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Abstract
The potential of blended seismic acquisition to improve acquisition efficiency and cut 
acquisition costs is still open, particularly with efficient deblending algorithms to pro-
vide accurate deblended data for subsequent processing procedures. In recent years, deep 
learning algorithms, particularly supervised algorithms, have drawn much attention over 
conventional deblending algorithms due to their ability to nonlinearly characterize seis-
mic data and achieve more accurate deblended results. Supervised algorithms require large 
amounts of labeled data for training, yet accurate labels are rarely accessible in field cases. 
We present a self-supervised multistep deblending framework that does not require clean 
labels and can characterize the decreasing blending noise level quantitatively in a flexible 
multistep manner. To achieve this, we leverage the coherence similarity of the common 
shot gathers (CSGs) and the common receiver gathers (CRGs) after pseudo-deblending. 
The CSGs are used to construct the training data adaptively, where the raw CSGs are 
regarded as the label with the corresponding artificially pseudo-deblended data as the ini-
tial training input. We employ different networks to quantitatively characterize decreasing 
blending noise levels in multiple steps for accurate deblending with the help of a blending 
noise estimation–subtraction strategy. The training of one network can be efficiently ini-
tialized by transfer learning from the optimized parameters of the previous network. The 
optimized parameters trained on CSGs are used to deblend all CRGs of the raw pseudo-
deblended data in a multistep manner. Tests on synthetic and field data validate the pro-
posed self-supervised multistep deblending algorithm, which outperforms the multilevel 
blending noise strategy.

Keywords  Semi-supervised deblending · Coherence similarity · Multistep deblending · 
Multilevel blending noise strategy
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•	 Multistep deblending that employs different individual networks with a flexibly 
designed loss function is used to evaluate the remaining blending noise, and the struc-
tural similarity (SSIM) is incorporated into the subsequent loss function to attenuate 
weak blending noise precisely

•	 Numerically blended synthetic and field data examples demonstrate the validity of 
the proposed self-supervised multistep deblending algorithm in accurately obtaining 
deblended data without clean label requirements

1  Introduction

Conventional land and marine seismic data acquisitions fire seismic sources with long 
time intervals to avoid signal interference, and the acquisition efficiency is low with high 
acquisition costs. Blended acquisition fires multiple shots almost simultaneously using a 
dithering strategy (Berkhout et  al. 2008; Hampson et  al. 2008) to significantly improve 
acquisition efficiency, especially for wide azimuth (Walker et  al. 2013) and wide band-
width (Poole et al. 2014) seismic data acquisition.

There are two categories of algorithms for blended data applications. One option is to 
directly perform reverse time migration (RTM) (Dai et al. 2011; Verschuur and Berkhout 
2011) or full waveform inversion (FWI) (Zhang et al. 2018), which requires special pro-
cessing algorithms to suppress artifacts caused by the blending noise during RTM and FWI 
procedures. For blended data with a high blending fold, however, the artifacts caused by 
the blending noise remain, contaminating the final RTM images and making subsequent 
seismic interpretation more challenging. The other option attenuates the blending noise 
first and then uses conventional, mature seismic processing workflows for the obtained 
deblended results (Mahdad 2012). This latter option has recently attracted much attention 
and is still open.

Deblending can be viewed as a denoising issue, and deblended data can be obtained 
by filtering-based algorithms. Although a receiver records the information from multiple 
blended sources continuously during blended acquisition, the signal of pseudo-deblended 
data is coherent in certain domains, like the common receiver domain (CRD), whereas 
the blending noise is randomized along spaces (Beasley 2008). In these domains, deblend-
ing becomes a standard denoising procedure that distinguishes the desired coherent signal 
from the randomized blending noise. Median filter (MF) and its variations are always used 
for deblending since MF is well-known for random, spike-like noise removal (Liu et  al. 
2009). Huo et al. (2012) developed a vector median filter from the conventional scalar ver-
sion and used a multi-directional vector median filter for deblending in the common mid-
point domain (CMD). Chen et al. (2014b) employed a recursive strategy for deblending in 
a closed-loop manner, which updated the deblended result using MF on normal-moveout 
corrected data in the CMD that required a new velocity estimation from the deblended 
result. Gan et al. (2016) proposed a structural-oriented median filter for deblending, which 
flattened the pseudo-deblended data in local spatial windows and then applied MF to atten-
uate the blending noise. The above-mentioned methods based on filtering are efficient; 
however, the accuracy is still open to improvement. From another different perspective, 
deblending can also be resolved as an ill-posed inversion problem, commonly with cer-
tain prior knowledge constraints, such as low-rank (Cheng and Sacchi, 2015b), sparsity 
(Kontakis and Verschuur 2014), or coherency (Huang et al. 2017). Sparse constraints are 
used for a variety of sparse transforms, such as the Fourier transform (Abma et al., 2010), 



385Surveys in Geophysics (2024) 45:383–407	

1 3

Radon transform (Ibrahim and Sacchi 2014), seislet transform (Chen et  al. 2014a), and 
curvelet transform (Wang and Geng 2019), etc. Chen (2015) proposed an iterative deblend-
ing algorithm with multiple constraints using shaping regularization, combining iterative 
seislet thresholding with a local orthogonalization strategy. For field blended data deblend-
ing, Zu et al. (2017) analyzed different factors that can affect the final deblending perfor-
mance, highlighting the importance of considering these factors during blended acquisi-
tion to avoid potential failures. Lin et al. (2021) implemented a robust iterative deblending 
algorithm by adopting a robust singular spectrum analysis (SSA) filter for each frequency 
slice. In cases where shot time is inaccurate, Chen et  al. (2023) designed a joint inver-
sion framework to simultaneously estimate the deblended data and the shot-time vector. 
The key to the above-mentioned filtering and inversion-based deblending algorithms is the 
selection of appropriate parameters, such as the filter length, types of sparse transforms and 
corresponding thresholds, or the designed rank. However,  these parameters are typically 
chosen by trial and error according to individual experience and may vary from one dataset 
to another, requiring fine-tuning in practice. Besides, the computational costs of traditional 
deblending algorithms increase significantly for multidimensional and high-resolution 
blended seismic data.

