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Abstract We investigate the viability of f (R) theories in the framework of the
Palatini approach as solutions to the problem of the observed accelerated expan-
sion of the universe. Two physically motivated popular choices for f (R) are con-
sidered : power law, f (R) = β Rn , and logarithmic, f (R) = α ln R. Under the
Palatini approach, both Lagrangians give rise to cosmological models comprising
only standard matter and undergoing a present phase of accelerated expansion.
We use the Hubble diagram of type Ia Supernovae and the data on the gas mass
fraction in relaxed galaxy clusters to see whether these models are able to repro-
duce what is observed and to constrain their parameters. It turns out that they are
indeed able to fit the data with values of the Hubble constant and of the matter
density parameter in agreement with some model independent estimates, but the
today deceleration parameter is higher than what is measured in the concordance
�CDM model.
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1 Introduction

The Hubble diagram of type Ia supernovae (hereafter SNeIa) [1, 2], the anisotropy
spectrum of the cosmic microwave background radiation (hereafter CMBR) [3–5],
the matter power spectrum determined by the large scale distribution of galaxies
[6, 7] and by the data on the Lyα clouds [8] are all convincing evidences in favour
of a new picture of the universe, unexpected only few years ago. According to this
nowadays standard scenario, the universe is flat and undergoing an accelerated ex-
pansion driven by a mysterious fluid with negative pressure nearly homogeneously
distributed and making up to ∼70% of the energy content. This exotic component
is what is called dark energy, while the model we have just depicted is usually
referred to as the concordance model.

Even if strongly supported by the bulk of the available astrophysical data, this
new picture is not free of problems. Actually, while it is clear how dark energy
works, its nature remains an unsolved problem. The simplest explanation claims
for the cosmological constant � thus leading to the so called �CDM model1 [9].
Although being the best fit to most of the available astrophysical data [4, 7], the
�CDM model is also plagued by many problems on different scales. If inter-
preted as vacuum energy, � is up to 120 orders of magnitudes smaller than the
predicted value. Furthermore, one should also solve the coincidence problem, i.e.
the nearly equivalence of the matter and � contribution to the total energy den-
sity. As a response to these problems, much interest has been devoted to models
with dynamical vacuum energy, dubbed quintessence [10]. These models typically
involve a scalar field rolling down its self interaction potential thus allowing the
vacuum energy to become dominant only recently (see [11, 12] for good reviews).
Although quintessence by a scalar field is the most studied candidate for dark
energy, it generally does not avoid ad hoc fine tuning to solve the coincidence
problem. Moreover, it is not clear where this scalar field comes from and how to
choose the self interaction potential.

On the other hand, it is worth noting that, despite the broad interest in dark
matter and dark energy, their physical properties are still poorly understood at
a fundamental level and, indeed, it has never been shown that they are in fact
two different ingredients. This observation motivated the great interest recently
devoted to a completely different approach to quintessence. Rather than fine tuning
a scalar field potential, it is also possible to explain the acceleration of the universe
by introducing a cosmic fluid with an exotic equation of state causing it to act like
dark matter at high density and dark energy at low density. An attractive feature
of these models is that they can explain both dark energy and dark matter with a
single component (thus automatically solving the coincidence problem) and have
therefore been referred to as unified dark energy (UDE) or unified dark matter
(UDM). Some interesting examples are the generalized Chaplygin gas [13], the
tachyonic field [14], the condensate cosmology [15] and the Hobbit model [16].
It is worth noting, however, that such models are seriously affected by problems
with structure formation [17] so that some work is still needed before they can be
considered as reliable alternatives to dark energy.

1 It is common in literature to make no distinction between the concordance and the �CDM
model even if, strictly speaking, in the concordance model the dark energy may also be provided
by a different mechanism.
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Actually, there is still a different way to face the problem of cosmic accelera-
tion. As stressed in Lue et al. [18], it is possible that the observed acceleration is
not the manifestation of another ingredient in the cosmic pie, but rather the first
signal of a breakdown of our understanding of the laws of gravitation. From this
point of view, it is thus tempting to modify the Friedmann equations to see whether
it is possible to fit the astrophysical data with a model comprising only the stan-
dard matter. Interesting examples of this kind are the Cardassian expansion [19]
and the DGP gravity [20].

In this same framework, there is also the attractive possibility to consider the
Einsteinian general relativity as a particular case of a more fundamental theory.
This is the underlying philosophy of what are referred to as f (R) theories [21–25,
28]. In this case, the Friedmann equations have to be given away in favour of a
modified set of cosmological equations that are obtained by varying a generalized
gravity Lagrangian where the scalar curvature R has been replaced by a generic
function f (R). The usual general relativity is recovered in the limit f (R) = R,
while completely different results may be obtained for other choices of f (R).
While in the weak field limit the theory should give the usual newtonian gravity,
at cosmological scales there is an almost complete freedom in the choice of f (R)
thus leaving open the way to a wide range of models.

The key point of f (R) theories is the presence of modified Friedmann equa-
tions obtained by varying the generalized Lagrangian. However, here lies also the
main problem of this approach since it is not clear how the variation has to be per-
formed. Actually, once the Robertson–Walker metric has been assumed, the equa-
tions governing the dynamics of the universe are different depending on whether
one varies with respect to the metric only or with respect to the metric components
and the connections. It is usual to refer to these two possibilities as the metric and
the Palatini approach respectively. The two methods give the same result only in
the case f (R) = R, while lead to significantly different dynamical equations for
every other choice of f (R) (see [26–29] and references therein).

It is worth noting f (R) theories were initially investigated using the metric
approach [21–23]. Even if some interesting and successful results have been ob-
tained [30], this way to f (R) theories is plagued by serious mathematical difficul-
ties. Actually, even for the simplest f (R), the metric approach leads to a fourth
order nonlinear differential equation for the scale factor that is impossible to solve
analytically and is affected by several problems that greatly complicate the search
for numerical solutions. Moreover, some doubts have been cast on the consistency
among the weak field limit of the theory and the newtonian gravity as tested at the
Solar system scale [31] even if some interesting different results have also been
obtained [32].

