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Abstract The same but different: That might describe two metrics. On the surface
CLASSI may show two metrics are locally equivalent, but buried beneath may be
a wealth of further structure. This was beautifully described in a paper by Mal-
colm MacCallum in 1998. Here I will illustrate the effect with two flat metrics –
one describing ordinary Minkowski spacetime and the other describing a three-
parameter family of Gal’tsov-Letelier-Tod spacetimes. I will dig out the beautiful
hidden classical singularity structure of the latter (a structure first noticed by Tod
in 1994) and then show how quantum considerations can illuminate the riches. I
will then discuss how quantum structure can help us understand classical singu-
larities and metric parameters in a variety of exact solutions mined from the Exact
Solutions book.

Keywords Singularity · Exact solution

1 Introduction

I am very happy to be here to talk at Malcolm’s 60th birthday celebration. This
talk is a belated 60th birthday present. It will focus on cylindrically symmetric
spacetimes [1] whose metrics contain buried treasure: essential parameters that
DO NOT appear in the Cartan scalars, i.e., the scalars that feature in the Car-
tan equivalence method for spacetime classification (see, e.g., [2]). As the exact
solutions book [1] says, “The method . . . due to Cartan . . . gives sets of scalars
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providing a unique local characterization, and thus leads to a procedure for com-
paring metrics.” The emphasis on “local” is mine; it is the key to the possibility
of buried treasure. As Malcolm says in his 1998 paper [3] “the metric may have
parameters which are important globally but do not appear in the Cartan scalars”
and “The parameters cannot change the values of the Cartan scalars defined by
the Riemann tensor and its derivatives at a point, and this directs attention to the
possible global holonomy found by taking suitable closed curves...”

The essential (buried) parameters:

• are unique to the characterization of the geometry,
• do not appear in the Cartan scalars (i.e., the spacetimes are locally equivalent),
• do appear in expressions of the (linear or affine) holonomy (i.e., the spacetimes

are globally inequivalent), and
• may be due to a singular axis (requiring a relaxation of the usual definition

of cylindrical symmetry – see, e.g., Mars and Senovilla [4], Carot et al [5],
and The Exact Solutions Book [1]) or may be necessary to match to a regular
source in the interior.

There is a famous “flat” example: the three-parameter family of Gal’tsov-Letelier-
Tod (GLT) spacetimes [6, 7],

ds2 = −(dt + αdφ)2 + dr2 + β2r2dφ2 + (dz + γ dφ)2. (1)

The coordinate ranges are the usual: −∞ < t < ∞, 0 ≤ r < ∞, 0 ≤ φ ≤ 2π
and −∞ < z < ∞. Here the constants α, β and γ are the “essential parameters”.
These spacetimes will be used as the key examples in the first half of this talk: a
local analysis, as in CLASSI, does not distinguish them from Minkowski space-
time, although, as we shall see, there is a wealth of global structure hidden in this
three-parameter family.

The plan of this talk is the following: After the Introduction (1), the classical
structure of the GLT spacetimes will be described (2). The global structure of
spacetimes will be reviewed (3), as this is necessary to understand classical and
quantum singularities. The quantum singularity of GLT spacetimes (4) and special
cases (5) will be discussed. General cylindrically symmetric static spacetimes with
disclinations and dislocations will be considered (6) and followed by studies of
generalized Levi-Civita spacetimes with dislocations (7), Chitre et al. spacetimes
(8), the Melvin universes (9) and (10) generalized Raychaudhuri spacetimes with
disclinations and dislocations (10). A final discussion will conclude the talk (11).

2 GLT spacetimes – classical aspects

Gal’tsov and Letelier in 1993 [6] and Tod in 1994 [7] completely analyzed the
spacetimes described in Eq. (1). As Tod noted, this three-parameter family of
spacetimes describe a multitude of physically interesting cases. If α = 0, γ =
0, β2 �= 1, they describe the idealized cosmic string [12–15]. If α = 0 and the
final term is absent, they describe the “point source” in 2 + 1 gravity [16–18]. If
α �= 0 and the final term is absent, they describe the “rotating point source” of 2+1
gravity [18, 19]. And, if α = 0, γ �= 0, the GLT spacetime is the asymptotic met-
ric [20] at a large spatial separation from a cylindrically symmetric gravitational
wave.
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Here we will specialize our discussion to the static case (α = 0) [8, 9] where
the metric takes the form,

ds2 = −dt2 + dr2 + β2r2dφ2 + (dz + γ dφ)2. (2)

This metric is classically singular if β2 �= 1 and/or γ �= 0; in these cases there is a
quasi-regular singularity at r = 0. For clarity we will consider two special cases:
an idealized cosmic string and a screw dislocation spacetime.