Deep learning (DL) has been widely used in various geophysical issues, such as seis-
mic data processing and interpretation (Huang et  al. 2022; Park and Sacchi 2020; Yang 
et  al. 2020). Among various applications, the denoising issue attracts lots of interest, 
especially when well-structured networks like U-net (Ronneberger et  al. 2015) are used 
to capture high-level nonlinear relationships between the input (noise-contaminated data) 
and the desired output (clean data) using a large number of training sets. As for DL-based 
deblending issues, three main aspects have always been considered since the CNN algo-
rithm was introduced into seismic deblending (Sun et al. 2020; Zu et al. 2020), i.e., inde-
pendence or weak dependence on a large volume of clean labels (Baardman et al. 2020; 
Sun et al. 2022), higher deblending accuracy (Wang et al. 2023), and better generalization 
(Wang et  al. 2021a). To avoid clean label requirements, unsupervised or self-supervised 
algorithms appear with physical constraints on blended data (Wang et al. 2022c; Xue et al. 
2022). Wang and Hu (2022) designed a self-supervised deblending workflow in which the 
training procedure utilized common shot gathers (CSGs) and the test deblending step was 
implemented on common receiver gathers (CRGs) via the optimized network based on the 
coherence similarity between CSGs and CRGs. Wang et al. (2021b) designed a blind-trace 
network, inspired by the blind-spot network, for self-supervised deblending that directly 
mapped pseudo-deblended data to the coherent signal in the CRD. The residual between 
artificially blended data and the observed blended data was measured to construct the 
objective function. Besides, there are many attempts and enhancements for supervised 
deblending algorithms. Xu et  al. (2022) integrated the inversion-based deblending algo-
rithm with DL algorithm, employing a deep CNN network trained on pseudo-deblended 
CSGs as a Gaussian denoiser in the plug and play (PnP) deblending algorithm. To enhance 
deblending accuracy and generalization, Wang et  al. (2021a) used transfer learning to 
fine-tune a previously optimized model with parts of labeled field data to adapt field data 
deblending. A multi-resolution ResUnet was also introduced (Wang et al. 2022a), with a 
multilevel blending noise strategy (MBNS) simulating the decreasing blending noise level 
during iterative deblending. Later, the MBNS was also extended to simultaneous seismic 
data deblending and recovery (Wang et al. 2022b) for incomplete blended data. However, it 
qualitatively mimics the decreasing blending noise level during iterative deblending using 
several fixed scalars predefined by trial and error, which deviates from the fact during itera-
tive applications. Thus, a multistep deblending algorithm was designed to quantitatively 
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characterize the decreasing blending noise (Wang et  al. 2023), further improving the 
deblending accuracy.

In this paper, we present a self-supervised multistep deblending workflow to quantita-
tively characterize nonlinear features of different levels of remaining blending noise dur-
ing deblending procedures, without clean label requirements. Firstly, we extract the CSGs 
�csg of pseudo-deblended data as the desired output. Artificially pseudo-deblended data 
�csg_pdb = �

H
��csg based on CSGs is regarded as the initial input to generate adaptive train-

ing pairs with a blending operator � and its adjoint operator. Secondly, we introduce the 
multistep deblending algorithms to quantify the decreasing blending noise levels with the 
help of the blending noise estimation–subtraction strategy. In the first deblending step, the 
network is trained to recover the dominant signal by attenuating the blending noise. With 
the signal estimated from the first deblending step, the corresponding blending noise can be 
predicted and subtracted from the raw pseudo-deblended seismic data, and thus an updated 
input dataset with considerably weakened blending noise is obtained. The main goal of the 
network training in subsequent steps shifts to attenuating weak blending noise and extract-
ing more detailed signal features leaking from previous steps. Hence, the optimized model 
in the previous deblending step is used as an initialization for the fine-tuning of the current 
step through transfer learning, which is more efficient than a random initialization. In addi-
tion, the loss function is also slightly modified using a structural similarity (SSIM) loss in 
the subsequent training steps to better attenuate the remaining blending noise. The intro-
duced multistep deblending algorithm converges quickly, and for efficiency and storage con-
siderations, we set the number of steps to three in this work. Finally, with the optimized 
parameters of different individual networks, the multistep deblending can be sequentially 
implemented on CRGs of the raw pseudo-deblended data. Due to the coherence similarity 
between CRGs and CSGs of pseudo-deblended data, the optimized network using the CSGs 
can generate satisfactory deblended results of the CRGs for subsequent seismic processing. 
Numerical examples of synthetic data indicate the validity and flexibility of the proposed 
self-supervised multistep algorithm, and applications to field artificially blended data dem-
onstrate its adaptability in improving deblending accuracy without requiring clean labels.

