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Abstract We explore the conditions for the existence of Noether symmetries for
higher order gravity theory, after introducing an auxiliary variable, which gives
the correct quantum description of the theory. It turns out that the application of
Noether theorem in higher order theory of gravity is a powerful tool to find the
solution of the field equations. A few such physically reasonable solutions like
power law inflation are presented.

Keywords Fourth-order gravity · Cosmology · Inflation

1 Introduction

The higher order gravity theory plays an important role in the physics of the early
universe. Actually, the relevance of fourth order gravity in the gravitational action
was explored by several authors. Starobinsky [1] first presented a solution of the
inflationary scenario without invoking phase transition in the early universe, but
considering only a geometric term in the field equations. In the same direction,
Hawking and Luttrel [2] have shown that the curvature squared term in the action
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mimics the role of a massive scalar field. Further, Starobinsky and Schmidt
[3] have shown that the inflationary phase is an attractor in the neighbourhood
of the solution of the fourth order gravity theory. Low energy effective action,
corresponding to Brane world cosmology, also contains higher order curvature
invariant terms.

However, in order to elucidate the effect of the fourth order theory of gravity in
the early universe, it would be required to find exact solutions of the classical field
equations, which are, at contrary, very few in the literature, due to the fourth de-
gree of nonlinearity. Moreover, almost all the known solutions are obtained under
certain oversimplified assumptions. The situation becomes even more complicated
if the curvature squared term in the action is studied in the arena of a scalar ten-
sor theory of gravity. Therefore it seems likely to find an alternative technique to
solve such fourth order field equations. The first step in this direction is achieved
by casting the equations in a simplified form by introducing an auxiliary variable,
following the prescription of Boulware et al. [4]. The introduction of such an aux-
iliary variable in the action, effectively transforms the fourth order field equations
to second order.

In some recent publications [5–7] the minisuperspace quantization of fourth
order gravity has been presented, after introducing auxiliary variable, generalizing
the prescription given by Boulware et al. [4] . Actually, it turned out that, to obtain
a correct quantum description of the theory, the auxiliary variables should be intro-
duced only after elising all the removable total derivatives from the action. In such
a way, the theory yields Schrödinger-like equation, with a meaningful definition
of quantum mechanical probability, and the extremization of the effective poten-
tial, appearing in the quantum dynamical equation, lead to the vacuum Einstein
equation. Thus, a correct choice of auxiliary variable becomes the turning point in
yielding a transparent and simple quantum mechanical equation, and might also
play an important role in extracting the solutions of classical field equations.

However, as already mentioned, the introduction of an auxiliary variable only
partially simplifies the form of the classical field equations, and does not help
to obtain a solution; in the presence of matter, for example, the situation is also
underdetermined, i.e., the number of field equations is less than that of the field
variables. Moreover, in the frame of the scalar tensor theory of gravity the situation
is also worse, since not only the scalar field potential, but also the form of the
coupling parameter are unknown.

In this paper we show that the only request that the action admits some Noether
symmetry furnishes the forms of the coupling parameter and the potential. Further,
the Noether symmetry is associated with a conserved current, and with a cyclic
variables, which allow to find exact solutions. Despite the constant of motion,
which is an outcome of Noether’s theorem, does not admit generally any simple
physical meaning, we can state that, in demanding such symmetry, we are looking
for a relationship among the scale factor, the scalar field and their derivatives such
that it yields a constant of motion. Earlier, Capozziello et al. [8] attempted to
find Noether symmetry of higher order theory of gravity by Lagrange multiplier
method, without invoking auxiliary variable. From this point of view our results
are then completely different, and complementary.

In the following section we consider an action which incorporates nonmin-
imally coupled scalar tensor theory with a curvature squared term, in a homo-
geneous and isotropic background. We then look for Noether symmetry of this



Noether symmetry in the higher order gravity theory 409

action, following the approach of de Ritis et al. [9]. In Sect. 3 we find the form
of coupling parameter and that of the potential along with Noether conserved cur-
rent. It turns out that such symmetry leads to explicit time dependence of the scale
factor as well as of the scalar field. This is a new result that has never been ex-
pected and observed in any earlier work, not even in the work of Capozziello et al.
[8]. It might be just a generic feature of higher order theory of gravity, and has
been apparent only after the introduction of auxiliary variable.

It is known that Noether symmetry does not necessarily satisfy the field equa-
tions [10] . The reason for such uncanny behaviour is not clear, and it requires to
check whether solutions generated by Noether symmetry are really the solutions
of the field equations. This has been systematically carried out in all possible sit-
uations. In Sect. 4, we discuss some exciting and nevertheless important features
of our work.

