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Abstract We have derived all the charged fluid spheres described by a space-
time with its hypersurfaces t = const. as spheroids subject to a particular form of
electric field intensity. Only one out of the four solutions so obtained is reducible
to its uncharged counterpart in the absence of the charge.
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1 Introduction

Recently Sharma et al. [1] have obtained a class of solutions to the Einstein–
Maxwell equations for charged spheres with a particular choice of electric
field intensity by considering a space-time with its hypersurfaces t = const.
as spheroids [2]. In the present article the authors want to inform about
the remaining three classes of solutions, which seems to have been left out
in the above process. The data for the model of maximum mass M has
also been provided by considering the surface density ρa is equal to 2 ×
1014 gm cm−3.

2 Basic equations and various solutions

The space-time with its hypersurfaces t = constant as spheroids is given by [1, 2]

ds2 = − (1 + λr2/R2)
(1 − r2/R2)

dr2 − r2(dθ2 + sin2 θ dφ2) + ψ2(r) dt2 (1)
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and satisfies the Einstein–Maxwell equations
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with all the symbols have their usual meaning. (2) together with (1) demand the
following equations to be satisfied by ψ,

(1 − z2)ψzz + zψz +
(

1 + λ − 2α2

λ

)
ψ = 0, (3)

where
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√
λ

λ + 1

√
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R2
,

while the electric field intensity is assumed to be [1]
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F14 being the only non-vanishing component of electromagnetic tensor Fij while
j4 is the non-vanishing component of 4-current vector ji. Differentiating (3) with
respect to z we get the equations No. (12) of the reference [1] as

(1 − z2)ψzzz − zψzz +
(

2 + λ − 2α2

λ

)
ψz = 0. (5)

Now instead solving (5) by the method mentioned in [1] we set

z = sin θ and dψ/dz = G, we get

d2G

dθ2
+

(
2 + λ − 2α2

λ

)
G = 0. (6)

Equation (5) and ultimately (3) can possess four solutions according to the expres-
sion 2 + λ − 2α2

λ is (1) negative, (2) zero, (3) positive and (4) unity.

Case (1) For 2 + λ − 2α2

λ = −β2,

ψ =
A

(β2 + 1)

[
β cos θ sinh(βθ) + sin θ cosh(βθ) + B{β cos θ cosh(βθ)

+ sin θ sinh(βθ)}
]
. (7)

Case (2) For 2 + λ − 2α2

λ = 0,

ψ = A(cos θ + θ sin θ + B sin θ). (8)
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Case (3) For 2 + λ − 2α2

λ = β2(�= 1),

ψ =
A

(1 − β2)
[β cos θ cos(βθ + B) + sin θ sin(βθ + B)]. (9)

Case (4) For 2 + λ − 2α2

λ = 1,

ψ =
A

2
(θ + sin θ cos θ + B). (10)

x D P (D − 3P ) (dp/dr) × 106 (dρ/dr) × 106 dp/dρ E2R2 J4R2

Case (A1)

Radius = M/Mo =
α = 1.2869 λ = 1 s = .33 20.3260 8.2239

0 6 1.3614 1.9156 0 0 .1045 0 2.804
.2 5.6528 1.3208 1.6903 −.2118 −1.632 .1298 .0486 2.516
.4 4.7774 1.1752 1.2519 −.5205 −2.522 .2064 .1632 1.828
.6 3.7180 0.8932 1.0382 −.8595 −2.575 .3338 .2833 1.088
.8 2.7436 0.4897 1.2785 −1.106 −2.155 .5130 .3677 .5229
1 1.9800 0.0 1.98 −1.339 −1.623 .8249 .4077 .1729

Case (A2)

Radius = M/Mo =
α = 1.6202 λ = 1.5 s = .25 19.2572 7.8221

0 7.5 1.5029 2.9912 0 0 .0531 0 3.781
.2 6.9075 1.4636 2.5166 −.2318 −2.886 .0803 .0711 3.292
.4 5.5075 1.2970 1.6163 −.6592 −4.057 .1625 .2238 2.213
.6 3.9858 0.9560 1.1179 −1.085 −3.669 .2958 .3567 1.192
.8 2.7498 0.4932 1.2704 −1.272 −2.726 .4667 .4248 .5230
1 1.8570 0.0 1.8570 −1.290 −1.853 .6964 .4363 .1687

Case (A3)

Radius = M/Mo =
α = 1.2233 λ = 1 s = .35 20.4290 7.7808

0 6 1.4911 1.5267 0 0 .1782 0 2.312
.2 5.6731 1.4292 1.3856 −.3082 −1.532 .2011 .0419 2.083
.4 4.8417 1.2347 1.1376 −.6457 −2.397 .2692 .1420 1.533
.6 3.8204 0.9067 1.1003 −.9444 −2.492 .3790 .2490 1.088
.8 2.8679 0.4802 1.4273 −1.121 −2.126 .5274 .3267 .9327
1 2.1 0.0 2.1 −1.246 −1.631 .7640 .3659 .1697

Case (A4)

Radius = M/Mo =
α = 1.7321 λ = 2 s = .24 18.9576 6.8211

0 9 2.6239 1.1282 0 0 .2225 0 3.400
.2 8.2355 2.4439 .9037 −.9352 −3.757 .2489 .0677 2.920
.4 6.4697 1.9422 .6430 −1.650 −5.113 .3227 .2075 1.901
.6 4.6165 1.2538 .8550 −1.894 −4.455 .4251 .3203 .9971
.8 3.1624 0.5646 1.4686 −1.685 −3.207 .5254 .3701 .4428
1 2.16 0.0 2.16 −1.288 −2.134 .6034 .3706 .1644

Solar mass MΘ = 1.475 km, G = 6.673 × 10−8 cm3/gm s2, c = 2.997 × 1010 cm/s.
Also P = 8πG

c4
pR2 and D = 8πG

c2
ρR2.
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Also the expression of density and its gradients can be written as

8πG

c2
ρ =

{2(λ + 1)(3R2 + λr2) − α2r2}
2(R2 + λr2)2

8πG

c4
dρ

dr
= −r{2λ(λ + 1)(5R2 + λr2) + α2(R2 − λr2)}

(R2 + λr2)3
.

Clearly when β = 0 or positive integer ψ need not be polynomial at all as
was mentioned in [1]. Moreover α (or charge) can vanish only in the case (3) as
negativeness of dρ

dr and positiveness of ρ requires λ > o.
The authors in [1] have analysed the case (3) in details. The present authors

assure that the new solutions in case (1), (2) and (4) are also of some physically
use and the fact is demonstrated through the data for some specific values of the
parameter λ, α and s(=ρa

ρ0
), x(=r

a ) provided the model joins the Nordström metric
at the pressure free interface r = a.

For 0 ≤ 3p ≤ c2ρ& dp/dρ ≤ c2 (strong energy conditions).

References

1. Sharma, R., Mukherjee, S., Maharaj, S.D.: Gen. Rel. Grav. 33, 999 (2001)
2. Vaidya, P.C., Tikekar, R.: J. Astrophys. Astron. 3, 325 (1982)


