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Abstract
Linear arrays are popularly used for passive surface wave imaging due to their high effi-
ciency and convenience, especially in urban applications. The unknown characteristics 
such as azimuth of noise sources, however, make it challenging to extract accurate phase-
velocity dispersion information by employing a 1-D linear array. To solve this problem, we 
proposed an alternative passive surface wave method to capture the dominant azimuth of 
noise sources and retrieve the phase-velocity dispersion curve by polarization analysis with 
multicomponent ambient noise records. We verified the proposed method using synthetic 
data sets under various source distributions. According to the calculated dominant azimuth, 
it is deduced that noise sources are mainly classified as either inline or offline distribu-
tion. For inline noise source distribution, we are able to directly obtain the unbiased phase-
velocity measurements; for offline noise source distribution, we should correct the velocity 
overestimation due to azimuthal effects using the proposed method. Results from two field 
examples show that the distributions of noise sources are predominantly offline. We elimi-
nated the velocity bias caused by offline source distribution and picked phase velocities fol-
lowing higher amplitude peaks along the trend. After the azimuthal correction, the picked 
phase-velocity dispersion curves in dispersion images generated from passive source data 
match well with those from active source data, demonstrating the practicability of the pro-
posed technique.
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Article Highlights

• We present an alternative passive surface wave method to capture the dominant azi-
muth of noise sources and estimate phase velocity by polarization analysis with multi-
component ambient noise records

• We deduce that noise sources are mainly classified as either inline or offline distribu-
tion according to the dominant azimuth

• Results from synthetic data and field examples show that the velocity overestimation 
due to offline noise source distribution is corrected using the proposed method

1 Introduction

Surface waves propagate along the earth–air or the earth–water interfaces and are usu-
ally characterized by relatively low velocity, low frequency, high amplitude, and disper-
sion property in all earth models except for the case of the elastic half-space. Geometric 
dispersion of surface waves is used to infer the properties of medium by estimating the 
model parameters (e.g., shear (S)-wave velocity) for applications of near-surface geology, 
environment, and engineering (Socco et al. 2010). Stokoe and Nazarian (1983) and Naz-
arian et  al. (1983) introduced a surface-wave method, called spectral analysis of surface 
wave (SASW), which analyzes dispersive phase velocity of Rayleigh waves to determine 
S-wave velocity profiles. But the SASW method is subject to coherent noise and unable 
to extract multimode surface waves. Multichannel analysis of surface waves (MASW) was 
then developed to evaluate S-wave velocity profiles by utilizing a multichannel recording 
system and had been widely applied in near-surface applications because it improved the 
quality control during data acquisition and processing steps (Song et al. 1989; Park et al. 
1999; Xia et al. 1999, 2003, 2012). The standard procedure for MASW includes acquisi-
tion of high-frequency broad-band Rayleigh waves, extraction of Rayleigh wave dispersion 
curves, and inversion of dispersion curves. For the extraction of dispersion curves, wave-
field transformation techniques such as the phase shift (Park et al. 1998) and slant stack 
methods (McMechan and Yedlin 1981; Xia et al. 2007) are commonly used to transfer the 
original time–space domain data into the frequency-velocity domain. Rahimi et al. (2021) 
evaluated the performance of four common MASW wavefield transformation techniques 
and concluded that the best practice is to at least use two different transformation methods 
to enhance the data quality, especially for complex stratigraphy environments. Once the 
dispersion curves are identified, we can use the linear or nonlinear optimization algorithms 
to estimate near-surface S-wave velocity by the inversion of phase velocities (Xia et  al. 
1999; Wathelet et al. 2004; Dal Moro et al. 2007; Aleardi et al. 2020; Barone et al. 2021). 
Currently, the MASW method has been widely used in geotechnical engineering for near-
surface site characterization, infrastructure evaluation and liquefaction assessment (Rix 
et al. 2002; Socco and Strobbia 2004; Cardarelli et al. 2014; Wood et al. 2017; Mi et al. 
2019).

Active surface wave survey, however, often does not achieve sufficient depth of inves-
tigation since most active sources such as mechanical weight drops or sledgehammers are 
bandwidth-limited due to their physical limitations. To overcome this limitation, passive 
surface-wave methods utilize seismic ambient noise generated from natural or anthropo-
genic sources to extract dispersion information at long wavelengths, providing a wide range 
of investigation depths from a few tens to hundreds of meters (Aki 1957; Asten 1978; Park 
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et al. 2004). Passive seismic methods have been paid more attention in near-surface geo-
physical and geotechnical communities since they not only have deep investigation depths 
but also overcome the challenges in performing seismic investigation in noisy urban envi-
ronments (Cheng et al. 2018; Chen et al. 2021; Pang et al. 2022). The origins of passive 
surface-wave methods date back to the pioneering work of Aki (1957) who investigated 
the ambient noise as surface waves and proposed the theory of a spatial autocorrelation 
(SPAC). The 2-D receiver array, however, such as a triangular or L-shape layout, is an 
impractical and uneconomical mode of survey in urban areas populated with buildings. 
Chávez-García et  al. (2006) presented an extension of the SPAC method to obtain reli-
able dispersion curves from noise recordings without constraints in the geometry of the 
array. Two-station microtremor SPAC is recently developed to extract dispersion curves 
between station pairs allowing the flexible receiver geometries (Hayashi et al. 2013; Cho 
2020). Asten and Hayashi (2018) summarized the fundamental theory of the SPAC method 
and reviewed recent developments including choice of array, alternative SPAC processing 
methodologies, and the comparison of frequency-wavenumber and SPAC methods. Louie 
(2001) developed the refraction microtremor technique to process passive data recorded 
with a 1-D linear receiver array. It should be noted that the measured phase velocity of the 
1-D method is equal to true phase velocity only when wave propagation is parallel to the 
receiver line. Considering different types of wave propagation, Park et  al. (2004, 2008) 
introduced dispersion imaging schemes of inline plane waves, offline plane waves, and 
offline cylindrical waves for roadside passive surveys. Baglari et al. (2020) presented the 
influence of the length of receiver array and acquisition time on the resolution of disper-
sion image obtained from roadside passive surveys and compared the results obtained from 
passive and active surveys in terms of the dispersion imaging and S-wave velocity pro-
files at the specific sites. To obtain the strong higher-order dispersion information, the fre-
quency-Bessel transform (F-J) method is recently developed to extract multimode surface 
wave dispersion curves from active or passive source data regardless of the assumptions of 
plane wave (Forbriger 2003; Wang et al. 2019; Li and Chen 2020; Xi et al. 2021). Hu et al. 
(2020) extended the F-J method to the multicomponent cross-correlation function of noise 
recordings for the multimode dispersion curve extraction of Rayleigh and Love waves.

