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Abstract
Rank-reduction methods are effective for separating random noise from the useful seismic 
signal based on the truncated singular value decomposition (TSVD). However, the results 
that the TSVD operator provides are still a mixture of noise and signal subspaces. This 
problem can be solved using the damped rank-reduction method by damping the singu-
lar values of noise-contaminated signals. When the seismic data include highly linear or 
curved events, the rank should be large enough to preserve the details of the useful sig-
nal. However, the damped rank-reduction operator becomes less powerful when using a 
large rank parameter. Hence, the denoised data contain significant remaining noise. More 
recently, the optimally damped rank-reduction method has been proposed to solve the extra 
noise problem as the rank value increases. The optimally damped rank-reduction operator 
works well for a moderately large rank, but becomes ineffective for a very large rank. We 
introduce an adaptive damped rank-reduction algorithm to attenuate the residual noise for 
a very large rank parameter. To elaborate on the proposed algorithm, we first construct a 
gain matrix by only using the input rank parameter, which we introduce directly into the 
adaptive singular-value weighting formula to make it more stable as the rank parameter 
becomes too large. Then, we derive a damping operator based on the improved optimal 
weighting operator to attenuate the residual noise. The proposed method, which can be 
regarded as an improved version of the optimally damped rank-reduction method, is insen-
sitive to the input parameter. Examples of synthetic and real three-dimensional seismic 
data show the denoising improvement using the proposed method.
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•	 The ADRR method relieves the dependence of RR-based approaches

1  Introduction

Noisy seismic data negatively affect the best characterization of the subsurface. Therefore, 
removing noise from seismic data becomes an inevitable task in exploration seismology to 
provide a better quality of data for fundamental processing steps, e.g., post-stack seismic 
interpretation, seismic imaging and inversion (Kazemi et al. 2016; Li et al. 2020b).

When removing random noise from noisy seismic data, two main concerns require par-
ticular caution. First, how much noise can be suppressed, and then how well the signals can 
be preserved ? Hence, how to get rid of random noise without losing useful information 
becomes a major problem. Therefore, some researchers have proposed many methods to 
suppress residual noise effectively. In the group of sparse transforms, signal and noise are 
separated based on their sparsity difference in the transformed domain. Commonly used 
sparse transforms include Fourier, Radon (Bracewell and Bracewell 1986; Kabir and Ver-
schuur 1995; Zhai 2014; Xue et al. 2017), curvelet (Beylkin 1987; Neelamani et al. 2008), 
seislet (Fomel and Liu 2010), and wavelet transforms (Goudarzi and Riahi 2012; Gilles 
2013; Mousavi et al. 2016; Chen et al. 2019). Zu et al. (2019) use the dictionary learning-
based sparse transform for random noise attenuation. Prediction-based methods use the 
difference of predictability to separate noise from useful signals. The regularized nonsta-
tionary auto-regression (RNA) technique (Liu et al. 2012) combines the hypothesis of sta-
tionary and linearity of the signal in the conventional frequency-space (f-x) domain pre-
diction technique. Liu and Chen (2013) introduce an approach called noncausal-RNA for 
the same task of seismic noise removal. Rank reduction (RR) belongs to another group of 
denoising methods. The multi-dimensional Cadzow filter (Cadzow 1988; Trickett 2008a), 
also known as the conventional RR approach (Oropeza and Sacchi 2011), has been broadly 
used because of its ability to attenuate the random noise. By including the components of 
seismic data into the Hankel matrix, approaches based on RR assume that seismic data 
have a low-rank structure in the frequency domain. In the ideal case (seismic data that 
include linear events), the rank of the seismic matrix corresponds to the amount of dip 
components (Oropeza and Sacchi 2011). Unfortunately, this assumption is not always valid 
with field data because of the complex structures. By applying the truncated singular value 
decomposition (TSVD) operator, the conventional RR method can suppress random noise. 
However, it becomes less effective when the raw data include a significant amount of ran-
dom noise. The rank constraint becomes inadequate to further shrink the singular value. 
Hence, the approximation signal from the TSVD process contains a significant amount 
of residual noise, which degrades the features of the seismic signal. To restore the useful 
events effectively, we can apply the RR method on the small time-space window of the 
seismic data. However, this technique causes another problem in selecting a proper rank 
value for each local window. The rank value required to reduce the random noise differs 
from a local window to another. We can therefore understand that a fixed rank value may 
be large for a local window and small for others.