On the other hand, theoretical considerations about the stability of the equa-
tions and the newtonian limit argue in favor of the Palatini approach to f (R)
theories. Moreover, the dynamics of the universe may be analytically determined
from the cosmological equations obtained with this method for some interesting
cases. To this aim, a clear mathematical machinery has been presented in Ref. [28]
(hereafter ABF04) that allows to determine analytic expressions for the Hubble pa-
rameter as function of the redshift. As we will see later, this is all what is needed
to test a given cosmological model.
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The Palatini approach to f (R) theories has been widely studied in literature
[24–29] and the dynamics of the cosmological models obtained by applying this
method to different choices of f (R) has been investigated in detail. Here we
adopt an observational point of view on the Palatini approach. Assuming that
this is the correct way to treat f (R) theories, we investigate the viability of two
classes of models obtained by two popular choices for f (R), namely the power
law f (R) = β Rn and the logarithmic f (R) = α ln R. To this aim, we compare
the model predictions against the SNeIa Hubble diagram and the data on the gas
mass fraction in relaxed galaxy clusters. This analysis will allow us to constrain
the model parameters and to see whether f (R) theories are indeed reliable alter-
natives to dark energy. Moreover, this will be an observational validation of the
theoretically motivated Palatini approach.

The paper is organized as follows. Section 2 details the method we employ
to constrain the models and present the dataset we will use. The two classes of
models we consider are briefly discussed in Sect. 3 where we also individuate the
parameters that are better suited to both assign the model and be constrained by
the data. A detailed discussion of the results is the subject of Sect. 4, while we
summarize and conclude in Sect. 5.

2 Constraining a model

Considered for a long time a purely theoretical science, cosmology has today en-
tered the realm of observations since it is now possible to test cosmological pre-
dictions against a meaningful set of astrophysical data. Much attention, in this
sense, has been devoted to standard candles, i.e. astrophysical objects whose ab-
solute magnitude M is known (or may be exactly predicted) a priori so that a
measurement of its apparent magnitude m immediately gives the distance modu-
lus µ = m − M . The distance to the object is then estimated as:

µ(z) = 5 log DL(z) + 25 (1)

with DL(z) the luminosity distance (in Mpc) and z the redshift of the object. The
relation between µ and z is what is referred to as Hubble diagram and is an open
window on the cosmography of the universe. Furthermore, the Hubble diagram is
a powerful cosmological test since the luminosity distance is determined by the
expansion rate as :

DL(z) = c

H0
(1 + z)

∫ z

0

dζ

E(ζ )
(2)

with E(z) = H(z)/H0, H = ȧ/a the Hubble parameter and a(t) the scale factor.
Note that an overdot means differentiation with respect to cosmic time, while an
underscript 0 denotes the present day value of a quantity.

Being the Hubble diagram related to the luminosity distance and being DL
determined by the expansion rate H(z), it is clear why it may be used as an ef-
ficient tool to test cosmological models and constrain their parameters. To this
aim, however, it is mandatory that the relation µ = µ(z) is measured up to high
enough redshift since, for low z, DL reduces to a linear function of the redshift
(thus recovering the Hubble law) whatever the background cosmological model is.
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This necessity claims for standard candles that are bright enough to be visible at
such high redshift that the Hubble diagram may discriminate among different ri-
val theories. SNeIa are, up to now, the objects that best match these requirements.
It is thus not surprising that the first evidences of an accelerating universe came
from the SNeIa Hubble diagram [1] and dedicated survey (like the SNAP satellite
[33]) have been planned in order to increase the number of SNeIa observed and
the redshift range probed.

The most updated and reliable compilation of SNeIa is the Gold dataset re-
cently released by Riess et al. [2]. The authors have compiled a catalog containing
157 SNeIa with z in the range (0.01, 1.70) and visual absorption AV < 0.5. The
distance modulus of each object has been evaluated by using a set of calibrated
methods so that the sample is homogenous in the sense that all the SNeIa have
been re-analyzed using the same technique in such a way that the resulting Hub-
ble diagram is indeed reliable and accurate. Given a cosmological model assigned
by a set of parameters p = (p1, . . . , pn), the luminosity distance may be evalu-
ated with Eq. (2) and the predicted Hubble diagram contrasted with the observed
SNeIa one. Constraints on the model parameters may then be extracted by mean
of a χ2 - based analysis defining the χ2 as:

χ2
SNeIa =

NSNeIa∑
i=1

[
µ(zi , p) − µobs(zi )

σi

]2

(3)

where σi is the error on the distance modulus at redshift zi and the sum is over
the NSNeIa SNeIa observed. It is worth stressing that the uncertainty on each mea-
surement also takes into account the error on the redshift and are not gaussian
distributed. As a consequence, the reduced χ2 (i.e., χ2

SNeI a divided by the number
of degrees of freedom) for the best fit model is not forced to be close to unity.
Nonetheless, different models may still be compared on the basis of the χ2 value :
the lower is χ2

SNeI a , the better the model fits the SNeIa Hubble diagram.
The method outlined above is a simple and quite efficient way to test whether

a given model is a viable candidate to describe the late time evolution of the uni-
verse. Nonetheless, it is affected by some degeneracies that could be only partially
broken by increasing the sample size and extending the redshift range probed. A
straightforward example may help in elucidating this point. Let us consider the flat
concordance cosmological model with matter and cosmological constant. It is:

E2(z) = �M (1 + z)3 + (1 − �M )

so that χ2
SNeIa will only depend on the Hubble constant H0 and the matter density

parameter �M . Actually, we could split the matter term in a baryonic and a non
baryonic part denoting with �b the baryon density parameter. Since both baryons
and non baryonic dark matter scales as (1 + z)3, E(z) and thus the luminosity
distance will depend only on the total matter density parameter and we could
never constrain �b by fitting the SNeIa Hubble diagram. Similar degeneracies
could also happen with other cosmological models thus stressing the need for
complementary probes to be combined with the SNeIa data.

To this aim, we consider a recently proposed test based on the gas mass frac-
tion in galaxy clusters. We briefly outline here the method referring the interested
reader to the literature for further details [34, 35]. Both theoretical arguments and
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numerical simulations predict that the baryonic mass fraction in the largest relaxed
galaxy clusters should be invariant with the redshift (see, e.g., Ref. [37]). How-
ever, this will only appear to be the case when the reference cosmology in making
the baryonic mass fraction measurements matches the true underlying cosmology.
From the observational point of view, it is worth noting that the baryonic content
in galaxy clusters is dominated by the hot X - ray emitting intra-cluster gas so that
what is actually measured is the gas mass fraction fgas and it is this quantity that
should be invariant with the redshift within the caveat quoted above. Moreover, it
is expected that the baryonic fraction in clusters equals the universal ratio �b/�M
so that fgas should indeed be given by b×�b/�M where the multiplicative factor
b is motivated by simulations that suggest that the gas fraction is slightly lower
than the universal ratio because of processes that convert part of the gas into stars
or eject it outside the cluster itself.

