + κ ′

n

(
a′2

1 − a′2
2

)
sin 2α′] . (36)

Together with the corresponding equations for the primed variables this system
of differential equations describes the dynamics of the binary completely.

Let us now assume a1 ≡ a2, a′
1 ≡ a′

2. As we have already pointed out in this
case the dynamical equations (28) and (30)–(36) do not apply. The generalized
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momenta derived from Lagrangian (21) read

pa1 = 2
5
κnMȧ1, pa3 = κnM

5
ȧ3, pβ = 2

5
κnMa2

1β̇,

pr = μṙ, pφ = μr2φ̇, (37)

which can be easily inverted, giving

ȧ1 = 5
2κnM

pa1 , ȧ3 = 5
κnM

pa3 , β̇ = 5
2κnM

pβ
a2

1

,

ṙ = pr

μ
, φ̇ = pφ

μr2 . (38)

As before a Legendre transformation of the Lagrangian (21) leads to the cor-
responding Hamiltonian

H = 5
2κnM

[
p2

a1

2
+ p2

a3
+ p2

β

2a2
1

]
+ 5

2κ ′
nM′

[
p′2

a1

2
+ p′2

a3
+ p′2

β

2a′2
1

]
+ p2

r

2μ

+ p2
φ

2μr2 + k1KMρ
1/n
c − 3GM2

5 − n
J

2R3 + k′
1K′M′ρ′1/n′

c

−3GM′2

5 − n′
J ′

2R′3 − GMμ

r
− GMμ

10r3

[
κn

(
a2

1 − a2
3

)
+ κ ′

n

(
a′2

1 −a′2
3

)]
. (39)

Note that β,β ′ and φ are cyclic variables, i.e. the corresponding generalized
momenta are constants. The Hamiltonian equations are then given by Eqs. (38)
and

ṗa1 = 5
2κnM

p2
β

a3
1

+ GMμκn

5r3 a1 + 2
k1M
na1

Pc

ρc
− 3GM2

5 − n
a1A1

R3 , (40)

ṗa3 = −GMμκn

5r3 a3 + k1M
na3

Pc

ρc
− 3GM2

5 − n
a3A3

2R3 , (41)

ṗr = −GMμ

r2 + p2
φ

μr3 − 3
10

GMμ

r4

[
κn

(
a2

1 − a2
3

)
+ κ ′

n

(
a′2

1 − a′2
3

)]
, (42)

ṗφ = ṗβ = 0, (43)

and, of course, the corresponding equations for p′
ai

and β ′.

3 Leading order radiation reaction in Riemann-S binaries

On the Newtonian level, tidally coupled binaries form a conservative system.
However, according to the theory of General Relativity binary systems loose
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energy due to the emission of gravitational waves, the first nonvanishing dissipa-
tive terms appearing at 2.5 PN approximation. The following section is devoted
to the calculation of the leading order radiation reaction terms for Riemann-S
binaries. This can be done by virtue of the Burke-Thorne radiation reaction
potential �reac, given e.g. in [17],

�reac = G

5c5
-I(5)

āb̄
xāxb̄. (44)

As before the xā denote coordinates in the corotating coordinate frame. Thus
the computation of the radiation reaction potential reduces in principle to the
calculation of the 5th time derivative of the STF mass quadrupole tensor in
the corotating system. The mass quadrupole tensor being additive at Newtonian
order, it is possible to consider orbital and stellar contributions separately.

3.1 Time derivatives of the stellar mass quadrupole tensor

According to Eq. (44) the leading order gravitational wave emission is gov-
erned by the time variations of the STF mass quadrupole tensor. Thus even an
isolated, oscillating star represents a source of gravitational waves. In a binary
system tidal coupling between stellar and orbital degrees of freedom leads to
a change in the gravitational wave pattern. Though the orbital contribution in
general clearly dominates the gravitational waveforms emitted by the binary,
the stellar contributions cannot be neglected. Let us consider a coordinate
transformation such that the origin of the corotating system is centered at M.
The relation between the coordinates Xa of an inertial system centered at M,
the coordinates xa of the body-framed system and the coordinates xā can be
read off from Fig. 1,

xa = Tab(γ )Xb, xā = Tāb(φ)Xb, (45)

where

Tab(φ) =
⎛
⎝ cosφ sin φ 0

− sin φ cosφ 0
0 0 1

⎞
⎠ . (46)

As has already been mentioned, the STF mass quadrupole tensor takes a par-
ticular simple form in the body-fixed system,

-Iab = Iab − 1
3
δabIcc, Iab =

∫
ρxaxbdV = κnM

5
a2

aδab. (47)

To calculate the time derivatives of the mass quadrupole tensor in the coro-
tating system we could in a first step consider the time derivatives of the star’s
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mass quadrupole tensor in the inertial system, the later one being related to -Iab
by the transformation

-I(IS)
αβ = T†(γ )αiT

†
βj(γ )

-Iij,

and only in a second step apply the transformation into the corotating system
according to

-I(5)
āb̄

= Tāα(φ)Tb̄β(φ)
-I(5,IS)
αβ . (48)

This calculation is straightforward, but successively inserting the Newtonian
equations of motion leads to rather complicated expressions. In our approach
another strategy is more suitable. Following Lai and Shapiro (see also [18]) we
combine the steps mentioned above according to

-I(5)
āb̄

= Tāα(φ)Tb̄β(φ)
d5

dt5

[
T†
αi(γ )T

†
βj(γ )

-Iij

]

=
5∑

m=0

(
5
m

)[
d5−m

dt5−m
-Iij

]
m∑

p=0

(
m
p

)[
Tāα(φ)

dm−p

dtm−p T†
αi(γ )

] [
Tb̄β(φ)

dp

dtp
T†
βj(γ )

]

=
5∑

m=0

m∑
p=0

(
5
m

)(
m
p

)[
d5−m

dt5−m
-Iij

]
Rm−p

āi Rp
b̄j

, (49)

where

Rp
āi := Tāα(φ)

dp

dtp
T†
αi(γ ).