To solve this problem, it is usually better to select a large rank value to preserve weak 
and curved energy when recovering the useful events. However, the larger the rank param-
eter is, the more residual noise the filtered data may contain. Likewise, the denoised 
data lose useful information when a too small rank is adopted. Thus, how to set the rank 
parameter properly for each local window to provide a better quality of the seismic signal 
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becomes a common issue. Trickett (2015) discusses how to automatically set the rank of 
each matrix, enabling the filter to adjust to different situations. The method can achieve 
a satisfactory balance between noise suppression and signal protection. Aharchaou et  al. 
(2017) improve the well-known singular spectrum analysis method (Trickett 2008b) by 
shrinking singular values to obtain the best trade-off between noise suppression and signal 
preservation. Wang et al. (2020a) propose to denoise the seismic signal using an optimal 
rank selection. This method removes noise based on a rule of rank selection, which can 
be used in the traditional RR method and other RR-based approaches to further shrink the 
singular values. On the other hand, the rank can be set based on the ratio of two consecu-
tive singular values (Wang et al. 2020b). A common strategy to remove the extra noise left 
by the TSVD operation is the nuclear norm minimization techniques (Yang et  al. 2013; 
Kreimer and Sacchi 2013; Li et al. 2017; Zhou and Zhang 2017; Li et al. 2020a; Feng et al. 
2021). Such an approach applies a thresholding operator to the low-rank signal matrix to 
decrease the noise level. However, how to select the thresholding parameter accurately is 
still challenging. Zhang et al. (2017) investigate multiple constraints for seismic signal esti-
mation using a hybrid rank-sparsity constraint. The approach benefits from the weight of 
low-rank constraint and sparsity-promoting transforms to further attenuate random noise. 
Shao et  al. (2019) introduce a low-rank matrix approximation method using variational 
mode decomposition to attenuate the random noise of desert seismic data. Zhang et  al. 
(2020) propose to suppress seismic incoherent noise using a robust low-rank approxima-
tion. Cavalcante and Porsani (2022) investigate the CUR matrix decompositions technique 
to estimate the useful signals matrix from the noisy seismic matrix. The method operates 
with the columns and rows of the input noisy matrix rather than the singular vector pro-
vided by SVD. This process minimizes the necessity for accurate rank by enabling over-
sampling columns and rows.

Huang et  al. (2016) have brought their contribution by improving the TSVD process 
via a damping operator to make it more adequate to further deal with random noise. The 
damped truncated singular value decomposition (DTSVD) refers to an improved version 
of the TSVD operator. The resulting method, called the damped rank-reduction (DRR), 
demonstrates its ability to attenuate the useful signal from very strong random noise due 
to the effect of damping (Chen et al. 2016a, b; Huang et al. 2016). However, the DTSVD 
process becomes less effective when we need to set a large rank value to reduce the random 
noise accurately. Siahsar et al. (2017) introduce the damped data-driven optimal singular 
value shrinkage method. In this approach, in addition to the OptShrink strategy (Nadaku-
diti 2014), the damping factor is used to provide a more robust low-rank approximation 
compared with TSVD and singular value thresholding. Oboué and Chen (2021) improve 
the quality of the low-rank matrix by combining the moving-average filter and the arc-
tangent penalty operator into the damped rank-reduction framework. This method aims to 
remove the extra noise left after the DTSVD process. More recently, Chen et  al. (2020) 
introduce an optimally DRR (ODRR) method to relieve the dependence of these RR-based 
approaches. The ODRR approach has been confirmed to be effective for random noise 
attenuation, even when a moderately large rank is needed for complex datasets. However, 
as the rank value becomes larger, the ODRR operator becomes less effective to further 
shrink the singular value, thereby attenuating the extra noise.