Following Ref. [36] (hereafter A04), we adopt the SCDM model (i.e., a flat
universe with �M = 1 and h = 0.5, being h the Hubble constant in units of
100 km s−1 Mpc−1) as reference cosmology in making the measurements so that
the theoretical expectation for the apparent variation of fgas with the redshift is
[36]:

fgas(z) = b�b

(1 + 0.19
√

h)�M

[
DSCDM

A (z)

Dmod
A (z)

]1.5

(4)

where DSCDM
A and Dmod

A is the angular diameter distance for the SCDM and the
model to be tested respectively. DA(z) may be evaluated from the luminosity dis-
tance DL(z) as:

DA(z) = (1 + z)−2 DL(z) (5)

with DL(z) given by Eq. (2) above.
A04 have extensively analyzed the set of simulations in Ref. [37] to get b =

0.824 ± 0.089. In our analysis below, we will set b = 0.824 in order to not
increase the number of parameters to be constrained. Actually, we have checked
that, for values in the 1σ range quoted above, the main results are independent on
b. It is worth noting that, while the angular diameter distance depends on E(z)
and thus on h and �M , the prefactor in Eq. (4) makes fgas explicitly depending
on �b/�M so that a direct estimate of �b is (in principle) possible. Actually, we
will see later that, for the models we will consider, the quantity that is constrained
by the data is the ratio �b/�M rather than �b itself.

To simultaneously take into account both the fit to the SNeIa Hubble diagram
and the test on the fgas data, it is convenient to perform a likelihood analysis
defining the following likelihood function:

L(p) ∝ exp

[
−χ2(p)

2

]
(6)

with

χ2 = χ2
SNeIa + χ2

gas +
(

h − 0.72

0.08

)2

+
(

�b/�M − 0.16

0.06

)2

(7)
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where we have defined

χ2
gas =

Ngas∑
i=1

[
fgas(zi , p) − f obs

gas (zi )

σgi

]2

(8)

being f obs
gas (zi ) the measured gas fraction in a galaxy clusters at redshift zi with

an error σgi and the sum is over the Ngas clusters considered. In order to avoid
possible systematic errors in the fgas measurement, it is desirable that the cluster
is both highly luminous (so that the S/N ratio is high) and relaxed so that both
merging processes and cooling flows are absent. A04 [36] have recently released
a catalog comprising 26 large relaxed clusters with a precise measurement of both
the gas mass fraction fgas and the redshift z (not presented in the quoted paper).
We use these data to perform our likelihood analysis in the following.

Note that, in Eq. (7), we have explicitly introduced two gaussian priors to
better constrain the model parameters. First, there is a prior on the Hubble con-
stant h determined by the results of the HST Key project [38] from an accurate
calibration of a set of different local distance estimators. Further, we impose a
constraint on the ratio �b/�M by considering the estimates of �bh2 and �M h2

obtained by Tegmark et al. [7] from a combined fit to the SNeIa Hubble diagram,
the CMBR anisotropy spectrum measured by WMAP and the matter power spec-
trum extracted from over 200000 galaxies observed by the SDSS collaboration. It
is worth noting that, while our prior on h is the same as that used by many authors
when applying the fgas test [35, 36], it is common to put a second prior on �b
rather than �b/�M . Actually, this choice is motivated by the peculiar features of
the models we will consider that lead us to choose this unusual prior for reasons
that will be clear later.

With the definition (6) of the likelihood function, the best fit model parameters
are those that maximize L(p). However, to constrain a given parameter pi , one
resorts to the marginalized likelihood function defined as:

Lpi (pi ) ∝
∫

dp1 . . .

∫
dpi−1

∫
dpi+1 . . .

∫
dpnL(p) (9)

that is normalized at unity at maximum. The 1σ confidence regions are determined
by δχ2 = χ2 −χ2

0 = 1, while the condition δχ2 = 4 delimited the 2σ confidence
regions. Here, χ2

0 is the value of the χ2 for the best fit model. Projections of the
likelihood function allow to show eventual correlations among the model param-
eters. In these two dimensional plots, the 1σ and 2σ regions are formally defined
by 	χ2 = 2.30 and 6.17 respectively so that these contours are not necessarily
equivalent to the same confidence level for single parameter estimates.

3 The f (R) models

The observed cosmic acceleration is currently explained by invoking the presence
of a new fluid with negative pressure which smoothly fills the universe driving its
expansion. However, the nature and the nurture of this fluid are yet unknown so
that other radically different proposals, such as unified dark energy models [13–
16] or brane world inspired theories [18, 20], are still viable and worth exploring.
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A quite interesting and fascinating scenario predicts that standard matter is
the only ingredient of the cosmic pie as it is indeed observed, but the Einsteinian
general relativity breaks down at the present small curvature scale. As a result, one
should generalize the action as:

A =
∫

[√g f (R) + 2κLmat]d4x

with κ = 8πG and Lmat the matter Lagrangian. Varying with respect to the metric
components and adopting then the Robertson - Walker metric, one obtains modi-
fied Friedmann equations that, by rearranging suitably the different terms, may
still be formally written in the same way as the usual ones provided that a new
fictitious component is added. For instance, the Hubble parameter is now given
as:

H2 = κ

3
(ρm + ρcurv) (10)

with ρm the standard matter energy density and ρcurv the energy density of a curva-
ture fluid whose density and pressure are given in terms of f (R) and its derivatives
(see [21, 23] for details). Although intriguing, this approach leads to a mathemat-
ically untractable problem. Indeed, it turns out that the scale factor a(t) should
be obtained by solving a nonlinear fourth order differential equation. Not surpris-
ingly, it is not possible to analytically solve this equation even for the simplest
choices of f (R). Moreover, some conceptual difficulties make it a daunting task
to look for numerical solutions.

