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Abstract We assume a flat brane located at y = 0, surrounded by an AdS space,
and consider the 5D Einstein equations when the energy flux component of the
energy-momentum tensor is related to the Hubble parameter through a constant
Q. We calculate the metric tensor, as well as the Hubble parameter on the brane,
when Q is small. As a special case, if the brane is tensionless, the influence from
Q on the Hubble parameter is absent. We also consider the emission of gravitons
from the brane, by means of the Boltzmann equation. Comparing the energy con-
servation equation derived herefrom with the energy conservation equation for a
viscous fluid on the brane, we find that the entropy change for the fluid in the emis-
sion process has to be negative. This peculiar effect is related to the fluid on the
brane being a non-closed thermodynamic system. The negative entropy property
for non-closed systems is encountered in other areas in physics also, in particular,
in connection with the Casimir effect at finite temperature.
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1 Introduction

When considering brane world perturbative cosmology one is confronted with a
plethora of phenomena, among which some are unknown even with respect to
sign. For instance, as discussed recently by Durrer [1], during ordinary inflation
gravitational waves are generated. For a given inflationary potential their ampli-
tudes can be calculated. In a brane world context, a fraction of these waves will
be radiated from the brane into the bulk and thereby reduce the gravitational wave
amplitude. On the other hand there may also be gravitational waves generated in
the bulk, and some of these may accumulate on the brane, increasing the amplitude
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of gravitational waves on the brane. Thus, depending on the circumstances, even
the sign of the brane world effect on a gravitational wave background is unknown.

In view of this state of affairs it may seem desirable to allow for realistic,
non-ideal, properties of the cosmic fluid on the brane. Therewith one may hope
to get some guidance in restricting the number of possibilities in the description
of physical processes. One natural option in this direction is to allow for a bulk
viscosity. As is known from ordinary hydromechanics, one is easily led astray in
many cases if one ignores the viscosity effects. A bulk viscosity, in contrast to
a shear viscosity, is compatible with the assumption about complete isotropy of
the cosmic fluid. We shall assume in the following that there is a constant bulk
viscosity ζ present, but shall ignore the shear viscosity. We shall work in terms
of Gaussian normal coordinates and assume that there is one single brane present
at fixed position y = 0. That is, we adopt essentially the Randall-Sundrum type
II model [2], although this model is strictly speaking non-cosmological. (It might
in this context seem natural, as an alternative, to introduce a spherical model in
which the brane is an expanding surface mimicking the cosmological expansion.
This implies a 5D cosmological solution of Einstein’s equations with a negative
cosmological constant. Theories of this kind have been worked out in Ref. [3] and
[4]; cf. also the recent review in Ref. [5].)

Dissipative cosmology theories were worked out some years ago – cf., for in-
stance, the reviews [6, 7] – whereas the theory of viscous fluids in a brane context
was recently investigated in Refs. [8–10]. The presence of a dissipative fluid on
the brane gives us the possibility to compare with general thermodynamical prin-
ciples; in particular, the behaviour of entropy in irreversible processes.

An important point in the present context is that we will relax the condition
about zero energy flux from the brane, Tty = 0, in the y direction. This means
physically that we draw into consideration the production of gravitons. Since the
emission of gravitons into the bulk can be described via the Boltzmann equa-
tion, this is the case that we will be henceforth interested in (we thus do not con-
sider any further the absorption of gravitons on the brane). We shall describe this
interchange effect in a simple way phenomenologically, by introducing a non-
vanishing energy flux component Tty . It is only this component of the 5D energy-
momentum tensor TAB that comes into play in the present context.

In Sect. 3 we will be concerned with the energy conservation equation for the
viscous fluid on the brane. Comparing with the corresponding equation derived
from the Boltzmann equation, it actually turns out that the emission process
corresponds to a negative entropy change for the thermodynamic subsystem
on the brane. This may be an unexpected result, but it does not simply run
into conflict with basic thermodynamics all the time that the thermodynamic
principles apply only to a closed system; in our case this means the brane fluid
plus the bulk particles.