Following Chen et al. (2020), this work introduces an adaptive damped rank-reduction 
(ADRR) approach to further fit the singular value even in the condition of strong random 
noise and complex structures when it is necessary to choose a very large rank parameter to 
remove the residual noise while preserving the useful signal. To elaborate on the ADRR 
algorithm, we first formulate a gain matrix only based on the input rank parameter. We 
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introduce this matrix directly into the optimal weighting formula (Nadakuditi 2014) of the 
singular value to make it more stable when the rank parameter becomes too large. Then, we 
derive a damping operator by using the improved optimal weighting operator to decrease 
the level of noise. The ADRR method is highly stable for the input parameter. Therefore, 
we can select a sufficiently large rank value to attenuate the random noise in seismic data 
that contain complex structures. The ADRR framework can successfully solve residual 
noise problem due to the high sensitivity of the rank-reduction methods to the input rank 
value. It can remove more noise and preserve the useful signal under a very large rank 
value. This is the benefit of the proposed ADRR method. Different experiments on syn-
thetic and field three-dimensional (3-D) seismic data show the superiority of the adaptive 
damped rank-reduction method over the traditional RR, DRR, and the ODRR methods.

We first outline the construction of a block Hankel matrix for 3-D seismic data. Then, 
we provide a brief review of several RR methods and elaborate on our ADRR method for 
seismic noise attenuation. Next, we conduct several comparisons in terms of both visual 
and quantitative examination between the traditional RR, DRR, ODRR, and the ADRR 
methods. We also analyze the sensitivity of each RR method to the input rank parameter in 
detail. Finally, we draw some conclusions.

2 � Theory

2.1 � Construction of the Block Hankel Matrix for Three‑Dimensional Seismic Data

The main object is a volume of three-dimensional seismic data that we represent in time 
domain by �(t, x, y) of size pt × px × py . To construct the desired matrix, the rank-reduction 
algorithm converts �(t, x, y) into �f (f , x, y)(f = 1 ⋅ ⋅ ⋅ nf ) , where t and f correspond to time 
and frequency components, respectively (Oropeza and Sacchi 2011; Chen et al. 2016a). If 
we set a frequency f0 , the frequency component of � is defined by:

For simplification, we omit the argument f0 . For each row of X , the rank-reduction algo-
rithm forms a Hankel matrix. The desired matrix Me for row i of X corresponds to:

Then, the Hankelization operator constructs the desired block Hankel matrix Q in terms of 
�e as:

(1)Xf0
=

⎡⎢⎢⎢⎣

X(1, 1) X(1, 2) ... X(1, px)

X(2, 1) X(2, 2) ... X(2, px)

⋮ ⋮ ⋱ ⋮

X(py, 1) X(py, 2) ... X(py, px)

⎤⎥⎥⎥⎦
.

(2)Me =

⎡⎢⎢⎢⎣

X(e, 1) X(e, 2) ... X(e, l)

X(e, 1) X(e, 2) ... X(e, l + 1)

⋮ ⋮ ⋱ ⋮

X(e, px − l + 1) X(e, px − l + 2) ... X(e, px)

⎤
⎥⎥⎥⎦
.

(3)Q =

⎡⎢⎢⎢⎣

M1 M2 ... Mp

M2 M3 ... Mp+1

⋮ ⋮ ⋱ ⋮

Mpy−p+1
Mpy−p+2

... Mpy

⎤⎥⎥⎥⎦
.
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The size of Q is I = (px − l + 1)(py − p + 1) and J = pl . l and p denote the integers selected 
to bring the matrices Me and Q close to square.

The following equation expresses the conversion of the data � into the block Hankel 
matrix �:

where H is the Hankelization operator.

2.2 � Rank‑Reduction Method

In this section, we describe how to carry out rank reduction of a matrix using the optimally 
damped method of Chen et al. (2020). Consider an observed data matrix � modeled as:

where � and � are, respectively, the signal and noise components.
The rank-reduction algorithms assume that the matrices � and � have complete rank, 

and the useful signal matrix � has insufficient rank. The size of each matrix is of J × I . 
Based on this assumption, we can formulate � by:

and the rank-reduction approach using the conventional TSVD corresponds to:

where Q̃ is the approximated signal. The diagonal matrix Σ�

1
 includes the larger singular 

values. ��

1
 , and (��

1
)� are the singular vector matrices. The notation [⋅]� denotes the conju-

gate transpose of the matrix.
Combining Eqs. (5)–(7), Chen et al. (2016b) derive the true formulation of Q̃:

which explains clearly that Q̃ is still a combination of the signal and noise components. 
Based on the nuclear-norm minimization strategy (Yang et  al. 2013; Zhou and Zhang 
2017), the residual noise that still affects the quality of the result can be decreased using 
the thresholding operator (Donoho 1995):

where � denotes the thresholding operator, and � is its parameter. However, because of the 
heterogeneity of random noise in each singular value, it is difficult to find a stable threshold 
parameter to further deal with the residual noise. In the same context, an adaptive singular-
value weighting (Nadakuditi 2014) algorithm has been proposed to ease the influence of 
the rank parameter through the following optimization problem:

(4)� = H�,

(5)� = � + �,

(6)H = UH

1
ΣH
1
(VH

1
)�,

(7)Q̃ = U
Q

1
Σ
Q

1
(V

Q

1
)𝜄,

(8)Q̃ = H + UH

1
(UH

1
)
𝜄
E,

(9)Q = U
Q

1
�(Σ

Q

1
, �)(V

Q

1
)�,

(10)�̂ = argmin
�

∥ UH

1
ΣH
1
(VH

1
)𝜄 − U

Q

1
𝜃Σ

Q

1
(V

Q

1
)𝜄 ∥F ,
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where � is a weighting operator introduced to fit ΣQ

1
 after the singular value decomposition 

process. The ith left and right singular vectors correspond to UH

i
 and VH

i
 , respectively. The 

solution of Eq. 10 refers to

where

�
Q

i
 is the ith diagonal entry of ΣQ

1
(Σ

Q

1
∈ RN×N) . D corresponds to the D-transform (Chen 

et  al. 2020). D≃ is the derivative of D regarding �i (Bai et  al. 2020; Chen et  al. 2020). 
Equation 11 allows to formulate the approximation signal matrix using the weighting oper-
ator as:

The optimal weighting process specified in Eq. 13 substitutes the traditional TSVD opera-
tion used in the rank-reduction method Eq. 7.

Based on Eq.  13, Chen et  al. (2020) introduce the optimally damped rank-reduction 
approach to further attenuate the extra noise as the rank constraint increases. They con-
clude the ODRR formula for seismic signal enhancement:

where � is the damping operator. I denotes a unit matrix. � includes the maximal element 
of Σ�

2
 . a is the damping factor. The damped rank-reduction operator becomes similar to the 

traditional rank-reduction operator when a → +∞.

2.3 � Adaptive Damped Rank‑Reduction Method

In this section, we describe a novel method to modify the optimally damped rank reduction 
so that it better handles situations requiring large ranks. Highly linear or curved events influ-
ence the weight of the rank value on separating random noise from the useful seismic signals 
(Chen et al. 2020). Because of the linear events assumption of the conventional rank-reduction 
approach (Oropeza and Sacchi 2011), it is difficult to select a rank value that can adequately 
estimate the seismic signals. To estimate the useful signals, we can apply the RR method to 
the small time-space window of the input noisy data. However, the selection of a proper rank 
for each local window becomes a major difficulty. The rank value used to attenuate the random 
noise can be different from a local window to another. It means that a fixed rank value can be 
high for a local window and small for another. To tackle this difficulty, it is usually better to 
set a large rank value to preserve the useful events during the denoising process. However, 
when the rank value becomes large enough, the estimated signals contain significant residual 
noise. In this context, Chen et al. (2020) suggest selecting a moderately large rank value using 
the ODRR algorithm. The ODRR strategy aims to further remove the seismic noise as the 

(11)�̂ = diag(𝜃1, 𝜃2, ..., 𝜃N),

(12)�i =

(
−

2

�
Q

i

D(�
Q

i
;�)

D
�(�

Q

i
;�)

)
.

(13)Q = U
Q

1
�̂Σ

Q

1
(V

Q

1
)𝜄.

(14)Q = U
Q

1
��̂Σ

Q

1
(V

Q

1
)𝜄,

(15)� = I − (Σ
�

1
)−a�a,
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rank parameter increases. The ODRR method can successfully solve the rank selection prob-
lem using the moderate rank values since the signal improvement is much better compared to 
those of the traditional RR and the DRR method. However, the ODRR operator becomes less 
stable when a very large rank value is required to deal with noise and signal preservation prob-
lems. The very large rank values weaken the performance of the ODRR method since it can-
not remove noise at a lower level and preserve the useful signals adequately. We find that the 
ODRR operator loses its abilities for very large rank values. But it is more important to men-
tion that the ODRR method eases the rank selection compared to the local window strategy. 
Therefore, we follow Chen et al. (2020) to make the ODRR method more stable under very 
large rank values. We first formulate a gain matrix only using the input rank parameter. Then, 
we introduce directly this matrix into the adaptive singular-value weighting formula defined in 
Eq. 13. We formulate the gain matrix as:

� is a diagonal matrix denoting the proposed gain matrix. I(n) corresponds to an identity 
matrix, and n denotes the input rank parameter. (ΣQ

1
)−1 is the inverse of the diagonal matrix 

Σ
Q

1
 obtained after the singular value decomposition (SVD) process. k is an adaptation fac-

tor. It corresponds to the number of factors necessary to provide a good denoising perfor-
mance. Equation 16 is based only on the input rank parameter. This matrix can be consid-
ered as a regulator used to compensate for the formula defined in Eq. 13 to further neglect 
the influence of the large rank parameter.