The calculation of the matrices Rp
āi is straightforward and given in the Appen-

dix. However, the resulting expressions for -I(5)
āb̄

being rather complicated, we
should imply further assumptions on the internal stellar motion. In particu-
lar, it is reasonable to consider all internal velocities and accelerations to be
small, thus applying the quasi-static approximation to the stellar degrees of
freedom. This strategy was already followed by Lai and Shapiro [13], but they
applied the quasi-static assumption to the orbital motion, too. While this is jus-
tified for circular orbits or if one is interested in a few cycles only, for elliptical
orbits this leads to a growing phase error in the gravitational waveforms. Since
we are interested in the long-term evolution of the system we shall apply the
quasi-static approximation to the stars only. Neglecting all terms of order O(äi)

and O(�̈), keeping only terms linear in ȧi and �̇ and using that |ȧi| � |�ai|,
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Eq. (49) simplifies to

-I(5)
āb̄

= -Iij

5∑
p=0

(
5
p

)
Rp

āiR
5−p
b̄j

+ -̇Iij

4∑
p=0

(
4
p

)
Rp

āiR
4−p
b̄j

. (50)

Note that -̈Iab ≈ 0 in this approximation. After some algebra we end up with

-I(5)
āb̄

= 16�5(I11 − I22)

⎛
⎝ sin 2α cos 2α 0

cos 2α − sin 2α 0
0 0 0

⎞
⎠

−
[
80�3�̇(I11 − I22)+ 40�4(İ11 − İ22)

] ⎛⎝− cos 2α sin 2α 0
sin 2α cos 2α 0

0 0 0

⎞
⎠ . (51)

It is remarkable that the components of -I(5)
āb̄

are nonvanishing only for a1 �= a2.
In other words, the quasi-static approximation does not allow for gravitational
wave emission of an isolated, axially symmetric, polytropic star.2

3.2 The orbital contribution to -I(5)
āb̄

As has been outlined before, the quasi-static approximation does not apply to
the orbital motion in general. To calculate -I(5), orb

āb̄
we compute -I(5), orb

ij in the
inertial system by successively inserting the Newtonian equations of motion

r̈ = −GM
r2 + rφ̇2, φ̈ = −2

ṙφ̇
r

. (52)

More precisely, one should insert the equations of motion of the tidally coupled
system (cf. Eqs. (19) and (20)). This would complicate the problem enorm-
eously. However, these corrections, being of higher order in 1/r, can easily be
neglected.

In the inertial system the nonvanishing components of -I(orb)
ij read

-I(orb)
11 = μr2

6
(1 + 3 cos 2φ), -I(orb)

22 = μr2

6
(1 − 3 cos 2φ), -I(orb)

33 = −μr2

3
,

-I(orb)
12 = μr2

2
sin 2φ. (53)

2 Without the quasi-approximation there exist nonvanishing contributions to -I(5)
āb̄

for axially sym-
metric polytropes, too.
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Using Eqs. (52) to calculate -I(5)ij in the inertial system and finally transfering to
the corotating system centered at the center of mass according to

-I(5, orb)
āb̄

= Tāα(φ)Tb̄β(φ)
-I(5),(orb, IS)
αβ , (54)

we end up with

-I(5), orb
1̄1̄

= −8GMμ

3
ṙ
r4

[
4

GM
r

+ 3ṙ2 + 18r2φ̇2
]

,

-I(5), orb
2̄2̄

= 2GMμ

3
ṙ
r4

[
8

GM
r

+ 6ṙ2 + 81r2φ̇2
]

,
(55)

-I(5), orb
3̄3̄

= 2GMμ

3
ṙ
r4

[
8

GM
r

+ 6ṙ2 − 9r2φ̇2
]

,

-I(5), orb
1̄2̄

= −4
GMμ

r3 φ̇

[
2GM

r
+ 9ṙ2 − 6r2φ̇2

]
.

3.3 Leading order gravitational radiation: general case

In a recent paper we discussed the dynamics and gravitational wave emission
of a binary system consisting of a rotating, oscillating dusty disk and a point
mass [10]. There we incorporated the leading order radiation reaction into the
Hamiltonian equations by adding a dissipative part to the Hamiltonian. The
Hamiltonian equations can then be applied in the usual way. Here we choose
an alternative approach, leaving the Lagrangian or Hamiltonian unchanged but
modifying the Euler-Lagrangian equations according to

d
dt
∂L
∂q̇i

= ∂L
∂qi

+ Fqi . (56)

The generalized dissipative forces Fqi are calculated from the energy dissipation
rate

W = −
∫

v · ∇�reacρ dV (57)

as Fqi = ∂W/∂q̇i. Let us consider the contribution WM of star M to the energy
dissipation rate of the binary. The velocity v of a fluid element of M can be
separated according to v = u + uorb, where

u =
(

a1

a2
�−�

)
x2e1 +

(
−a2

a1
�+�

)
x1e2 + ȧ1

a1
x1e1 + ȧ2

a2
x2e2 + ȧ3

a3
x3e3

is the velocity of a fluid element relative to the center of M and

uorb = −ṙMe1̄ − rMφ̇e2̄ (58)
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is the orbital velocity of the star’s center of mass. As before the ei denote the
unit vectors in the body-fixed coordinate system, while the eā represent unit
vectors in the corotating system. As one can easily read off from Fig. 1, the
coordinates are related according to

x1̄ = x1 cos α + x2 sin α − rM, x2̄ = −x1 sin α + x2 cos α, x3̄ = x3. (59)

Inserting this into Eq. (57) and using Eq. (5) the contribution of the star M to
the energy dissipation rate yields

WM = −2G

5c5

κnM
5

[
a1ȧ1

(
-I(5)

1̄1̄
cos2 α + -I(5)

2̄2̄
sin2 α − -I(5)

1̄2̄
sin 2α

)

+a2ȧ2

(
-I(5)

1̄1̄
sin2 α + -I(5)

2̄2̄
cos2 α + -I(5)

1̄2̄
sin 2α

)
+ -I(5)

3̄3̄
a3ȧ3

+ �
(

a2
1 − a2

2

)(
-I(5)

1̄2̄
cos 2α + 1

2

(
-I(5)

1̄1̄
− -I(5)

2̄2̄

)
sin 2α

)]

−2GM

5c5

[
rMṙM-I(5)

1̄1̄
+ r2

Mφ̇ -I(5)
1̄2̄

]
. (60)

The corresponding contribution of M′ is obtained by replacing unprimed quan-
tities by primed ones. Note that according to Fig. 1 the orbital velocity of M′
is given by u′

orb = ṙ′
Me1̄ + r′

Mφ̇ e2̄. Adding up both contributions and using
MrMṙM + M′r′

Mṙ′
M = μr ṙ, the energy dissipation rate of the binary system

reads

W = −2G

5c5

κnM
5

[
a1ȧ1

(
-I(5)

1̄1̄
cos2 α + -I(5)

2̄2̄
sin2 α − -I(5)

1̄2̄
sin 2α

)

+a2ȧ2

(
-I(5)

1̄1̄
sin2 α + -I(5)

2̄2̄
cos2 α + -I(5)

1̄2̄
sin 2α

)
+ -I(5)

3̄3̄
a3ȧ3

+ �
(

a2
1 − a2

2

)(
-I(5)

1̄2̄
cos 2α + 1

2

(
-I(5)

1̄1̄
− -I(5)

2̄2̄

)
sin 2α

)]