2 Classical field equations and the equations governing Noether symmetry

In the frame of scalar tensor theories of gravity a generic squared curvature action
takes the form:

S =
∫

d4x
√
−g

[
1

16πG

(
f(φ)R +

β

6
R2

)
− 1

2π2

(
1
2
φ,µ φ′µ + V (φ)

)]
.

(1)
Using the Robertson–Walker metric

ds2 = e2α[−dη2 + dχ2 + F (χ)(dθ2 + sin2 θdφ2)] (2)

we have,

S =
∫ [

3π

2G
{fα′′e2α + f(α′2 + k)e2α + βα′′2 + β(α′2 + k)2

+ 2βα′′(α′2 + k)} +
1
2
φ′2e2α − V (φ)e4α

]
dη, (3)

where dash (′) denotes derivative with respect to η and k = 0,±1. Removing total

derivative terms and setting
3π

2G
= M , the action can be expressed as

S =
∫

[M{f(k − α′2)e2α − f,φ α′φ′e2α + β(α′2 + k)2 + βα′′2}

+ 1/2φ′2e2α − V (φ)e4α]dη + Σ1, (4)

being Σ1 = M [fα′e2α + 2β(α′3/3 + kα′)] the surface term. According to earlier
works [5–7] we define the auxiliary variable Q as

MQ =
∂S

∂α′′ = 2Mβα′′, i.e.,Q = 2βα′′. (5)

In terms of Q the action can be written in the following canonical form:

S =
∫ [

M

{
f(k − α′2)e2α − f,φ α′φ′e2α + β(α′2 + k)2 + Qα′′ − Q2

4β

}

+
1
2
φ′2e2α − V e4α

]
dη + Σ1, (6)
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or, finally, after removing total derivatives

S =
∫ [

M

{
f(k − α′2)e2α − f,φ α′φ′e2α + β(α′2 + k)2 − Q′α′ − Q2

4β

}

+
1
2
φ′2e2α − V e4α

]
dη + Σ, (7)

where Σ = Σ1 + MQα′. It is not difficult to see, in view of Eq. (7), that the
auxiliary variable introduced in this manner makes the action canonical, since, the
Hessian determinant |Σ ∂2L

∂qi
′∂q′

j
| = −M2e2α �= 0. Thus the field equations are

4β(3α′2 + k)α′′ − 2f(α′′ + α′2 + k)e2α − (φ′′f,φ +2α′φ′f,φ +φ′2f,φφ )e2α

−Q′′ =
1
M

(φ′2 − 4V (φ)e2α)e2α. (8)

Q = 2βα′′, (9)

f,φ (α′′ + α′2 + k) =
1
M

(φ′′ + 2α′φ′ + V,φ e2α). (10)

Finally the Hamilton constraint equation is

[f(α′2 + k) + f,φ α′φ′]e2α − β(α′2 + k)(3α′2 − k) + Q′α′ − Q2

4β

=
1
M

[
1
2
φ′2 + V (φ)e2α

]
e2α. (11)

The above set of field Eqs. (8) through (11) is underdetermined. Thus, some sort of
physically reasonable assumptions are to be imposed for finding exact solutions. In
the present work this is achieved by demanding Noether symmetry. In the above
dynamical system the configuration space is three dimensional and each point
of it is described by (α,Q, φ); whose tangent space is specified by the variables
(α,Q, φ, α′, Q′, φ′). At this stage, following the approach of de-Ritis et al. [9] we
assume the infinitesimal generator of the Noether symmetry as

X = A
∂

∂α
+ B

∂

∂Q
+ C

∂

∂φ
+ A′ ∂

∂α′ + B′ ∂

∂Q′ + C ′ ∂

∂φ′ , (12)

where A,B,C are function of α,Q, φ. The existence of Noether symmetry in the
action implies the existence of the vector field X such that the Lie derivative of
the Lagrangian with respect to the vector field vanishes i.e.

LXL = 0. (13)

The conserved quantity corresponding to the Noether symmetry is

F = A
∂L

∂α′ + B
∂L

∂Q′ + C
∂L

∂φ′ . (14)
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Taking into account Eqs. (7) and (12), the explicit form of Eq. (13) is

A[2M{f(k − α′2) − f,φ α′φ′}e2α + (φ′2 − 4V e2α)e2α]

+
(

∂A

∂α
α′ +

∂A

∂Q
Q′ +

∂A

∂φ
φ′

)
M [(−2fα′ − f,φ φ′)e2α

+ 4βα′(α′2 + k) − Q′] + B

(
−MQ

2β

)
+

(
∂B

∂α
α′ +

∂B

∂Q
Q′ +

∂B

∂φ
φ′

)

