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Abstract The notion of standard positive probability distribution function (tomo-
gram) which describes the quantum state of the universe alternatively to the wave
function or to the density matrix is introduced. Connection of the tomographic
probability distribution with the Wigner function of the universe and with the star-
product (deformation) quantization procedure is established.

Using the Radon transform, the Wheeler-De Witt generic equation for the
probability function is written in tomographic form. Some examples of the
Wheeler-DeWitt equation in the minisuperspace are elaborated explicitly for ho-
mogeneous isotropic cosmological models. Some interpretational aspects of the
probability description of the quantum state are discussed.

Keywords Quantum cosmology · Wheeler-De Witt equation ·
Radon transformation

1 Introduction

Recently in conventional quantum mechanics the Radon [1] transform of the von
Neumann density operator [2, 3] considered in the form of Wigner function [4]
was recognized to give the tomographic probability (called tomographic map or
tomogram) appropriate to reconstruct quantum states [5–7]. The slightly mod-
ified Radon transform of density matrix with additional scaling transform was
suggested in [8]. In it the problem of the singularity of the Radon transform using
only a rotation parameter was smoothed.
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The possibility to implement the tomographic probability to define the quan-
tum state in terms of conventional probability was suggested in [9]. It was pointed
out that there exists a representation in quantum mechanics in which any quantum
state can be described by a standard positive probability distribution. In [10] it was
shown how superposition principle (quantum interference) is described using only
positive probabilities. The properties of the tomographic map and its relation to
the Heisenberg–Weyl group, SU(2)-group and to star-product quantization were
discussed in [11].

It was understood [11] that the tomographic map is closely related to the star-
product quantization procedure which provides Moyal equation for quantum evo-
lution in the phase-space representation of quantum states [12].

On the other hand quantum cosmology uses as basic notion the wave function
of the universe (it would be better to say the wave functional) which depends on
the metric and the material fields [13]. This wave functional obeys the Wheeler-De
Witt equation [14] which is a generalisation of the Schrödinger equation for the
wave function. The properties of the Wheeler-De Witt description of the universe
are the subject of an intensive discussion [15–18] due to the importance of this
approach in quantum cosmology (see review in [19]).

Interpretation of the wave function of the universe contains the same problems
as the interpretation of the wave function of finite quantum systems [20]. The
notion of density matrix of the universe is also used to describe the state of the
universe (see for example [17]). The Weyl–Wigner representation of the density
matrix and the corresponding deformation quantization procedure was used within
the context of cosmological problems in [21, 22].

The general study of deformation quantization in quantum gravity is a highly
non trivial procedure [21]. In our paper we use a particular deformation procedure
related to the tomographic star product formalism [11].

The aim of our work is to introduce the tomographic probability function
which describes the state of the universe and contains the same information on
the universe state as the density matrix does. To reach this aim we apply the mod-
ified Radon transform for the density matrix of the universe, which is using the
extension of the modified Radon transform of [8] for one degree of freedom. The
Radon transform of the density matrix can be cast into the form of the transform
of the wave-function [23]. We will discuss the extension of the functional Radon
transform both in the form of the transform of the wave functional of the universe
and in the form of the transform of the density matrix functional. Our procedure is
a heuristic one and the rigorous mathematics of functional measures and of con-
vergence of integral functionals needs further investigations, see for example [24,
25].

Our goal is to obtain the Wheeler-De Witt equation in tomographic (or proba-
bility) representation written for the tomogram of the universe. We consider also
the simplest case of Wheeler-De Witt equation for the wave functional in which
all the variety of metrics is reduced to the variety of radial time dependence. In
this case the Wheeler-De Witt equation takes the form of Schrödinger-like equa-
tion for one degree of freedom. We will reobtain this equation in the form of the
equation for tomographic probability.

The paper is organized as follows. In the next Sect. 2 we review the star prod-
uct procedure (or the deformation procedure) in a general form. In Sect. 3 we
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present the tomographic approach in the phase space. In Sect. 4 the functional
Radon transform is discussed. In Sect. 5 examples of tomographic representation
of the Wheeler-DeWitt equation for one degree of freedom are given. Using the
extension of the tomographic functional of a scalar field [26] the notion of proba-
bility functional of the universe is introduced in Appendix.