2 � Theory

2.1 � Review on Blended Acquisition

For efficient seismic data acquisition, the blended acquisition has drawn much interest and 
is still open compared to the conventional acquisition algorithm. For a specific receiver 
ri, i = 1, 2, ..., Nr , it records signals continuously from multiple sources fired almost simul-
taneously, and the continuously recorded blended data dbl can be illustrated mathematically 
as,

where Nr denotes the number of receivers. The dithering time �j in blended sources sj, j ∈ S 
can ensure that the blending noise is randomized in certain domains, like CRD and CMD. 
Figure  1 depicts a comparison cartoon of the conventional acquisition and the blended 
acquisition with a blending fold of two. When two blended sources are fired almost simul-
taneously, the receivers continuously record the signal from the two blended sources. 

(1)dbl
(
t, ri

)
=
∑

j∈S

d
(
t + �j, sj, ri

)
, i = 1, 2, ...,Nr,
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Compared to conventional acquisition with a large firing time interval to avoid signal inter-
ference, this blended acquisition offers an approximately twofold increase in acquisition 
efficiency. The blending fold, which is proportional to the ratio between the conventional 
acquisition period and the blended acquisition period, reflects the improvement in effi-
ciency achieved through blended acquisition.

The blending formula in Eq. (1) can be reformulated as a compact formula using the 
matrix–vector symbol,

where �bl represents continuously recorded data, � represents the blending operator deter-
mined with the dithering time of blended sources, and � represents the conventional 
unblended record in the CRD. Then, the corresponding pseudo-deblended data �pdb is 
obtained using the adjoint blending operator �H (Lin and Sacchi 2020),

Pseudo-deblended data �pdb is the sum of the unblended record � and the blending 
noise 

(
�
H
� − �

)
� , and the symbol � represents the identity operator. To visually illus-

trate the blending process and the effects of the blending noise, a synthetic record in 
the CRD is used for illustration. Figure  2a depicts an unblended record. A blending 
fold of two is used for blended acquisition (Fig.  1b) with the dithering time located 
in [− 0.25 s, 0.25 s], and Fig. 2b illustrates the corresponding pseudo-deblended data, 
where the randomized blending noise negatively contaminates the coherent signal. 
Using a coherence-pass filtering or inversion algorithm, the randomized blending noise 
can be attenuated, and then deblended results are obtained.

2.2 � Supervised Multistep Deblending with Quantitative Blending Noise Evaluation

Deep learning-based algorithms accurately characterize seismic data by extracting high-
level, nonlinear features from training data. The deblending accuracy and efficiency are 
high when the designed supervised network is trained or fine-tuned adequately. The 
commonly used loss function for training the network, denoted as Eq. (4), aims to opti-
mize the network parameters �,

(2)�bl = ��

(3)�pdb = �
H
�bl = � +

(
�
H
� − �

)
�.

Fig. 1   a The conventional seismic acquisition; b Blended acquisition to improve the efficiency by nearly 
twice with a blending fold of two
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where f  represents the designed U-net architecture (Fig. 3) used in the paper. The sym-
bol � represents the smoothness constrained convolution kernel, and � is a balance factor 
between the smoothness of the convolution kernel and the L2 norm measured data misfit. 
Using sets of labeled training data, the optimized parameters �∗

1
 can be determined when 

the training converges, during which the Adam optimizer is used. To quantitatively evalu-
ate the deblending performance, the signal-to-noise ratio (SNR) is introduced,

(4)L1(�) =
���f
�
�pdb;�

�
− �

���
2

2
+ �‖�‖2

2
,

(5)SNR(dB) = 10 log10
‖�‖2

��� − �dbl
��
2
,

Fig. 2   a Unblended seismic record; b The corresponding pseudo-deblended record in the CRD

Fig. 3   The designed U-net architecture for supervised deblending
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where � represents the unblended record and �dbl represents the deblended result. With the 
optimized parameters �∗

1
 , the deblended data �1

dbl
 is obtained by feeding pseudo-deblended 

data �pdb = �
H
�bl to the optimized network f ,

Since the blending noise can be precisely predicted with the coherent signal and shot time, 
an iterative blending noise estimation–subtraction strategy (Mahdad et  al. 2011) is used to 
improve the deblending accuracy. The simulated blending noise 

(
�
H
� − �

)
�
1
dbl

 can be 
obtained using the deblended result �1

dbl
 in the first deblending step, and the input of the next 

deblending step is updated to �pdb −
(
�
H
� − �

)
�
1
dbl

 after the blending noise estimation–sub-
traction procedure. The updated input contains only weak blending noise contamination. The 
well-trained network with the optimized parameters �∗

1
 , however, cannot characterize the weak 

blending noise accurately because the training procedure does not recognize the weak blend-
ing noise (Wang et  al. 2021a). Further deblending accuracy improvement requires how to 
quantitatively evaluate the remaining blending noise in a recursive strategy, and a multistep 
deblending algorithm is adopted. Since the optimized parameters �∗

1
 attenuate dominant blend-

ing noise, the fine-tuning step is used for the remaining weak blending noise evaluation via 
transfer learning with �∗

1
 as an initialization. The input is updated to �pdb −

(
�
H
� − �

)
�
1
dbl

 , 
and the label � remains the same. After the fine-tuning convergence, the optimized parameters 
�
∗

2
 are obtained to achieve deblended results with the remaining weak blending noise attenua-

tion, i.e., �2
dbl

= f
(
�pdb −

(
�
H
� − �

)
�
1
dbl
; �∗

2

)
 via the second deblending step. For subsequent 

deblending steps, we quantitatively evaluate the remaining weak blending noise in a multistep 
manner with the training pairs 

(
�pdb −

(
�
H
� − �

)
�
j

dbl
, �
)
, j = 2, 3, ..., J , and then the mul-

tistep deblending is implemented in a recursive manner with each step employing an individ-
ual network with optimized parameters.