The cross-correlation of noise recordings at two different stations has recently been 
shown to be a powerful method for estimating Green’s function between the stations 
(Claerbout 1968; Weaver et  al. 2001; Shapiro and Campillo 2004; Sabra et  al. 2005; 
Bensen et  al. 2007). Many theoretical studies demonstrate that the extraction of Green’s 
function can be derived from normal modes (Lobkis and Weaver 2001), time-reversal sym-
metry (Derode et al. 2003), representation theorems (Wapenaar 2004; Wapenaar and Fok-
kema 2006), and stationary phase analysis (Snieder et al. 2006). Shapiro et al. (2005) con-
structed tomographic images of the principal geological units of California using hundreds 
of interstation surface wave group-velocity measurements determined by cross-correlating 
long sequences of ambient seismic noise recorded at stations in Southern California. Then, 
numerous applications of ambient noise cross-correlation technique on a continental and 
regional scale emerge rapidly (Yao et al. 2006; Moschetti et al. 2007; Lin et al. 2008; Yang 
et al. 2008; Foster et al. 2014; Shen and Ritzwoller 2016; Zhou et al. 2021). In recent years, 
seismic interferometry by cross-correlation is increasingly applied for near-surface inves-
tigations (Nakata et al. 2011; Draganov et al. 2013; Behm et al. 2014; Cheng et al. 2015; 
Quiros et al. 2016; Guan et al. 2021; Liu et al. 2021; Ning et al. 2021). Le Feuvre et al. 
(2015) introduced the use of cross-correlations in the passive multichannel analysis of sur-
face waves and showed an improvement in the determination of subsurface shear veloci-
ties from ambient seismic noise. For complex urbanized environments, Cheng et al. (2016) 
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investigated that directional noise sources will bring azimuthal effects to the phase-velocity 
estimation because true randomness of ambient noise cannot be achieved in reality.

To minimize the azimuthal effects, different kinds of algorithms are developed to 
improve passive imaging with ambient noise. They can be mainly summarized as: (1) 
Beamforming analysis. Cheng et al. (2016) presented the multichannel analysis of passive 
surface waves (MAPS) to correct the azimuthal effects of cultural noise by identifying the 
azimuth of the predominant noise sources based on beamforming analysis. Xia et al. (2017) 
demonstrated the advantages of MAPS in urban environments and suggested that MAPS 
could be used to accurately and rapidly image the surface wave dispersion energy, even for 
only a few minutes of noise recordings. Pang et al. (2019) introduced a data selection tech-
nique in time domain for selective stacking of cross-correlations and applied it to improve 
the MAPS measurement. Liu et  al. (2020) used a beamforming algorithm to correct the 
apparent velocities of waves traveling obliquely to the array by adding two more offline 
receivers to a conventional linear array. Morton et al. (2021) proposed the passive 1D-2D 
MASW method to select optimal time windows when passive seismic sources are of suffi-
cient quality and aligned with the 1D receiver spread for improving passive-data dispersion 
measurement. Ning et al. (2022) used the beamforming analysis to select noise segments 
coming from the sources in the stationary phase zone to obtain virtual shot gathers with 
high signal-to-noise ratio and high-resolution dispersion energy. Mi et al. (2022) applied 
the MAPS method to traffic-induced noise recorded by dense linear arrays for investigating 
near-surface structures in Hangzhou City, Eastern China. (2) Filter and weight stacking. 
For the biased Green’s function due to directional sources, Carrière et al. (2014) designed 
matrix-based spatial filters to remove unwanted contributions of in the cross-correlations. 
Weaver and Yoritomo (2018) introduced stacking schemes for optimizing the time-varying 
weight to make the effective noise source distribution isotropic. Wu et  al. (2020) devel-
oped an adapted eigenvalue-based filter to attenuate the interference of strong directional 
sources and improve cross-correlations. Zhao et al. (2021) applied the wavelet-domain fil-
ter to ambient noise cross-correlations for enhancing the signal-to-noise ratio of virtual 
shot gathers and improving the subsequent phasee-velocity dispersion measurement. Shir-
zad et al. (2022) developed a new method based on weighted root-mean-square stacking 
to improve the distorted Green’s function in the case of non-uniform distribution of noise 
sources. (3) Waveform inversion. For anisotropic seismic source distributions and hetero-
geneous subsurface structures, Sager et al. (2018) demonstrated that full waveform ambient 
noise inversion is an effective and promising approach to estimate source distribution. The 
theoretical foundation of this approach can date back to the previous work (Tromp et al. 
2010; Fichtner 2015). Xu et al. (2019) further demonstrated that using both vertical–verti-
cal and radial–radial cross-correlations can better constrain estimation of the source dis-
tribution than vertical–vertical cross-correlations alone. Datta et  al. (2019) introduced a 
new method based on the theoretical framework of sensitivity kernels for cross-correlation 
waveforms to determine ambient noise directionality. Zhou et al. (2022) developed a wave-
form joint imaging algorithm to invert noise source distributions and the corresponding 
unbiased surface wave velocities.