Also the generic Wheeler-DeWitt equation is written in the form of von Neu-
mann like equation for density matrix functional and by means of the functional
Radon transform it is rewritten in tomographic form in Appendix. Perspectives of
the probability description of the universe state are discussed in the conclusions,
Sect. 6.

2 Star-product deformation quantization

In this section we review the quantization procedure. This approach uses a defor-
mation procedure [21]. Another explanation of the procedure is introducing and
using a star-product of the operator symbols [27]. Below we follow the presenta-
tion of the star-product as given in [11]. Let us consider a Hilbert space H and a
set of operators acting in the Hilbert space. The state of the universe can be associ-
ated either with a vector in the Hilbert space or with a density operator ρ̂ which is
a nonnegative Hermitian operator. Let us consider an operator Â. Let us suppose
also that there exists a set of operators Û( →x) where →x = (x1, x2..., xN ) such that
the function (called the symbol of the operator Â)

fÂ( →x) = Tr(ÂÛ( →x)) (1)

defines the operator completely. It means that there exists a dual set of operators
D̂( →x) such that one has the relation

Â =
∫

fÂ( →x)D̂( →x)d →x. (2)

If there exist such operator families Û( →x) and D̂( →x), one can introduce the star-
product of symbols defined by the relation

fÂB̂( →x) = fÂ( →x) ∗ fB̂( →x) := Tr(ÂB̂Û( →x)). (3)

In view of the associativity of the operator product the star-product is also asso-
ciative, i.e.

fÂ( →x) ∗ (fB̂( →x) ∗ fĈ( →x)) = (fÂ( →x) ∗ fB̂( →x)) ∗ fĈ( →x). (4)

In our article we shall discuss two types of symbols associated with operators. The
first type is called the Weyl symbol. For a state density operator the Weyl symbol
is the Wigner function. The Weyl symbol WÂ(q, p) of an operator Â is defined by
the following families of operators

Û( →x) = Û(x1, x2) (5)

and
D̂( →x) = D̂(x1, x2) (6)
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for which we assume x1 = q/
√

2, x2 = p/
√

2 (we consider a quantum system
with one degree of freedom). Thus, we introduce the two family of operators

Û(q, p) = 2D̂(α)(−1)a†aD̂(−α), α =
1√
2

(q + ip) , (7)

D̂(q, p) =
1
π
D̂(α)(−1)a†aD̂(−α). (8)

Here the operators a† and a are bosonic creation and annihilation operators

a =
1√
2

(q̂ + ip̂) . (9)

In position representation the operators q̂ and p̂ are given by the standard relation

q̂ψ(x) = xψ(x), p̂ψ(x) = −i
∂ψ

∂x
, h̄ = 1. (10)

Note that the introduced operators have two aspects, one related to the lin-
ear transformations in the coordinate space, the other has to do with the unitary
representations of the translation group.

In (7) and (8) the operator D̂(α), where α is the complex number defined in
(7), is a unitary displacement operator

D̂(α) = exp(αa† − α∗a). (11)

The operator (−1)a†a is the parity operator. Thus, the Weyl symbol of the
operator Â is defined by the relation

WÂ = 2Tr(ÂD̂(α)(−1)a†aD̂(−α). (12)

If Â is a density operator ρ̂ defining a state of a quantum system (the state of the
universe) relation (12) provides the Wigner function of the state. In our paper we
will study another symbol WÂ(X,µ, ν) of the operator Â called the tomographic
symbol.

