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Abstract It is known that for nonlinear electrodynamics the First Law of Black
Hole Mechanics holds, however the Smarr’s formula for the total mass does
not. In this contribution we discuss the point and determine the corresponding
expressions for the Bardeen black hole solution that represents a nonlinear
magnetic monopole. The same is done for the regular black hole solution derived
by Ayón–Beato and Garcı́a [1], showing that in the case that variations of the
electric charge are involved, the Smarr’s formula is no longer valid.
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The Reissner–Nordström (RN) solution is the unique static and asymptotically flat
solution to the Einstein–Maxwell equations for spherical symmetry. It represents
a black hole characterized by its mass and electric charge. The geometry of the
RN black hole is singular at the origin of the radial coordinate, then it has been a
subject of research the construction of its regular generalizations. A good candi-
date for the source term of the Einstein equations is the (classical) stress–energy
tensor of nonlinear electrodynamics. The recent renewal of interest in nonlinear
electrodynamics has to do also with the fact that such theories arose as limiting
cases of certain formulations of string theory.

Nonlinear or logarithmic electromagnetic Lagrangians coupled to gravity have
been studied in an attempt to remove some of the singularities associated with
charged black holes. The exterior of such black holes is, at large distances, the
same as the usual (RN) black holes of Einstein–Maxwell theory. Close to the black
hole, however, things may be very different. Quantities defined at the horizon of
such black holes have been useful in obtaining a more accurate description of
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the physics near the black hole. In this regard, the concept of isolated horizon
has been used to provide a full Hamiltonian treatment of black holes [2]. This
framework has been applied successfully not only to Einstein–Maxwell theory
but also in more general cases like non-Abelian gauge theories [3]. At this point
it is relevant to question the role of the Laws of Black Hole Mechanics (BHM) in
this description, i.e. in situations more general than Einstein–Maxwell fields.

The zeroth and first laws of BHM refer to equilibrium situations and small de-
partures therefrom. First Law of BHM is an identity relating the changes in mass,
angular momentum and horizon area of a stationary black hole when it is per-
turbed. The variation applies for perturbations from one stationary axisymmetric
solution of Einstein equations to another; moreover, it has been shown that the
validity of this law depends only on very general properties of the field equations
[4]. For the horizon mass M�, the first law when static spherically symmetric
solutions are considered [3], is

δM� = κ

8π
δa� + ��δQ�, (1)

where κ is the surface gravity at the horizon, a is the area of the horizon, Q is the
electric charge and � is the electric potential; the subindex � indicates that the
quantity is evaluated at the horizon of the black hole.

On the other side, the total mass is given by the Smarr’s formula

M� = κa�

4π
+ ��Q�. (2)

In the case of Einstein–Maxwell theory, it is possible to deduce one, Eq. (1),
directly from the other, Eq. (2), using the homogeneity of the mass as a function
of

√
a and Q. In the work by Ashtekar et al. [2] the first law of BHM, for quan-

tities defined only at the horizon, arises naturally as part of the requirements for
a consistent Hamiltonian formulation. In the case of non-linear electrodynamics,
however, one no longer has homogeneity of the mass function and a priori one has
no reason to expect that either of them holds.

Previous work on this line includes the derivation of the first law of black hole
physics for some nonlinear matter models [5]. Rasheed [6] studied the Zeroth
and First Laws of BHM in the context of non-linear electrodynamics coupled to
gravity. In this case, the Zeroth Law, which states that the surface gravity of a
stationary black hole is constant over the event horizon, is shown to hold even if
the Dominant Energy Condition [7] is violated. In the same paper, it is found that
the usual First Law (the general mass variation formula) holds true for the case of
non-linear electrodynamics but the formula for the total mass, known as Smarr’s
formula, does not.

However, we can propose the form that must have a Smarr-type formula for
the horizon mass in order to be consistent with the variations expressed by the
first law of BHM that indeed holds,

M� = κa�

4π
+ ��Q� + V (a�, Q�, P�), (3)

where V is a so far undetermined potential that depends on the horizon parame-
ters, a�, Q�, P� (P� is the magnetic charge), and also of the coupling constants
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of the theory. In the variational principle this term plays no role, however in the
Hamiltonian description it becomes essential.

Note that in the first law, Eq. (1), only variations of the electric charge are
involved, and not variations of the magnetic charge. On the other hand, the horizon
mass, Eq. (3) might depend on P� through V .

