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Abstract We have derived all the charged fluid spheres described by a space-
time with its hypersurfaces ¢ = const. as spheroids subject to a particular form of
electric field intensity. Only one out of the four solutions so obtained is reducible
to its uncharged counterpart in the absence of the charge.
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1 Introduction

Recently Sharma et al. [1] have obtained a class of solutions to the Einstein—
Maxwell equations for charged spheres with a particular choice of electric
field intensity by considering a space-time with its hypersurfaces ¢ = const.
as spheroids [2]. In the present article the authors want to inform about
the remaining three classes of solutions, which seems to have been left out
in the above process. The data for the model of maximum mass M has
also been provided by considering the surface density p, is equal to 2 X
10* gm cm =3,

2 Basic equations and various solutions

The space-time with its hypersurfaces ¢ = constant as spheroids is given by [1, 2]

(1+ \r?/R?)

=R

dr? — r2(df? + sin® 0 dp?) + ¢*(r) dt? (1)
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and satisfies the Einstein—-Maxwell equations
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with all the symbols have their usual meaning. (2) together with (1) demand the
following equations to be satisfied by 1,

2
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while the electric field intensity is assumed to be [1]
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F'14 being the only non-vanishing component of electromagnetic tensor F;; while

4* is the non-vanishing component of 4-current vector j*. Differentiating (3) with
respect to z we get the equations No. (12) of the reference [1] as

2
(1 - ZQ)’(/}ZZZ - Z’l/)zz + (2 + A— 2%) wz =0. (5)

Now instead solving (5) by the method mentioned in [1] we set

z=sginf and dy/dz= G, we get

d*G 202
W‘i‘(?'ﬁ‘)\—T)G—O. (6)

Equation (5) and ultimately (3) can possess four solutions according to the expres-
sion 2 + A — % is (1) negative, (2) zero, (3) positive and (4) unity.

Case (1) For 2 + \ — % =32

P = {6 cos 0 sinh(36) + sin 0 cosh(560) + B{ cos 6 cosh(30)

_A
(B2 +1)
+ sinasinh(ﬂe)}]. ™

Case (2) For 2 + \ — 22° =,

1 = A(cosf + 0sinf + Bsin). (®)
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Case (3) For2 + \ — 2% = g2(# 1),

A
P = = [Bcos b cos(B8 + B) + sinfsin(56 + B)). ©)
Case (4) For2 + A — 2% — 1,
A .
w:E(GJrschosﬂJrB). (10)
z D P (D —3P) (dp/dr) x 10° (dp/dr) x 10° dp/dp E*R® J*R*
Case (Al)
Radius = M / M, =
a=12869 A=1 s=.33 20.3260 8.2239
0 6 1.3614 1.9156 0 0 1045 0 2.804
2 5.6528 1.3208 1.6903 —.2118 —1.632 1298 .0486 2.516
4 47774 1.1752  1.2519 —.5205 —2.522 2064 1632 1.828
.6 3.7180 0.8932 1.0382 —.8595 —2.575 3338 .2833 1.088
.8 27436  0.4897 1.2785 —1.106 —2.155 5130 3677 5229
1 1.9800 0.0 1.98 —1.339 —1.623 8249 4077 1729
Case (A2)
Radius = M/M, =
a=16202 X=15 s=.25 19.2572 7.8221
0 75 1.5029  2.9912 0 0 0531 0 3.781
2 69075 1.4636 2.5166 —.2318 —2.886 .0803 .0711 3.292
4 55075 1.2970 1.6163 —.6592 —4.057 1625 2238 2.213
.6 39858 0.9560 1.1179 —1.085 —3.669 2958 3567 1.192
.8 2.7498 0.4932 1.2704 —1.272 —2.726 4667 4248 5230
1 1.8570 0.0 1.8570 —1.290 —1.853 6964 4363 .1687
Case (A3)
Radius = M/M, =
a=12233 A=1 s=.35 20.4290 7.7808
0 6 1.4911  1.5267 0 0 1782 0 2312
2 5.6731 14292 1.3856 —.3082 —1.532 2011 .0419 2.083
4 48417 1.2347 1.1376 —.6457 —2.397 2692 1420 1.533
.6 3.8204 0.9067 1.1003 —.9444 —2.492 3790 2490 1.088
.8 2.8679 0.4802 1.4273 —1.121 —2.126 5274 3267 9327
1 21 0.0 2.1 —1.246 —1.631 7640 3659 .1697
Case (A4)
Radius = M/M, =
a=17321 \=2 s=.24 189576 6.8211
0 9 2.6239  1.1282 0 0 2225 0 3.400
2 8.2355  2.4439 .9037 —.9352 —3.757 2489 .0677 2.920
4 64697 1.9422  .6430 —1.650 —5.113 3227 2075 1.901
.6 4.6165 1.2538 .8550 —1.894 —4.455 4251 3203 9971
.8 3.1624 0.5646 1.4686 —1.685 —3.207 5254 3701 4428
1 216 0.0 2.16 —1.288 —2.134 .6034 3706 .1644

Solar mass Me = 1.475km, G = 6.673 x 10™% cm®/gm s, ¢ = 2.997 x 10'° cm/s.
Also P = 8;‘—4ch2 and D = 8;‘—2(; pRQ.
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Also the expression of density and its gradients can be written as

e {200+ 1)(BR% + Mr?) — a?r?}

e P 2(R% + A\r2)?
871G dp _ r{2 A+ 1)(5R* + Xr?) + o?(R* — \r?)}
cd dr (R? 4 Ar2)3 '

Clearly when 3 = 0 or positive integer ) need not be polynomial at all as
was mentioned in [1]. Moreover « (or charge) can vanish only in the case (3) as
negativeness of % and positiveness of p requires A > o.

The authors in [1] have analysed the case (3) in details. The present authors
assure that the new solutions in case (1), (2) and (4) are also of some physically
use and the fact is demonstrated through the data for some specific values of the
parameter A, « and s(:g—g ), x(=%) provided the model joins the Nordstrom metric
at the pressure free interface r = a.

For 0 < 3p < 2p&dp/dp < c? (strong energy conditions).
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