Compared with the other kinds of method, the beamforming analysis is an effective tool 
for estimating the directionality of wavefield and correcting the velocity bias for 2-D receiver 
array or pseudo-linear array (Rost and Thomas 2002; Roux 2009; Behr et al. 2013; Cheng 
et al. 2016; Liu et al. 2020; Ning et al. 2022). Unfortunately, the linear array based on the 
beamforming algorithm is challenging to present the correct noise source distribution (Liu 
et  al. 2020). With the development of multicomponent seismic instruments, approaches 
based on the polarization of seismic waves are used to estimate the wavefield directionality 



1867Surveys in Geophysics (2023) 44:1863–1895 

1 3

(Perelberg and Hornbostel 1994; Baker and Stevens 2004; Schute-Pelkum et al. 2004; Tani-
moto et al. 2006; Schimmel et al. 2011; Takagi et al. 2018; Dangwal and Behm 2021). Assum-
ing the seismic wave type of the observed data, we can infer a direction of incidence from 
the particle motion (Koper and Hawley 2010). An advantage of polarization analysis is that 
the back azimuth is estimated from the three-component records at a single station. Chev-
rot et al. (2007) compared results from beamforming to particle motion polarization analysis 
and concluded that polarization analysis is able to constrain the direction of arrival with only 
one three-component station. Takagi et al. (2018) provided a detailed description of polariza-
tion analysis of incident waves from a distributed source more suitable for microseisms and 
applied the approach to estimate the directionality of ambient noise recorded by Hi-net. Sue-
moto et al. (2020) applied polarization analysis of InSight seismic data to estimate the tempo-
ral variation and frequency dependence of the Martian ambient noise field and analyzed the 
presence of several ambient noise sources as well as geological structure at the landing site. 
Zenhäusern et al. (2022) used the polarization analysis to estimate the back azimuth of seismic 
events recorded by InSight and create a new and extended set of marsquake location.

A 2-D array requires wide space for deployment of receiver which may not be easily avail-
able in highly populated urban areas. In this paper, we propose an alternative passive surface 
wave method by polarization analysis with multicomponent noise recorded by 1-D linear array 
to capture the dominant azimuth of noise-source distribution and perform accurate dispersion 
measurements. Theoretical background of the proposed method will be first introduced. Next, 
three synthetic tests demonstrate the advantages of our method in detection of the dominant 
noise-source direction and estimation of the unbiased dispersion measurements under various 
source distributions. Finally, results from two field examples in urban environments show the 
feasibility of the proposed method.

2  Method

When noise sources show a strong directionality, linear arrays may produce biased phase-
velocity measurements (Park and Miller 2008; Le Feuvre et al. 2015). To capture the domi-
nant azimuth of noise sources is key to azimuthal adjustment for the MAPS method (Cheng 
et al. 2016).

Assuming that Rayleigh waves are incident as plane waves on each seismic station, we 
can represent the multicomponent wavefields by a superposition of incident plane waves as 
follows:

where f is frequency; uZ(f ) , uN(f ) , and uE(f ) are the Fourier spectra of the vertical, north 
and east wavefields, respectively; AR(�, f ) is the Fourier spectrum of the vertical wavefield 
of Rayleigh wave propagating in azimuth � (in degrees counter-clockwise from east); and 
H(f ) is the horizontal-over-vertical ratio of the Rayleigh waves. As shown by Takagi et al. 
(2018), we use the x(f ) =

+∞

∫
−∞

X(t)ei2�ftdt as the Fourier time transform. In this convention, 

(1)

uZ(f ) =
�

∫
−�

d�AR(�, f )

uN(f ) =
�

∫
−�

d�iH(f )AR(�, f ) sin�

uE(f ) =
�

∫
−�

d�iH(f )AR(�, f ) cos�
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the particle motion is retrograde when H(f ) is positive. According to the previous study 
(Harmon et  al. 2010; Takagi et  al. 2018), the relationships between vertical-horizontal 
cross-spectra and azimuthal power spectrum of incident Rayleigh waves under the assump-
tion of random uncorrelated waves are given by (see Appendix A for the details)

where ⟨⟩ denotes the ensemble average; aR1 and bR1 are first-order Fourier coefficients 
of the azimuthal power spectrum. When Rayleigh waves are radiated from a distributed 
source, it is indicated from Eq. (2) that the first-order terms have a single peak that repre-
sents the centroid of the propagation directions of the incident Rayleigh waves.

Following Takagi et  al. (2018), the propagation azimuth of the Rayleigh waves can be 
estimated from one-station multicomponent records without the ambiguity of 180° when the 
direction of the rotational motion (prograde or retrograde) is known. Although the rotational 
direction of the fundamental mode Rayleigh waves is retrograde in most cases, the rotational 
motion of Rayleigh waves can be prograde for the fundamental mode in sedimentary areas. 
To solve the uncertainty of the direction of rotation, we utilize the asymmetry of the cross-
correlation functions to determine the predominant direction of Rayleigh waves regardless of 
the direction of rotational motion. Note that we take the orientation from the first station to the 
end station as the forward direction of incident Rayleigh waves. On the contrary, the backward 
direction of incident Rayleigh waves is from the end station to the first station. The causal and 
acausal parts of cross-correlation functions of vertical-component records at several stations 
can be used to determine whether incident Rayleigh waves come from the forward or back-
ward direction (Stehly et al. 2006; Pang et al. 2019). If the amplitude of the causal part the 
cross-correlation functions is much larger than the one of the acausal part, it is deduced that 
incident Rayleigh waves mainly originate from the forward direction. Similarly, incident Ray-
leigh waves mainly originate from the backward direction when the amplitude of the causal 
part the cross-correlation functions is smaller than the one of the acausal part. We then define 
the azimuth φ that characterizes the directionality of incident Rayleigh waves (Takagi et al. 
2018; Suemoto et al. 2020),

where φj(f ) corresponds to the azimuth estimated from station j of the multicomponent 
records. For M seismic stations of 1-D linear array, we can obtain M repeated measure-
ments of the azimuth. Although single station polarization analysis is commonly used for 
the estimation of the azimuth, we calculate the mean azimuth �(f ) by stacking all seismic 
stations for a robust estimation considering that some stations may be affected by the ran-
dom disturbance,

(2)

⟨
u∗
Z
(f )uN(f )

⟩
= iH(f )bR1⟨

u∗
Z
(f )uE(f )

⟩
= iH(f )aR1

(3)�j(f ) =

⎧
⎪⎪⎨⎪⎪⎩

arctan

�
Imu∗

Z
(f )uN(f )

Imu∗
Z
(f )uE(f )

�
+ � = arctan

�
bR1

aR1

�
+ �, if forward

arctan

�
Imu∗

Z
(f )uN(f )

Imu∗
Z
(f )uE(f )

�
= arctan

�
bR1

aR1

�
, if backward

(4)�(f ) =
1

M

M∑
j=1

�j(f )
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It is from Eq. (4) that �(f ) is frequency-dependent. For a particular frequency, one cor-
responding azimuth can be calculated. Statistically, we obtain the frequency (count) dis-
tribution of mean azimuth within a broad frequency band, marked P(�) . The dominant 
azimuth �̂ for the linear array is detected by maximizing the counts of P(�) as follows

After detecting the dominant azimuth, we deduce that sources of noise records are pre-
dominantly classified as either inline or offline distribution. Note that inline distribution is 
considered as the stationary phase zone of the linear array (Boschi and Weemstra 2015; 
Ning et al. 2022). As for the inline case, phase-velocity dispersion measurements without 
azimuthal adjustment are implemented by the MAPS method introduced by Cheng et al. 
(2016):

where E(f , c) is the relative dispersion energy matrix for a particular frequency f  and 
a scanning velocity c ; C+

jk
(f ) and C−

jk
(f ) are the Fourier transformation of the causal and 

acausal parts of cross-correlation between station j and station k of the vertical-component 
records, respectively; xjk corresponds to the distance between station j and station k.