The equations to determine the potential V (a�, Q�, P�) arise from the con-
dition that the first law holds and demanding consistency between Eq. (1) and the
variations of Eq. (3),

a�

∂β

∂a�

+ 8πr�Q�

∂�

∂a�

+ 8πr�

∂V

∂a�

= 0,

(4)
r�

2

∂β

∂ Q�

+ Q�

∂�

∂ Q�

+ ∂V

∂ Q�

= 0,

where β = 1 − 2m′(r), a� = 4πr2
� and r� is the radius of the horizon (see

Ref. [3] for details).
The condition of consistency determines the set of parameters that can vary

independently, in this case, the magnetic charge becomes a function of the area
and electric charge, P� = P�(r�, Q�).

In what follows we shall determine the horizon mass in agreement with
the first law of BHM for the Bardeen black hole and then for the regular
black hole of ABG, both solutions of Einstein equations coupled with nonlinear
electrodynamics.

We shall consider non-linear electrodynamics governed by an action of the
form

S =
∫

d4x
√−g{R(16π)−1 + L}, (5)

where R denotes the scalar curvature, g := det|gµν | and L, the electromagnetic
part, is assumed to depend in nonlinear way on the invariants of the field strength
tensor Fµν . As we mentioned above, this kind of fields have been studied with the
aim of avoiding the singularities of black holes and other systems [8]. Success-
ful advances on this line were the proposed nonlinear electrodynamics theory by
Born and Infeld [9] which in fact succeeded in avoiding the electric field singu-
larity at the charge position. Born–Infeld theory coupled to gravity were studied
by Hoffmann and Infeld [10]. Also we must mention the pioneering work done
by A. Garcı́a as collaborator of Prof. J. Plebañski, in studying the problem of
non-linear electrodynamics for the type D solutions of the Einstein–Born–Infeld
coupled equations [11].

In the search for a regular black hole with nonlinear electrodynamics, there
exists a no go theorem [12] which states that for Lagrangians depending on the
invariant of the electromagnetic field, L(F), F = Fµν Fµν , with the Maxwell
weak-field limit, there are no spherically symmetric static black hole solutions
with a regular center. However, regular solutions with only magnetic charge
may exist [13]. It is not excluded neither the possibility of regular solutions
corresponding to Lagrangians depending on both invariants of the electromag-
netic field, L(F, Q), F = Fµν Fµν, Q = F̃µν Fµν , with F̃µν being the dual
of Fµν . Recently, several solutions corresponding to regular black holes with
nonlinear electrodynamics with Lagrangians of the form L(F), have been derived
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[14]. Moreover, it has been of interest the interpretation given to the model of
Bardeen for a regular black hole, as corresponding to a self-gravitating magnetic
monopole. The Bardeen model was proposed some years ago as a regular
black hole, however, only recently it has been shown [15] that it is an exact
solution of the Einstein equations coupled to a kind of nonlinear electrodynamics
characterized by the Lagrangian

L(F) = 2

2sg2

(
2g2 F

1 + √
2g2 F

)5/2

. (6)

The corresponding energy momentum tensor fulfills the weak energy condition
and is regular everywhere. For a spherically symmetric space, the corresponding
metric is given by

ds2 = −ψBdt2 + ψ−1
B dr2 + r2(dθ2 + sin2 θdφ2), (7)

ψB = 1 − 2m(r)

r
= 1 − 2mr2

(r2 + g2)3/2
. (8)

This solution is a self-gravitating magnetic monopole with charge g. The so-
lution is regular everywhere, although the invariants of the electromagnetic field
exhibit the usual singular behaviour of magnetic monopoles, F = Fµν

µν = g2/2r4.
The asymptotic behaviour of the solution is

ψB = gtt ≈ 1 − 2m

r
+ 3mg2

r3
, (9)

it is this behavior at infinity, in which the constant g vanishes as 1/r3, and not as
a Coulombian term (1/r2), that allows to interpret the constant g as a magnetic
charge.