An idealized cosmic string is described if β2 �= 1 and γ = 0 in Eq. (2). In
this case there are incomplete geodesics which hit r = 0; this is a quasiregular
singularity, a disclination in crystallographic terminology (see, e.g., [21]). There
is non-trivial linear holonomy and r = 0 is a δ-function in curvature [7, 22].

The second special case is the screw dislocation spacetime, where γ �= 0 and
β2 = 1 in Eq. (2). Incomplete geodesics hit r = 0. A curve of bounded acceler-
ation goes to r = 0, z = ∞ in finite affine length. There is again a quasiregular
singularity at r = 0; this is called a dislocation in crystallographic terminology.
There is non-trivial affine holonomy and r = 0 is a δ-function in torsion [7].

3 Global structure – singularities

In a maximal spacetime,

• A classical singularity exists if there are incomplete geodesics or incomplete
paths of bounded acceleration [23–25].

• A quantum singularity exists if the evolution of a test wave packet is not
uniquely defined by the initial wave packet, without specifying extra infor-
mation not present in the wave operator, spacetime metric and manifold alone
(i.e., one must add boundary conditions at the singularity) [8, 9, 26, 27].

Given the two categories of singularities, various questions arise: (1) Are all
classically singular spacetimes quantum mechanically singular as well? (2) Since
the topological parameters (e.g., α, β, γ in GLT spacetime) affect the existence
of a classical singularity, do they affect the existence of a quantum singularity
as well? The answer to the first question is negative (see Horowitz and Marolf
[27]). We will consider the second question after briefly discussing classical and
quantum singularities in more detail.

3.1 Classical singularities

In classical general relativity singularities are not part of the spacetime (the man-
ifold is smooth): they are boundary points in an otherwise maximal spacetime
[23]. For the timelike and null geodesics (or curves of bounded acceleration)
that hit these boundary points, there is an incompleteness, an abrupt ending to
the classical particle paths. The classical singularities which occur in otherwise
maximal spacetimes have been divided into three types by Ellis and Schmidt
[23]:

• quasiregular (e.g., the 2D cone, the idealized cosmic string)
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• non-scalar curvature (e.g. whimper cosmologies)
• scalar curvature (e.g., the center of a Schwarzschild black hole, the classical

Big Bang.)

What if quantum wave packets are used instead of classical particles to test
for a singularity? A quantum singularity would have to be described by ill-posed
wave propogation. We’ll see next how this has been defined.

3.2 Quantum singularities

According to Horowitz and Marolf [27], a static spacetime is quantum mechan-
ically singular if the spatial portion of the Klein-Gordon wave operator is not
essentially self-adjoint [28] on a C∞

0 domain in L2, a Hilbert space of square in-
tegrable functions. In this case the evolution of the test quantum wave packet is
not uniquely determined by the initial wavefunction, the spacetime metric and the
manifold.

An operator, A, is called self-adjoint if

(i) A = A†

(ii) Dom(A) = Dom(A†)

where A† is the adjoint of A. An operator is essentially self-adjoint if (i) is met
and (ii) can be met by expanding the domain of the operator or its adjoint so that
it is true [28].

A relativistic scalar quantum particle with mass M can be described by the
positive frequency solution to the Klein-Gordon equation

∂2�

∂t2
= −A� (3)

in a static spacetime, where the spatial operator is

A = −V Di (V Di ) + V 2 M2 (4)

with V = −ξνξ
ν . Here ξν is the timelike Killing field and Di is the spatial co-

variant derivative on the static slice �. The Hilbert space is L2(�), the space of
square integrable functions on �.