−2G

5c5

κ ′
nM′

5

[
a′

1ȧ′
1

(
-I(5)

1̄1̄
cos2 α′ + -I(5)

2̄2̄
sin2 α′ − -I(5)

1̄2̄
sin 2α′)

+a′
2ȧ′

2

(
-I(5)

1̄1̄
sin2 α′ + -I(5)

2̄2̄
cos2 α′ + -I(5)

1̄2̄
sin 2α′)+ -I(5)

3̄3̄
a′

3ȧ′
3

+ �
(

a′2
1 − a′2

2

)(
-I(5)

1̄2̄
cos 2α′ + 1

2

(
-I(5)

1̄1̄
− -I(5)

2̄2̄

)
sin 2α′

)]

−2Gμ

5c5

(
r ṙ-I(5)

1̄1̄
+ r2φ̇ -I(5)

1̄2̄

)
. (61)

It is now straightforward to derive the generalized forces

Fa1 = −2G

5c5

κnM
5

[
-I(5)

1̄1̄
cos2 α + -I(5)

2̄2̄
sin2 α − -I(5)

1̄2̄
sin 2α

]
a1,

Fa2 = −2G

5c5

κnM
5

[
-I(5)

1̄1̄
sin2 α + -I(5)

2̄2̄
cos2 α + -I(5)

1̄2̄
sin 2α

]
a2,
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Fa3 = −2G

5c5

κnM
5

-I(5)
3̄3̄

a3,

Fγ = −2G

5c5

κnM
5

(
a2

1 − a2
2

)(
-I(5)

1̄2̄
cos 2α + 1

2
(-I(5)

1̄1̄
− -I(5)

2̄2̄
) sin 2α

)
, (62)

Fψ = 0,

Fr = −2Gμ

5c5
-I(5)

1̄1̄
r,

Fφ = −2Gμ

5c5
-I(5)

1̄2̄
r2,

the corresponding generalized forces for M′ being obtained by replacing un-
primed variables by primed ones. The Euler–Lagrangian equations governing
the dynamics of the system read now

ä1 = [Eq. (14)] − 2G

5c5

(
-I(5)

1̄1̄
cos2 α + -I(5)

2̄2̄
sin2 α − -I(5)

1̄2̄
sin 2α

)
a1,

ä2 = [Eq. (15)] − 2G

5c5

(
-I(5)

1̄1̄
sin2 α + -I(5)

2̄2̄
cos2 α + -I(5)

1̄2̄
sin 2α

)
a2,

ä3 = [Eq. (16)] − 2G

5c5
-I(5)

3̄3̄
a3,

�̇ =
(

a1

a2
− a2

a1

)−1 [
−2
(

ȧ1

a2
− ȧ2

a1

)
�− 2

(
ȧ1

a1
− ȧ2

a2

)
�+ 3GM′

r3 sin 2α

−2G

5c5

(
2-I(5)

1̄2̄
cos 2α +

(
-I(5)

1̄1̄
− -I(5)

2̄2̄

)
sin 2α

)]
,

�̇ =
(

a1

a2
− a2

a1

)−1 [
−2
(

ȧ1

a1
− ȧ2

a2

)
�− 2

(
ȧ1

a2
− ȧ2

a1

)
�

+
(

a1

a2
+ a2

a1

){
3
2

GM′

r3 sin 2α− 2G

5c5

(
-I(5)

1̄2̄
cos 2α+ 1

2

(
-I(5)

1̄1̄
−-I(5)

2̄2̄

)
sin 2α

)}]
,

r̈ = rφ̇2 − GM
r2 − 3

10
GM

r4

[
κn

(
a2

1

(
3 cos2 α − 1

)
+ a2

2

(
3 sin2 α − 1

)
− a2

3

)

+κ ′
n

(
a′2

1

(
3 cos2 α′ − 1

)
+ a′2

2

(
3 sin2 α′ − 1

)
− a′2

3

)]
− 2G

5c5
-I(5)

1̄1̄
r,

φ̈ = −2
ṙφ̇
r

− 3GM
10r5

[
κn

(
a2

1−a2
2

)
sin 2α+κ ′

n

(
a′2

1 −a′2
2

)
sin 2α′]− 2G

5c5
-I(5)

1̄2̄
.

(63)

Together with the corresponding equations for M′ these equations describe
the evolution of the binary system including leading order gravitational reac-
tion. Note that in Eqs. (63) all contributions to the leading order gravitational
reaction are included. The quasi-static approximation for the stellar degrees of
freedom enters into the explicit calculation of the time derivatives of the STF
mass quadrupole tensor.
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3.4 Specializing to binary systems with a1 = a2, a′
1 = a′

2

In the previous section we derived the Lagrangian equations of motion for arbi-
trary Riemann-S binaries. From now on we shall impose an additional constraint
on the stellar degrees of freedom, requiring a1 = a2, a′

1 = a′
2. On Newtonian

level the equations of motion governing the dynamics of those systems have
been derived in Sect. 2. Now let us consider the radiation reaction part of the
equations of motion. In principle we follow the same strategy as in the previous
section. The velocity of a fluid element of star M relative to the star’s center
reads now

u = −β̇x2e1 + β̇x1e2 + ȧ1

a1
(x1e1 + x2e2)+ ȧ3

a3
x3e3,

and the orbital motion is uorb = −ṙMe1̄ − rMφ̇e2̄. Calculating WM and W ′
M

according to Eq. (57), the gravitational energy dissipation rate of the binary
system yields

W = −2G

5c5

κnM
5

[
a1ȧ1

(
-I(5)

1̄1̄
+ -I(5)

2̄2̄

)
+ a3ȧ3-I(5)

3̄3̄

]

−2G

5c5

κ ′
nM′

5

[
a′

1ȧ′
1

(
-I(5)

1̄1̄
+-I(5)

2̄2̄

)
+a′

3ȧ′
3-I(5)

3̄3̄

]
− 2Gμ

5c5

(
rṙ -I(5)

1̄1̄
+r2φ̇ -I(5)

1̄2̄

)
. (64)

The generalized dissipative forces take on a particular simple form:

Fa1 = −2G

5c5

κnM
5

(
-I(5)

1̄1̄
+ -I(5)

2̄2̄

)
a1 = 2G

5c5

κnM
5

-I(5)
3̄3̄

a1,

Fa3 = −2G

5c5

κnM
5

-I(5)
3̄3̄

a3,

Fβ = 0, (65)

Fr = −2Gμ

5c5
-I(5)

1̄1̄
r,

Fφ = −2Gμ

5c5
-I(5)

1̄2̄
r2.