The multistep deblending algorithm here includes a slight modification to the loss function 
to improve the deblending performance according to different levels of the remaining blending 
noise in each deblending step, which exploits the flexibility of the multistep algorithm. Since 
the dominant signal has been recovered in the first deblending step, it is more important to 
retain the detailed structure of the coherent signal when attenuating the remaining weak blend-
ing noise. As a measurement of the similarity between two images, the SSIM loss function 
is incorporated into DL-based seismic processing for better performance (Li et al. 2021; Liu 
et al. 2022; Yu and Wu 2022). Thus, we introduce the SSIM loss (Eq. (7)) into the raw loss 
function (Eq. (4)) to recover the details of deblended results when suppressing the remaining 
blending noise,

The final loss function in fine-turning steps can be formulated as,

where � is a weighting parameter ranging in [0, 1], balancing the data misfit and the SSIM 
loss. The input �pdb −

(
�
H
� − �

)
�
j

dbl
, j = 1, 2, ..., J and the desired output � are used to 

fine-tune the previously optimized parameters �∗
j
 via transfer learning, and the fine-tuned 

(6)�
1
dbl

= f
(
�pdb, �

∗

1

)
.

(7)LSSIM = 1 − SSIM
(
f
(
�pdb −

(
�
H
� − �

)
�
j

dbl
;�
)
, �
)
, j = 1, 2, ..., J.

(8)
Lj+1(�) = �

���f (�pdb −
�
�
H
� − �

�
�
j

dbl
;�) − �

���
2

2
+ (1 − �)LSSIM + �‖�‖2

2
, j = 1, 2, ..., J,
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parameters �∗
j+1

 are obtained to attenuate the remaining blending noise in a multistep man-
ner. Using the above-mentioned multiple steps, we can obtain different optimized param-
eters �∗

j
, j = 1, 2, ..., J of individual networks. The blending noise can be attenuated 

step by step to achieve accurate deblended results for the test pseudo-deblended data �̃pdb 
because of its similar features to the training data,

Figure 4 summarizes the workflow of the multistep (three-step) deblending algorithm 
with input details during different individual network training and subsequent deblending. 
However, supervised deblending requires clean labels, which are rarely available in field 
cases. In field cases, the deblended results from conventional deblending algorithms are 
usually regarded as labels (Wang et al. 2023), and the inaccuracy of deblended results neg-
atively impacts the effectiveness of DL-based deblending methods. Therefore, constructing 
the training labels accurately and flexibly becomes essential.

2.3 � Self‑Supervised Multistep Deblending

In contrast to the blending noise, which is coherent in the CSD but is spatially randomized 
in the CRD, the signal of pseudo-deblended data is coherent in both CRD and CSD. The 
coherent features, such as dip, curvature, and amplitude, are almost consistent in these two 
domains based on Green’s reciprocity theorem of the wave equation if all source wave-
lets are consistent (Han et al. 2022; Wang and Hu 2022). A pseudo-deblended CRG with 
the coherent signal and randomized blending noise is depicted in Fig. 5a. Figure 5b dem-
onstrates a CSG  of the pseudo-deblended data with coherent blending noise and signal. 
The coherent characteristics of CRG and CSG of pseudo-deblended data are similar, which 
qualitatively illustrates Green’s reciprocity theorem of the wave equation. We present a 

(9)

�̃
1
dbl

= f1
(
�̃pdb;�

∗

1

)

�̃
2
dbl

= f2
(
�̃pdb − (�

H
� − �)�̃1

dbl
;�∗

2

)

…

�̃
J+1
dbl

= fJ+1
(
�̃pdb − (�

H
� − �)�̃J

dbl
;�∗

J+1

)

Fig. 4   The summarized workflow of the multistep (three-step) deblending algorithm
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self-supervised multistep deblending algorithm based on the similarity between the CSGs 
and CRGs of the raw pseudo-deblended data.

We use the CSGs of the raw pseudo-deblended data to construct the adaptive train-
ing datasets. The CSGs �csg , with coherent blending noise, are regarded as the labels 
(depicted in Fig.  5b). A blending operator and its adjoint operator are used to con-
struct the blending noise-contaminated data �csg_pdb = �

H
��csg , as depicted in Fig.  5c 

with details. Thus, we can obtain the adaptive training data pairs 
(
�csg_pdb, �csg

)
 for a 

supervised algorithm, generating a self-supervised algorithm as the training data is con-
structed from the raw blended data itself. A self-supervised multistep algorithm can cap-
ture the nonlinear relationship between the input data with varying levels of the remain-
ing blending noise and the labels using different individual networks, as illustrated in 
the previous subsection. Using the proposed self-supervised multistep deblending algo-
rithm, we can obtain the optimized parameters �∗

j
, j = 1, 2, ..., J for different networks 

after training convergence using adaptively constructed training data in a stepwise 

Fig. 5   a The CRG of pseudo-deblended records with a blending fold of two; b The corresponding CSG of 
pseudo-deblended records; c The constructed data with the additional blending noise contamination based 
on (b)
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manner. The parameters �∗
j
, j = 1, 2, ..., J are used to deblend the raw pseudo-deblended 

CRGs (depicted in Fig. 5a) in a sequential and multistep manner. The deblending accu-
racy can be guaranteed because of the similar coherence of the training CSGs and the 
test CRGs of pseudo-deblended data.