An attractive way to escape these problems is to resort to the so called Palatini
approach in which the field equations are obtained by varying with respect to both
the metric components and the connections considered as independent variables.
A consistency condition is then imposed to complement the system thus giving
a set of first order differential equations for the scale factor a(t) and the scalar
curvature R. The modified Friedmann equations are finally obtained by imposing
that the metric is the Robertson–Walker one (see, e.g., [28] for a clear illustration
of the procedure).

The Palatini approach is physically well motivated and has the attractive fea-
ture that the Hubble parameter H(z), that is all what is needed for constraining the
model, may be expressed analytically for some choices of the function f (R). It is
thus quite interesting to constrain the cosmological models obtained by applying
the Palatini approach with two different choices of the function f (R). The main
characteristics of these models are briefly presented below. We follow Ref. [28]
(hereafter ABF04) which the interested reader is referred to for further details.

3.1 The power law Lagrangian

We first consider the class of Lagrangians that are linear in an arbitrary power of
the scalar curvature R:

f (R) = β Rn (11)
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with β �= 0 and n �= 0, 2 real parameters to be constrained. Note that β has
the same units of Rn so that f (R) is adimensional. This model has been already
discussed by many authors [21–23] using the standard way of varying the La-
grangian. In particular, in Ref. [30], some of us have also successfully tested a
simplified version of this model (with no matter term) against the SNeIa Hub-
ble diagram. Moreover, this kind of Lagrangian has also been investigated in the
framework of the Palatini approach [24, 28]. It is thus particularly interesting to
see whether the Palatini approach leads to results that are in agreement with the
observed data. Using the same notation as in ABF04, the scale factor a(t) and the
Hubble parameter H(z) for a flat universe are given as:

a(t) =
[

3ε

2n(3 − n)

]n/3 [
κη

β(2 − n)

]1/3

t2n/3, (12)

H2(z) = 2εn(κη)1/n

3(3 − n)[β(2 − n)(1 + z)−3]1/n
, (13)

with η = ρm(z = 0) the present day value of the matter density and ε = ±1
depending on n in such a way that both a(t) and H(z) are correctly defined. For
the applications, it is better to use the following relation:

κη = 3�M H2
0

with �M the usual matter density parameter. It is worth stressing that, even if we
assume a flat model, �M is not forced to be unity since the critical density for
closure is now different from the usual value ρc = 3H2

0 /8πG. The present day
age of the universe may be obtained by evaluating Eq. (12) at the present day and
then solving with respect to t0 thus obtaining:

t0 =
[

3ε

2n(3 − n)

]−1/2
[

3�M H2
0

β(2 − n)

]− 1
2n

. (14)

Being the scale factor a power law function of the time, the deceleration parameter
is constant and given as:

q ≡ −aä

ȧ2
= 3 − 2n

2n
(15)

so that we may exclude all the Lagrangians with n ≤ 3/2 since they give rise to
non accelerating models (q0 ≥ 0).

A nice feature of this model is that the dimensionless Hubble parameter is
simply:

E2(z) = (1 + z)3/n (16)

so that the luminosity distance turns out to be:

DL(z) = c

H0

2n

2n − 3
(1 + z)

[
(1 + z)

2n−3
2n − 1

]
. (17)

Both DL and DA = (1 + z)−2 DL depend only on the two parameters n and H0
so that fitting to the SNeIa Hubble diagram is unable to put any constraint neither
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on β or �M . Adding the test on the fgas data described in the previous section
partially alleviates this problem since fgas(z) depends also on �b/�M . It is then
possible to get an estimate of �M combining the constraint on �b/�M with an
independent knowledge of �b from the measured abundance of light elements
or primordial nucleosynthesis. Finally, the coupling parameter could be derived
inverting Eq. (14) with respect to β itself provided that t0 has been somehow
evaluated (possibly from a model independent method).

As a general remark, let us observe that, without a knowledge of t0, the pa-
rameter that can be constrained is �M/β. Qualitatively, this could be explained
by noting that all the tests we are considering are related to the cosmography of
the universe. This is determined by the balance between the matter content and the
exotic geometrical effects due to the replacement of R with f (R) in the gravity
Lagrangian. Actually, this feature is common to all f (R) theories and could be
expected since now geometry plays the same role as the scalar field in the usual
dark energy models.

3.2 The logarithmic Lagrangian

Quantum effects in curved spacetimes may induce logarithmic terms in the gravity
Lagrangian [25]. It is thus interesting to consider the choice:

f (R) = α ln R (18)

where the dimensions of α are such that f (R) is dimensionless.2 This model is
more complicated than the power law one so that, as a result, it is not possible to
derive an analytical expression for the scale factor. However, the dimensionless
Hubble parameter may still be expressed analytically as:

E2(z) =
[

1 + (9/4)�M H2
0 α−1

1 + (9/4)�M H2
0 α−1(1 + z)3

]2
1 + 9�M H2

0 α−1(1 + z)3

1 + 9�M H2
0 α−1

× exp {(3/2)�M H2
0 α−1[(1 + z)3 − 1]}. (19)

The luminosity density is obtained inserting Eq. (19) into the definition (2).
There is not an analytic expression for DL , but the integral is straightforward
to evaluate numerically for a given value of �M H0α

−1. As a consequence, the
likelihood function for this model depend on the Hubble constant H0, the ratio
�b/�M between the baryonic and total matter density and the combined parame-
ter �M H2

0 α−1. It is worth stressing that, even if in principle possible, constraining
separately the three parameters (�M , H0, α) is not correct since both DL(z) and
fgas(z) depend on α only through the combination �M H2

0 α−1. Henceforth, it is
this quantity that is constrained by the data. Actually, this degeneracy may be bro-
ken by an independent estimate of �b that can be combined with the constraint on
�b/�M to evaluate �M and then α from the constrained �M H2

0 α−1. Note that,
without an estimate of �b the only quantities estimated from the fit to the SNeIa

2 Note that, in literature, it is sometimes adopted the choice f (R) = α ln βl R. We follow
ABF04 and set βl = 1 with no loss of generality.
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Hubble diagram are H0 and �M H2
0 α−1 so that only the parameter �m/α may

be constrained as a result of the above mentioned degeneracy between matter and
geometry.