Substituting the detected azimuth �̂ into Eq.  (6), accurate relative dispersion energy 
matrix E(f , c) for the offline case is updated by:

3  Numerical Tests

To demonstrate the performance of the proposed method, we conducted three synthetic 
tests for passive surface wave imaging: one for inline noise sources, and the others for 
offline noise sources. The normal mode summation code in the Computer Programs in 
Seismology package (Herrmann 2013) was used to generate the surface wave synthetic 
noise waveforms with 10,000 point single force sources at the free surface. The medium 
is a two-layer model (Table 1), whose properties are taken from Bonnefoy-Claudet et al. 
(2006). The 24 stations named H01 to H24 with H13 near the origin are deployed (the 
solid black triangles from left to right in Fig. 1a), and the interval between stations is 5 m.

We first consider the case A of inline noise sources, which are randomly distributed at 
polar coordinates between R1 = 1000  m, �1 = −10◦ and R2 = 3000  m, �2=10◦ , as the red 
dots shown in Fig. 1a. The orientations and amplitudes of the point force sources were also 
randomly distributed in Fig. 1b as suggested by Herrmann (2013), which will generate both 
Rayleigh and Love waves. Examples of the synthetic ambient noise recorded by a station 

(5)�̂� = argmax
𝜑

P
(
𝜑
)

(6)E(f , c) =

||||||

M−1∑
j=1

M∑
k=j+1

exp

(
i2�fxjk

c

)C+
jk
(f ) + C−

jk
(f )

2

||||||
,

(7)E(f , c) =

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

������

M−1�
j=1

M�
k=j+1

exp

�
i2𝜋fxjk cos �̂�

c

�
C+
jk
(f )

������
, if forward

������

M−1�
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�
i2𝜋fxjk cos �̂�

c

�
C−
jk
(f )

������
, if backward
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in the seismic array are shown in Fig. 1c. The noise recordings are experimentally divided 
into 10 s windows. Following the processing procedure described in Cheng et al. (2016), 
cross-correlation functions with H01 as the virtual source are calculated in Fig. 2a. The 
asymmetry of cross-correlations shows that incident Rayleigh waves mainly come from 
the backward direction. Figure 2b and c displays the azimuth measured by station H01 and 
station H24, respectively. The mean azimuth for the 1-D linear array is shown in Fig. 2d. 

Table 1  Parameters of a two-
layer model for surface wave 
synthetic noise data

Layer S-wave 
velocity 
(m/s)

P-wave 
velocity 
(m/s)

Density (kg/m3) Thickness (m)

1 200 1350 1900 25
2 1000 2000 2500 Infinite

Fig. 1  a Sources and receiver distribution in case A. Noise sources (the red dots) are randomly at polar 
coordinates between R1 = 1000 m, �

1
= -10◦ and R2 = 3000 m, �

2
= 10◦ ; A 24-channel linear array (the solid 

black triangles) with a 5-m interval is used. b Randomly distributed force intensity at different directions. 
FE, force in the eastward/westward direction (eastward positive); FN, force in the northward/southward 
direction (northward positive); FD, force in the downward/upward direction (downward positive). c Syn-
thetic multicomponent noise data recorded by one station marked as H01
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It is seen that the mean azimuth is superior to the azimuth from single station in robust-
ness. Then we obtained the frequency distribution of the mean azimuth for the 1-D linear 
array within a broad frequency range from 1 to 30 Hz (Fig. 2e). The dominant azimuth is 
determined by detecting the peak location of the counts at the �̂�=0◦ . Consequently, we can 
deduce that the distribution of noise sources is predominantly inline. Figure  2f exhibits 

Fig. 2  a Cross-correlation functions with H01 as the virtual source. b The azimuth measured by station 
H01. c The azimuth measured by station H24. d The mean azimuth for the 1-D linear array. e The fre-
quency distribution of the mean azimuth with a broad frequency band from 1 to 30 Hz in case A. f Phase 
velocity–frequency diagrams in case A. The solid white line is theoretical dispersion curve. It is normalized 
along the frequency axis in the full frequency band for display only
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phase velocity–frequency diagrams calculated by Eq.  (6). Peaks of dispersion diagrams 
match well with the theoretical curve (the solid white line in Fig. 2f).

We next consider the case B of offline noise sources, which are randomly distributed 
at polar coordinates between R1 = 1000 m, �1= 125◦ and R2 = 3000 m, �2=145◦ , as the red 
dots shown in Fig. 3. By calculating cross-correlation functions (Fig. 4a). we analyzed that 
incident Rayleigh waves mainly come from the forward direction since the amplitude of 
the causal part of the cross-correlation functions is much larger than the one of the acausal 
part. Figure 4b and c displays the mean azimuth for the 1-D linear array and the frequency 
distribution of the mean azimuth in the frequency band of 1–30 Hz, respectively. The dom-
inant azimuth is determined by detecting the peak location of the counts at the �̂�= 135◦ . 
Therefore, it is deduced that the distribution of noise sources is predominantly offline. Fig-
ure 4d obtained using Eq. (6) displays velocity–frequency diagrams without azimuthal cor-
rection. It is observed from Fig.  4d that the measurement systematic deviation between 
surface-wave energy and the theoretical dispersion curve (the solid white line in Fig. 4d) 
exists because of offline noise source distribution. Figure 4e obtained using Eq.  (7) dis-
plays velocity–frequency diagrams after azimuthal correction. We can pick phase veloci-
ties agreed with the theoretical dispersion curve (the solid white line in Fig. 4e).