(−Mα′) + C[M(f,φ (k − α′2) − f,φφ α′φ′)e2α − V,φ e4α]

+
(

∂C

∂α
α′ +

∂C

∂Q
Q′ +

∂C

∂φ
φ′

)
(−Mf,φ α′e2α + φ′e2α) = 0 (15)

Equation (15) is satisfied if a set of equations that are obtained on collecting the
co-efficients of α′4, Q′α′3, φ′α′3, Q′φ′, Q′α′, φ′2, α′2, α′φ′ and Q′φ′ from Eq. (15)
are satisfied. Now in view of the coefficients of α′4, Q′α′3 and φ′α′3, we get

A = A0, (16)

where A0 is a constant. Coefficient of Q′φ′ gives

∂C

∂Q
= 0, (17)

i.e., C is not a function of Q. Further the co-efficients of α′Q′ gives

f,φ
∂C

∂Q
+

∂B

∂Q
e−2α = 0, (18)

i.e., B also does not depend on Q, what, indeed, should be, since Q is an auxiliary
variable only. Coefficient of φ′2 gives

∂C

∂φ
+ A = 0, (19)

which implies, in view of the solution 16

C = −A0φ + g1(α). (20)

Finally, co-efficients of α′2, φ′α′ and Q′φ′ give

2Af + f,φ

(
C +

∂C

∂α

)
+

∂B

∂α
e−2α = 0, (21)

f,φ

(
2A +

∂C

∂φ

)
+ Cf,φφ − 1

M

∂C

∂α
+

∂B

∂φ
e−2α = 0 (22)

and

k(2Af + Cf,φ )e2α − BQ

2β
− 1

M
(CV,φ +4AV )e4α = 0. (23)

The solutions of A,B,C, V (φ) and f(φ) satisfying all these Eqs. (16)–(23) yield
Noether symmetry, that we shall take up in the following section.
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3 Solutions

This section is dedicated in finding the solutions of A,B,C, f(φ) and V (φ) in
view of Eqs. (16)–(23). It has already been pointed out that once we can find the
functional forms of A,B and C, Noether conserved current can be found explicitly
in view of Eq. (14). For the purpose mentioned, we assume that the solution of B
admits separation of variables in the form B = B1(α)B2(φ). Thus, Eq. (21) gives

A0(2f − φf,φ ) + f,φ

(
g1 +

dg1

dα

)
+ B2

dB1

dα
e−2α = 0. (24)

Differentiating above Eq. (24) with respect to φ, we get

A0f,φ −A0φf,φφ +
(

g1 +
dg1

dα

)
f,φφ +B2,φ

dB1

dα
e−2α = 0. (25)

Eliminating, g1 + dg1
dα between Eqs. (24) and 25 we get (N being an arbitary

constant)

A0
[(2f − φf,φ ),φ f,φ −(2f − φf,φ )f,φφ ]

(f,φ B2,φ − B2f,φφ )
=

dB1

dα
e−2α = N. (26)

Since, the left-hand side of Eq. (26) is a function of φ and the right hand side of it
is that of α, therefore, both sides are equated to a constant N . Hence

B1 =
N

2
e2α + b0, (27)

where b0 is a constant of integration, and

2f − φf,φ = N1f,φ − N

A0
B2, (28)

N1 being yet another constant. In view of Eqs. (28) and (24) is

g1 +
dg1

dα
+ A0N1 = 0, (29)

for f,φ �= 0. Hence g1 can be solved to find C as

C = α0e
−α − A0(φ + N1). (30)

In view of which, Eq. (22) takes the following form:

A0[f,φ −(φ + N1)f,φφ ] + α0

(
f,φφ +

1
M

)
e−α +

(
N

2
e2α + b0

)
e−2αB2,φ = 0.

(31)

This Eq. (31) is satisfied, provided f,φφ + 1
M = 0 or α0 = 0 along with b0 or B2,φ

= 0. The first case ie. f,φφ + 1
M = 0, leads to some interesting results, which are

presently under consideration and will be communicated in a future article. Now,
for the other choice, i.e., α0 = b0 = 0, the above Eq. (31) reads

A0[f,φ −(φ + N1)f,φφ ] +
N

2
B2,φ = 0. (32)
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Comparison of Eq. (32) with Eq. (28) being differentiated with respect to φ implies
that these two equations are consistent either for N = 0 or for B2 = a constant.
The first choice leads to inconsistency. So finally, we are left with only one option,
i.e., α0 = 0 = B2,φ, ie., B2 = b2, a constant. For this choice, Eq. (31) is

f,φφ (φ + N1) − f,φ = 0. (33)