The tomographic symbol is defined by means of the pair of families of oper-
ators Û( →x) and D̂( →x) where →x = (X,µ, ν) and X , µ, ν are real numbers. The
operators are given by the formulae

Û(X,µ, ν) = δ(X − µq̂ − νp̂) (13)

D̂(X,µ, ν) =
1
2π

eiXei(µq̂+νp̂). (14)

Thus the symbol of an operator Â, called the tomogram, is given by the relation

WÂ(X,µ, ν) = Tr(Âδ(X − µq̂ − νp̂)). (15)

The inverse relation reads

Â =
1
2π

∫
WÂ(X,µ, ν)eiX−iµq̂−iνp̂dX dµdν. (16)
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The star-product of two tomograms is defined using the kernel

WÂ(X,µ, ν) ∗WB̂(X,µ, ν)

=
∫

dX1dµ1dν1dX2dµ2dν2WÂ(X1, µ1, ν1)

×WB̂(X2, µ2, ν2)K(X1, µ1, ν1,X2, µ2, ν2,X, µ, ν)
(17)

Here the kernel is given by

K(X1, µ1, ν1,X2, µ2, ν2,X, µ, ν) = Tr{D̂(X1, µ1, ν1)

D̂(X2, µ2, ν2)Û(X,µ, ν)}. (18)

This trace can be calculated and the tomographic kernel reads [11]

K(X1, µ1, ν1,X2, µ2, ν2,X, µ, ν)

=
δ(µ(ν1 + ν2) − ν(µ1 + µ2))

4π
exp

(
i

2

{
(ν1µ2 − ν2µ1) + 2X1 + 2X2

−
[

1 −
√

1 − 4µ2ν2

ν
(ν1 + ν2) +

1 +
√

1 − 4µ2ν2

µ
(µ1 + µ2)

]
X

})
(19)

For the multimode case as well for the infinite dimensional (functional) case the
generalization is in principle straightforward. In the case of both Weyl symbols
and tomographic symbols, one simply provides an index (either a discrete or a
continuous one) to the involved ingredients q, p and X , µ, ν. In the infinite di-
mensional case the Wigner symbol and the tomogram of the operator Â become
functionals. Correspondingly one modifies the integration measures by the stan-
dard procedure.

3 Radon transform of Wigner function and Fractional Fourier transform
of wave function

In this section we consider the relations of a tomographic symbol with the Radon
transform of the Weyl symbol. In order to write the Wheeler-DeWitt equation in
tomographic form we review some properties of the modified Radon transform of
Wigner function [4]. The Wigner function is the Weyl symbol of the von Neumann
density matrix [2].

The Wigner function is expressed in terms of density matrix of the universe in
the form (h̄ = 1)

W (q, p) =
∫

ρ
(
q +

u

2
, q − u

2

)
e−ipudu (20)

The inverse transform reads

ρ(x, x′) =
1
2π

∫
W

(
x + x′

2
, p

)
eip(x−x′)dp. (21)
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The Radon transform of the Wigner function in the modified form is the inte-
gral transform of the form

W(X,µ, ν) =
∫

W (q, p)eik(X−µq−νp) dk dq dp

(2π)2
(22)

Here X , µ, ν are real numbers. The Wigner function can be found using the
inverse Radon relation

W (q, p) =
1
2π

∫
ei(X−µq−νp)W(X,µ, ν)dX dµdν. (23)

The standard Radon transform is obtained from the two above by taking µ =
cos ϕ, ν = sinϕ.

One can see that the tomographic symbol of density matrix is given as a
marginal distribution since

W(X,µ, ν) =
∫

W (q, p)δ(X − µq − νp)
dq dp

2π
(24)

It is clear that ∫
W(X,µ, ν)dX = 1, (25)

since the Wigner function is normalized
∫

W (q, p)
dq dp

2π
= 1 (26)

for normalized wave functions.
The formulae (24)–(26) are valid for arbitrary density matrices, both for pure

and mixed states. For pure states of the universe, the tomographic symbol can be
expressed directly in terms of the wave function of the universe using [23],

W(X,µ, ν) =
1

2π|ν|

∣∣∣∣
∫

ψ(y)e
iµ
2ν y2− iX

ν ydy

∣∣∣∣
2

. (27)

The inverse transform provides the wave function due to the relation

ψ(y)ψ∗(y′) =
1
2π

∫
W(X,µ, y − y′)ei

(
X−µ y+y ′

2

)
dXdµ (28)

which for the mixed states reads

ρ(x, x′) =
1
2π

∫
W(X,µ, x − x′)ei

(
X−µ x+x ′

2

)
dXdµ. (29)