2 Einstein’s equations, with an interchange term

As mentioned, we assume that there is one single brane located at y = 0. We take
the spatial curvature k to be zero. The metric will be taken in the form

ds2 = −n2(t, y)dt2 + a2(t, y)δi j dxi dx j + dy2. (1)
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The quantities n(t, y) and a(t, y) are determined from Einstein’s equations which
are, with � the 5D cosmological constant,

RAB − 1

2
gAB R + gAB� = κ2TAB . (2)

Here the coordinate indices are numbered as x A = (t, x1, x2, x3, y), with κ2 =
8πG5 the 5D gravitational coupling. With the metric (1) Einstein’s equations in a
coordinate basis have been worked out before [10–14], but it is convenient to give
them also here for reference purposes. When k = 0,
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Here overdots and primes mean derivatives with respect to t and y, respectively.
The energy-momentum tensor is taken in the form

TAB = δ(y)[−σgµν + ρUµUν + p̃ hµν]δµ
Aδν

B, (7)

where hµν = gµν + UµUν is the projection tensor and p̃ = p − 3H0ζ is the
effective pressure, H0 = ȧ0/a0 being the Hubble parameter on the brane y = 0.
As gauge condition we take n0(t) = 1, which physically means that the proper
time on the brane is equal to the cosmological time coordinate. As n0(t) is a
constant, the scalar expansion θ = Uµ;µ = 3H0+ṅ0/n0 reduces to 3H0 [10]. The
energy-momentum expression (7) is composed of two parts: one part which in an
orthonormal frame means Ttt = δ(y)σ, Ti j = −δ(y)σδi j , which is in accordance
with the equation of state p = −ρ for a cosmic brane [15], and there is a second
part describing the energy-momentum for a viscous fluid. We work henceforth in
an orthonormal frame, where Uµ = (1, 0, 0, 0), and let generally the subscript
zero be referring to the brane.

Consider next the junction conditions applied to Eqs. (3) and (4) at y = 0. For
the distributional parts we have [10]

[a′]
a0

= −1

3
κ2(σ + ρ), (8)
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3
κ2(−σ + 2ρ + 3 p̃), (9)

where [a′] = a′(0+) − a′(0−), and similarly for [n′].
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For the nondistributional parts we have
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We now turn attention to the energy flux component Tty , attempting to model it in
a simple way. It seems natural to assume that the energy flux from the brane was
stronger in the early stages of the universe when the Hubble parameter H = ȧ/a
was large, than it is today. As ansatz we shall adopt a simple proportionality, i.e.,
Tty = −Q H , where Q is a constant. This ansatz actually leads to mathematical
simplifications also. Namely, in (5) we can eliminate ȧ/a to get the equation
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− ȧ′

ȧ
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which, after integration with respect to y, yields

n(t, y) = ȧ(t, y)

ȧ0(t)
e−κ2 Q|y|/3, (13)

where the Z2 symmetry y → −y is taken into account. Note that the condition
n0 = 1 is obeyed, and that a positive value of Q leads to a decreasing value of the
metric component n(t, y) with increasing distances |y| from the brane.

Consider next Eq. (10). After some algebra and use of (13) we can write it in
the form
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A nonvanishing value of Q thus spoils the conservation of the expression between
the curly parentheses and thereby changes the conventional 5D brane version of
Friedmann’s first equation.

We shall not solve (14) in general, but limit ourselves to the case when Q is
small. Specifically, we shall consider the condition (assumed here that Q > 0)

κ2 Q|y| � 1. (15)

Stated in another way: we consider only distances |y| from the brane for which
(15) is satisfied. This region close to the brane is obviously also the one of main
physical interest. Our calculation below will go only to the first order in Q.