Further, Eq. (28) gives

(φ + N1)f,φ = 2f +
Nb2

2A0
. (34)

Equations (33) and (34) are thus consistent and yield the following solution:

f = f0(φ + N1)2 −
Nb2

4A0
, (35)

along with

A = A0 B = b2

(
N

2
e2α + b0

)
C = −A0(φ + N1). (36)

In view of the solutions (35) and (36), Eq. (23) reads

kNb2e
−2α +

b2

2β

(
N

2
e2α + b0

)
Qe−4α =

A0

M
[(φ + N1)V,φ −4V ]. (37)

It is clear that we are left with only one equation, viz. (37), that has to be sat-
isfied for the existence of Noether symmetry and that would eventually lead to
a functional form of the potential V (φ). Moreover, while the left-hand side of
equation is a function of α and the right hand side is only a function of φ, both
sides must be separately equal to a constant (that may be chosen to be zero as a
special case). As a consequence, the only request of finding Noether symmetry
for the system under consideration allow to find at least in principle an explicit
form of the auxiliary variable, and eventually lead to the temporal evolution of
the scale factor. It should be mentioned that only those temporal behaviours of
the scale factor which are consistent with the field Eqs. (8) through (11) can be
selected as physically acceptable solutions. As mentioned earlier, we have en-
countered situation [10], where Noether solution does not satisfy the field equa-
tions. Unfortunately, it is almost impossible to find the general solution of Eq. (37)
as far as the left hand side is concern. Therefore depending on different choice
of integration constants appearing in Eq. (37) we study the following different
cases.

3.1 Case 1 b0 = 0, b2 �= 0, (φ + N1)V,φ = 4V

So, here we have considered the separation constant to be zero. Under this situa-
tion Eq. (37) yields

Q = −4kβ, V (φ) = V0(φ + N1)4. (38)
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The scale factor eα can be obtained easily from Eq. (38) and it can be used in the
Noether constant of motion (14) to find solution for φ. Equation (14) takes the
form

F

A0M
= 4βα′(k + α′2) − Q′

−
[
2fα′ + f,φφ′ +

b2N

2A0
α′ − (φ + N1)α′f,φ +

φ + N1

M
φ′

]
e2α. (39)

To find a simple solution, we choose k = 0, for which

eα = egη, (40)

where g is a constant of integration given by g = [ F
A0

{ (1+2f0M)2

4V0
+ 4Mβ}]−1/3.

Accordingly, Eq. (39) yields

(φ + N1)2 = φ2
0e

−2gη +
C1 + b2MNg/2
A0(1 + 2Mf0)/2

, (41)

where C1 is a constant and φ2
0 = F/2g−2A0Mβg2

A0(1+2Mf0)/2 . It is to be noted that the solution
for α and φ presented here, are obtained from Noether symmetry conditions and
these solutions (40) and (41) satisfy the field Eqs. (8)–(10) trivially under a simple

restriction on the integration constants C1 = −b2MNg/2 and V0 = g2(1+2Mf0)
4φ2

0
.

This solution represents a power law inflation, as the scale factor in proper time is
eα = gt. Further, the solution of φ given by Eq. (41) reduces to φ = φ0

gt −N1. It is
observed that the rate of expansion turns out to be independent of β, i.e. inflation
continues even in the absence of higher order curvature invariant term. However,
the evolution of the scalar field depends on β along with some other parameters
like V0 and f0, etc. It is further observed that asymptotically ie. at sufficiently
large t, φ becomes a constant (−N1), as a result f given by Eq. (35) also becomes
a constant (−Nb2

4A0
), that can be chosen to be one without any loss of generality. So

one can recover Einstein’s gravity, asymptotically.

3.2 Case 2 b0 = 0, b2 �= 0, (φ + N1)V,φ − 4V = r0 = constant

This choice is less restrictive as it considers both sides of Eq. (37) to a constant,
so that one obtains the following equations:

Q = 2βω2
0e2α − 4kβ, (42)

V = V0(φ + N1)4 + r0, (43)

where ω2
0 = 2A0r0

MNb2
. Now using (9) (the definition of Q) in (42) we get

α′2 = ω2
0e2α − 4kα + q2 (44)

whose integral gives, for k = 0, q �= 0

e−α =
ω0

q
sinh(qη), (45)



Noether symmetry in the higher order gravity theory 415

where q is an integration constant. The solution (45) can be used in the Noether
constant of motion to find φ and is given by

(
f0 +

1
2M

)
(φ + N1)2 =

Fω2
0

2Mq2A0

(
η − sinh(2qη)

2q

)
− 2βω2

0 sinh2(qη)

− Nb2

2A0
ln | sinh(qη)| + C2, (46)

where C2 is a constant. Here again we point out that the solutions (45) and (46) are
obtained from the Noether symmetry only. To justify consistency of the solutions
given above, eα and φ have to satisfy the field Eqs. (8)–(10).