In fact, both the Weyl symbol and the tomographic symbol of density matrix
can be cast into framework of the theory of the maps of operators acting in Hilbert
space of states onto functions, the pointwise product of functions being replaced
by the star product [11].
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The formula relating the tomographic symbol with the wave function contains
the integral

I =
∣∣∣∣
∫

ψ(y)e
iµ
2ν y2− iX

ν ydy

∣∣∣∣ (30)

In case of µ = 0, ν = 1 this integral is a conventional Fourier transform of the
wave function. For generic µ, ν the integral is identical to the modulus of Frac-
tional Fourier transform of the wave function [23, 28]. Thus, the Radon transform
of the Wigner function in the case of pure states is related to the Fractional Fourier
transform of the wave function. From the linear integral relations for the density
matrix ρ(x, x′) and the tomographic probabilities W(X,µ, ν) follow the identities
(see e.g. [29])

ρ(x, x′) → W(X,µ, ν),

x → −
(

∂

∂X

)−1
∂

∂µ
+

i

2
ν

∂

∂X
,

x′ → −
(

∂

∂X

)−1
∂

∂µ
− i

2
ν

∂

∂X
; (31)

∂

∂x
→ 1

2
µ

∂

∂X
− i

(
∂

∂X

)−1
∂

∂ν
,

∂

∂x′ →
1
2
µ

∂

∂X
+ i

(
∂

∂X

)−1
∂

∂ν
. (32)

The physical meaning of the random variable X and the two real parameters
µ and ν is the following one [9, 11]. The variable X is the position of a quan-
tum particle. But this position is considered in the specific rotated and scaled ref-
erence frame in phase-space. The reference frame is labeled by two parameters
µ = exp(λ) cos θ, ν = exp(−λ) sin θ. The angle θ is the rotation angle and λ is
the scaling factor. One has to point out that the tomographic map can be applied
to arbitrary functions which satisfy equations of different types, like elliptic-type
and like wave equation of Klein–Gordon type, see e.g. [30]

4 Functional Radon transform and the Wheeler-DeWitt equation

In order to write the Wheeler-DeWitt generic equation for the wave functional
of the universe, one needs to present the generalization of the formulae of the
previous sections to the case of functionals which we identify with the functions
of an infinite number of variables ψ(x1, x2, . . .). We can write these functions in
the form ψ(x(k)). Replacing k → τ one sees that the functional depends on the
function ψ(x(τ)) where τ is a continuous variable. One can extend the notion
of functional considering the parameter τ to be a vector with several continuous
components (e.g., τ = (τ1, τ2, τ3, τ0), like space–time variables). Also the number
of functions can be extended such that

x(τ) → (x1(τ), . . . xk(τ), . . . xN (τ)).
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The index 1, 2, . . . N can be considered as counting some set of indices like
(a, b, c, d) ≡ k where the numbers a, b, c, d are tensor indices. In this sense we
omit all the indices and will treat the functional ψ(x(τ)) in the discussed generic
sense, considering x as a vector and τ as a vector. One knows that for the notions
of derivative for functionals δψ(x(τ))/δ(x(τ ′)) can be introduced simply as a gen-
eralization of the partial derivative of a function of several variables ∂ψ(xi)/∂xk.
Given an equation for the density matrix functional one can get the corresponding
equations for the tomographic probability functional. To this aim one has to use
the replacements (31) and (32), modified for an infinite number of variables, in
the equation for the density matrix.

Thus if one has the wave functional ψ(x(τ)), the corresponding density matrix
functional is

ρ(x(τ), x′(τ ′)) = ψ(x(τ))ψ∗(x′(τ)). (33)

One can introduce the Wigner function of the universe defining it for a pure
state as

W (q(τ), (p(τ)) =
∫

ψ

(
q(τ) +

u(τ)
2

)
ψ∗

(
q(τ) − u(τ)

2

)

× e−i
∫

u(τ)p(τ)dτD[u(τ)] (34)

where D[u(τ)] is the measure in the Fourier functional integral. The tomographic
probability becomes also the functional W(X(τ), µ(τ), ν(τ)) which is given in
terms of the Wigner functional of the universe as

W(X(τ), µ(τ), ν(τ)) =
∫

W (q(τ), p(τ)) δ[X(τ) − µ(τ)q(τ)

− ν(τ)q(τ)]D(q(τ), p(τ)) (35)

Thus the tomographic probability functional is given by the above formula
which is the functional Radon transform of the Wigner functional.

