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Abstract In this work we study static perfect fluid stars in 2 + 1 dimensions with
an exterior BTZ spacetime. We found the general expression for the metric coef-
ficients as a function of the density and pressure of the fluid. We found the con-
ditions to have regularity at the origin throughout the analysis of a set of linearly
independent invariants. We also obtain an exact solution of the Einstein equations,
with the corresponding equation of state p = p(ρ), which is regular at the origin.

Keywords Exact solution · Einstein equation · Black hole

1 Introduction

Researches realized before the discovery of the BTZ black hole solution [1], re-
lated with the behavior of extended sources, found that static circularly symmetric
spacetime coupled to perfect fluids possess many unusual features not found in
3 + 1 dimensions. For example, if the cosmological constant is not included, clas-
sical results show that there exist a universal mass, in the sense that all rotationally
invariant structures in hydrostatic equilibrium have a mass that is proportional to
the Planck mass, m P , in 2+1 dimensions [2]. In this case there is no black hole so-
lution and the possibility of collapse is clearly forbidden. Nevertheless, the study
of the structures with a mass m and radius R, in hydrostatic equilibrium in anti-de
Sitter gravity, leads to an upper bound on the ratio m/R similar to the four di-
mensional case. This result shows that exist the possibility of collapse for matter
distributions that have the ratio m/R over the above upper bound [3]. In this sense
is possible to say that finite perfect fluid distributions in 2 + 1 dimensional gravity
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with a negative cosmological constant has similar features comparable to the 3+1
stars.

In 3+1 dimensions it is relevant, since finite physical structures such as planet
and stars exist, to obtain exact solutions of Einstein’s field equations for static
spherically symmetric perfect fluid distribution which, in addition, satisfy physi-
cal considerations [4]. Recently, it has been presented different algorithms based
on the choice of a single monotone function in order to generate all regular static
spherically symmetric perfect fluid solutions of Einstein’s equations in 3 + 1 di-
mensions [5]. The procedure to obtain the exact solutions of the Einstein equations
in 2 + 1 dimensions, corresponding to static circularly symmetric spacetime cou-
pled to perfect fluids, is straightforward via integration of the Einstein equations
with cosmological constant as it was realized by Garcı́a et al. [6]. Nevertheless,
the exact solutions are presented in canonical coordinates, with a non direct phys-
ical interpretation. Only few exact solutions are known in curvature coordinates.
Cornish et al. [2] found an exact solution for a 2 + 1 dimensional star with a poly-
tropic equation of state, and a flat exterior spacetime. Sá [12] consider the same
equation of state but in an (anti)-de Sitter background, so the exterior correspond
to a BTZ spacetime. In 3+1 dimension the situation is very different and over one
hundred solution have been found. See, for example [4] for a review. Recently, by
means of computational program, the regularity of this solution at the origin has
been studied in [10]. This study was realized using a set of linearly independent
invariant found in [11]. Previous works had found general conditions on the metric
coefficients to fulfill the regularity at the origin [5].

The purpose of this article is to investigate the regularity of a set of linearly
independent invariants at the origin of the fluid distribution. We consider stars
with an exterior BTZ spacetime. In particular we use the method outlined in [6] to
obtain an exact solution of the Einstein’s equations in curvature coordinates. We
choose the special case of density ρ given by ρ(r) = ρ0(1 − (r/a)2). We obtain
the pressure p as a function of r , which can be related with ρ in order to obtain
the corresponding equation of the state.

In Sect. 2 we briefly expose the methods of Garcı́a et al. to obtain solutions
with an exterior BTZ metric. We obtain general expression for the metric coeffi-
cient in terms of the unknown functions ρ(r) and p(r). In Sect. 3 we introduce the
curvature invariants in order to analyze the conditions to obtain regularity of the
invariants at the origin of the fluid distribution . In Sect. 4 we present a analytic
solution, which will be tested with the procedure described above.