So the Lagrangian equations of motion including leading order radiation reac-
tion terms are given by

ä1 = GM′

2r3 a1 + a1β̇
2 +
(

5k1

κnn
Pc

ρc

)
1
a1

− 3GM

κn
(
1 − n

5

) a1A1

2R3 + G

5c5
-I(5)

3̄3̄
a1,

ä3 = −GM′

r3 a3 +
(

5k1

κnn
Pc

ρc

)
1
a3

− 3GM

κn
(
1 − n

5

) a3A3

2R3 − 2G

5c5
-I(5)

3̄3̄
a3,

β̈ = −2
ȧ1

a1
β̇, (66)
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r̈ = rφ̇2 − GM
r2 − 3GM

10r4

[
κn

(
a2

1 − a2
3

)
+ κ ′

n

(
a′2

1 − a′2
3

)]
− 2G

5c5
-I(5)

1̄1̄
r,

φ̈ = −2
ṙφ̇
r

− 2G

5c5
-I(5)

1̄2̄
.

At this point we should emphasize that in the quasi-static approximation the
stellar contribution to -I(5)

āb̄
vanishes, as can be easily seen from Eq. (51). This

means, in that approximation only the time varying orbital mass quadrupole
tensor gives rise to the emission of gravitational waves. However, coupling
the internal dynamics of the stars with the orbital dynamics both, the orbital
dynamics as well as the gravitational waveforms are affected by the internal
dynamics.

For our purposes it is more suitable to describe the dynamics of the binary
system in Hamiltonian formalism. In the presence of dissipative forces the
well-known Hamiltonian equations are modified according to

q̇i = ∂H
∂pi

, ṗi = −∂H
∂qi

+ Fqi , (67)

where the Hamiltonian H is given by Eq. (29) and Eq. (39), respectively. The
generalized momenta are defined in the usual way according to pi = ∂L/∂q̇i.
The Hamiltonian equations derived in Sect. 2.2. (cf. Eqs. (40)–(43)) are thus
altered according to

ṗa1 = 5
2κnM

p2
β

a3
1

+ GMμκn

5r3 a1 + 2
k1M
na1

Pc

ρc
− 3GM2

5 − n
a1A1

R3 + 2G

5c5

κnM
5

-I(5)
3̄3̄

a1,

ṗa3 = −GMμκn

5r3 a3 + k1M
na3

Pc

ρc
− 3GM2

5 − n
a3A3

2R3 − 2G

5c5

κnM
5

-I(5)
3̄3̄

a3,

ṗβ = 0,

ṗφ = −2Gμ

5c5
-I(5)

1̄2̄
r2,

ṗr = −GMμ

r2 + p2
φ

μr3 − 3
10

GMμ

r4

[
κn(a2

1 − a2
3)+ κ ′

n(a
′2
1 − a′2

3 )
]

− 2Gμ

5c5
-I(5)

1̄1̄
r,

(68)

while Eqs. (38) remain unchanged. In the quasi-static approximation it is the
time varying orbital STF mass quadrupole tensor alone, which contributes to
-I(5)

āb̄
. Explicitly, the components of -I(5)

āb̄
read

-I(5)
1̄1̄

= −8GM
3

pr

r4

[
4

GM
r

+ 3
p2

r

μ2 + 18
p2
φ

μ2r2

]
,

-I(5)
2̄2̄

= 2GM
3

pr

r4

[
8

GM
r

+ 6
p2

r

μ2 + 81
p2
φ

μ2r2

]
, (69)
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-I(5)
3̄3̄

= 2GM
3

pr

r4

[
8

GM
r

+ 6
p2

r

μ2 − 9
p2
φ

μ2r2

]
,

-I(5)
1̄2̄

= −4GM
r5

pφ

[
2

GM
r

+ 9
p2

r

μ2 − 6
p2
φ

μ2r2

]
.

For numerical calculations it is useful to apply the following scaling:

t = GM
c3 τ , pr = μcp̃r, pai = μcp̃ai , pφ = GMμ

c p̃φ ,

pβ = GMμ
c p̃β , ai = GM

c2 ãi, r = GM
c2 r̃. (70)

Introducing the equilibrium radius R0 of a nonrotating (spherical) polytrope
of mass M and polytropic index n the terms containing Pc/ρc can be expressed
as [19]

k1M
n

Pc

ρc
= GM2

(5 − n)R0

(
R0

R

)3/n

. (71)

The full set of differential equations governing the dynamics of the binary
system is then given by

˙̃pa1 = 5
2κnC1

p̃2
β

ã3
1

+ κn

5
ã1

r̃3 + 1
5 − n

C1

C2

⎡
⎣ 2

ã1R̃0

(
R̃0

R̃

)3/n

− 3
ã1A1

R̃3

⎤
⎦

+4κn

75
ã1

C2

p̃r

r̃4

[
8
r̃

+ 6p̃2
r − 9

p̃2
φ

r̃2

]
,

˙̃p′
a1

= 5
2κ ′

nC2

p̃′2
β

ã′3
1

+ κ ′
n

5

ã′
1

r̃3 + 1
5 − n′

C2

C1

⎡
⎣ 2

ã′
1R̃′

0

(
R̃′

0

R̃′

)3/n′

− 3
ã′

1A′
1

R̃′3

⎤
⎦

+4κ ′
n

75

ã′
1

C1

p̃r

r̃4

[
8
r̃

+ 6p̃2
r − 9

p̃2
φ

r̃2

]
,

˙̃pa3 = −κn

5
ã3

r̃3 + C1

C2

1
5 − n

⎡
⎣ 1

ã3R̃0

(
R̃0

R̃

)3/n

− 3
2

ã3A3

R̃3

⎤
⎦

−4κn

75
ã3

C2

p̃r

r̃4

[
8
r̃

+ 6p̃2
r − 9

p̃2
φ

r̃2

]
,

˙̃p′
a3

= −κ
′
n

5
ã′

3

r̃3 + C2

C1

1
5 − n′

⎡
⎣ 1

ã′
3R̃0

(
R̃′

0

R̃′

)3/n′

− 3
2

ã′
3A′

3

R̃′3

⎤
⎦

−4κ ′
n

75
ã′

3

C1

p̃r

r̃4

[
8
r̃

+ 6p̃2
r − 9

p̃2
φ

r̃2

]
,
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˙̃pβ = ˙̃p′
β = 0,

˙̃pφ = 8ν
5

p̃φ
r̃3

[
2
r̃

+ 9p̃2
r − 6

p̃2
φ

r̃2

]
,

˙̃pr = − 1
r̃2 + p̃2

φ

r̃3 − 3
10r̃4

[
κn(ã2

1 − ã2
3)+ κ ′

n(ã
′2
1 − ã′2

3 )
]

+16ν
15

p̃r

r̃3

[
4
r̃

+ 3p̃2
r + 18

p̃2
φ

r̃2

]
, (72)