We now consider the case C including the offline and inline noise sources simul-
taneously. Offline noise sources (10,000 point single force sources) are randomly dis-
tributed at polar coordinates between R1 = 1000 m, �1=50◦ and R2 = 3000 m, �2=70◦ . 
And inline noise sources (2000 point single force sources) are randomly distributed in 
two distinct areas, which are in the range of R1 = 1000 m, �3 = −10◦ and R2 = 3000 m, 
�4=10

◦ , and R1 = 1000 m, �5= 170◦ and R2 = 3000 m, �6=190◦ in polar coordinates, as 
shown by the red dots (Fig. 5). As described previously, we calculated cross-correla-
tion functions (Fig. 6a). Although surface-wave signals exist in the causal part of the 
cross-correlation functions, the amplitude of the causal part is smaller than the one of 
the acausal part. This indicates that incident Rayleigh waves mainly come from the 
backward direction. The mean azimuth for the 1-D linear array is calculated in Fig. 6b, 
and the frequency distribution of the mean azimuth in the frequency range from 1 to 
30 Hz is obtained in Fig. 6c. The dominant azimuth by detecting the peak location of 

Fig. 3  Sources and receiver distribution in case B. Noise sources (the red dots) are randomly at polar coor-
dinates between R1 = 1000 m, �

1
= 125

◦ and R2 = 3000 m, �
2
= 145◦ ; A 24-channel linear array (the solid 

black triangles) with a 5-m interval is used
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the counts at the �̂�= 60◦ . As a result, it is deduced that the distribution of noise sources 
is predominantly offline. Figure 6d obtained using Eq. (6) displays velocity–frequency 
diagrams without azimuthal correction. We noticed that offline noise source distribu-
tion results in a significant deviation between surface-wave energy and the theoretical 

Fig. 4  a Cross-correlation functions with H01 as the virtual source. b The mean azimuth for 1-D linear 
array. c The frequency distribution of the mean azimuth with a broad frequency band from 1 to 30 Hz in 
case B. d Phase velocity–frequency diagrams without azimuthal correction, and e phase velocity–frequency 
diagrams after azimuthal correction in case B. The solid white lines are theoretical dispersion curves
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dispersion curve (the solid white line in Fig. 6d). To correct the overestimation caused 
by azimuthal effects, we applied Eq.  (7) to obtain velocity–frequency diagrams after 
azimuthal correction (Fig. 6e). Phase velocities of surface waves can be clearly identi-
fied in Fig. 6e, which match with the theoretical dispersion curve (the solid white line 
in Fig. 6e).

4  Applications to Field Data

4.1  Qianjiang New City Experiment

The experiment site was  wasteland beside the main road in Qianjiang New City, Hang-
zhou, China (Fig. 7a). A linear array of 12 Fairfield Nodal ZLand 3C 5 Hz seismic sen-
sors in a 10  m spatial interval was deployed to continuously record cultural noise from 
local time 9:30 am on 15 June to 9:30 am on 16 June 2019, with a sampling frequency of 
1000 Hz (Fig. 7b). Note that the two horizontal components of sensors are oriented in the 
inline and crossline directions. Hence, the inline and crossline components are considered 
as the east and north components, respectively. Furthermore, an active seismic measure-
ment was performed with a hammer and the nearest offset of 10 m for a linear array to 
evaluate the accuracy and validity of corrected phase velocities.

We experimentally divided vertical-component noise recordings into a series with 60-s 
time segments after de-meaning and de-trending, and calculated the cross-correlation func-
tions with the virtual source located at the first trace (H01) of the survey area (Fig. 8a). The 
amplitude of the causal part the cross-correlation functions is smaller than the one of the 
acausal part. This indicates incident Rayleigh waves mainly come from the backward direc-
tion. Figure 8b and c displays the mean azimuth for the 1-D linear array and the frequency 
distribution of the mean azimuth in the frequency band of 1–30 Hz. The dominant azimuth 
is determined by detecting the peak location of the counts at the �̂� = −27◦ . Consequently, 

Fig. 5  Sources and receiver distribution in case C. Offline noise sources (10,000 point single force sources) 
are randomly distributed at polar coordinates between R1 = 1000  m, �

1
= 50◦ and R2 = 3000  m, �

2
= 70◦ . 

And inline noise sources (2000 point single force sources) are randomly distributed in two distinct areas, 
which are in the range of R1 = 1000 m, �

3
= −10◦ and R2 = 3000 m, �

4
= 10◦ , and R1 = 1000 m, �

5
= 170◦ 

and R2 = 3000 m, �
6
= 190◦ , as shown by the red dots. A 24-channel linear array (the solid black triangles) 

with a 5-m interval is used
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we deduce that noise sources are predominantly classified as offline distribution. Figure 8d 
exhibits velocity–frequency diagrams without azimuthal correction using Eq.  (6). The 
velocity overestimation caused by offline source distribution is corrected in the dispersion 

Fig. 6  a Cross-correlation functions with H01 as the virtual source. b The mean azimuth for 1-D linear 
array. c The frequency distribution of the mean azimuth with a broad frequency band from 1 to 30 Hz in 
case C. d Phase velocity–frequency diagrams without azimuthal correction, and e phase velocity–frequency 
diagrams after azimuthal correction in case C. The solid white lines are theoretical dispersion curves
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image (Fig. 8e) obtained using Eq. (7). We picked phase velocities between 2 and 16 Hz by 
following higher amplitude peaks along energy trend (Fig. 8d and e).