2 Static circularly perfect fluid 2 + 1 solution

The Einstein’s field equations are given by (with G = 1/8 and c = 1)

Gµν + �gµν = πTµν. (1)

For a static circularly symmetric 2 + 1 spacetime the line element, in coordinates
{r, t, θ}, is given by

ds2 = −N 2(r)dt2 + dr2

G2(r)
+ r2dθ2. (2)
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An straightforward integration of Einstein’s equations [6] with negative cosmo-
logical constant, � = −1/�2, and perfect fluid as source leads to the following
expressions for the structural functions G(r) and N (r)

G2(r) = G2
0 + r2

�2
− m(r), (3)

where m(r) is defined by the expression

m(r) = 2π

∫ r

rρ(r)dr, (4)

and
N (r) = n0 + n1

∫ r r

G(r)
dr, (5)

where n0 and n1 are integrating constants. The energy density, ρ(r), is related to
fluid pressure by means of some unknown state equation p = p(ρ).

For these finite distributions the exterior spacetime correspond to a BTZ back-
ground, described by the metric

ds2 = −
(

−M + r2

�2

)
dt2 + dr2

( − M + r2

�2

) + r2dθ2, (6)

which posses an event horizon at r = �
√

M . Of course, the surface of our distri-
bution is located at r = a > �

√
M . Therefore, we must give the conditions on

the junction surface, r = a, for the interior and exterior metrics [8]. Lubo et al.
have showed in [9], that the equality of the induced metric on the junction surface
implies the continuity of the interior and exterior metric, i.e., gin

µν |r=a= gext
µν |r=a ,

where µ, ν ∈ (t, r, θ). The equality of the extrinsic curvature with respect to the
two spacetime geometries reduces to require the continuity of some of the metric
component derivatives, i. e., [∂r gin

µν]r=a = [∂r gext
µν ]r=a , where µ, ν ∈ (t, θ).

The first matching condition yields to the following equations for g00 and g11,
respectively:

N 2(a) = −M + a2

�2
, (7)

and

G2(a) = −M + a2

�2
. (8)

Note that above condition on g22 is automatically satisfied. This two last equations
leads to a relation that we use below:

N 2(a) = G2(a) = −M + a2

�2
. (9)

From Eqs. (3) and (8), we can find the value of G2
0

G2
0 = m(a) − M (10)

At the origin the structural function goes to: G2 → G2
0 and N 2 → n2

0. With the
change of variables: n0t → T and G−1

0 r → R, we obtain that near the origin
ds2 = −dT 2 + dR2 + R2(G−2

0 dθ2). In order to avoid an angular lack or an
angular excess (elementary flatness), G−2

0 > 1 or G−2
0 < 1, respectively, we
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choose G−2
0 = 1. With this argument the structural function, G2(r), is given by

G2(r) = 1 + r2

�2
− m(r), (11)

Note that G2(r) > 0 within the fluid distribution since a > �
√

M . This im-
poses restrictions upon the value of the density at the origin.

The second matching condition on g22 is automatically satisfied, but on g00
become

N (a)[∂r N (r)]r=a = a

�2
, (12)

The left hand side can be evaluated from (5) and (9), obtaining the value of the
integrating constant n1

n1 = 1

�2
. (13)

On the other hand, an evaluation of the pressure in the Einstein’s equation [6]
leads to

πp(r) = 1

N (r)

[
n1G(r) − N (r)

�2

]
. (14)

In our case, from (13) we have

πp(r) = 1

�2 N (r)
[G(r) − N (r)]. (15)

This showed that the geometrical condition find in (9) yields to the condition to
pressure zero at r = a. So, it allow us to write N (r) in the following form

N (r) = 1

1 + π�2 p(r)
G(r) ≡ f (r)G(r), (16)

where the condition f (r = a) = 1 is satisfied.
The metric (2) with G(r) and N (r) given by Eqs. (11) and (16) respectively,

represents the spacetime corresponding to the static circularly symmetric 2 + 1
solutions of Einstein’s equations with negative cosmological constant for a given
perfect fluid.