The universe in a model of quantum cosmology is described by a wave
functional which depends on the spatial metric. This wave functional obeys the
Wheeler-DeWitt equation of the form [14]

[
−Gijkl

δ2

δhijδkl
− 3R(h)h1/2 + 2Λh1/2

]
Ψ [hij ] = 0 (36)

where hij is the spatial metric, Gijkl is the metric on the space of three geometries
(superspace)

Gijkl =
1
2
h−1/2(hikhjl + hilhjk − hijhkl) (37)

and 3R(h) is the scalar curvature of the intrinsic geometry of the three-surface,
Λ is the cosmological constant. It means that the density matrix functional and
the analog of the Wigner function in the form of a functional can be introduced
as well as a tomogram functional of the quantum state of the universe. Below
in the Appendix we will write this equation in tomographic form equation. But
to make transition to tomographic representation clearer we discuss first simple
cosmological models.
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In the following we shall consider different examples of a homogeneous and
isotropic universe. Even if they can be referred to the same geometry, these exam-
ples are not equivalent from the quantization point of view. As a matter of fact, it
is well-known that the canonical formulation of gravity leads to the breaking of
the covariance of the theory with respect of the group of four dimensional diffeo-
morphisms. Therefore, any change of coordinates does not necessarily lead to a
canonical transformation in the Hamiltonian formulation of General Relativity.

The evolution of the spatial metric is considered in the context of the space
of (spatial) metrics, i.e. the superspace. When a homogeneous model is consid-
ered, the spatial metric is parameterized by functions of time and a model equiv-
alent to a classical particle results. In this case the evolution is considered in a
restricted version of the superspace, i.e. the so-called minisuperspace. In the case
of a Friedmann–Lemaitre–Robertson–Walker the minisuperspace is described by
particle in one dimension. The presence of fields like a scalar field would eventu-
ally extend the minisuperspace dimensions.

There exist several elaborated examples of minisuperspaces used in quantum
cosmology, below we consider some of these examples.

5 Some examples of the Wheeler-DeWitt equations

5.1 Homogeneous and isotropic universe with cosmological constant and no
material source

In our first example we consider the model in which the metric dependence is
reduced to dependence only on the expansion factor of the universe. This is a one
dimensional Wheeler-DeWitt equation for a FLRW universe of the form

1
2

{
1
ap

d

da
ap d

da
− a2 + Λa4

}
ψ(a) = 0 (38)

Here 0 ≤ a < +∞, is in the classical theory the expansion factor and p is
an index introduced to take into account the ambiguity of operator ordering. The
Radon transform discussed in previous sections makes sense only for variables
that take values from −∞ to +∞, so we make the change of variables a = exp x
and the Wheeler-DeWitt equation becomes

1
2

{
exp(−2x)

d2

dx2
+ (p − 1) exp(−2x)

d

dx
− 2U(x)

}
Ψ(x) = 0 (39)

where U(x) = (exp(2x)−Λ exp(4x))/2. This equation can be written also in the
form

1
2

{
exp(−2x′)

d2

dx′2 + (p − 1) exp(−2x′)
d

dx′ − 2U(x′)
}

Ψ∗(x′) = 0. (40)

Multiplying the two equations respectively by Ψ∗(x′) and by Ψ(x), and taking
the difference, we finally obtain the equation for the density matrix ρ(x, x′) =



108 V. I. Man’ko et al.

Ψ(x)Ψ∗(x′)

1
2

{[
exp(−2x)

(
d

dx

)2

− exp(−2x′)
(

d

dx′

)2
]

+
1
2
(p − 1)

[
exp(−2x)

d

dx

− exp(−2x′)
d

dx′

]
− (U(x) − U(x′))

}
ρ(x, x′) = 0 (41)

Using equations (31) and (32) we get the equation

{
Im

[
exp

[
2
(

∂

∂X

)−1
∂

∂µ
+ iν

∂

∂X

](
1
2
µ

∂

∂X
− i

(
∂

∂X

)−1
∂

∂ν

)2]