If we initially define the domain of A to be C∞
0 (�), A is a real, positive,

symmetric operator and self-adjoint extensions always exist [28]. If there is only
a single, unique extension AE , then A is essentially self-adjoint. In this case, the
Klein-Gordon equation for a free scalar particle takes the form [27]:

i
d�

dt
= A1/2

E � (5)

with
�(t) = exp(−i t (AE )1/2)�(0). (6)

These equations are ambiguous if A is not essentially self-adjoint. This fact led
Horowitz and Marolf to define quantum mechanically singular spacetimes as those
in which A is not essentially self-adjoint. Examples are considered by Horowitz
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and Marolf [27], Kay and Studer [30], Helliwell and Konkowski [8], Helliwell et
al. [9], Konkowski et al. [10], and Konkowski et al. [11].

The definition of quantum singularity as originally stated by Horowitz and
Marolf [27] applies only to the Klein-Gordon scalar field wave operator; however,
it is easily extended to Maxwell and Dirac fields [9]. We say that a spacetime is
quantum mechanically singular with respect to a Maxwell or Dirac field if the
spatial portion of any component of the field operator fails to be essentially self-
adjoint. We take the Hilbert space to be L2 and the original domain to be C∞

0 .
To test for essential self-adjointness of the spatial portion A of a component of
the operator, we use the von Neumann [31] criterion. It involves setting A∗� =
±i� and determining the number of solutions that belong to L2 for each i . If the
deficiency indices are (0, 0), so that no solutions are square integrable, then the
operator is essentially self-adjoint.

4 GLT spacetimes – quantum aspects

In this section we will consider various wave operators in GLT spacetime, deter-
mine for which modes the operators are essentially self-adjoint and show that the
GLT spacetimes are generically quantum mechanically singular.

4.1 Scalar particles

The Klein-Gordon equation �� = M2� can be separated in GLT spacetime
[8, 9]. Here

� ∼ eimφeikze−iωt R(r). (7)

The spatial derivative operator fails to be essentially self-adjoint for � modes with

−1 <
m − γ k

β
< 1 (8)

where the separation constants m and k are the azmuthal quantum number and the
momentum, respectively.

4.2 Null vector particles

The classical source-free Maxwell equations A;ν
µ;ν = 0 in the Lorentz gauge

Aµ

;µ = 0 can be separated in the GLT spacetime by taking linear combinations
of modes [9]. Here

Aµ ∼ eimφeikze−iωt Rµ(r). (9)

The spatial derivative operator fails to be essentially self-adjoint for Aµ modes
with

−1 <
m − γ k

β
< 1, (10)

the same as for scalar particles.
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4.3 Free spin-1/2 particles

The Dirac equation iγ α�;α = M� for spin-1/2 particles can be separated in the
GLT spacetime [9]. Here

� ∼
( √

(E + M)R1(r)

i
√

(E + M)R2(r)eiφ

)
e−i Et eimφeikz . (11)

The spatial derivative operator is essentially self-adjoint for � modes with

−3

2
<

m − γ k + 1/2

β
<

3

2
. (12)

4.4 Summary

It is therefore clear that no matter which type of quantum particle is used (scalar,
null vector or spinor), the GLT spacetimes are generically quantum mechanically
singular. This is due to the fact that specific wave modes are not usually chosen
to make the spatial wave operator essentially self-adjoint and with general modes
the operators are not essentially self-adjoint.

5 Special cases – quantum aspects

Here we consider special cases of GLT spacetime and test each for quantum sin-
gularity using a Klein-Gordon field.

5.1 Minkowski spacetime

GLT spacetime reduces to Minkowski spacetime if β2 = 1 and γ = 0. Both
m = 0 modes (with Bessel function J0 ∼ 1 and Neumann function N0 ∼ ln(r))
are L2, but r = 0 is a regular surface within the spacetime so the N0 mode is
excluded. Therefore the spatial Klein-Gordon wave operator A is essentially self-
adjoint and the spacetime is quantum mechanically nonsingular. (A well-known
result presented here for completeness.)

5.2 Idealized cosmic string

GLT spacetime reduces to the idealized cosmic string spacetime if β2 �= 1 and
γ = 0. Both m = 0 modes (with Bessel function J0 ∼ 1 and Neumann function
N0 ∼ ln(r)) are L2, but r = 0 is NOT a regular surface within the spacetime and
N0 mode cannot be excluded. Therefore the spatial Klein-Gordon wave operator A
is not essentially self-adjoint and the spacetime is quantum mechanically singular.
(For details, see [8, 9, 27, 30].)
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5.3 Screw dislocation spacetime

GLT spacetime reduces to the screw dislocation spacetime if β2 = 1 and γ �= 0.
There is a continuous infinity of double square-integrable modes for each m with
−1 < m − γ k < 1. Therefore the spatial Klein-Gordon operator is not essentially
self-adjoint and the spacetime is quantum mechanically singular. (For details, see
[8]).