˙̃a1 = 5
2κnC1

p̃a1 ,

˙̃a′
1 = 5

2κ ′
nC2

p̃′
a1

,

˙̃a3 = 5
κnC1

p̃a3 ,

˙̃a′
3 = 5

κ ′
nC2

p̃′
a3

,

β̇ = 5
2κnC1

p̃β
ã2

1

,

β̇ ′ = 5
2κ ′

nC2

p̃′
β

ã′2
1

,

˙̃r = p̃r,

φ̇ = p̃φ
r̃2 ,

where C1 = M
M′ = M

μ
and C2 = M

M = M′
μ

. For the numerical calculations shown
below we shall assume that integration starts at periastron, i.e. the initial values
for the orbit are given by

r̃(0) = d̃(0)(1 − ε(0)), φ(0) = 0, p̃r(0) = 0,

p̃φ(0) =
√

d̃(0)(1 − ε(0)2),

d̃ being the semi-major axis of the orbit. The quasi-static approximation requires
all velocities inside the stars to be small. In particular, the mean radius R̃ var-

ies only slowly with time. Hence we impose ˙̃R(0) != 0, i.e. 2 ˙̃a1(0)ã1(0)ã3(0) +
ã1(0)2 ˙̃a3(0) = 0. This yields immediately a relation between the generalized
momenta corresponding to a1 and a3 respectively,

˙̃pa3(0) = − ã3(0)
ã1(0)

p̃a1(0), ˙̃p′
a3
(0) = − ã′

3(0)
ã′

1(0)
p̃′

a1
(0).
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Given suitable (i.e. small) values of ˙̃ai(0), ˙̃a′
i(0) and β̇(0) respectively β̇ ′(0), we

still have to fix the radii R0 an R′
0, respectively. R0 represents the equilibrium

radius of a spherically symmetric (i.e. non-rotating) polytrope of mass M and
polytropic index n. Assuming that the rotating star is in equilibrium at t = 0, we
can apply the equilibrium relation between R and R0, which has been derived
in [19]:3

R0 =R(0)

[
3 arcsin e(0)

e(0)
(1−e(0)2)1/6

(
1− 1

e(0)2
+

√
1−e(0)2

e(0) arcsin e(0)

)]n/(3−n)

,

(73)

where e(0) = √1 − (a3(0)/a1(0))2 is the eccentricity of the ellipsoid.

4 Gravitational waveforms

In suitable coordinates the gravitational field, observed in an asymptotically flat
space, can be expressed as [20]

hrad
ij = G

Dc4

∞∑
l=2

l∑
m=−l

[(
1
c

)l−2
(l)I lm

(
t − D

c

)
TE2, lm

ij (�,�)

+
(

1
c

)l−1
(l)S lm

(
t − D

c

)
TB2, lm

ij (�,�)

]
, (74)

where D is the source-observer distance and the indices i, j refer to Cartesian
coordinates in the asymptotic space. I lm and S lm are the spherical radiative
mass and current multipole moments, respectively, while TE2, lm

ij and TB2, lm
ij

represent the so called pure-spin tensor harmonics of electric and magnetic
type, respectively. Finally, the upper index l denotes the number of time deriv-
atives.4 In leading order approximation only the l = 2 terms contribute to the
gravitational field, which reflects the quadrupole character of the gravitational
radiation, i.e.

hrad
ij = G

Dc4

2∑
m=−2

Ï2m
(

t − D
c

)
TE2, 2m

ij (�,�). (75)

3 Of course this does not mean that the star is in equilibrium once the integration has started.
4 Exploiting the transverse traceless character of the gravitational radiation it is possible to intro-
duce two polarization vectors p and q in the plane orthogonal to the direction of propagation. This
leads to the more familiar h+, h× notation,

h+ = pipj − qiqj

2
hrad

ij , h× = piqj + pjqi

2
hrad

ij ,

where h+ and h× represent the two polarization states.
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However, one might chose to use the more familiar STF mass and current
multipole moments rather than calculating the spherical radiative ones which
appear in Eq. (75). In particular, the STF mass multipole moments are related
to the spherical radiative ones by

I lm(t) = 16π
(2l + 1)!!

[
(l + 1)(l + 2)

2l(l − 1)

]1/2
-IAl Y

∗ lm
Al

, (76)

where Al = i1 · · · il is a multi-index, while the Ylm
Al

are defined as

Ylm : = (−1)m(2l − 1)!!
√

2l + 1
4π(l − m)!(l + m)!

×
(
δ1〈i1 + iδ2〈i1

)
· · ·
(
δ1

im + iδ2
im

)
δ3

im+1
· · · δ3

il〉.

The brackets 〈. . . 〉 denote symmetrization. Inserting this into Eq. (76) the spher-
ical radiative mass quadrupole moments contributing to the leading order grav-
itational waveform read

I20 = 4

√
3

5π
-I(IS)

33 , (77)

I21 = −2

√
8π
5

(
-I(IS)

13 − i-I(IS)
23

)
, (78)

I22 =
√

8π
5

(
-I(IS)

11 − -I(IS)
22 − 2i-I(IS)

12

)
. (79)

In our model only the I20 and I22-components are present in the leading order
gravitational wave field, since I21 vanishes due to the symmetry of the binary
system. To calculate the gravitational waveforms explicitly we need to know
the second time derivatives of the STF mass quadrupole moment in the inertial
frame. As before we shall compute the contributions of the star’s quadrupole
moments and the orbital terms separately.

4.1 Orbital contribution

Consider an inertial center of mass system. In this system the nonvanishing
components of the orbital STF mass quadrupole tensor are given by Eq. (53).
Taking the second time derivatives and inserting the Newtonian equations of
motion (24) and (25) we end up with

-̈I
(IS)
11 = −2μrṙφ̇ sin 2φ + μ

3
(1 + 3 cos 2φ)

[
ṙ2 − GM

r

]
+ μr2

3
(1 − 3 cos 2φ)φ̇2

−GMμ

10r3 (1 + 3 cos 2φ)
[
κn

(
a2

1 − a2
3

)
+ κ ′

n

(
a′2

1 − a′2
3

)]
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= −2
prpφ
μr

sin 2φ + 1
3μ

(1 + 3 cos 2φ)
[

p2
r − GMμ2

r

]
+ p2

φ

3μr2 (1−3 cos 2φ)

−GMμ

10r3 (1 + 3 cos 2φ)
[
κn

(
a2

1 − a2
3

)
+ κ ′

n

(
a′2

1 − a′2
3

)]
, (80)

-̈I
(IS)
22 = 2μrṙφ̇ sin 2φ + μ

3
(1 − 3 cos 2φ)

[
ṙ2 − GM

r

]
+ μr2

3
(1 + 3 cos 2φ) φ̇2

−GMμ

10r3 (1 − 3 cos 2φ)
[
κn

(
a2

1 − a2
3

)
+ κ ′

n

(
a′2

1 − a′2
3

)]