To fully illustrate the proposed algorithm, a detailed workflow is summarized in 
Fig.  6. First, we extract the CSGs of pseudo-deblended data as training labels. Next, 
we obtain the training input with additional blending noise contamination by numeri-
cally blending and pseudo-deblending, generating adaptive training pairs 

(
�csg_pdb, �csg

)
 

for the multistep deblending algorithm. During the multistep training procedures, the 
training input is updated via blending noise estimation–subtraction, and the label of 
each network is the CSGs of the raw pseudo-deblended data. The introduced multistep 
deblending algorithm converges very fast, and we employ three steps to attenuate the 
dominant, weak and even weaker blending noise in a quantitative manner for storage 
and efficiency considerations. During the fine-tuning procedure, the optimized model 
from the previous step initializes the current individual network. Finally, the opti-
mized parameters �∗

j
, j = 1, 2, ..., J of individual networks are sequentially employed 

to deblend CRGs of the raw pseudo-deblended data in multiple steps. The deblended 
results can be obtained accurately without unblended label requirements. The effective-
ness of the proposed deblending algorithm is shown in the following section using syn-
thetic and field blended data examples.

Fig. 6   The workflow of the self-supervised multistep (three-step) deblending algorithm
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3 � Numerical Examples

To illustrate the superiority of the proposed self-supervised multistep deblending algo-
rithm, numerically blended synthetic and field data examples are presented, along with 
comparisons to the MBNS by Wang et al. (2022a).

3.1 � Synthetic Data Example

The synthetic data is simulated from a layered model with a high-velocity salt body using 
finite-difference forward modeling, and it includes 256 shots and 256 receivers located uni-
formly. The spatial interval is set to 12 m, and the sampling time interval is set to 4 ms 
during forward modeling. As a deblending reference, Fig. 7a depicts a specific unblended 
CRG record. With a blending fold of four, we obtain artificially blended data, and the CRG 
of the corresponding pseudo-deblended data is extracted, as depicted in Fig.  7b. Rand-
omized blending noise (Fig. 7c) seriously contaminates the coherent signal.

A CSG record of pseudo-deblended data is depicted in Fig.  7d, and the coherent 
signal is contaminated by coherent interference. As previously mentioned, we can use 
CSGs of pseudo-deblended data �csg as labels to simulate the blending noise-contam-
inated data via �csg_pdb = �

H
��csg , as illustrated in Fig.  7e. Then, we can obtain the 

adaptive training sets 
(
�csg_pdb, �csg

)
 . Figure 7f shows the constructed blending noise, 

and it is consistent with the raw blending noise (Fig. 7c). Thus, the optimized param-
eters trained using the constructed adaptive training sets 

(
�csg_pdb, �csg

)
 from the CSGs 

Fig. 7   The comparison of the test data and the constructed training data. a The unblended synthetic record; 
b The corresponding pseudo-deblended test CRG data; c The difference between (b) and (a), i.e., the raw 
blending noise; d The corresponding CSG of pseudo-deblended data, i.e., the constructed training label; e 
The constructed data with the additional blending noise contamination based on (d), i.e., the constructed 
initial training input; f The difference between (e) and (d), i.e., the constructed blending noise
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can accurately attenuate the CRG blending noise of the raw pseudo-deblended data. 
With 224 training pairs and 32 validation pairs from the adaptively constructed train-
ing data, we can get the optimized parameters of three individual networks using the 
multistep deblending algorithm.

3.1.1 � Training on the CSGs of Pseudo‑deblended Data

The number of training epochs for the first, second, and third individual networks in the 
proposed self-supervised multistep algorithm is set to 400, 200, and 150, respectively, and 
the total number of training epochs is 750. The first deblending step tries to attenuate the 
dominant blending noise and obtain a preliminary deblended result for subsequent estima-
tion–subtraction of the blending noise. Figure 8a, b depicts the input of the first deblending 
step and the corresponding blending noise. After the blending noise estimation–subtraction 
process using the deblended result of the first step, we update the input of the second step 
with �csg_pdb −

(
�
H
� − I

)
�
1
csg_dbl

 . Figure  8c illustrates the training input of the second 
deblending step, containing the remaining weak blending noise to be attenuated and signal 
leakage from the first step (Fig. 8d). In the third deblending step, the even weaker signal 
leakage and the remaining blending noise from the second deblending step can be pro-
cessed. Figure 8e depicts the training input of the third network for deblending, and Fig. 8f 
depicts the corresponding residual with the label, where the blending noise and signal leak-
age are even weaker. From the sight of the remaining blending noise in the sequential 
deblending inputs (Fig. 8b, d and f), we can see its decreasing trend. The proposed algo-
rithm can evaluate the decreasing blending noise quantitatively using different individual 
networks in a stepwise manner. In the self-supervised multistep deblending algorithm, the 
optimized parameters of one network can be treated as an initialization of the subsequent 
network via transfer learning, with the same label for different individual networks.

Figure 9a displays the recovered SNR curves of the training and validation data using 
the proposed self-supervised multistep deblending algorithm during sequential training. 
The SNR curve of the training data (the blue curve) exhibits a pattern similar to that of 
the validation data (the red curve) but is slightly higher. The proposed deblending algo-
rithm consists of individual training of three sequential networks, and the averaged SNR 
increases step by step. To illustrate the superiority of the proposed algorithm, the self-
supervised MBNS is used for detailed comparisons, using predefined scalars � for the 
training dataset construction. To simulate the decreasing blending noise level during the 
used three deblending iterations, three scalars are set to � = 1.0, 0.25, 0.0001 , respec-
tively, by trial and error to fulfill and diverge the training set. Then, the training data pairs 
become 

(
�csg + �

(
�
H
� − �

)
�csg, �csg

)
 according to three predefined blending noise levels; 

thus, the amount of training data triples. To keep the training burden similar, the training 
epoch number for the MBNS is set to 250. Figure 9b illustrates the recovered SNRs as the 
increasing training epochs, where the blue curve represents the recovered SNR of the train-
ing data and the solid red curve represents that of the validation data. As the attenuation of 
the raw blending noise with a scaler � = 1.0 is the main task for the deblending issue, we 
list the recovered SNR of the validation data, as marked by the dashed red curve.