The active shot gather is shown in Fig. 9a. Figure 9b displays images of dispersion 
curves obtained by applying the phase-shift method (Park et al. 1999) to the active seis-
mic data. Surface-wave energy trend is hardly defined in the low frequency (< 14 Hz) 

Fig. 7  a An aerial photograph of the survey area in Qiangjiang New City, Hangzhou, China. A 1-D linear 
array of 12 Fairfield Nodal ZLand 3C 5 Hz seismic sensors (the solid red triangles) in a 10-m spatial inter-
val was deployed. b Multicomponent (East (E), North (N), Vertical (Z)) noise data recorded by the first 
trace of the 1-D linear array
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band while very well defined in the high-frequency band of 14–30 Hz. We picked phase 
velocities from 14 to 30 Hz following higher amplitude peaks along energy trend. By 
comparing the results between active and passive dispersion measurements, we found 

Fig. 8  a Cross-correlation functions with the virtual source located at the first trace of the survey area in 
Qianjiang New City experiment. b The mean azimuth for 1-D linear array. c The frequency distribution 
of the mean azimuth with a broad frequency band from 1 to 30 Hz. d Phase velocity–frequency diagrams 
without azimuthal correction, and e phase velocity–frequency diagrams after azimuthal correction. Phase 
velocities in dispersion images generated from passive source data (the solid white dots) are picked
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that the picked phase velocity dispersion curve in the corrected dispersion image gen-
erated from passive source data can generally agree with that from active source data 
(Fig. 10), demonstrating the accuracy of the proposed method.

Fig. 9  a A shot gather obtained using a hammer as the source in Qianjiang New City experiment, and b 
An image of dispersive energy from the active seismic data and the picked phase velocities (the solid white 
dots)
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4.2  Fengqi Road Experiment

The experiment was carried out along the Fengqi Road in the city of Hangzhou, Zhejiang 
Province of China (Fig. 11a). A linear array of 24 Fairfield Nodal ZLand 3C 5 Hz seismic 
sensors was deployed with a sampling frequency of 1000 Hz and 5-m spatial interval. It is 
noted that the two horizontal components of sensors are oriented in the inline and crossline 
directions. The inline and crossline components are deemed as the east and north compo-
nents, respectively. Continuous traffic noise data were recorded for up to 36 h starting at 
the local time 10:50 am on 10 June 2019 (Fig. 11b). As designed in the former example, 
we also conducted the active seismic measurement with a hammer and the nearest offset of 
5 m for a linear array.

The vertical-component noise recordings were experimentally split into 60 s time series 
after de-meaning and de-trending. The asymmetry of cross-correlation functions with the 
virtual source located at the first trace (H01) of the survey line (Fig. 12a) indicates that 
incident Rayleigh waves mainly come from the forward direction because the amplitude 
of the causal part the cross-correlation functions is much larger than the one of the acausal 
part. The mean azimuth for the 1-D linear array is calculated in Fig. 12b, and the frequency 
distribution of the mean azimuth in the frequency band of 1–30 Hz is obtained in Fig. 12c. 
The dominant azimuth is determined by detecting the peak location of the counts at the 
�̂ = 162◦ . It is deduced that noise sources are predominantly classified as offline distribu-
tion. Figure 12d exhibits velocity–frequency diagrams without azimuthal correction using 
Eq.  (6). The velocity overestimation caused by offline source distribution is corrected in 
the dispersion image (Fig. 12e) obtained using Eq. (7). We picked phase velocities between 
2 and 15 Hz by following higher amplitude peaks associated with energy trend (Fig. 12d 
and e).

Figure 13a and b displays the active shot gather and the image of dispersive energy 
generated by transforming active seismic data from the time–space domain to the fre-
quency-velocity domain. Surface-wave energy trend is hardly defined in the low fre-
quency (< 8 Hz) band while very well defined in the high-frequency band of 8–25 Hz. 
We picked phase velocities from 8 to 25 Hz by following higher amplitude peaks associ-
ated with energy trend. Figure 14 exhibits the comparison between active and passive 

Fig. 10  Comparison between the 
picked phase-velocity disper-
sion curves in dispersion images 
generated from passive source 
data and active source data in 
Qianjiang New City experiment
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dispersion measurements. After the azimuthal correction, a great match between the 
picked phase-velocity dispersion curves in dispersion images generated from passive 
source data and active source data further demonstrates the validity of the proposed 
method. Unlike the previous field example, this one shows the higher mode of surface 
waves in the passive result but not in the active. The interesting phenomenon will be 
discussed in the following section.

Fig. 11  a An aerial photograph of the survey line along the Fengqi Road in the city of Hangzhou, Zhejiang 
province of China. A 1-D linear array of 24 Fairfield Nodal ZLand 3C 5 Hz seismic sensors (the solid red 
triangles) in a 5-m spatial interval was deployed. b Multicomponent (East (E), North (N), Vertical (Z)) 
noise data recorded by the first trace of the 1-D linear array
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Fig. 12  a Cross-correlation functions with the virtual source located at the first trace of the survey line in 
Fengqi Road experiment. b The mean azimuth for 1-D linear array. c The frequency distribution of the 
mean azimuth with a broad frequency band from 1 to 30 Hz. d Phase velocity–frequency diagrams without 
azimuthal correction, and e phase velocity–frequency diagrams after azimuthal correction. Phase velocities 
in dispersion images generated from passive source data (the solid white dots) are picked
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5  Discussion

5.1  Complex Noise Source Conditions

For urban surface wave surveys, passive surface wave measurement can be improved on 
condition that the directionality of the noise sources is counted for (Asten 2006; Halli-
day et al. 2008; Cheng et al. 2016). Polarization analysis rather than the beamforming is 

Fig. 13  a A shot gather obtained using a hammer as the source in Fengqi Road experiment, and b An image 
of dispersive energy from the active seismic data and the picked phase velocities (the solid white dots)
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applied to determine the dominant azimuth of noise sources using multicomponent noise 
data recorded by 1-D linear array because the linear array-based beamforming algorithm 
is difficult to present the correct noise source distribution by analyzing the array response 
function of the 1-D linear array (Liu et al. 2020). Synthetic tests and field examples have 
demonstrated that the proposed method is suitable for directional noise source distribution 
in urban environments. We will discuss the performance of the proposed method for com-
plex noise-source conditions such as different dominant azimuth for Rayleigh waves and 
Love waves or two dominant directions.