= 2
prpφ
μr

sin 2φ + 1
3μ

(1 − 3 cos 2φ)
[

p2
r − GMμ2

r

]
+ p2

φ

3μr2 (1 + 3 cos 2φ)

−GMμ

10r3 (1 − 3 cos 2φ)
[
κn

(
a2

1 − a2
3

)
+ κ ′

n

(
a′2

1 − a′2
3

)]
, (81)

-̈I
(IS)
33 = 2μ

3

[
GM

r
− r2φ̇2 − ṙ2

]
+ GMμ

5r3

[
κn

(
a2

1 − a2
3

)
+ κ ′

n

(
a′2

1 − a′2
3

)]

= 2
3μ

[
GMμ2

r
− p2

φ

r2 − p2
r

]
+ GMμ

5r3

[
κn

(
a2

1−a2
3

)
+κ ′

n

(
a′2

1 −a′2
3

)]
, (82)

-̈I
(IS)
12 = 2μrṙφ̇ cos 2φ +

[
ṙ2 − GM

r
− r2φ̇2 − 3GMκn

10r3

(
a2

1 − a2
3

)

−3GMκ ′
n

10r3 (a′2
1 − a′2

3 )

]
μ sin 2φ

= 2
prpφ
μr

cos 2φ +
[

p2
r

μ
− GMμ

r
− p2

φ

μr2 − 3GMμκn

10r3

(
a2

1 − a2
3

)

−3GMμκ ′
n

10r3

(
a′2

1 − a′2
3

)]
sin 2φ. (83)

Note that tidal coupling introduces an additional contribution to -̈I
(IS)
ij . Since

this contribution is very small it can be neglected for elliptical orbits and for
Ï22. However, it must be taken into account when considering Ï20 for circular
orbits, where Ï20 would vanish identically for a point-particle system.5

4.2 Stellar contributions

To calculate the contribution of, say, star M, let us assume the origin of the
inertial system to coincide with the center of the star. The coordinates Xi in the
inertial system and coordinates xi in the body-fixed system are then related by
the O(3)-transformation given in Eq. (45), and the elements of the star’s STF
mass quadrupole tensor read

5 Due to tidal interaction effects the orbit is modified which in turn leads to a small, but nonvan-
ishing Ï20-component of the gravitational radiation field.
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-I(IS), star
ij = T†

iα(γ )T
†
jβ(γ )

-Istar
αβ .

-Istar
αβ refers to the body-fixed system, where the STF mass quadrupole tensor

takes a particularly simple form. For the most general case when all semi-major
axes of the star are different, the transformation to the inertial system yields6

-I(IS)
11 = 1

2
(I11 − I22) cos 2γ + 1

6
(I11 + I22 − 2I33),

-I(IS)
22 = −1

2
(I11 − I22) cos 2γ + 1

6
(I11 + I22 − 2I33),

(84)
-I(IS)

33 = −1
3
(I11 + I22 − 2I33),

-I(IS)
12 = 1

2
(I11 − I22) sin 2γ .

It is easy to see that this reduces to I(IS)
11 = I(IS)

22 = −I(IS)
33 /2 = (I11 − I33)/3 =

1/3(I11 − I33) for a1 ≡ a2. A straightforward calculation yields

-̈I
(IS)
11 =

[
1
2
(Ï11 − Ï22)− 2(I11 − I22)γ̇

2
]

cos 2γ

− [2(İ11 − İ22)γ̇ + (I11 − I22)γ̈
]

sin 2γ + 1
6
(Ï11 + Ï22 − 2Ï33),

-̈I
(IS)
22 = −

[
1
2
(Ï11 − Ï22)− 2(I11 − I22)γ̇

2
]

cos 2γ

+ [2(İ11 − İ22)γ̇ + (I11 − I22)γ̈
]

sin 2γ + 1
6
(Ï11 + Ï22 − 2Ï33),

-̈I
(IS)
33 = −1

3
(Ï11 + Ï22 − 2Ï33),

-̈I
(IS)
12 =

[
1
2
(Ï11 − Ï22)− 2(I11 − I22)γ̇

2
]

sin 2γ

+ [2(İ11 − İ22)γ̇ + (I11 − I22)γ̈
]

cos 2γ .

In the quasi-static approximation the 2nd time derivative of the components of
the stellar mass quadrupole tensor in the body fixed system vanishes (Iij ≈ 0)
and we are left with

-̈I
(IS)
11 = −2(I11 − I22)�

2 cos 2γ − [2(İ11 − İ22)�+ (I11 − I22)�̇
]

sin 2γ ,

-̈I
(IS)
22 = −-̈I

(IS)
11 , (85)

Ï(IS)
12 = −2(I11 − I22)�

2 sin 2γ + [2(İ11 − İ22)�+ (I11 − I22)�̇
]

cos 2γ ,

where � = γ̇ . We should emphasize that Eqs. (85) imply that Ï(IS)
ij vanishes

for axially symmetric polytropic stars, i.e. for a1 ≡ a2. In other words, in the

6 From now on we submit the index star.
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quasi-static approximation there is no direct contribution of the stars to the com-
ponents of the gravitational field. Nevertheless the internal degrees of freedom
give rise to modifications of the binary’s gravitational wave forms due to tidally
driven modifications of the orbital motion and hence of Ï2m.

4.3 Gravitational waveforms of the binary system

As it has been pointed out before, in the case of axially symmetric stellar com-
ponents of the binary only the orbital mass quadrupole tensor contributes to
the components of hij, the actual gravitational waveforms being modified due
to tidal coupling. Inserting Eqs. (80) into the expressions for I2m given by Eqs.
(77)–(79), the components of the leading order gravitational wave field read

Ï20 = 4

√
3π
5
μc2

[
2
3

(
1
r̃
−p̃2

r − p̃2
φ

r̃2

)
+ 1

5r̃3

(
κn

(
ã2

1 − ã2
3

)
+κ ′

n

(
ã′2

1 − ã′2
3

))]
, (86)

�(Ï22) =
√

8π
5
μc2

[
−4

p̃rp̃φ
r̃

sin 2φ

+
{

2

(
p̃2

r − 1
r̃
− p̃2

φ

r̃2

)
− 3

5r̃3

(
κn

(
ã2

1−ã2
3

)
+ κ ′

n

(
ã′2

1 −ã′2
3

))}
cos 2φ

]
,

(87)

�
(
Ï22
)

=
√

8π
5
μc2

[
−4

p̃rp̃φ
r̃

cos 2φ

−
{

2

(
p̃2

r − 1
r̃
− p̃2

φ

r̃2

)
− 3

5r̃3

(
κn

(
ã2

1−ã2
3

)
+κ ′

n

(
ã′2

1 −ã′2
3

))}
sin 2φ

]
.