+ (p − 1)Im

[
exp

(
2
(

∂

∂X

)−1
∂

∂µ
+ iν

∂

∂X

)(
1
2
µ

∂

∂X
− i

(
∂

∂X

)−1
∂

∂ν

)]

− 2Im

[
exp

(
− 2

(
∂

∂X

)−1
∂

∂µ
+ iν

∂

∂X

)
− Λ exp

(
− 4

(
∂

∂X

)−1
∂

∂µ

+ 2iν
∂

∂X

)]}
W(X,µ, ν) = 0, (42)

this equation is the tomographic form of the equation (39). There is no exact so-
lution of equation (39), but for very large a the solution has the form (see [16])

ψ(a) ∼ cos
Ha3

3
(43)

The expression for the tomogram in this case is

W(X,µ, ν) =
1

2π|ν|

∣∣∣∣
∫

cos
Hy3

3
eiµy2/2νe−iXy/νdy

∣∣∣∣
2

. (44)

5.2 Homogeneous and isotropic universe with a different metric

In [18, 31] a (closed) homogeneous and isotropic universe is considered, but where
the metric is expressed in a coordinate system such that it takes the form

ds2 = −N2(t)
q(t)

dt2 + q(t)dΩ2
3. (45)

In this case the Wheeler-DeWitt equation assumes the form

1
2

(
4

d2

dq2
+ λq − 1

)
ψ(q) = 0, (46)

where λ is a parameter related to the cosmological constant Λ and the gravitational
constant G by the relation λ = 2 G Λ/9π (see [31]).
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This equation can be expressed in the following form

d2ψ(ξ)
dξ2

+ ξψ(ξ) = 0 (47)

where

ξ =
(

λ

2

)1/3 (
q − 1

λ

)
. (48)

The solution of equation (47) is

ψ(q) = AΦ(−ξ) = AΦ
(
−λ

2

)1/3 (
q − 1

λ

)
(49)

where Φ(x) is the Airy function

Φ(x) =
∫ ∞

0

cos
(

u3

3
+ ux

)
du, (50)

A is a normalization constant. The equation for the tomogram is the same equation
for the tomogram of an electric charge moving in a constant homogeneous electric
field and it reads [32]

−µ
∂W
∂ν

+ Fν
∂W
∂X

= 0 (51)

The corresponding expression for the tomogram is

W(X,µ, ν) =
A2

2π|ν|

∣∣∣∣∣Φ
(
−

(
1

2λ2

)1/3

+
(

λ

2

)1/3
X

µ
−

(
λ

2

)2/3
ν2

µ2

)∣∣∣∣∣
2

(52)

5.3 The “harmonic oscillator” case

Hartle and Hawking showed [16] that the Wheeler-DeWitt equation for a homo-
geneous and isotropic metric

ds2 = σ2
(
N2dτ2 + a2(τ)dΩ2

3

)
, (53)

with a conformally invariant field ϕ and zero cosmological constant, reduces to
the equation of a harmonic oscillator

1
2

(
∂2

∂x2
− ω2

1x2 − ∂2

∂y2
+ ω2

2y2

)
ψ(x, a) = 0 (54)

with x = a, y = φ a and ω1 = ω2 = 1. But Gousheh and Sepangi [33] pointed
out that the equation (54) holds also for other cosmological models. For example
by taking a scalar field φ with potential

V (φ) = λ +
m2

2α2
sinh2(αφ) +

b

2α2
sinh(2αφ) (55)
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one can obtain, by suitable changes of coordinates, equation (54). The same equa-
tion can be derived in a Kaluza–Klein cosmology with negative cosmological con-
stant and metric

ds2 = −dt2 + a2(t)
δijdxidxj

(1 + kr2

4 )
+ A2(t)d�2 (56)

where A(t) is the radius of the compactified dimension.
A solution of equation (54) can be obtained by separation of variables [33]

ψn1n2(x, y) = αn1(x)βn2(y) n1, n2 = 0, 1, 2, . . . (57)

where both the families of functions αn(x) and βn(y) are expressed by

αn(x) =
(

1
π

)1/4
Hn(x)√

2nn!
e− x2/ 2 (58)

and

βn(y) =
(

1
π

)1/4
Hn(y)√

2nn!
e− y2/ 2. (59)