There is no explicit analytic expression for the age of the universe so that one
has to resort to numerical integration of the following relation :

t0 = 9.78 h−1
∫ ∞

0

dζ

(1 + ζ )H(ζ )
(20)

giving t0 expressed in Gyr. Let us remark that, while for power law Lagrangians
t0 and �b are needed to break the degeneracy �M/β, now �b and the likelihood
analysis are sufficient to estimate both �M and α so that t0 may be used to check
the results against an independent quantity.

Another striking difference with the case of power law f (R) is the fact that the
deceleration parameter is no longer constant. Even if we do not have an analytic
expression for a(t), we may still evaluate q as follows:

q = −1 + 1 + z

H

d H

dz
.

Inserting Eq. (19) into the above relation and evaluating the result at the present
day (z = 0), we get:

q0 = −1 + �M H2
0 α−1

4

(
9 + 54

1 + 9�M H2
0 α−1

− 108

4 + 9�M H2
0 α−1

)
. (21)

Eq. (21) shows that q0 depends only on the parameter �M H2
0 α−1 that is therefore

what determines whether the universe is today accelerating or decelerating. It is
also worth noting that q(z) (not explicitly reported here for sake of shortness)
changes sign during the evolution of the universe so that it is possible to estimate
a transition redshift zT as q(zT ) = 0 that only depends on �M H2

0 α−1. It should
be possible to estimate somewhat zT , this could give an independent check of the
results. Actually, we will see that this is not possible since all the estimates of zT
are model dependent. However, it is interesting to compare the transition redshift
predicted for the logarithmic f (R) with that of other dark energy models.

4 Results

We have applied the method described in Sect. 2 to investigate whether the cos-
mological models obtained by applying the Palatini approach to f (R) theories
for the two choices in Eqs. (11) and (18) are in agreement with both the SNeIa
Hubble diagram and the data on the gas mass fraction in relaxed galaxy clusters.
This also allows us to constrain the model parameters and compare the estimated
values of some of them (as the Hubble constant h and the matter density �M ) with
the recent results in literature in order to see whether they are reliable or not.
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Fig. 1 Best fit curve to the SNeIa Hubble diagram for the power law Lagrangian model

4.1 f (R) = β Rn

Let us first discuss the case of the power law Lagrangian. The best fit parameters
turn out to be:

n = 2.25 , h = 0.641 , �b/�M = 0.181 (22)

that gives the best fit curves shown in Figs. 1 and 2. The agreement with the data
(in particular, with the SNeIa Hubble diagram) is quite good which should be con-
sidered a strong evidence in favor of the model. However, Fig. 1 shows that the
model slightly overpredicts the distance modulus for two highest redshift SNeI a,
but, given the paucity of the data in this redshift range, the discrepancy is hardly
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Fig. 2 Best fit curve to the fgas data for the power law Lagrangian model
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significant. Should this trend be confirmed by future data (observable, e.g., with
the SNAP satellite mission that will detect SNeIa up to z ∼ 2), we should exclude
the choice (11) for f (R). Actually, such a result could be expected since the de-
celeration parameter is constant, while Riess et al. [2] claimed to have detected a
change in the sign of q at a transition redshift zT ∼ 0.5. We will return later to
the problems connected with the result of Riess et al. that lead us to consider (at
least) premature to deem as unreliable a model with a constant q . Therefore, we
still retain f (R) theories with power law Lagrangian.

It is interesting to look at the confidence contours in the projected two param-
eters space. Figures. 3 and 4 show the confidence regions for the parameters (n, h)
and (n, �b/�M ) respectively. It turns out that n is positively correlated with both
h and �b/�M so that the higher is n, the higher is the expansion rate and the lower
is the matter content �M . As a consequence, to fit the available data, models with
steeper (higher n) power law Lagrangians should contain less matter which is a
result disfavoring values of n much larger than our best fit.

Using the method detailed in Sect. 2, we have obtained the following constraint
on the model parameters:

n ∈



(2.06, 2.46) at 1σ
;

(1.91, 2.61) at 2σ
(23)

h ∈



(0.637, 0.648) at 1σ
;

(0.633, 0.654) at 2σ
(24)

�b/�M ∈



(0.177, 0.185) at 1σ
.

(0.173, 0.189) at 2σ
(25)
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Fig. 3 1, 2, and 3σ confidence regions in the two dimensional parameter space (n, h)
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Fig. 4 1, 2, and 3σ confidence regions in the two dimensional parameter space (n, �b/�M )

The cosmological model originating from power law f (R) has been already con-
sidered by different authors in literature under the metric approach to the variation
of the Lagrangian [21–23]. However, the lack of analytic solutions for the scale
factor or the Hubble parameter has prevented any attempt to constrain the value
of n against the observed data. Actually, only the model without matter has been
investigated giving n ∈ (−0.450,−0.370) or n ∈ (1.366, 1.376) [30] in clear
disagreement with our estimate (23). However, such a comparison is meaningless
because of the presence of the matter term in the present case and the absence in
the other one.

Actually, using Eq. (15), it is possible to convert the estimate of n in a con-
straint on the present day value of the deceleration parameter. The best fit value
for n thus translates into q0 = −0.33, while, combining Eqs. (15) and (23), we
get:

q0 ∈



(−0.39,−0.27) at 1σ
.

(−0.43,−0.21) at 2σ
(26)

While consistent with the picture of an accelerating universe, our estimates for q0
disagree with other recent results. Let us consider what is obtained for the �CDM
model.3 Using a flat geometry prior and fitting to the SNeIa Hubble diagram only,

3 We limit our attention to the �CDM model only since the cosmological constant is the sim-
plest and most efficient way to fit most of the astrophysical data [7]. Moreover, the constraints
on the equation of state parameter w = p/ρ are still consistent with the cosmological constant
value w = −1 [39]. This conclusion is further strengthened by the methods that aim at recover-
ing the evolution of the dark energy density from the data in model independent way (see, e.g.,
[40] and references therein).
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Riess et al. [2] have found �M = 0.29+0.05
−0.03 that gives4 q0 = −0.56 ± 0.07 that is

not consistent with our estimate. Adding the data on the CMBR anisotropy and the
power spectrum of SDSS galaxies, Tegmark et al. [7] give �M = 0.30 ± 0.04 so
that the estimated q0 is in agreement with Riess et al. and hence in contrast with
our value. A similar result has also been obtained by A04 only using the same
fgas data we have considered here with a prior on h and �bh2. For a flat �CDM
model, their analysis gives �M = 0.24 ± 0.04 and hence q0 = −0.64 ± 0.06 still
in disagreement with our Eq. (26). As a general remark, we notice that our models
turn out to be less accelerating (i.e., the predicted q0 is higher) than is observed for
the standard concordance model. From a different point of view, lower values of
q0 correspond to higher n, i.e. to steeper power law Lagrangians that are, however,
disfavoured by the lower matter content of the corresponding best fit model.