(88)

Note the presence of an additional quadrupole-quadrupole coupling term in
above equations. This term can be easily neglected for the 22-component of
the gravitational radiation, but it will significantly modify the 20-component.
This is due to the symmetry of the binary, the spins of the stars being aligned
perpendicular to the orbital plane.

5 Numerical results and discussion

In the last few years there has been a growing interest in investigating the influ-
ence of tidal interaction onto the inspiral process and the actual leading order
gravitational waveforms emitted by a binary system. Within the framework of
linear perturbation theory of stellar oscillations, close binary systems of nonro-
tating neutron stars where studied by Kokkotas and Schäfer [7] and later on by
Lai and Ho [8]. In these papers it was shown that tidal interaction may draw
energy from the orbital motion, thus speeding up the inspiral process. This effect
is strongest in the case of a tidal resonance when the orbital frequency is the mth
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fraction of a star’s eigenfrequency, m being an integer number. Resonant tidal
oscillations of a nonrotating white dwarf-compact object binary were investi-
gated by Rathore et al. [21], but in this paper dissipation due to gravitational
waves emission was not included. On the contrary our model incorporates not
only dissipation due to gravitational wave emission, but also stellar rotation.
Moreover, we do not restrict ourselves to small, linear perturbations of thermal
equilibrium, but allow for oscillations with arbitrary large amplitude. However,
there is only one oscillation mode per star present in our analysis (this mode
corresponding roughly to the f-mode), this means we truncate all the higher ei-
genmodes which are incorporated in the linear perturbation scenarios. If much
of the oscillation energy is stored in these higher eigenmodes the gravitational
waveforms calculated from our model will fail to give results of high accuracy.
Therefore we restrict ourselves to moderate orbital separations, when the dom-
inant contribution of the oscillation energy comes from the f -mode. In Fig. 2
the oscillation of the semi-major axis a1 is shown for a particular example.

The most prominent feature of the model is that it allows us to study the long
term evolution of the binary system. In fact, in our numerical calculations we
were able to follow the orbital evolution over hundreds of periods. In particular
we studied the influence of the equation of state on the binary’s dynamics and
thus onto the leading order gravitational wave pattern emitted during the time
evolution. In the past it was argued that the influence of the polytropic index
will not be reflected in the gravitational waveforms almost until the final plunge
down [3]. While this is certainly true if one considers only a few orbits this
suggestion has to be carefully checked for long term evolutions. Given suitable
initial conditions our model allows for the investigation of the orbital evolution
over hundreds of periods. It is thus an ideal tool to study the influence of the
polytropic index on the dynamics as well as on the gravitational waveform in
great detail. Note that the equations of motion given in Eqs. (72) do not apply
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Fig. 2 Example for the stellar oscillation within the affine model. Plotted is the oscillation of the
semi-major axis a1 of star 1 in a tidally coupled binary system
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to the limit of incompressible fluids (n = 0) and to the relativistic limit, which
is represented by � = 4/3, i.e. n = 3. For n = 0 Eq. (71) has to be replaced by

5k1

nκn

Pc

ρc
= 2

Pc

ρc
.

(For an explicit expression of Pc/ρc in terms of the stellar degrees of free-
dom see [13].) For n → 3 numerical integration becomes increasingly instable.
Moreover, Eq. (73), which gives a relation between the equilibrium radius R0
of a nonrotating polytrope and the equilibrium mean radius R of a rotating
polytrope, becomes singular for n = 3.

In Fig. 3 we compare the orbital evolution of a slightly elliptic (ε(0) = 0.4)
equal mass binary system for different choices of n′. As expected tidal coupling
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Fig. 3 Orbital evolution and periastron advance due to tidal coupling for an elliptic, equal mass
binary with initial values ε(0) = 0.4, d̃(0) = 50, ã1(0) = ã′

1(0) = 10, ã3(0) = ã′
3(0) = 8, β̇(0) =

β̇ ′(0) = 0.01, ˙̃a1(0) = 0.02, ˙̃a′
1(0) = 0.01. All systems have polytropic index n = 1, while star 2 obeys

a polytropic equation of state with n′ = 0.2 (upper left), n′ = 0.5 (upper right), n′ = 1 (lower left)
and n′ = 1.5 (lower right). Star 1 has polytropic index n = 1 in all scenarios
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Fig. 4 The �(Ï22)-component of the leading order gravitational waveform for a circular orbit
(ε(0) = 0) for polytropic indices n′ = 0.2 (dotted line) and n′ = 2 (solid line) at different time
stages. The polytropic index of star 1 is assumed to be n = 1, the initial parameters are the same as
in Fig. 3

induces a periastron advance, but it is clearly visible that the periastron advance
increases with decreasing values of n′. Not too surprisingly, the polytropic index
n′ also affects the inspiral process. For fixed value of n the inspiral process speeds
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up the smaller the values of n′, i.e. the larger the value of �′. As it is shown in
Figs. 4 and 6 the effect of the equation of state on the gravitational waveforms
emitted by the binary cannot be neglected even for moderate orbital distances if
one considers the long-term evolution of the binary system. For circular orbits,
the tidally induced modification of the gravitational wave pattern is strongest
in the Ï20-component of hij (see Fig. 5), but also in the 22-component there is
an significant phase shift due to different polytropic indizes n′. This is demon-
strated in Fig. 4 where we compare the �(Ï22)−component of the gravitational
wave field for different values of n′. In these particular examples the orbit is
assumed to be circular in the absence of tidal perturbation and the initial orbi-
tal separation is taken to be d̃(0) = 50. Even in this case a phase shift in the
�(Ï22)−component is already obvious after 10 orbital periods.

As already mentioned before, for a circular orbit the influence of the equation
of state is strongest reflected by the Ï20-component of hij. For a point particle
binary, where the leading order gravitational waveform is known analytically,
this contribution to hij would vanish for a circular orbit. This is not the case
if the orbital motion is tidally coupled to the internal motion of the stars (see
Fig. 5).