When the exponential in (14) is replaced with unity, we need only the expres-
sion for a(t, y) on the right hand side that pertains to the case Q = 0. For y = 0
we then have the equation
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where C = C(t) is an integration constant with respect to y. As ρ = ρ(t), this
equation can be solved for a0 only in special cases. Let us give the explicit solution
when ρ = 0 [14]:

a0(t; ρ = 0) = 1

2
√

λ f (t)
[ f 4(t) − 4λC]1/2, (17)

where the constant

λ = 1

6
� + 1

36
κ4σ 2 (18)

can be interpreted as an effective four-dimensional cosmological constant in the
five-dimensional theory, and

f (t) = e
√

λ(t+c0), (19)

c0 being a new integration constant (recall that k = 0 is assumed).
Now considering the Q = 0 solution for a(t, y) away from the brane, we shall

assume only the AdS case, i.e., � < 0. We then have, for general y,
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where µ = √−�/6. (Note that the condition (15) does not necessarily imply that
the argument (2µy) is small.) The terms containing the quantity C are not of main
interest here and will hereafter be omitted (the extra term C/a4

0 in the Friedmann
equation (16) is called the ”radiation term”).

The expression (20) is easily integrated with respect to y, and so the whole
Eq. (14) can be integrated. Again omitting a “radiation” type term we obtain
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ȧ2
0

a4

{
1

2
a2

0

(
1 + κ4σ 2

6�

)
y

+ 1

4µ
a2

0

(
1 − κ4σ 2

6�

)
sinh 2µy − κ2σ

12µ2
a2

0 cosh 2µy

}
. (21)

Note that it is equivalent here whether we insert a2
0(t; Q = 0) or the more general

expression a2
0(t; Q) ≡ a2

0(t) on the right hand side, all the time that we work to
the first order in Q.

The expression (21) can be evaluated on the brane. Let us take y = 0+; then
a′

0/a0 = − 1
6κ2(ρ + σ). Recalling that n0(t) = 1 we get
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This is our main result. It shows how Friedmann’s first equation becomes modi-
fied in the presence of a nonvanishing Q. When Q = 0, (22) reduces to (28) in
Ref. [10] (when the radiation term is omitted).

We note the following points:

(1) There is no influence from the viscosity in (22). This arises from the fact that
Friedmann’s first equation refers to the energy in the fluid, not to the pressure,
and it is only in the latter context that viscosity plays a role (cf. p → p̃ above).

(2) If σ > 0 (i.e., a positive tensile stress on the brane), and if Q > 0, then the
magnitude of the Hubble parameter becomes diminished by the presence of
Q.

(3) If the brane is tensionless, σ = 0, there is no influence from Q on the Hubble
parameter at all, irrespective of the value of of ρ.

What is the sign of the constant Q? Although we have not discussed this issue
in detail, it is fairly obvious from the expression (13) that in order for the present
model to be physically reasonable one should have Q > 0. The influence from
Tty on the brane has to decay with increasing distances |y| from the brane.

In the next section we shall consider the energy conservation equation for the
fluid on the brane. This equation can be derived from the Boltzmann equation
describing the emission process, or alternatively from the standard conservation
equation for a viscous fluid. Comparison of the equations will enable us to discuss
the behaviour of entropy.

3 Radiating brane: energy conservation equation in the presence
of viscosity

A reasonable physical model for the brane-bulk interaction is to assume that bulk
gravitons are produced by fluctuations of brane matter. Assuming as before an
AdS bulk, we can take the gravitons to be created by the collision of pairs of par-
ticles on the brane. The process can be described in various ways. Let us briefly
review here the kind of approach advocated by Langlois et al. [16–18]. The pro-
cess can be described as

ψψ̄ → g, (23)

where ψ is a standard model particle and g is a graviton. The equation of state is
written in the conventional form

p = wρ, (24)

where w = 1/3 for highly relativistic particles. One can make use of the
Boltzmann equation on the brane,

ρ̇ + 3H0(ρ + p) = −
∫
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where the collision term is
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Here f is the distribution function for gravitons, and M is the scattering amplitude.
The calculation leads to the following result, with w = 1/3,

ρ̇ + 4H0 ρ = − 315

512π3
ĝ κ2 T 8, (27)

when the matter is in thermal equilibrium at a temperature T . Here ĝ = (2/3)gs +
g f + 4gv = 188.7, where gs = 4, g f = 90, gv = 24 refer to the degrees of
freedom for scalars, fermions, and vectors, respectively, in the standard model.