Another simple solution of the above equations is obtained for q = 0 and it is

e−α = ω0η (47)

and as a consequence solution of φ, as obtained from Eq. (14) is
(

f0 +
1

2M

)
(φ + N1)2 = C2 −

Fη3

3A0M
− Nb2

2A0ω2
0

ln η. (48)

The solutions (47) and (48) obtained from the Noether symmetry are not consis-
tent with the field equations.

3.3 Case 3 f = constant

It is also possible to study a totally different, nevertheless important case viz., f =
constant = 1 (say).

Under this assumption, Eq. (21) gives

B = −A0e
2α + B2(φ). (49)

Equation (22) becomes

MB2,φ =
dg1

dα
e2α = N, (50)

where N is the separation constant. Equation (50) is solved to yield

B2 =
N

M
φ + B0 g1 = −N

2
e−2α + C0. (51)

As a result Eq. (23) takes the following form:

A0e
2α

[
2k +

Q

2β
+

N

2MA0
V,φ

]
− N

2Mβ
Qφ − B0

2β
Q

+
1
M

[(A0φ − C0)V,φ −4A0V ]e4α = 0. (52)

This is the last equation that has to be satisfied to obtain Noether symmetry and
as a consequence this will yield a form of V (φ). Equation (52) can be solved
only under certain simplified assumptions, e.g., the choice Q = Q0e

2α. However,
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it leads to inconsistency. The other choice may be B0 = 0 = N , under which
Eq. (50) becomes

Q = −4βk V = V0(A0φ − C0)4 (53)

together with
A = A0 B = −A0e

2α C = C0 − A0φ. (54)

The conserved current is

F

A0M
= 4βα′(α′2 + k) − Q′ − α′e2α +

C0

A0M
φ′e2α − 1

M
φφ′e2α. (55)

Now from Eq. (53)
α = −kη2 + gη + h, (56)

where g, h are integration constant. This solution (56) can be used in Eq. (55) to
find the scalar field and is given by

φ2 =
F

gA0
e−2gη, (57)

where we have assumed k = 0, h = 0. Further, one has to check the consis-
tency of solutions (56) and (57) with the field equations. They are found to sat-
isfy the field equations under restriction on the integration constants g2 = 1

4β ,

V0 = g2

4A4
0φ2

0
and C0 = 0. This solution also leads to a power law inflation.

4 Concluding remarks

It is well known that the higher order gravity theory plays an important role in
the physics of the early universe. However it is extremely difficult to generate so-
lutions of higher order theory of gravity, due to the presence of fourth degree of
nonlinearity in the corresponding field equations. The aim of this paper is moti-
vated in finding a suitable technique to generate a class of such solutions.

In a series of earlier works it has been observed that properly chosen auxil-
iary variable leads to correct and transparent quantum dynamics of the theory. In
view of such result, we were led to inspect how such auxiliary variable helps in
solving corresponding classical field equations. Further, demanding Noether sym-
metry, one can fix up the coupling parameter and the potential of a nonminimally
coupled scalar field. It also gives a conserved current that relates the scale factor
and the scalar field variable under consideration, along with their time derivatives,
in a spatially homogeneous and isotropic background. A conserved quantity leads
to a cyclic variable that simplifies in finding the solutions of the classical field
equations. Thus, we were motivated in finding the solutions of the field equations
corresponding to an action, containing curvature squared term, in addition to a
nonminimally coupled scalar field, in spatially homogeneous and isotropic back-
ground, introducing auxiliary variable and demanding Noether symmetry.

We explored an excellent and remarkable feature of Noether symmetry in the
context of higher order theory of gravity, according to which it directly yields
a class of solution without handling the fourth degree nonlinearity of the field
equations. Only a very few of such solutions are presented here, just to show, how



Noether symmetry in the higher order gravity theory 417

the technique works. It requires mentioning that not all solutions generated in this
method satisfy classical field equations. The reason of such uncanny behaviour is
presently not known.

Solutions obtained with this method, and which satisfy the field equations, are
nevertheless interesting. They admit power law inflation and at least in one of the
situations it is possible to recover Einstein’s gravity, asymptotically.

Thus, the technique of choosing such auxiliary variable now reveals new di-
rection in the classical context also, as Noether symmetry has been found to be
a powerful tool in generating a class of solutions to the field equations in highly
nonlinear dynamics.
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