However, one could deem as unreliable the comparison among q0 constraints
obtained under different underlying cosmological models and look for model
independent estimates of the deceleration parameter. For instance, Riess et al.
have tried to constrain the deceleration parameter by using the simple ansatz
q(z) = q0 + (dq/dz)z=0z or resorting to a fourth order expansion of the scale
factor thus estimating also the jerk and snap parameters [41]. While the (quite
large) constraints on q0 shown in their Fig. 6 agree with our own in Eq. (26), the
vanishing of (dq/dz)z=0 is clearly ruled out. It is interesting to notice, however,
that a similar analysis performed in Ref. [42] expanding the scale factor up to the
fifth order and using no priors at all gives different results. A glance at Fig. 2 in
that paper shows that our ranges for q0 are indeed acceptable even if the best fit
value quoted there (q0 = −0.76) is outside our 2σ interval. Moreover, Fig. 3 of
the same paper suggests that the jerk parameter is only weakly constrained and
may be also consistent with a null value so that it is not possible to reject models
with constant q(z).

Actually, there is some evidence in favor of the model. First, the estimated
Hubble constant is in good agreement with recent values quoted in literature.
In the framework of the concordance model, a combined analysis of the CMBR
anisotropy spectrum measured by WMAP, the power spectrum of SDSS galaxies,
the SNeIa Gold dataset, the dependence of the bias on luminosity and the Lyα

power spectrum lead Seljak et al. to finally estimate h = 0.710+0.075
−0.067 (at 99%

CL) [43] consistent with our range in Eq. (24). Results in agreement with those
of Seljak et al. (but with larger uncertainties) have also been obtained by applying
the same method to less complete dataset and are not reported here for sake of
shortness (see, e.g., [4, 7] and references therein). It is even more appealing the
agreement among our estimate of h and those coming from model independent
methods. For instance, by combining different calibrated local distance indicators,
the HST Key project finally furnish h = 0.72 ± 0.08 [38] in quite good agreement
with our results. This conclusion is further strenghtened when comparing to the
results from time delays in lensed quasars [44] and Sunyaev - Zel’dovich effect in
galaxy clusters [45].

4 Hereafter, we will compute the error on q0 propagating the maximum 1σ uncertainty on
�M . Although not statistically correct, this method gives a quick order of magnitude estimate of
the error which is enough for our aims.
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Fig. 5 Best fit curve to the SNeIa Hubble diagram for the logarithmic Lagrangian model

Having constrained with the likelihood analysis both h and �b/�M , we may
derive �M by using an independent estimate of �b. Following Kirkman et al. [46],
we adopt:

�bh2 = 0.0214 ± 0.0020

that, combined with Eqs. (24) and (25), gives:

�M = 0.28±0.02 (27)

where the error has been roughly evaluated by propagating the 1σ uncertainties
on h, �b/�M and �bh2 approximated as symmetric around the best fit values.5

Equation (27) is in very good agreement with recent results. As already quoted
above, using only the SNeIa Gold dataset, Riess et al. have found 0.29+0.05

−0.03 for a

flat �CDM model, while the analysis of Seljak et al. gives �M = 0.2840.079
−0.060 (at

99% CL). Finally, fitting to the fgas data only with priors on both h and �Bh2, but
not imposing the flatness condition ab initio, A04 estimates �M = 0.245+0.040

−0.037,

while including the CMB data, they get �M = 0.26+0.06
−0.04. All these results are in

almost perfect agreement with our estimate of �M which is indeed a remarkable
success.

Finally, we could use the estimated values of n, h and �M and the age of the
universe t0 to put constraints on the coupling constant β through Eq. (14). How-
ever, this does not give us any useful information since we have no theoretical
motivation that may suggest us what is the value of β. On the other hand, the free-
dom we have in the choice of β leaves us open the possibility to find a Rn model
which fits both the SNeIa Hubble diagram and the fgas data and also predicts the
right value of t0.

5 It is likely that this method underestimates the true error thus only giving an order of mag-
nitude estimate.
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Fig. 6 Best fit curve to the fgas data for the power law Lagrangian model

4.2 f (R) = α log R

Let us now discuss briefly the results for models with the logarithmic Lagrangian
in Eq. (18). With the following choice of the model parameters:

�M H2
0 α−1 = 0.162, h = 0.650, �b/�M = 0.184 (28)

we get the best fit curves shown in Figs. 5 and 6. While both fits are indeed very
good, it is interesting to note that the SNeIa Hubble diagram is now reproduced
with great accuracy also for the two SNeIa with the highest redshift in contrast
with what is observed for the power law Lagrangian models. This is likely a
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Fig. 7 1, 2, and 3σ confidence regions in the two dimensional parameter space (�M H2
0 α−1, h)
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consequence of having this class of model a non constant deceleration parameter
in agreement with what is suggested by Riess et al. (within the caveat noted
above).

Figures 7 and 8 show the two dimensional projections of the 1, 2, and
3σ confidence regions on the subset parameter space (�M H2

0 α−1, h) and
(�M H2

0 α−1, �b/�M ) respectively. It is clear that �M H2
0 α−1 anticorrelates with

both h and �b/�M . From the projection on the (h, �b/�M ) plane (not shown
here), we see that these parameters are negatively correlated. Combining these
plots, we may argue that the Hubble constant is positively correlated with both
�M and α so that the anticorrelation with �M H2

0 α−1 is due to the degeneracy
between h and α that turns out to be stronger than that between h and �M .

Let us now consider the constraints on the single parameters. We get:

�M H2
0 α−1 ∈




(0.148, 0.174) at 1σ
;

(0.129, 0.194) at 2σ
(29)

h ∈



(0.644, 0.657) at 1σ
;

(0.637, 0.664) at 2σ
(30)

�b/�M ∈



(0.180, 0.188) at 1σ
.