One can obtain by the described method the corresponding equation for the tomo-
gram and it reads

−µ1
∂W
∂ν1

+ ν1
∂W
∂µ1

+ µ2
∂W
∂ν2

− ν2
∂W
∂µ2

= 0 (60)

The corresponding solution can be found by applying equation (27) to (57)
and we obtain the tomographic symbol

Wn1n2(X1, µ1, ν1,X2, µ2, ν2)

=
1

(2π)2|ν1ν2|

∣∣∣∣
∫

ψn1n2(x, y)e
iµ1x2

2ν1 e
iµ2y2

2ν2 e−i
xX1
ν1 e−i

y X2
ν2 dx dy

∣∣∣∣
2

=
1
π

1
2n1+n2

1
n1!n2!

e
−X 2

1
µ2
1+ν 2

1 e
−X 2

2
µ2
2+ν 2

2√
(µ2

1 + ν2
1)(µ2

2 + ν2
2)

H2
n1

(
X1√

(µ2
1 + ν2

1)

)

×H2
n2

(
X2√

(µ2
2 + ν2

2)

)
. (61)

With the solutions found above, we can describe the tomogram for an en-
tangled state of the universe. Entangled systems were already considered in the
context of general relativity by Basini et al. [34]. For instance, let us consider
the combination which is the entangled superposition state of the universe in the
model under study

1√
2

(ψ12 + ψ21) =
1√
π

(
ye−

x2
2 e−

y2

2 + xe−
x2
2 e−

y2

2
)
; (62)
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the corresponding tomogram is

W entangled
12 (X1, µ1, ν1,X2, µ2, ν2)

=
1

2(2π)2|ν1ν2|

∣∣∣∣
∫

(ψ12(x, y) + ψ21(x, y))e
iµ1x2

2ν1 e
iµ2y2

2ν2 e−i
xX1
ν1 e−i

y X2
ν2

∣∣∣∣
2

=
1

(2π)2|ν1ν2|

∣∣∣∣2
√

π

(
X1(µ1 − iν1))

(µ2
1 + ν2

1)
+

X2(µ2 − iν2))
(µ2

2 + ν2
2)

)

×
√

1 + iµ1/ν1

1 + µ2
1/ν2

1

· 1 + iµ2/ν2

1 + µ2
2/ν2

2

e
−X 2

1(ν1+iµ1)

2(µ2
1+ν 2

1) e
−X 2

2(ν2+iµ2)

2(µ2
2+ν 2

2)

∣∣∣∣∣
2

(63)

=
1
π

(
X2

1

(µ2
1 + ν2

1)
+

X2
2

(µ2
2 + ν2

2)
+

2X1X2(µ1µ2 + ν1ν2)
(µ2

1 + ν2
1)(µ2

2 + ν2
2)

)

×
√

1
ν2
1 + µ2

1

· 1
ν2
2 + µ2

2

e
− X 2

1
(µ2

1+ν 2
1) e

− X 2
2

(µ2
2+ν 2

2) . (64)

This tomogram is the positive joint probability distribution of two random vari-
ables X1 and X2 and it completely determines the quantum state of the universe
in the considered model.

6 Conclusions

To conclude we summarize the main results of our work. In the framework of
quantum gravity we applied the recently introduced in quantum mechanics and
quantum optics method of association with quantum states the probability distri-
butions and in view of this we managed to describe the states of the universe by
standard positive probability distributions (tomograms of the universe states). We
found the connection of this approach with star product (deformation) quantiza-
tion. The conventional Wheeler-DeWitt for the wave function of the universe is
presented in the form of a stochastic equation for the standard positive probability
distributions. The wave function of the universe and its density matrix can be re-
constructed in terms of the introduced tomographic probability distribution of the
universe. Some example of Friedmann–Lemaitre–Robertson-Walker minisuper-
spaces were explicitly studied and the tomograms of the corresponding universe
states were showed including an entangled state. The description of an universe
quantum state by standard positive probability distributions provides some new
aspects to the problem of the connection with the classical description of pure
universe states.