For elliptic binaries the influence of the polytropic index n′ on the Ï22-compo-
nent is demonstrated in Figs. 6 and 7. Note that even for large orbital distances
different polytropic indices n′ manifest themselves in a remarkable phase shift

Fig. 5 Ï20-component of the leading order gravitational waves for a binary with polytropic index
n = 1 for star 1 and n′ = 0.2 (upper left), n′ = 1 (upper right), n′ = 1.5 (bottom left), n′ = 2 (bottom
right). The eccentricity at t = 0 is assumed to be zero, the initial parameters are the same as in Fig. 4
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Fig. 6 Influence of the polytropic index n′ on the real part of Ï22 for an elliptic binary with
ε(0) = 0.4. The initial parameters are the same as in Fig. 4. Left: n′ = 0.2, right: n′ = 1.5

of the Ï22-component of hij already after a few orbital cycles. This is demon-
strated in Fig. 7, where we compare �(Ï22) for different values of n′ at different
stages of the inspiral process.
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Fig. 7 �(Ï22)-component of the leading order gravitational radiation field emitted by an elliptic,
equal-mass binary (ε(0) = 0.4). Shown are the waveforms for n′ = 1 (solid line) and n′ = 0.2 (dotted
line), the polytropic index of star 1 is assmued to be n = 1. The semi-major axis at the beginning of
the orbital evolution is taken to be d̃(0) = 100, while the initial parameters for the stars are given
by ã1(0) = ã′

1(0) = 20, ã3(0) = ã′
3(0) = 19, ˙̃a1(0) = ˙̃a′

1(0) = 0 and β̇(0) = 0.002, β̇ ′(0) = −0.002

To summarize, we have shown that including the internal structure of the
stars will lead to significant changes of the leading order gravitational wave
pattern compared to a point particle binary. Moreover, even for moderate
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relative distances of the stars there is a notable phase shift in the Ï22-compo-
nent of the gravitational radiation field after some orbital periods. Of course
our model does not respect all features of stellar dynamics. In particular it does
not account for higher order oscillation modes which are present in linear per-
turbation theory. Nevertheless, our model could give an approximative descrip-
tion of a neutron star-neutron star binary. Although the internal structure of
a neutron star is still not understood very good (the best known equations of
motion are only given in a tabulated form), astrophysical observations indicate
that the thermodynamics of neutron stars can be approximately described by a
polytropic equation of state with polytropic index n ≈ 0.5−1.0 (see e.g. [22]).
Moreover, all low-mass white dwarfs can be modelled with an effective poly-
tropic index n ≈ 1.5. Thus our model might be applicable to study the long term
evolution of NS-NS binaries, NS-White Dwarf binaries or binaries consisting of
either a neutron star or a White Dwarf and a compact object.
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Appendix

A The Lane–Emden equation reviewed

For spherically symmetric polytropes des equations of hydrodynamics are given
by

dP
dr

= −Gm(r)ρ(r)
r2 ,

dm
dr

= 4πρ(r)r2

which can be combined to a single equation

1
r2

d
dr

(
r2

ρ

dP
dr

)
= −4πGρ. (89)

Introducing dimensionless variables ξ and θ as

ρ := ρcθ
n, r = a0ξ ,

with

a0 =
⎡
⎣ (n + 1)Kρ

1
n −1
c

4πG

⎤
⎦

1/2

,
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we obtain the well known Lane–Emden equation

1
ξ2

d
dξ

(
ξ2 dθ

dξ

)
= −θn, θ(0) = 1, θ ′(0) = 0. (90)

For n < 5 the solution of Eq. (90) decreases monotonically and becomes zero
at a finite value of ξ . This value, denoted by ξ1, is characterized by vanishing
pressure and density and hence represents the star’s surface.

B Chandrasekhar’s coefficients Ai and J

The quantity J is defined in [16] (chapter 3) according to

J := a1a2a3

∞∫

0

du√(
a2

1 + u
) (

a2
2 + u

) (
a2

3 + u
) (91)

while the coefficients Ai are given by

Ai := a1a2a3

∞∫

0

du(
a2

i + u
)√(

a2
1 + u

) (
a2

2 + u
) (

a2
3 + u

) . (92)

One can easily show that

J = a2
1A1 + a2

2A2 + a2
3A3.

Another useful relation that can be easily derived from Eq. (91) is

∂J
∂ai

= 1
ai

(
J − a2

i Ai

)
(no sum) (93)

and

∂J
∂a1

= 2
a1

(
J − a2

1A1

)
,

∂J
∂a3

= 1
a3

(
J − a2

3A3

)
for a1 = a2. (94)

In the special case a1 = a2 > a3 it is possible to find an analytical expression for
A1 and A3. Solving (92) yields

A1 = A2 =
√

1 − e2

e3 arc sin e − 1 − e2

e2 (95)

A3 = 2
e2 − 2

√
1 − e2

e3 arc sin e (96)
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where we defined

e :=
√

1 −
(

a3

a1

)2

. (97)

C -I(5), star
āb̄

beyond the quasi-static approximation

Throughout the paper we applied the quasi-static approximation to calculate
the radiation reaction terms of the stellar degrees of freedom. This approxi-
mation is justified if all internal velocities and accelerations inside the star are
small. Dropping this assumption, the result is much more complicated. In par-
ticular, the 5th time derivative of the STF mass quadrupole tensor of M in the
corotating coordinate frame reads

-I(5)
āb̄

= (-I11 − -I22)

⎡
⎣(16�5 − 40�2�̈− 60��̇2 +�(4)

)
⎛
⎝ sin 2α cos 2α 0

cos 2α − sin 2α 0
0 0 0

⎞
⎠

− (80�3�̇− 20�̇�̈− 10��(3)
)
⎛
⎝− cos 2α sin 2α 0

sin 2α cos 2α 0
0 0 0

⎞
⎠
⎤
⎦

+(-̇I11 − -̇I22)

⎡
⎣(40�4 − 30�̇2 − 40��̈

)
⎛
⎝ cos 2α sin 2α 0

sin 2α − cos 2α 0
0 0 0

⎞
⎠

+(120�2�̇− 5�(3)
)
⎛
⎝− sin 2α cos 2α 0

cos 2α sin 2α 0
0 0 0

⎞
⎠
⎤
⎦

+(-̈I11− -̈I22)

⎡
⎣(10�̈−40�3)

⎛
⎝sin 2α cos 2α 0

cos 2α−sin 2α 0
0 0 0

⎞
⎠+60��̇

⎛
⎝− cos 2α sin 2α 0

sin 2α cos 2α 0
0 0 0

⎞
⎠
⎤
⎦

+10(-I(3)11 − -I(3)22 )

⎡
⎣2�2

⎛
⎝− cos 2α sin 2α 0

sin 2α cos 2α 0
0 0 0

⎞
⎠+ �̇

⎛
⎝ sin 2α cos 2α 0

cos 2α − sin 2α 0
0 0 0

⎞
⎠
⎤
⎦

+5�(-I(4)11 − -I(4)22 )

⎛
⎝ sin 2α cos 2α 0

cos 2α − sin 2α 0
0 0 0

⎞
⎠

+1
2
(-I(5)11 − -I(5)22 )

⎛
⎝ cos 2α − sin 2α 0

− sin 2α cos 2α 0
0 0 0

⎞
⎠+ 1

2

⎛
⎜⎝

-I(5)11
-I(5)22

2-I(5)33

⎞
⎟⎠ .
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