(0.176, 0.192) at 2σ
(31)

It is more useful to translate the constraint on the combined parameter �M H2
0 α−1

(whose physical meaning is not immediate) in a range for the present day value of
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the deceleration parameter. Using Eq. (21), we get q0 = −0.55 as best fit value,
while the confidence regions turn out to be:

q0 ∈



(−0.56,−0.54) at 1σ
.

(−0.58,−0.52) at 2σ
(32)

Moreover, being q(z) no longer constant for this class of models, we may also esti-
mate the transition redshift obtaining zT = 0.61 as best fit value and the following
confidence regions:

zT ∈



(0.57, 0.66) at 1σ
.

(0.52, 0.74) at 2σ
(33)

Even if the deceleration parameter is varying with the redshift z, our estimate of
q0 is still in disagreement with the estimates discussed in the previous subsection.
As a general remark, we notice that, as for the class of models with power law La-
grangian, the estimated q0 is higher than what is predicted by the best fit �CDM
model. However, the disagreement is now less severe and, indeed, a marginal
agreement may be sometimes obtained by considering the 3σ confidence regions.

We may also compare the transition redshift that, for a flat �CDM model,
is given by : zT = [2(1 − �M )/�M ]1/3 − 1. Using, for instance, the estimate
of �M given by Seljak et al., we get zT ∈ (0.52, 0.91) with zT = 0.71 as best
fit in quite a good agreement with our Eq. (33). Moreover, it is encouraging that
our 1σ confidence region has a non null overlap with that estimated by Riess et
al., zT = 0.46 ± 0.13, using the model independent parametrization of q(z) =
q0 + (dq/dz)z=0z.

Regarding the Hubble constant, the confidence regions for h are almost the
same as those obtained for the power law Lagrangian case. Hence, we are still in
agreement with previous results in literature. This is not very surprising since h
is essentially determined by the fit to the low redshift SNeIa and, in this range,
both DL and DA are almost model independent. As a consequence, the estimated
h turns out to be the same whatever is the underlying cosmology and in agreement
with what one should obtain by a linear fit to the z ≤ 0.1 SNeIa data.

From the constraints (30) and (31) and the value of �bh2 in Ref. [46], we
estimate :

�M = 0.27 ± 0.03 (34)

with the error evaluated as for that in Eq.(27). This is in perfect agreement with
both the result for the power law Lagrangian case and the other estimates quoted
above.

One could use Eq. (34) and the constraints on �M H2
0 α−1 and h to narrow

the range for the coupling parameter α. However, this does not give any useful
information since there is no way to theoretically predict the value of α. It is, on
the contrary, more interesting to evaluate the present age of the universe using
Eq. (20) and the constraints in Eqs. (29) and (30). For the best fit model, it is
t0 = 10.3 Gyr, while t0 ranges between 10 and 11 Gyr for the parameters running
in their 1σ confidence regions. These values are too low when compared to the
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estimated t0 for the best fit �CDM model. For instance, the best fit vanilla model
of Tegmark et al. [7] predicts t0 = 13.54+0.23

−0.27 Gyr more than 9σ higher than our
estimated upper value. Notice, however, that the disagreement is less severe (but
still of high significance) if compared to t0 = 14.4+1.4

−1.3 Gyr determined by Rebolo
et al. [5] by fitting the �CDM model to the anisotropy spectrum measured by
WMAP and VSA and to the clustering properties of 2dFGRS galaxies. However,
even if in agreement with those obtained by completely different methods, these
estimates are model dependent. Actually, our predicted t0 is not unreasonably low
if we consider that globular clusters data lead to t0 = 12.6+3.4

−2.6 Gyr [47], while a
lower limit t0 > 12.5±3.5 Gyr is obtained by nucleochronology [48]. Considering
the 2σ confidence regions for the parameters �M H2

0 α−1 and h, it is therefore pos-
sible to find models that are able to successfully fit the astrophysical data we are
considering (even if they are not the preferred ones) and also predict a present age
of the universe that is not in disagreement with cosmology independent estimates
of t0.

5 Discussion and conclusions

Assuming that the Palatini (first order) approach is the correct way to treat f (R)
theories, we have investigated the viability of two different class of cosmological
models corresponding to two popular choices of f (R), namely a power law in the
scalar curvature and a logarithmic function of R. The expansion rate H = ȧ/a
may be analytically expressed as a function of the redshift z for both classes of
models so that it is possible to contrast the model predictions against the obser-
vations. In particular, we have used the SNeIa Hubble diagram and the data on
the gas mass fraction in relaxed galaxy clusters to investigate the viability of each
class as dark energy alternative and to constrain their parameters. The main results
are sketched below.

1. Both classes of models provide very good fits to the data even if the choice
f (R) = α ln R leads to a Hubble diagram that is in better agreement with the
trend shown by the highest redshift SNeIa. However, the paucity of the data
does not allow us to eventually prefer one model to the other.

2. Equations(22) and (28) give the best fit parameters for the power law and log-
arithmic Lagrangian models respectively. The confidence regions have been
determined from the marginalized likelihoods and are reported in Eqs. (23) -
(25) for the models with f (R) = β Rn and in Eqs. (29)–(31) for those with
f (R) = α ln R. To better compare the model predictions with previous re-
sults in literature, we have evaluated the present day deceleration parameter
q0 and the matter density parameter �M (assuming the estimate of �bh2 in
Ref. [46]). For both classes of models, q0 turns out to be higher than what is
predicted for the concordance �CDM model, i.e. f (R) theories lead to mod-
els that accelerate less than what is observed. This result is however somewhat
weakened by comparing with model independent estimates of q0 even if these
latter may be affected by systematic errors. As far as the matter content is con-
cerned, for both classes of models �M is in very good agreement with what is
inferred from galaxy clusters and estimated by fitting the �CDM model to the
available astrophysical data.
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3. To ameliorate the agreement with the observed q0, one should increase the
value of n for the models with power law Lagrangians or decrease that of
�M H2

0 α−1 for models with f (R) = α ln R. In this case, a good fit to the data
may still be obtained provided that both h and �b/�M are increased. While
higher values of h could still be compatible with the local estimates of the
Hubble constant, increasing �b/�M leads to lower values of �M . Actually,
the very good agreement among the estimated �M in Eqs. (27) and (34) and
the results in literature is a strong evidence against this choice. Therefore, we
conclude that it is not possible to recover the same value of q0 in the concor-
dance model by using power law or logarithmic Lagrangians.