6 General cylindrically symmetric spacetimes with a disclination
and a dislocation

A particularly convenient way to establish essential self-adjointness in the spa-
tial operator of the Klein-Gordon equation is to use the concepts of limit circle
and limit point behavior. The approach is as follows. The Klein-Gordon equation
for the spacetimes considered in this section can be separated in the coordinates
t, ρ, θ, z. Only the radial equation is non-trivial. With changes in both dependent
and independent variables, the radial equation can be written as a one-dimensional
Schrödinger equation:

H�(x) = E�(x) , (13)

where x ∈ (0,∞) and the operator H = −d2/dx2 + V (x).
Here we will use this technique to study the general cylindrically symmetric

static spacetime with a disclination and a dislocation. The metric is given by

ds2 = e−2U [e2K (dρ2 − dt2) + ρ2 B2dφ2] + e2U [dz + Adφ]2 , (14)

where U, K , B.A are functions of ρ alone. (This metric form is taken from the
Exact Solutions Book, Sects. 22.1 and 22.3 with a slight change in notation [1];
if B2 = 1 this metric agrees with Eq. (1.1) in Malcolm’s 1998 paper [3]). Here
we will further restrict B to be a positive constant. The coordinate ranges are the
usual ones.

The classical singularity structure depends on U, K , B, A and can be deter-
mined using the usual tests for each particular case under consideration. The quan-
tum singularity structure will be tested using Weyl’s limit point-limit circle crite-
rion [32] and applying applicable theorems taken from Reed and Simon [28]. The
Klein-Gordon wave equation �� = M2� has mode solutions given by

� ∼ e−iωt eikzeimφ H(ρ) , (15)

where

H,ρρ + 1

ρ
H,ρ +{ω2−M2e−2U e2K −k2e−4U e2K −ρ−2e2K B−2(m−k A)2}H = 0.

(16)
Here square integrability is judged by

∫
dρ

√
−g3

g00
H∗H =

∫
dρρB H∗H. (17)
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If we change variables by letting H = x−1/2ψ and x = √
Bρ, then square in-

tegrability is judged by
∫

ψ∗ψdx and the radial equation takes one-dimensional
Schrödinger form of Eq. (13). Explicitly,

ψ,xx +(E − V (x))ψ = 0 , (18)

where E = ω2/B and

V (x) = M2

B
e−2U e2K + k2

B
e−4U e2K + 1

B2x2
e2K (m − k A)2 − 1

4x2
. (19)

We can now study the limit point-limit circle behavior and determine the essential
self-adjointness of the spatial operator 1:

Definition 1 The potential V (x) is in the limit circle case at x = 0 if for some E,
and therefore for all E, all solutions of Eq. (18) are square integrable at zero. If
V (x) is not in the limit circle case, it is in the limit point case.

A similar definition pertains to x = ∞. The potential V (x) is in the limit
circle case at x = ∞ if all solutions of Eq. (18) are square integrable at infinity;
otherwise, V (x) is in the limit point case at infinity.

There are of course two linearly independent solutions of the Schrödinger
equation for given E . If V (x) is in the limit circle case at zero, both solutions
are L2 at zero, so all linear combinations are L2 as well. We would therefore need
a boundary condition at x = 0 to establish a unique solution. If V (x) is in the limit
point case, the L2 requirement eliminates one of the solutions, leaving a unique
solution without the need of establishing a boundary condition at x = 0. This is
the whole idea of testing for quantum singularities; there is no singularity if the
solution is unique, as it is in the limit point case. The critical theorem is due to
Weyl [28, 32].

Theorem 1 (The Weyl limit point-limit circle criterion) If V (x) is a continuous
real-valued function on (0, ∞), then H = −d2/dx2 + V (x) is essentially self-
adjoint on C∞

0 (0, ∞) if and only if V (x) is in the limit point case at both zero and
infinity.

The following theorem can be used to establish the limit circle-limit point behavior
at infinity [28].