The horizons are given by the roots of the equation r = 2m(r). In this case
these roots are not as easy to calculate as for RN. Hence the conditions which
restrict the parameters in order that the solution corresponds to regions where
ψB ≥ 0 are more difficult to find. The Bardeen solution does not involve electric
charge, then the horizon mass depends only on the area of the horizon,

M� = 1

8π

∫
κda =

∫
(1 − m′)dr , (10)

the condition that the horizon mass be positive, from Eq. (10), amounts to m(r) ≤
r , this condition also guarantees that gtt ≥ 0. Using the expression for gtt it
amounts to (r2 + g2)3 ≥ 4m2r4. In this case when g2 = (16/27)m2 the two
horizons that could be present shrink into a single one, being this value of g the
corresponding to the extreme black hole; for g2 < (16/27)m2 there exist both
inner and event horizon.

The potential V for the Smarr-type formula, Eq. (3), for the Bardeen black
hole turns out to be, undetermined until an integration constant which we have put
zero,

V = mr3 2g2 − r2

(g2 + r2)3/2
, (11)
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Fig. 1 Horizon mass M� and surface gravity κ , as functions of the horizon radius, for the
extreme Bardeen black hole, in this case the magnetic charge has the value g2 = 16m2/27

Substituting V in the Smarr-type formula one obtains the horizon mass

M� = r

2
− mr3

(r2 + g2)3/2
. (12)

This value for the horizon mass coincides with the one determined by integrat-
ing the first law, Eq. (10).

In Fig. 1 we have depicted both the horizon mass M� and the surface gravity
κ = (1 − 6mr2

�g2(r2
� + g2)5/2)/2r�, for the extreme case. In Fig. 2 are shown

the horizon mass and the surface gravity in the case when inner and event horizon
appear. In both figures there are regions where the horizon mass and the surface
gravity are negative, these are regions inner to the event horizon, so they have no
meaning as the formalism is valid for the regions M� ≥ 0. As we pointed out
above, the condition for the positiveness of M� is the same for gtt . Furthermore,
we remind that for the regions where gtt ≤ 0 the signature of the metric changes,
as does the character of the Killing vectors, in such a manner that it is a spatially
homogeneous region that is not static; then the situation does not correspond to
an always increasing area of the horizon, but on the contrary, as we penetrate the

Fig. 2 Horizon mass M� and surface gravity κ , for a Bardeen black hole with magnetic charge
g2 = 18m2/27, in this case the black hole present an inner and an event horizon. M� has
meaning only in the range for which M� ≥ 0
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spatially homogeneous region, the area decreases reaching a minimum and then
increasing again. The Bardeen black hole turns out to be stable with respects to
arbitrary linear fluctuations of the metric and electromagnetic field [16].

Note that the horizon mass of the Bardeen black hole involved dependence
only on the horizon area, since the magnetic charge is not considered as a vary-
ing parameter of the horizon. So far we have shown the agreement between the
horizon mass calculated with the first law of BHM and when it is determined by
adding the appropriate potential to a Smarr-type formula.

However, things are not so easy when we consider situations involving electric
charge in nonlinear electrodynamics. This is the case of the regular black hole
derived by Ayón–Beato and Garcı́a (ABG) [1], that we have to take into account
in the corresponding potential V , the term of the variation of the electric charge.
The metric of the ABG black hole is spherically symmetric, given by

ds2 = −ψABGdt2 + ψ−1
ABGdr2 + r2(dθ2 + sin2 θdφ2), (13)

ψABG = 1 − 2mr2

(r2 + q2)3/2
+ q2r4

(r2 + q2)2
. (14)

Asymptotically this solution behaves as a RN. The ABG line element is not a solu-
tion of the standard nonlinear electrodynamics and the effective geometry (i.e. the
geometry affecting the photons of the nonlinear theory) is singular. This regular
black hole is an exact solution of Einstein equations coupled with a Lagrangian
matter of the form

L = P
1 − 8

√−2q2 P − 6q2 P

(1 + √−2q2 P)4
− 3

4q2s

(−2q2 P)5/4(3 − 2
√−2q2 P)

(1 + √−2q2 P)7/2
, (15)

where P is the invariant of the electromagnetic field tensor Pµν and s = |q|/2m.
The no go theorem about a regular static spherically solution with electric charge
can be eluded reinterpreting the ABG solution as describing a magnetically
charged regular solution of the coupled equations of nonlinear electrodynamics
of Eq. (15) and gravitation with much more regular behaviour of the effective
geometry.