5.1.1  Different Dominant Azimuth for Rayleigh waves and Love waves

Noise sources generating Rayleigh waves (the red dots in Fig. 15) are randomly distributed 
in the range of R1 = 1000 m, �1 = 125◦ and R2 = 3000 m, �2 = 145◦ in polar coordinates, 
and noise sources generating Love waves (the blue dots in Fig. 15) are randomly distrib-
uted in the range of R1 = 1000 m, �3 = 200◦ and R2 = 3000 m, �4 = 220◦ in polar coordi-
nates. We calculated the cross-correlation functions and observed that the causal part of 
the cross-correlation functions has clear surface-wave signals (Fig. 16a). Incident Rayleigh 
waves mainly come from the forward direction because the amplitude of the causal part 
is larger than the one of the acausal part. Figure 16b and c displays the mean azimuth for 
the 1-D linear array and the frequency distribution of the mean azimuth in the frequency 
range from 1 to 30  Hz, respectively. We determined the dominant azimuth by detecting 
the peak location of the counts at the �̂ =138◦ . It indicates that the distribution of noise 
sources is predominantly offline. Figure 16d obtained using Eq. (6) displays velocity–fre-
quency diagrams without azimuthal correction. There is a significant deviation between 
surface-wave energy and the theoretical dispersion curve (the solid white line in Fig. 16d) 
due to offline noise source distribution. To minimize azimuthal effects, we applied Eq. (7) 
to obtain velocity–frequency diagrams (Fig. 16e). Compared with Fig. 16d, Fig. 16e can 
provide phase velocities that deviate less from theoretical dispersion curve (the solid white 
line in Fig. 16e). It proves that the proposed method also has the ability to obtain relatively 
accurate phase velocities in spite of different dominant azimuth for Rayleigh waves and 
Love waves.

Fig. 14  Comparison between the 
picked phase-velocity dispersion 
curves in dispersion images gen-
erated from passive source data 
and active source data in Fengqi 
Road experiment
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5.1.2  Two Dominant Directions

Noise sources are randomly distributed in two distinct areas, which are in the range of 
R1 = 1000  m, �1 = 125◦ and R2 = 3000  m, �2 = 145◦ , and R1 = 1000  m, �3 = 200◦ and 
R2 = 3000 m, �4 = 220◦ in polar coordinates. Considering that noise sources have differ-
ent frequency contents in different azimuth ranges, 10 Hz and 25 Hz Ricker wavelets are 
chosen as the source impulse in the former and latter areas, respectively. It is observed 
from the cross-correlation functions (Fig. 17a) that incident Rayleigh waves mainly come 
from the forward direction because the amplitude of the causal part is larger than the one 
of the acausal part. The mean azimuth for the 1-D linear array is calculated in Fig. 17b, 
and the frequency distribution of the mean azimuth in the frequency range from 1 to 30 Hz 
is obtained in Fig. 17c. By detecting the two peak locations of the counts, we found that 
noise sources in the frequency range from 1 Hz to about 18 Hz are dominated by the azi-
muth �̂1 = 135◦ while noise sources in the frequency range from about 18 Hz to 30 Hz 
are predominated by the azimuth �̂2 = 210◦ . Figure 17c obtained using Eq.  (6) displays 
velocity–frequency diagrams without azimuthal correction. Surface-wave energy appears 
break at round 18  Hz since noise sources have different frequency contents in different 
azimuth ranges. This makes us difficult to obtain the accurate phase velocities. Figure 18b 
and c displays the velocity–frequency diagrams after azimuthal correction using the azi-
muth �̂1 = 135◦ and �̂2 = 210◦ in a broad frequency band of 1–30 Hz, respectively. Obvi-
ously, it is inappropriate to only use the single dominant azimuth in the frequency band 
for phase velocity correction. To minimize azimuthal effects, dispersion measurement is 
performed using the azimuth �̂1 = 135◦ in the frequency range from 1 Hz to about 18 Hz 
and �̂2 = 210◦ in the frequency range from 18 to 30  Hz (Fig.  18d). We can pick phase 
velocities that match with the theoretical dispersion curve (the solid white line in Fig. 18d). 
It demonstrates that the proposed method also has potential to deal with two or more domi-
nant directions when noise sources have different frequency contents in different azimuth 
ranges. Note that we need to correctly determine the dominant azimuth in the different 
frequency band. It is worth mentioning that using the single dominant azimuth in the broad 

Fig. 15  Noise sources generating Rayleigh waves (the red dots) are randomly distributed in the range of 
R1 = 1000 m, �

1
= 125◦ and R2 = 3000 m, �

2
= 145◦ in polar coordinates, and noise sources generating Love 

waves (the blue dots) are randomly distributed in the range of R1 = 1000  m, �
3
= 200◦ and R2 = 3000  m, 

�
4
= 220◦ in polar coordinates. A 24-channel linear array (the solid black triangles) with a 5-m interval is 

used
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frequency band is relatively reasonable for the above field examples because the frequency 
distribution of the mean azimuth shows no distinguished peaks for the other azimuths and 
surface-wave energy before azimuthal correction has no clear break.

Fig. 16  a Cross-correlation functions with H01 as the virtual source. b The mean azimuth for 1-D linear 
array. c The frequency distribution of the mean azimuth with a broad frequency band from 1 to 30 Hz for 
complex noise sources with different dominant azimuth for Rayleigh waves and Love waves. d Phase veloc-
ity–frequency diagrams without azimuthal correction, and e phase velocity–frequency diagrams after azi-
muthal correction. The solid white lines are theoretical dispersion curves
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Besides, we also chose a 10  Hz Ricker wavelet as the source impulse in two dis-
tinct areas considering that noise sources have similar frequency contents in different 
azimuth ranges. According to the calculated cross-correlation functions (Fig. 19a), we 
analyzed that incident Rayleigh waves mainly come from the forward direction since 
the amplitude of the causal part is larger than the one of the acausal part. Figure 19b 
and c displays the mean azimuth for the 1-D linear array and the frequency distribution 
of the mean azimuth in the frequency band of 1–30  Hz, respectively. The dominant 
azimuth is determined by detecting the peak location of the counts at the �̂ = 173◦ . It 
indicates that the distribution of noise sources is predominantly offline. Figure 19d and 
e displays velocity–frequency diagrams using Eqs. (6) and (7), respectively. We found 
that the deviation between surface-wave energy (Fig. 19e) and the theoretical disper-
sion curve (the solid white line in Fig. 19e) still exists after azimuthal correction. The 
proposed method cannot work on two or more dominant directions when noise sources 
have similar frequency contents in different azimuth ranges. The main reason is that 
the dominant azimuth measured by polarization analysis is the average effects of two 
or more dominant directions at a particular frequency. The calculated dominant azi-
muth no longer has the ability to correct the velocity deviation for this noise-source 
distribution. How to eliminate the deviation caused by complex noise sources that have 

Fig. 17  a Cross-correlation functions with H01 as the virtual source. b The mean azimuth for the 1-D linear 
array. c The frequency distribution of the mean azimuth with a broad frequency band from 1 to 30 Hz for 
complex noise sources that have different frequency contents for two dominant directions
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similar frequency contents for two or more dominant directions is indeed a realistic 
and challenging problem, which needs to be further studied in our next work. Due to 
the unknown characteristic of noise sources in the practical applications, we suggested 
that active measurements can be used to check the accuracy of passive measurements 
after azimuthal correction.