Theorem 2 (Theorem X.8 of Reed and Simon [28]) If V (x) is continuous and
real-valued on (0, ∞), then V (x) is in the limit point case at infinity if there exists
a positive differentiable function M(x) such that

(i) V (x) ≥ −M(x)
(ii)

∫ ∞
1 [M(x)]−1/2dx = ∞

(iii) M ′(x)/M3/2(x) is bounded near ∞.

Then V (x) is in the limit point case (complete) at ∞.

1 This section is based on Appendix to X.1 in Reed and Simon [28].
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A sufficient choice of the M(x) function for our purposes is the power law function
M(x) = cx2 where c > 0. Then (ii) and (iii) are satisfied, so if V (x) ≥ −cx2,
V (x) is in the limit point case at infinity.

A theorem useful near zero is the following.

Theorem 3 (Theorem X.10 of Reed and Simon [28]) Let V (x) be continuous
and positive near zero. If V (x) ≥ 3

4 x−2 near zero then V (x) is in the limit point

case. If for some ε > 0, V (x) ≤ ( 3
4 − ε)x−2 near zero, then V (x) is in the limit

circle case.

Here we can write our V (x) (Eq. (19)) as

V (x) = V1(x) − 1

4x2
. (20)

Near zero we therefore have the following results:

• If V1(x) < 1
4x2 , the theorem does not apply.

• If V1(x) ≥ x−2, V (x) is in the limit point case at 0.
• If 1

4x2 ≤ V1(x) ≤ (1−ε)

x2 for some ε > 0, V (x) is in the limit circle case at 0.

Usually, however, it is easiest just to solve the Schrödinger equation near zero
and test the resulting approximate solutions for square integrability.

7 Generalized Levi-Civita spacetimes with dislocations

Here we will consider a Levi-Civita (LC) metric that has been generalized with
the addition of a timelike dislocation (α �= 0) and a spacelike dislocation (γ �= 0):

ds2 = −r4σ (dt +αdθ)2+r8σ 2−4σ dr2 +r8σ 2−4σ (dz+γ dθ)2+ r2−4σ

C2
dθ2. (21)

Here σ and C are the usual Levi-Civita parameters and the coordinate ranges are
the usual ones. The constant σ is related to the mass per unit length of the infinite
line mass that the Levi-Civita metric can describe, whereas the constant C2 �= 1
represents a disclination in the spacetime. For a fuller discussion of Levi-Civita
spacetimes see, for example, Bonnor [34], Konkowski, Helliwell and Wieland
[10], and the papers by Herrera et al [35, 36]. The generalized Levi-Civita metric
is static if α = 0, it reduces to the ordinary Levi-Civita metric if α = 0 and γ = 0
(see 22.7 of the Exact Solutions Book [1]), and it reduces to the GLT metric if
α �= 0, γ �= 0, C2 �= 1 and σ = 0.

The analysis here will be restricted to the static case:

ds2 = −r4σ dt2 + r8σ 2−4σ dr2 + r8σ 2−4σ (dz + γ dθ)2 + r2−4σ

C2
dθ2. (22)

The classical singularity structure depends on the parameter values:

• σ �= 0, 1/2 – scalar curvature singularity.
• σ = 0, γ = 0, C2 = 1 – Minkowski spacetime – non-singular.
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• σ = 0, γ = 0, C2 �= 1 – Idealized cosmic string – quasi-regular, disclination
singularity.

• σ = 0, γ �= 0, C2 = 1 – Screw dislocation spacetime – quasi-regular, dislo-
cation singularity.

• σ = 1/2 – Minkowski spacetime in accelerated coordinates – non-singular.

What about the quantum singularity structure? That too depends on the parameter
values. We will consider two distinct cases.

7.1 Generalized LC spacetimes with σ = 1/2

We will first consider the σ = 1/2 case, which is Minkowski spacetime in acceler-
ated coordinates. The Klein-Gordon equation is separable and the radial equation
can be written in Schrödinger form,

ψ,xx +(E − V (x))ψ = 0 , (23)

where E = C2ω2,

V (x) = C2(k2 + M2 + m2C2) exp(2Cx), (24)

and x = 1
C ln(r) with x ∈ (−∞, ∞). As x → ±∞, V (x) > −cx2, so the

potential is limit point at ±∞. Therefore, Minkowski spacetime in accelerated
coordinates is clearly and unambiguously quantum mechanically non-singular.