All validation datasets are processed using the above-mentioned two strategies to vali-
date the proposed self-supervised multistep algorithm. Figure  10a depicts the recovered 
SNRs, with the red curve representing that of the multistep algorithm and the blue curve 
indicating that of the MBNS (three-level) with  three iterations. The proposed multistep 
(three-step) algorithm recovers a higher average SNR (20.5 dB) than the MBNS (18.9 dB). 
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Another evaluation index, i.e., SSIM, is evaluated as an average of 0.92 and 0.85, respec-
tively, as shown in Fig.  10b, for the deblending performance assessment. From the per-
formance analysis of the validation data deblending, the multistep (three-step) deblending 

Fig. 8   a, c, e The input of the sequential first, second, and third network for deblending; b, d, f The residual 
between (a, c, e), and the training label, i.e., the blending noise and signal leakage
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algorithm is superior to the MBNS (three-level) with three iterations, which positively sup-
ports our proposed multistep algorithm.

3.1.2 � Deblending the CRGs of Pseudo‑deblended Data

After the training convergence, we use the optimized networks for the CRG deblending of 
the raw pseudo-deblended data. All 256 test CRGs are deblended via the above-mentioned 
two methods for deblending performance comparison, and the recovered SNRs are depicted 
by the red and blue dots in Fig. 11. The performance of the 50th, 100th, 150th, and 200th 
CRGs is specifically marked by circles to visualize that the multistep deblending algorithm 
significantly improves the recovered SNR compared to the MBNS (three-level) with three 
iterations. The comparisons indicate that the deblended results obtained using the multistep 
(three-step) algorithm outperform those of the MBNS (three-level) with three iterations, 
and the average recovered SNRs are 21.98 dB and 20.09 dB, respectively. Figure 11 also 

Fig. 9   The recovered SNR convergence curve during the network training of a the proposed multistep 
(three-step) algorithm and b the MBNS (three-level)

Fig. 10   The deblending performance evaluation using a the recovered SNR and b the recovered SSIM of 
the validation data using the proposed self-supervised multistep (three-step) algorithm and the self-super-
vised MBNS (three-level) with three iterations
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validates the self-supervised multistep deblending algorithm, which uses CSGs constructed 
training datasets to achieve the optimized networks for deblending CRGs.

To further illustrate the superior deblending performance of the multistep-assisted self-
supervised algorithm, we extract a CRG record from the raw pseudo-deblended data and 
enlarge the complex part, specifically focusing on diffraction details. Figure  12a shows 
the 100th CRG of the unblended record, i.e., the reference during the deblending perfor-
mance evaluation. Figure 12b depicts the enlarged complex part that is marked by the red 
box in Fig.  12a and c shows the corresponding pseudo-deblended CRG data. After the 
three sequential deblending steps of the proposed self-supervised multistep algorithm, the 
final deblended result is obtained with a recovered SNR of 21.28  dB in the global part 
and a recovered SNR of 17.65 dB in the enlarged complex part. Figure 12d–f shows the 
deblended result, the enlarged complex part of the deblended result, and the residual using 
the multistep algorithm. Figure 12g shows the deblended result obtained using the MBNS 
(three-level) with three iterations, and the recovered SNR is approximately 1.5 dB lower. 
Furthermore, the recovered SNR in the enlarged complex part (Fig. 12h) is approximately 
2.7 dB lower compared with that of the multistep (three-step) deblending algorithm. The 
residual comparison in Fig. 12f, i also validates the deblending performance of the self-
supervised multistep algorithm in complex local areas, which is superior to the MBNS in 
recovering weak diffractions with approximately 3 dB in terms of SNR improvement.

By analyzing the deblended results in the complex local part and their correspond-
ing residuals, we find that the multistep algorithm outperforms the MBNS in terms 
of weak signal preservation and blending noise attenuation. The multistep deblend-
ing algorithm quantifies the remaining blending noise level after the blending noise 
estimation–subtraction during each deblending step instead of using a fixed scalar to 
qualitatively describe the blending noise level in the MBNS. Besides, the multistep 
algorithm effectively extracts the signal leakage from the previous deblending step, 
allowing for the recovery of more detailed signals, especially weak diffractions. In addi-
tion, transfer learning is employed in the training of adjacent individual networks to 
enhance training efficiency. Detailed comparisons of the synthetic examples show the 
superiority of the proposed algorithm, which constructs adaptive training data based 

Fig. 11   The recovered SNRs of 
all test CRGs of the raw pseudo-
deblended data by the multistep 
(three-step) algorithm (red dots) 
and the MBNS (three-level) 
with three iterations (blue dots). 
The performance of the 50th, 
100th, 150th, and 200th CRGs is 
marked by circles
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on raw pseudo-deblended CSGs and deblends the raw pseudo-deblended CRGs with 
the optimized individual networks in a stepwise manner. Next, we use the adaptively 
constructed CSG training data of field data to fine-tune the first optimized network of 
synthetic data based on transfer learning, and the optimized multiple networks can be 
obtained to deblend the CRGs of raw pseudo-deblended field data using the multistep 
deblending algorithm.