5.2  Why Higher Modes Appear only in the Passive Survey

It is very interesting to understand why higher modes appear only in the passive survey 
for the Fengqi Road experiment. As known to all, the great difference between the pas-
sive and active surveys is the source attributes. The active source is a hammer triggered at 
the surface of earth while passive sources are various kinds of cultural activities excited 
at the surface of earth or below the surface. On the one hand, Halliday and Curtis (2008) 
investigated that sources at depth play a role in the retrieval of higher-mode surface waves 
by ambient noise cross-correlation. In addition, simulations and field studies (Ikeda et al. 
2015) also demonstrate that higher modes of surface waves are dominant as the source 
depth gradually increases. Thus, one possible reason is that higher modes of passive sur-
face waves may generate from some subsurface sources in the surrounding environment. 

Fig. 18  a Phase velocity–frequency diagrams without azimuthal correction, and phase velocity–frequency 
diagrams after azimuthal correction using b �̂

1
= 135

◦ in the frequency band of 1–30 Hz, c �̂
2
= 210

◦ in 
the frequency band of 1–30 Hz, and d �̂

1
= 135

◦ in the frequency range from 1 Hz to about 18 Hz and 
�̂
2
= 210

◦ in the frequency range from 18 to 30 Hz. The solid white lines are theoretical dispersion curves
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On the other hand, the dispersion image generated with active data has no higher-mode 
surface-wave energy because the nearest source-receiver offset is only 5 m. The distance 
may be too short to extract the higher-order information (Zhang et al. 2004).

Fig. 19  a Cross-correlation functions with H01 as the virtual source. b The mean azimuth for 1-D linear 
array. c The frequency distribution of the mean azimuth with a broad frequency band from 1 to 30 Hz for 
complex noise sources that have similar frequency contents for two dominant directions. d Phase velocity–
frequency diagrams without azimuthal correction and e phase velocity–frequency diagrams after azimuthal 
correction. The solid white lines are theoretical dispersion curves
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5.3  Prospects

The new method proposed in this study can be used to capture the dominant azimuth of noise 
sources and obtain the accurate dispersion measurements for directional noise sources using 
multicomponent seismic noise recorded by 1-D linear array. In recent years, distributed acous-
tic sensing (DAS) becomes an emerging technology for urban seismic site characterization 
and attracts increasingly attention to seismology and near-surface geophysical communities 
(Lindsey et al. 2017; Ajo-Franklin et al. 2019; Fang et al. 2020; Fenta et al. 2021; Lindsey and 
Martin 2021). DAS-recorded ambient noise using linear fiber optic cables have been utilized 
for near-surface imaging in populated urban areas (Dou et al. 2017; Spica et al. 2020; Song 
et al. 2021). Although DAS does not observe multicomponent records, sparse additional mul-
ticomponent seismometers nearby the fiber optic cables can help determine the Rayleigh wave 
directionality with polarization analysis as shown by this study. From this perspective, the pro-
posed method can be applied to DAS-recorded ambient noise to retrieve the accurate phase-
velocity dispersion curve and obtain the time-lapse imaging of near-surface S-wave velocity 
structures.

6  Conclusions

In urban areas populated with buildings, it is convenient and practical to employ a 1-D linear 
array for passive surface-wave investigations. We used synthetic data sets under various source 
distributions to estimate the dominant azimuth of noise sources by polarization analysis and 
obtain phase-velocity dispersion information. For inline noise source distribution, we had 
the ability to directly perform accurate phase-velocity measurements; for offline noise source 
distribution, we applied the proposed method to correct the velocity overestimation due to 
azimuthal effects. We also applied this approach to two field data sets in the city of Hang-
zhou, Zhejiang Province of China. Results show that the distributions of noise sources are pre-
dominantly offline. Then we eliminated the velocity bias caused by offline source distribution 
and picked phase velocities in the dispersion image. To evaluate the accuracy of the corrected 
phase velocities, the active seismic measurements were conducted with a hammer and a linear 
array. After the azimuthal correction, the picked phase-velocity dispersion curves in disper-
sion images obtained from passive source data match well with those from active source data. 
It demonstrates the validity and the feasibility of the proposed method.

Appendix

Following Takagi et al. (2018), we assume that Rayleigh waves are incident as plane waves 
on each seismic station; the multicomponent wavefields are represented by a superposition of 
incident plane waves as follows:
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where f is frequency; uZ(f ) , uN(f ) and uE(f ) are the Fourier spectra of the vertical, north and 
east wavefields, respectively; AR(�, f ) is the Fourier spectrum of the vertical wavefield of 
Rayleigh wave propagating in azimuth � ; and H(f ) is the horizontal-over-vertical ratio of 
the Rayleigh waves.

Takagi et  al. (2018) assume that the incident waves are uncorrelated, which means 
that they satisfy

where ⟨⟩ denotes the ensemble average and � is the Dirac delta function. 
⟨||AR(�)

||2
⟩

 is the 
azimuthal power spectrum, representing the power distribution of Rayleigh waves as a 
function of propagation azimuth. The azimuthal power spectrum using a Fourier series is 
expressed by

where aRm and bRm are the Fourier coefficients.
Using Eqs. (A1) and (A2), we can write the ensemble average of the vertical-hori-

zontal cross-spectra u∗
Z
uN

and u∗
Z
uE

Substituting Eq. (A3) into Eqs. (A4) and (A5), we obtain using the orthogonality 
relation of trigonometric functions
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Equation (A6) indicates that the imaginary parts of the averaged cross-spectra between 
the vertical and horizontal components are proportional to the first-order Fourier coeffi-
cients of the azimuthal power spectrum of the incident Rayleigh waves.
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