The Smarr-type formula Eq. (3), with the potential V determined from Eq. (5)
amounts to

M� = r

2
− 3mr

2
√

r2 + q2
− r5

4(r2 + q2)2
+ 3m

2
ln

[
r + √

r2 + q2

q

]

+ 3mr3q2

2(r2 + q2)
5
2

− r3q4

(r2 + q2)3
. (16)

While the expression for the horizon mass determined from the first law of
BHM, Eq. (1), taking into account the presence of the electric charge, is

M = 1

8π

∫
κda +

∫
φdq,

= r

2
− 3mr

2
√

r2 + q2
− r5

4(r2 + q2)2
+ 3m

2
ln

[
r + √

r2 + q2

q

]

− 3mr3

2(r2 + q2)3/2
+ r3q2

2(r2 + q2)2
. (17)
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Fig. 3 The horizon mass for the Ayón–Beato–Garcı́a black hole is displayed. The discontinuous
curve corresponds to M� calculated using a Smarr-type formula while the continuous one, also
for the horizon mass M , was determined by using the first law of BHM

The two expressions differ in the last two terms, the mismatch is showed in
Fig. 3 for the horizon mass. Remains as an open problem the reason why the
potential V determined in agreement with the first law of BHM can not give
the appropriate dependence for the terms corresponding to the electric charge.
Equation (5) do not describe in a feasible form the potential V in situations where
nonlinear electromagnetic fields are present. It might be that the dependence of V
on the charge is of a nonlinear nature that can not be approached with Eq . (5).

If in contrast, we reinterpret the ABG solution as describing a magnetically
charged regular solution, then the potential does not depend on the magnetic
charge, but solely on the horizon area. In this case the agreement between the two
procedures to calculate the horizon mass is hold and the corresponding expression
is

M� = r

2
− mr3

(r2 + q2)3/2
+ r3q2

2(r2 + q2)2
. (18)

In this contribution we have illustrated that in cases involving nonlinear elec-
tromagnetic fields, the horizon mass calculated with a Smarr type formula that is
consistent with the fist law of BHM, is feasible only for the magnetic sector of the
solutions. If the variation of electric charge is taken into account in the potential V
of the Smarr formula, the mentioned consistency does not longer hold. The cases
we addressed in this regard were the Bardeen magnetic monopole and the regular
black hole derived by Ayón–Beato and Garcı́a.

Acknowledgements This contribution is devoted to Prof. Alberto Garcı́a who introduced me
into the General Relativity world.

References

1. Ayón–Beato, E., Garcı́a, A.: Regular black hole in general relativity coupled to nonlinear
electrodynamics. Phys. Rev. Lett. 80, 5056–5059 (1998)

2. Ashtekar, A., Corichi, A., Sudarsky, D.: Hairy black holes, horizon mass and solitons. Class.
Quant. Grav. 18, 919–940 (2001)



650 N. Bretón

3. Corichi, A., Nucamendi, U., Sudarsky, D.: Einstein-Yand-Mills isolated horizons: phase
space, mechanics, hair and conjectures. Phys. Rev. D 62, 044046 (2000)

4. Wald, R.: The First Law of Black Hole Mechanics. In: College Park 1993, Directions in
General Relativity, vol. 1, 358–366. [arXiv: gr-qc/9305022]

5. Heusler, M., Straumann, N.: The First law of black hole physica for a class of nonlinear
matter models. Class. Quant. Grav. 10, 1299–1322 (1993)

6. Rasheed, D.A.: Non-linear electrodynamics: zeroth and first laws of black hole mechanics.
[arXiv:hep-th/9702087]

7. Hawking, S.W., Ellis, G.F.R.: The large scale structure of spacetime. Cambridge University
Press, Cambridge, UK (1973)

8. Peres, A.: Nonlinear Electrodynamics in General Relativity. Phys. Rev. 122, 273 (1961);
d’Oliveira, H.: Non-linear charged black holes. Class. Quant. Grav. 11, 1469–1482 (1994);
Wiltshire, D.: Black holes in string-generated gravity models. Phys. Rev. D 38, 2445–2456
(1988); Demianski, M.: Static Electromagnetic Geon. Found. Phys. 16, 187–190 (1986)

9. Born, M., Infeld, L.: Foundations of the New Field Theory. Proc. R. Soc. London A 144,
425–451 (1934)

10. Hoffmann, B., Infeld, L.: On the Choice of the Action Function in the New Field Theory.
Phys. Rev. 51, 765–773 (1937).
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