Fig. 12   Deblending performance comparison of the 100th CRG. a The reference unblended record; b The 
enlarged part of the red box in (a); c The corresponding pseudo-deblended record of (b); d Deblended 
result of the multistep (three-step) deblending algorithm; e The enlarged part of the red box in (d); f The 
residual between (b) and (e); g Deblended result of the MBNS (three-level) with three iterations; h The 
enlarged part of the red box in (g); i The residual between (b) and (h)
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3.2 � Field Data Example

We have processed a 2D line survey with 128 shots, 128 geophones per shot, and 512 
samples in each trace. The preprocessed field data is from the Gulf of Suez, with a 
sampling time interval of 4  ms and a spatial interval of 12.5  m. The unblended field 
data is numerically blended with a blending fold of three to simulate field blended data 
acquisition. A specific CRG of unblended field data is shown in Fig. 13a, and the cor-
responding CRG of the pseudo-deblended data is shown in Fig. 13b. The coherent sig-
nal (Fig. 13a) is negatively contaminated by the randomized blending noise (Fig. 13c). 
To construct adaptive training sets for self-supervised algorithms in field data applica-
tions, we extract the CSGs from pseudo-deblended field data, and one of them is shown 
in Fig.  13d. Then, we artificially construct blending noise-contaminated seismic data 
as shown in Fig. 13e, which is regarded as the initial training input with the CSGs in 
Fig. 13d as the desired output. The constructed blending noise in Fig. 13f is similar to 
the raw blending noise in Fig. 13c. The coherence consistency between Fig. 13b and d 
guarantees the accuracy of the final deblending results for the CRGs of the raw pseudo-
deblended data using the optimized network with the CSG-assisted adaptive train-
ing sets. The multistep deblending algorithm uses 128 pairs of adaptive training data 
(Fig. 13d, e) as the desired output and initial training input.

Fig. 13   The comparison of the test data and the constructed training data. a The unblended field record; 
b The corresponding pseudo-deblended test CRG data; c The difference between (b) and (a), i.e., the raw 
blending noise; d The corresponding CSG of pseudo-deblended data, i.e., the constructed training label; e 
The constructed data with the additional blending noise contamination based on (d), i.e., the constructed 
initial training input; f The difference between (e) and (d), i.e., the constructed blending noise
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3.2.1 � Training on the CSGs of Pseudo‑deblended Field Data

For deblending field data, we fine-tune the first optimized network �∗
1
 of synthetic data 

using 112 pairs of field training data via transfer learning. The remaining 16 field data pairs 
are used as the validation data. The training epochs of three networks are set to 200, 100, 
and 60, respectively, for the proposed self-supervised multistep (three-step) deblending 
algorithm. The input of the first deblending network is seismic data with strong blending 
noise contamination (Fig. 14a). Figure 14b, c shows the input of the subsequent deblend-
ing networks as the deblending step increases, which contains gradually weaker blending 
noise. Figure 14d, e, and f shows the residual between the deblending input and the train-
ing label, which consists of the remaining blending noise and signal leakage from the pre-
vious step.

To illustrate the superiority of the self-supervised multistep algorithm on field data 
applications, the MBNS with a similar computation burden is implemented for detailed 
comparisons. Three scalars (1, 0.3, 0.0001) are used for the training data construction, and 
the training epoch number for the MBNS (three-level) is set to 120. Figure 15 illustrates the 
recovered average SNR with the increasing training epoch using the proposed self-super-
vised multistep (three-step) deblending algorithm (Fig. 15a) and the MBNS (Fig. 15b) dur-
ing network training. The blue curve represents the recovered SNR of the training data, and 
the solid red curve represents that of the validation data. The dashed red curve represents 
the recovered SNR of the validation data with the raw blending noise level (i.e., the scalar 
� = 1 ) using the MBNS.

3.2.2 � Deblending the CRGs of Pseudo‑deblended Field Data

When the training converges, we can obtain the optimized network parameters to deblend 
all CRGs of the raw pseudo-deblended field data in a stepwise manner. For a better 

Fig. 14   a, b, c The input of the sequential first, second, and third network for deblending; d, e, f The resid-
ual between (a, b, c) and the training label, i.e., the blending noise and signal leakage
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comparison, deblending is also performed using the MBNS (three-level) with three itera-
tions. Figure  16 shows the recovered SNRs of each test CRG when the deblended data 
is compared with the referenced unblended data. The result of the proposed algorithm is 
depicted by the red dots, and that of the MBNS with three iterations is depicted by the 
blue dots. The average recovered SNR is 12.56  dB for deblended results using the pro-
posed multistep algorithm. The MBNS achieves an average recovered SNR of 10.88 dB 
after three iterations, which is approximately 1.7 dB lower than the multistep algorithm. 
Figure 16 shows that the multistep algorithm has a significant improvement in deblending 
performance compared to the MBNS during CRG deblending. The reason is that the mul-
tistep deblending algorithm quantifies the remaining blending noise levels using different 

Fig. 15   The recovered SNR convergence curve during the network training of (a) the proposed self-super-
vised multistep (three-step) algorithm and (b) the MBNS (three-level)
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Fig. 16   The recovered SNRs of all test CRGs of the raw pseudo-deblended data by the multistep (three-
step) algorithm (red dots) and the MBNS (three-level) with three iterations (blue dots). The performance of 
the 50th and 100th CRGs is marked by the circles
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individual networks. In contrast, the MBNS employs scalars to qualitatively imitate the 
blending noise levels, which inevitably biases the true blending noise levels during itera-
tive deblending procedures. The recovered SNR of the test field CRGs indicates the reli-
ability of the proposed self-supervised multistep deblending algorithm.