3 Regularity of invariants

We have demanded that the interior metric satisfy the regularity condition imposed
by elementary flatness. Nevertheless, this condition by no means guarantees reg-
ularity. A spacetime describing the geometry inside a physical fluid distribution
must be regular at the origin (r = 0). In 3 + 1 dimensions Lake and Musgrave
have found in [5] the necessary and sufficient conditions for securing the reg-
ularity at the origin of a spherically symmetric static spacetime in terms of the
metric coefficients, when curvature coordinates are used. These conditions have
been derived demanding the regularity at the origin of four algebraically indepen-
dent second order curvature invariants. In our case, we will examine the regularity
of this set curvature invariants at the origin for general spacetime describing a per-
fect fluid within a finite fluid distribution, with a boundary which matched with
the BTZ metric. Since G(r) and N (r) can be expressed in terms of the pressure
and the density, we obtain that the regularity at the origin implies conditions on
the pressure and density. The set of non-vanishing invariants are R = gab Rab,
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R1 ≡ Sb
a Sa

b /4, R2 ≡ −Sb
a Sc

b Sa
c /8, and R3 ≡ Sb

a Sc
b Sd

c Sa
d /16, where Sb

a is the
trace-free Ricci tensor given by Sb

a = Rb
a − δb

a R/4, and R is the Ricci scalar.
Using the GRTensor II program we found the following expressions for above

invariants in terms of G2(r), the pressure p(r) and its derivatives.

R = −2

[(
(G2(r))′

r

)
− π�2G2(r)

(1 + π�2 p(r))

(
p′

r

)
+ w(r)

(1 + π�2 p(r))2

]
, (17)

R1 =
[(

(G2(r))′

4r

)
− π�2G2(r)

(1 + π�2 p(r))

(
p′

4r

)]2

+ π2�4G4(r)

(1 + π�2 p(r))2

(
p′

4r

)2

− w(r)

2(1 + π�2 p(r))2

[(
(G2(r))′

4r

)

− π�2G2(r)

(1 + π�2 p(r))

(
p′

4r

)]
+ 3w2(r)

16(1 + π�2 p(r))4
, (18)

R2 =
[(

(G2(r))′

4r

)
− π�2G2(r)

(1 + π�2 p(r))

(
p′

4r

)]3

− 3w(r)

4(1 + π�2 p(r))2




[(
(G2(r))′

4r

)
− π�2G2(r)

(1 + π�2 p(r))

(
p′

4r

)]2

− π2�4G4(r)

(1 + π�2 p(r))2

(
p′

4r

)2
)

+ 3w2(r)

16(1 + π�2 p(r))4

[(
(G2(r))′

4r

)

− π�2G2(r)

(1 + π�2 p(r))

(
p′

4r

)]
+ w3(r)

64(1 + π�2 p(r))6
, (19)

R3 =



((
(G2(r))′

4r

)
− π�2G2(r)

(1 + π�2 p(r))2

(
p′

4r

))4

− 2π4�8G8(r)

(1 + π�2 p(r))4

(
p′

4r

)4



− w(r)

(1 + π�2 p(r))2

[(
(G2(r))′

4r

)
− π�2G2(r)

(1 + π�2 p(r))

(
p′

4r

)]3

+ 3w2(r)

8(1 + π�2 p(r))4




((
(G2(r))′

4r

)
− π�2G2(r)

(1 + π�2 p(r))2

(
p′

4r

))2

− π2�4G4(r)

(1 + π�2 p(r))2

(
p′

4r

)2
]

− w3(r)

64(1 + π�2 p(r))6

[(
(G2(r))′

4r

)

− π�2G2(r)

(1 + π�2 p(r))

(
p′

4r

)]
+ 3w4(r)

256(1 + π�2 p(r))8
, (20)
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where w(r) is given by

w(r) = ((1 + π�2 p(r))2(G ′(r))2 − 3π�2G(r)(1 + π�2 p(r))G ′(r)p′(r)

+ G(r)((1 + π�2 p(r))2(G ′′(r)) + π�2G(r)(2π�2(p′(r))2

− (1 + π�2 p(r))p′′(r)))). (21)

From the inspection of the invariants it is straightforward to find the conditions
to assure regularity within the fluid distribution. The regularity of the functions

G2(r), (G2(r))′
r = 2

�2 − 2πρ and G(r)′′ is guarantee if and only if ρ(r) is regular
within the fluid distribution. Clearly, the pressure will be regular if and only if the
structural function, N (r), will not be zero within distribution (see Eq. (15)). This
requirement is satisfies at the origin, since, when r → 0, N → n0. On the other
hand, from the Tolman–Oppenheimer–Volkov hydrostatic equilibrium equation,
given by

1

r

dp

dr
≡ p′

r
= − 1

G2(r)

(
πp + 1

�2

)
(p + ρ), (22)

we find that p′ and p′′ are regular if and only if ρ is regular at the origin. Thus for
2 + 1 finite fluid distributions the invariants are regular if ρ is regular.