We now go back to the formalism of the previous section. Evaluating (12) on
both sides of the brane, and inserting the expressions (8) and (9) for the jumps [a′]
and [n′], we obtain the energy conservation equation in the following form:

ρ̇ + 3H0(ρ + p) = 9ζ H2
0 . (28)

In this equation Q does not appear explicitly, but its influence is hidden in the Q-
dependent expression for H0; cf. (22). It is notable that (28) has precisely the same
form as in ordinary viscous four-dimensional cosmology [6, 19, 20], although
there is seemingly no simple physical reason why this should be so.

Let us compare Eqs. (27) and (28). When w = 1/3 their left hand sides are
the same, but on the right hand sides there is a striking difference in that the signs
are opposite. As we know from from ordinary thermodynamics the bulk viscosity
ζ (as well as the shear viscosity η) are taken to be positive quantities; this arising
from the condition that the entropy change in an irreversible process for a closed
system is positive [21].

So, the following conclusion naturally emerges: The emission of gravitons
into the bulk, as described by (27), is accompanied by a negative entropy change
in the cosmic fluid on the brane. It corresponds to a negative ζ . The negativity
of the entropy change is counterintuitive, but does not violate thermodynamics as
one would be inclined to conclude at first. The reason is that the fluid on the brane
forms a non-closed thermodynamic system; in order to close the system one has to
include the particles in the bulk also. General relationships, such as the law about
entropy increase in an irreversible process, applies to a closed thermodynamic
system only.

This particular effect is not so uncommon after all. It becomes natural here to
compare with the theory of the Casimir effect. Imagine that there are two parallel
metal plates, separated by a fixed gap a of the order of 1 µm, at a temperature
T . At low T , there exists a finite temperature interval in which the Casimir free
energy F is increasing with increasing values of T , keeping a constant. This cor-
responds to a negative entropy S = −∂ F/∂T in the actual temperature interval.
The reason is evidently that these Casimir quantities are not concerned with the
thermodynamic quantities of the closed system, but only with the interaction part
of it. And the Casimir force is derived just from the interaction part of the free en-
ergy. We have considered this effect repeatedly earlier [22–25], and the theory has
been corroborated by other works considering the Casimir effect from different
viewpoints - cf. for instance Sernelius et al. [26–28] – although it is only fair to
say that a full consensus on this point has not so far been achieved in the literature.
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4 Summary

Our starting point was the metric (1), corresponding to zero spatial curvature,
whereby the 5D Einstein equations (2) took the form (3)-(6). On the y = 0 brane,
endowed with a constant tension σ , a fluid with density ρ and constant bulk vis-
cosity ζ was assumed, corresponding to the energy-momentum tensor in the form
of (7).

The main results of the present paper are:

• Assuming the energy flux component to satisfy the proportionality Tty =
−Q H with Q a constant, we found the metric component n(t, y) to be given
by (13). This expression shows that Q > 0 in order for the present kind of the-
ory to be meaningful; the influence from the brane-bulk interaction is expected
to decay for increasing values of |y|.

• In the limit of small Q, the metric component a(t, y) is determined from (21),
which in turn leads to the expression (22) for the Hubble parameter H0 on the
brane. This expression shows, in particular, that the influence from Q on H0
is absent if the brane is tensionless, σ = 0.

• The emission of gravitons can be described through the Boltzmann equation
on the brane [16–18]. The corresponding energy conservation Eq. (27), when
compared with the energy conservation Eq. (28) for a viscous fluid on the
brane, shows that ζ has to be negative, corresponding to a negative entropy
change. This counterintuitive effect relates to the fact that the fluid on the
brane is a non-closed thermodynamic system. The negative entropy effect has
parallels in other areas of physics also, notably in connection with the Casimir
effect at a finite temperature [22–28].
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