Figure 17 depicts the deblending performance of the 25th CRG. The unblended seismic 
record is shown in Fig. 17a as a reference for the deblending performance evaluation, and 
the corresponding pseudo-deblended record is shown in Fig. 17b. Figure 17c–f shows the 
deblended result and the attenuated blending noise using the proposed multistep algorithm 
and the MBNS, respectively. To better clarify the results, the local area marked by the red 

Fig. 17   Deblending performance comparison of the 25th CRG. a The reference unblended record; b The 
corresponding pseudo-deblended data; c Deblended result of the multistep (three-step) deblending algo-
rithm; d The difference between (b) and (c), i.e., the attenuated blending noise; e Deblended result of the 
MBNS (three-level) with three iterations; f The difference between (b) and (e), i.e., the attenuated blending 
noise. The local area marked by the red box in each subpanel is enlarged and displayed to the corresponding 
right part
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box in each subpanel is enlarged to the corresponding right side. The recovered SNRs are 
11.90 dB and 10.79 dB for the deblended results obtained using the multistep (three-step) 
algorithm and the MBNS (three-level) with three iterations, respectively. In addition to the 
quantitative evidence of a higher recovered SNR, the proposed self-supervised multistep 
algorithm provides a visually better deblended result over the MBNS (three-level) with 
three iterations for field data deblending to demonstrate its superiority.

In addition to the evaluation based on recovered SNR, we further use a local similarity 
map (Chen and Fomel, 2015a) to assess the deblending performance. Figure 18 depicts the 
local similarity between the attenuated blending noise and the deblended result for the 25th 
CRG. The similarity map of the proposed multistep (three-step) algorithm (Fig.  18a) is 
lower than that of the MBNS (three-level) with three iterations (Fig. 18b), which indicates 
lower signal leakage and thus better deblending performance using the proposed multistep 
algorithm.

In order to further validate the self-supervised multistep deblending algorithm using 
an adaptive training set, the deblending performance of a specific CSG is displayed in 
Fig. 19 after deblending all CRGs. Figure 19a shows the unblended result of the 100th 
CSG as a reference to evaluate the deblending performance, and the corresponding 
pseudo-deblended record is shown in Fig. 19b with coherent blending noise contamina-
tion. Figure  19c–f displays the deblended result and the attenuated coherent blending 
noise using the multistep deblending algorithm and the MBNS, respectively. The recov-
ered SNRs are 13.84 dB and 12.52 dB, respectively, and the proposed algorithm shows 
a quantitatively better deblending performance. For clear illustrations, we enlarge the 
areas where the blending noise dominates, marked by the red box in each subpanel, and 
display them to the corresponding right part. Figure 19c displays the deblended result 
obtained using the proposed method, which effectively attenuates the coherent blend-
ing noise, as shown in Fig. 19d. In contrast, there is some remaining coherent blending 

Fig. 18   Similarity maps between the deblended result and the attenuated blending noise of the 25th CRG 
using a the multistep (three-step) deblending algorithm and b the MBNS (three-level) with three iterations
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interference in the deblended result obtained using the MBNS (Fig. 19e), and the atten-
uated coherent blending noise is displayed in Fig. 19f.

To assess the signal preservation ability of different algorithms, Fig.  20 shows the 
similarity maps of the 100th CSG between the deblended result and the attenuated 
coherent blending noise using the proposed multistep deblending algorithm and the 
MBNS. The proposed algorithm generates a lower similarity map (Fig. 20a) almost eve-
rywhere when compared with the MBNS (Fig. 20b), which indicates the superiority of 
the proposed multistep deblending algorithm. Detailed comparisons demonstrate that 
the multistep algorithm is superior to the MBNS with similar computational cost during 
field data deblending.

Fig. 19   Deblending performance comparison of the 100th CSG. a The reference unblended record; b The 
corresponding pseudo-deblended data; c Deblended result of the multistep (three-step) deblending algo-
rithm; d The difference between (b) and (c), i.e., the attenuated blending noise; e Deblended result of the 
MBNS (three-level) with three iterations; f The difference between (b) and (e), i.e., the attenuated blending 
noise. The local area marked by the red box in each subpanel is enlarged and displayed to the corresponding 
right part
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4 � Conclusions

We propose a self-supervised multistep deblending workflow to obtain deblended data for 
subsequent processing steps. In contrast to the supervised deblending algorithm, which 
requires clean labels, the self-supervised deblending algorithm uses the CSGs of pseudo-
deblended data to adaptively construct the training sets. The CSGs are regarded as the 
labels, and the constructed results with the blending noise contamination are used as the 
training input. The multistep deblending strategy trains distinct individual networks to 
quantify the remaining blending noise in a flexible way. The predicted signal of the pre-
vious optimized network is used for blending noise estimation–subtraction to update the 
input of the current network. Besides, the optimized parameters of the previous network 
initialize the training of the current network based on transfer learning in order to maxi-
mize the training efficiency and stability. The SSIM is also incorporated flexibly into the 
loss function of subsequent network training for accurate remaining weak blending noise 
attenuation. Finally, the optimized individual networks are used sequentially to deblend 
the CRGs of the raw pseudo-deblended data. With CSG-assisted adaptive training data, 
the proposed multistep deblending strategy, without requiring clean labels, promotes the 
deblending performance. The proposed self-supervised multistep deblending algorithm is 
positively supported by synthetic and field data examples and achieves superior deblending 
performance when compared with the multilevel blending noise strategy in terms of weak 
signal preservation and blending noise attenuation.
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