4 Exact and regular solution for ρ(r) = ρ0(1 − (r/a)2)

We choose the following density function, which is finite by construction in r = 0
(ρ(0) = ρ0), as well as is decreasing (up to its zero value) when r → a

ρ(r) = ρ0(1 − (r/a)2). (23)

Thus, m(r) = m r2

a2 (2 − r2

a2 ), where m ≡ m(r = a) = πa2ρ0
2 . Therefore, the

structural functions G2(r) and N (r) are given by

G2(r) = 1 − (2m − a2

�2 )

a2
r2 + m

a4
r4, (24)

and

N (r) = a2

2�2
√

m
ln


2m(( r

a )2 − 1) + 2
√

mG(r) + a2

�2

2
√

mG(a) + a2

�2

e
2�2√

mG(a)

a2


 . (25)

Clearly, the both matching condition are satisfies. Evaluating the pressure from
the expression (15), we obtain

π�2 p(r) =
2
√

m
√

1 − (2m − a2

�2 )( r
a )2 + m( r

a )4

ln[ 2m(( r
a )2−1)+2

√
m(1−(2m− a2

�2 )( r
a )2+m( r

a )4)+ a2

�2

2
√

mG(a)+ a2

�2

e
2�2√

mG(a)

a2 ]
− 1. (26)
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Fig. 1 State equation π�2 p(ρ) v/s ρ/ρ0 for a2

�2 = 0.005m

Since the coordinated r can be written in terms of ρ like r2 = a2(1 − ρ/ρ0), we
can re-define

G2(r) → G̃2(ρ) = G̃2(0) + ρ

ρ0

(
a2

�2
+ m

ρ

ρ0

)
, (27)

where G̃2(0) = 1 + a2

�2 − m. The state equation is given by (Fig. 1)

π�2 p(ρ) = 2
√

mG̃(ρ)

ln[ 2
√

mG̃(ρ)+ a2

�2 −2m ρ
ρ0

2
√

mG̃(0)+ a2

�2

e
2�2√

mG̃(0)

a2 ]
− 1. (28)

The metric can be expressed completely in terms of the function ρ, which assures
that this is totally regular inside the distribution

ds2 = − G̃2(ρ)

(1 + π�2 p(ρ))2
dt2 + dr2

G̃2(ρ)
+ a2(1 − ρ/ρ0)dθ2. (29)

The curvature invariants, expressed in terms of the pressure and the density of the
perfect fluid, are regular in the origin of the distribution, as we have shown

R = − 6

�2
− 2π(2p(ρ) − ρ), (30)

R1 = 1

16�4
[(3 + π�2(2p(ρ) − ρ))(1 − π�2(2p(ρ) + 3ρ))], (31)

R2 = 1

64�6
[3 − 3π�2(2p(ρ) + ρ) + 3π2�4(4p2(ρ) − 4ρp(ρ) + 3ρ2)

−π3�6(8p3(ρ) − 12ρp2(ρ) + 6ρ2 p(ρ) + 3ρ3)], (32)

R3 = 1

256�8
[3 + π�2(16π3�6 + 32π2�4 p3(ρ)(1+π�2ρ)

+24π�2 p2(ρ)(1+π�2ρ)2 + 8p(ρ)(1 + π�2ρ)3

+ρ(π�2ρ(18 + π�2ρ(3π�2ρ − 4)) − 4))]. (33)
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5 Conclusions

We have presented a method to generate exact and regular perfect fluid solutions of
spherically symmetric static stars with an exterior BTZ spacetime. The regularity
conditions have been established by means of a set of invariants, which can be
expressed in terms of the density, ρ(r), and the pressure, p(r). We have found
that for a static perfect fluid distribution in hydrostatic equilibrium the interior
solutions are regular at the origin if ρ is regular.

Starting from a function of density ρ(r) = ρ0(1 − r2/a2), which is, by con-
struction, regular at the origin and decreasing up to zero in r = a, we have found
an exact and regular interior solution in the coordinates (t, r, θ), deriving its cor-
responding equation of state. Finally, the set of independent invariants has been
evaluated showing its regularity at the origin. Its is direct to see that at the surface
junction the invariants take the values corresponding to the invariants of the BTZ
spacetime.
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