7.2 Generalized LC spacetimes with σ �= 1/2

All other cases can be considered together. Again the Klein-Gordon equation is
separable and the radial equation can be written in Schrödinger form,

ψ,xx +(E − V (x))ψ = 0 , (25)

where E = Cω2/β, β = (2σ − 1)2 and

V (x) = (Ck2/β)(βCx2)(−β+1)/β + (C M2/β)(βCx2)2σ/β

+(m − γ k)2 C2

β
(βCx2)(4σ−1)/β − 1

4x2
, (26)

with

x = 1

C

r (2σ−1)2

2σ − 1
(27)

for x ∈ (0, ∞). As x → ∞, V (x) > −cx2, so the potential is limit point at
infinity. As x → 0, the behaviour is as follows:

• σ �= 0 V (x) → − 1
4x2 . The asymptotic forms of the two independent solutions

to the Schrödinger equation are ψ1 ∼ x1/2 and ψ2 ∼ x1/2 ln(x). Both are L2

so the potential V (x) is limit circle at zero.
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• σ = 0 V (x) → − 1/4−(m−γ k)2C2

x2 . The asymptotic forms of the two inde-

pendent solutions to the Schrödinger equation are ψ1 ∼ x1/2+|m−γ k|C , and
ψ2 ∼ x1/2 ln(x) if m = γ k or ψ1 ∼ x1/2−|m−γ k|C if m �= γ k. Therefore V (x)
is limit circle at zero if |m − γ k|C < 1 (except for the special case γ = 0
of Minkowski spacetime, where the irregular ψ2 solution is discarded at zero
because x = 0 is a regular hypersurface in the spacetime) and V (x) is limit
point at zero if |m − γ k|C ≥ 1.

7.3 Results

The following results were obtained:

• σ = 0, C2 = 1, γ = 0 Minkowski spacetime. Here x = 0 is a regular hy-
persurface in the spacetime so the ψ2 modes are discarded and the potential
is limit point. Minkowski spacetime is quantum mechanically non-singular (a
well-known result repeated for completeness).

• σ = 1/2 Minkowski spacetime in accelerated coordinates. The potential V (x)
is limit point. Minkowski spacetime in accelerated coordinates is quantum me-
chanically nonsingular.

• σ = 0 (C2 �= 1 and/or γ �= 0) and σ �= 0 The potential V (x) is limit circle.
These generalized LC spacetimes are quantum mechanically singular.

These agree when γ = 0 with the results obtained by Konkowski et al. [10] for
ordinary LC spacetimes.

8 Chitre et al. spacetimes

Under consideration next are a family of spacetimes discovered by Chitre et al.
[37]. Their metric is

ds2 = ρ−4/9 exp(a2ρ2/3)(dρ2 − dt2) + ρ4/3dφ2 + ρ2/3(dz + aρ2/3dφ)2. (28)

They are described in the Exact Solutions Book, Sect. 22.12 [1]. Here a is a con-
stant. The coordinate ranges are the usual ones.

The Chitre et al. spacetimes are classically singular with a scalar curvature
singularity at ρ = 0. Are they quantum mechanically singular? The Klein-
Gordon equation is separable and the radial wave equation can be written in one-
dimensional Schrödinger form,

ψ,xx +(E − V (x))ψ = 0 , (29)

with ρ = x , E = ω2 and

V (x) = M2x−4/9ea2x2/3 + k2x−10/9ea2x2/3

+x−16/9ea2x2/3
(m − kax2/3)2 − 1

4x2
. (30)
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As x → ∞, V (x) > −cx2, so the potential is limit point at infinity. As x →
0, V (x) → − 1

4x2 . The asymptotic forms of the two independent solutions to

the Schrödinger equation are ψ1 ∼ x1/2 and ψ2 ∼ x1/2 ln(x). Both are L2 so
the potential V (x) is limit circle at zero. Thus, for all a values, the Chitre et al
spacetimes are quantum mechanically singular.