4. A model independent estimate of the present day age of the universe t0 allows
one to break the matter/geometry degeneracy inherent in f (R) theories recov-
ering the value of the coupling constant. For power law Lagrangians, this is
indeed the only way to determine β thus offering the possibility to always re-
cover a model that both fits the SNeIa Hubble diagram and the data on the gas
mass fraction in relaxed galaxy clusters and also has the correct age. On the
other hand, t0 is an independent check for models with logarithmic Lagrangian
since, in this case, it may be evaluated as a function of the two parameters
�M H2

0 α−1 and h and compared with previous results in literature. It turns out
that the predicted t0 is lower than the value estimated for the �CDM model
and only marginally consistent with what is inferred from globular clusters and
nucleochronology.

The results summarized above may pave the way to the solution of an intrigu-
ing dilemma : is Einsteinian general relativity the correct theory of gravity? If yes,
then dark energy is absolutely needed to explain the accelerated expansion of the
universe and hence all the theoretical efforts of cosmologists have to be dedicated
to understanding its nature. On the contrary, if f (R) theories are indeed able to
explain the accelerated expansion, then it is time to investigate in more detail what
is the right choice for the function f (R) and how the variation has to be performed
(higher order metric or first order Palatini approach).

From the observational point of view we have adopted here, there are no strong
evidences against models with power law or logarithmic Lagrangians in the frame-
work of the Palatini approach. On the contrary, we have seen that both classes of
models successfully fit the data with values of the Hubble constant and matter con-
tent in good agreement with some model independent estimates. However, there
are some hints that could lead to reject both choices for f (R). Models with power
law Lagrangians have a constant q(z) so that they are always accelerating. This is
not consistent with the (tentatively) observed transition from acceleration to de-
celeration at zT � 0.5. Moreover, a constant q(z) could give rise to problems
with nucleosynthesis and structure formation. On the contrary, models with a log-
arithmic Lagrangian are not affected by such problems and indeed they predicts a
transition redshift which is in good agreement with the estimates for the �CDM
model. On the other hand, these models turn out to be too young, i.e. t0 is lower
than what is expected.

Actually, a more general remark is in order here. Let us suppose we have found
that a given choice for f (R) leads to models that are in agreement with the data
so that we should conclude that this class of models correctly describe the present
day universe. What about the early universe? One could expect that the functional
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expression of f (R) is not changing during the evolution of the universe, even if
R may evolve with cosmic time. If this were the case, then the correct choice for
f (R) should be the one that leads to models that are not only able to reproduce
the phenomenology we observe today, but also give rise to an inflationary period
in the early universe. Therefore, we should reject logarithmic Lagrangians since it
is well known they do not predict any inflationary period. On the other hand, the
choice f (R) = β Rn is able to explain inflation provided one sets n = 2, not too
far from our estimate in Eq. (23). From this point of view, it is worth noticing that
the astrophysical data we have considered probe only the present day universe,
while t0 depends on the full evolutionary history. Indeed, logarithmic Lagrangians
fail to reproduce the correct t0 in the same way as they fail to give rise to inflation,
while both inflation and t0 are correctly predicted by models with power law f (R).
This may argue in favour of this choice for f (R), but actually there is no reason to
exclude the possibility that also the functional expression of f (R) changes with
time so that neither class of models may be definitively rejected or deemed as the
correct one from this point of view.

Summarizing, the likelihood analysis presented here allows us to conclude that
the Palatini approach to f (R) theories leads to models that are able to reproduce
both the SNeIa Hubble diagram and the data on the gas mass fraction in galaxy
clusters. From an observational point of view, this means that both power law
and logarithmic f (R) are viable candidates to explain the observed accelerated
expansion without the need of any kind of dark energy. However, open questions
are still on the ground.

First, we have not yet been able to discriminate between the two classes of
models. Theoretical considerations and some hints from the age of the universe
could argue in favour of the power law f (R), while the observed transition from
acceleration to deceleration in the past disfavors this choice. To solve this issue,
one has to resort to high redshift probes such as the CMBR anisotropy spectrum.
While the data are of superb quality, the underlying theory is still to be developed
so that fitting the CMBR anisotropy temperature and polarization spectra with
f (R) theories will be quite a demanding task.

Second, we have only considered two physically motivated and popular
choices for f (R). Several other models are possible and are worth of being
tested against the data. In particular the R ln R Lagrangian which is related to
the Straobinsky inflationary model [49] and to the limit Rn → R for n � 1 being
[50]

R1+ε = R Rε = R(eε ln R) � R + εR ln R + O(ε2) . (35)

However, rather than being confused by a plethora of successful models, it is
desiderable to develop a method that allows to directly reconstruct f (R) from the
data with as less as possible aprioristic assumptions. This will be the subject of a
forthcoming paper [51].

Last but not least, whether the Palatini approach is indeed the correct method to
treat f (R) theories or the metric approach should be preferred is still an unsolved
problem. We have shown here that the Palatini approach is not rejected by the
data, but a similar analysis for the same models considered in the framework of
the metric approach is still lacking. However, it is worth noticing that even this
test will not be conclusive. Let us consider, for instance, two choices f1(R) and
f2(R) and let us suppose that f1(R) fit the data if considered in the framework
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of the metric approach, but not if the Palatini approach is used. Let us further
assume that the opposite holds for f2(R). From an observational point of view, it
is impossible to select between f1(R) and f2(R). Hence, observations could never
suggest what is the correct way of performing the variation of a f (R) Lagrangian.
The answer to this question is outside the possibilities of an astronomer and lies
fully in the field of a theoretician.

As a final comment, we would like to stress the need for synergy between
theory and observations. While it is possible to build a physically motivated and
mathematically elegant theory, it is not so easy to fit the significant amount of as-
trophysical data now available. Since the words observational and cosmology may
today be joined together in a single meaningful term (observational cosmology),
it is time to look at every theoretician’s proposal from an observational point of
view before drawing any conclusion about the validity of a whatever model. Even
if not always conclusive, in our opinion, this is the only way to shed light on the
dark side of the universe.
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