It is worthy to study these new aspects considering the classical limit of the
quantum equations in the tomographic representation. One has to point out that
for studying the classical limit one needs to take into account the decoherence
phenomena which destroy the quantum coherence of the universe states. The clas-
sical limit of a quantum mechanical problem (kicked rotators) was discussed in
tomographic representation in [35].
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Appendix

In the Appendix we review the details of the Radon transform approach to the Schrödinger
equation and the Von Neumann equation. To do this we describe how the Schrödinger equation
for the wave function induces the Von Neumann equation for the density matrix. After this the
tomographic transform provides the equation for the tomogram of a quantum state.

The Schrödinger evolution equation for a system with one degree of freedom reads (m = 1)

i
∂ψ(x, t)

∂t
= −1

2

∂2ψ(x, t)

∂x2
+ U(x)ψ(x, t); h̄ = 1. (65)

The Schrödinger equation energy-level equation reads

−1

2

∂2ψE (x, t)

∂x2
+ U(x)ψE (x, t) = EψE (x, t) (66)

For the density matrix
�(x, x′, t) = ψ(x, t)ψ∗(x′, t) (67)

the von Neumann evolution equation can be obtained from equation (65) and it has the form

i
∂�(x, x′, t)

∂t
= −1

2

[
∂2�(x, x′, t)

∂x2
− ∂2�(x, x′, t)

∂x′2

]
+

(
U(x) − U(x′)

)
�(x, x′, t) (68)

Using the relations (27) and (29) one can see that the evolution equation for the tomogram
of the quantum state can be obtained from the evolution equation for the density matrix (68)
using the replacements

�(x, x′, t) → W(X, µ, ν, t), (69)

(31) and (32). Thus, the evolution equation for the quantum state tomogram has the form [9]

∂W
∂t

− µ
∂W
∂ν

+ [U(q̃) − U(q̃∗)]W = 0 (70)

where the argument of the potential is the operator

q̃ = −
(

∂

∂X

)−1
∂

∂µ
+ i

ν

2

∂

∂X
. (71)

Here the operator (∂/∂X)−1 is defined by the action onto the Fourier component f̃(k) of a
function f(x)

f(x) =

∫
f̃(k)eikxdk (72)

due to the prescription (
∂

∂X

)−1

f(x) =

∫
f̃(k)

ik
eikxdk (73)

The evolution equation for the tomogram (70) is the tomographic map of the Moyal equation
[12] for the Wigner function W (q, p, t)

∂W

∂t
+ p

∂W

∂q
+

[
U(˜̃q) − U(˜̃q∗)

]
W = 0 (74)
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where the argument of the potential is the operator

˜̃q = q +
i

2

∂

∂p
. (75)

Thus introducing the functional

ρ(x, x′) = ψ(x)ψ∗(x′) (76)

we get the Wheeler-DeWitt equation for the tomogram of the universe by means of the replace-
ments

x → −
(

δ

δX

)−1
δ

δµ
+

i

2
ν

δ

δX
, (77)

x′ → −
(

δ

δX

)−1
δ

δµ
− i

2
ν

δ

δX
(78)

δ

δx
→ 1

2
µ

δ

δX
− i

(
δ

δX

)−1
δ

δν
(79)

δ

δx′ → 1

2
µ

δ

δX
+ i

(
δ

δX

)−1
δ

δν
(80)

which should be done in analogy with the von Neumann equation for the density of the universe
[14]

[
−Fαβ

δ2

δxαδxβ
− 3R(x)S(x) + 2ΛS(x)

−Fαβ (x′)
δ2

δx′
αδx′

β

− 3R(x′)S(x′) + 2ΛS(x′)

]
�(x, x′) = 0 (81)

Here
Fαβ (x) = −Gijkl, (82)

S(x) = h
1
2 , (83)

R(x) = 3R(h). (84)

We take into account that the wave function of the universe is a real function. Making in
(81) the replacement

�(x, x′) → W(X, µ, ν)

and using equations (77)–(80), we get the tomographic form of the Wheeler-DeWitt equation.
The considered cosmological models are particular cases of this general procedure.
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