9 Melvin universes

Next we look at Melvin spacetimes [38] which are given in 22.13 of the Exact
Solutions Book [1]. This is a one-parameter family of spacetimes with metric,

ds2 = −α2(1 + R2)2(dt2 − d R2) + α2 R2

(1 + R2)2
dθ2 + (1 + R2)2dz2, (31)

where α is a constant and the coordinate ranges are the usual ones.
The Melvin spacetimes are classically non-singular for all values of α. They

are also quantum mechanically non-singular. This is easily seen by writing the
radial portion of the Klein-Gordon equation in Schrödinger form,

ψ,xx +(E − V (x))ψ = 0. (32)

Here E = ω2, R = x , and

V (x) = α2k2 + M2 + (m2 − 1/4)

x2
. (33)

As x → ∞, V (x) > −cx2, so the potential is limit point at infinity. As x → 0,

V (x) → (m2−1/4)

x2 . The asymptotic forms of the two independent solutions to the

Schrödinger equation are ψ1 ∼ x1/2+|m|, and ψ2 ∼ x1/2 ln(x) if m = 0 and
ψ2 ∼ x1/2−|m| if m �= 0. The ψ2(m = 0) solution is L2 but it is not allowed as
x = 0 is a regular hypersurface of the spacetime. The potential is thus also limit
point at zero and the Melvin universes are quantum mechanically non-singular for
all parameter values.

10 Generalized Raychaudhuri spacetimes with a disclination
and dislocations

The last spacetimes under consideration are generalized Raychaudhuri spacetimes
with a disclination and two dislocations. These are generalizations of the ordinary
Raychaudhuri spacetimes [39] described in 22.16 of the Exact Solutions book [1].
Their metric is

ds2 = −a2(ln(bρ))2(dt + αdφ)2 + a2(ln(bρ))2dρ2 + a2 B2ρ2(ln(bρ))2dφ2

+a−2(ln(bρ))−2(dz + Adφ)2 , (34)

where a, b, α, A, and B are constants and the coordinate ranges are the usual ones.
If α is not equal to zero, there is a timelike dislocation; if A is not equal to zero,



Mining metrics for buried treasure 1081

there is a spacelike dislocation; and if B2 �= 1, there is a disclination. If α = 0 the
spacetimes are static. If α = 0, A = 0, B2 = 1 then the ordinary two-parameter
Raychaudhuri spacetimes are recovered with a and b as the only parameters.

These generalized Raychaudhuri spacetimes all have a scalar curvature singu-
larity at ρ = 0. What about quantum singularities? Here we will consider only the
static case,

ds2 = −a2(ln(bρ))2dt2 + a2(ln(bρ))2dρ2 + a2 B2ρ2(ln(bρ))2dφ2

+a−2(ln(bρ))−2(dz + Adφ)2 (35)

which has a disclination and spacelike dislocation. For simplicity, assume B is
positive in the following analysis. The Klein-Gordon equation is separable in the
metric coordinates and the radial equation can be put into Schrödinger form,

ψ,xx +(E − V (x))ψ = 0 , (36)

where ρ = x , E = ω2/B2, and

V (x) = M2a2

B
(ln(bx))2 + k2a4

B
(ln(bx))4

+ 1

B2x2
(m − k A)2 − 1

4x2
. (37)

As x → ∞, V (x) > −cx2, so the potential is limit point at infinity. As x → 0,

V (x) ∼ [− 1
4 + (m−k A)2

B2 ]x−2 and the two independent asymptotic solutions to the

Schrödinger equation are ψ1 ∼ x1/2+|m−ka|/Band ψ2 ∼ x1/2 ln(x) if m = k A
or ψ2 ∼ x1/2−|m−ka|/B if m �= k A. Therefore, V (x) is limit circle at zero if
|m−k A|

B < 1 and V (x) is limit point at zero if |m−k A|
B ≥ 1. The static general-

ized Raychaudhuri spacetimes are thus quantum mechanically singular for Klein-
Gordon modes −1 < m−k A

B < 1. If generic modes are allowed, all static general-
ized Raychaudhuri spacetimes are generically quantum mechanically singular.

11 Conclusions

The essential (buried) parameters in the spacetimes considered are not evident in
a local analysis of the metrics as is done by CLASSI. They are evident, however,
in a global analysis as one finds when examining the spacetimes for classical and
quantum singularities. In such analyses there is a wealth of information that can
be mined from the metric structure.

I end with a quote that seems apropos to the buried treasure of globally essen-
tial parameters. It is from Lewis Carroll’s Through the Looking Glass:

“I see nobody on the road,” says Alice. “I only wish I had such eyes,” the
King remarked in a fretful tone. “To be able to see nobody. And at that
distance, too! Why, it’s as much as I can do to see real people, by this
light.”
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