Next, we introduce the matrix � directly into Eq. 13 to further shrink the singular values as 
the rank parameter increases:

The introduced gain matrix � makes the adaptive singular-value weighting algorithm more 
stable. But, to further remove the random noise as the rank value becomes very large, we 
introduce the damping operator into Eq. 17. To achieve this strategy, we derive a damping 
operator for the adaptive approximation signal subspace. Consider

as the SVD of � and

then, Eq. 7 can be regarded as a truncated singular value decomposition of �

Thus, like in Eq. 8, we can rewrite Eq. 22 as follows:

(16)� =

[
I(n) + (− log(n) + 1)(Σ

Q

1
)−1

]k
.

(17)Q = U
Q

1
��̂Σ

Q

1
(V

Q

1
)𝜄,

(18)� =
[
��

1
��

2

] [Σ�
1

0

0 Σ�
2

] [
(��

1
)�

(��
2
)�

]

(19)��
1
=U

�

1
,

(20)Σ�
1
=��̂Σ

�

1
,

(21)V�
1
=�

�

1
,

(22)G̃ = UG

1
ΣG
1
(VG

1
)𝜄.
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where H̃ corresponds to the useful signal components of the denoised signal G̃.
When the rank is large enough, we suppose that the denoised signal contains all useful 

signal components of the initially noisy data and contains less noise than the noisy data. To 
further attenuate the residual noise in the denoised signal, we re-examine the matrix Q in 
detail, and we write the newly denoised signal G̃ as:

where UH

1
(UH

1
)
𝜄
Ẽ corresponds to the residual noise subspace after applying the process 

summarized in Eq. 7. H corresponds to the useful signal components of the newly denoised 
signal G̃ . As concluded in Chen et al. (2016b), the signal matrix H can be approximated as:

where � is the damping operator.
If we consider that U�

1
= U

�

1
 , ΣG

1
= ��̂Σ

Q

1
 , V�

1
= �

�

1
 , Eq. 25 can be formulated as:

where � corresponds to the estimated signal from the new approach. Equation 26 is the 
adaptive damped rank-reduction formula. It can be considered as an improved version of 
the ODRR formula.

The process of obtaining the estimated signal matrix � can be summarized by:

where �ad corresponds to the adaptive damped rank-reduction (ADRR) operator.
Next, we apply the averaging operator A (Oropeza and Sacchi 2011; Chen et al. 2016a, 

b) to the estimated signal � to recover the filtered data in the following way:

fad corresponds to the averaging operator and the ADRR filter, respectively.
The proposed ADRR algorithm is summarized in the following workflow:

(23)G̃ = Q = H̃ + UH̃

1
(UH̃

1
)
𝜄

Ẽ,

(24)G̃ = Q = H + UH

1
(UH

1
)
𝜄
Ẽ,

(25)H = UG

1
ΣG
1
�(VG

1
)�,

(26)H = U
Q

1
��̂�Σ

Q

1
(V

Q

1
)𝜄,

(27)� = �ad�,

(28)�̂ = A� = A�ad� = A�adH� = fad�.
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By applying the one-dimensional forward FFT, the ADRR algorithm transforms first the 
input noisy seismic data �(t, x, y) into �(f , x, y) for a frequency range f. Then, the ADRR 
algorithm constructs the block Hankel matrix � by applying the Hankelization operator H . 
Next, the noisy block Hankel matrix � is transformed via the SVD operation. Afterward, 
the adaptive damping operator is applied to reduce the rank of the matrix � . The opera-
tion allows estimating the signal matrix � as specified in equation (26). The filtered data 
�̂ are obtained by applying the averaging operator A to the estimated signal � . Finally, the 
denoised data �(f , x, y) obtained in the frequency domain, are converted back into time 
domain �(t, x, y) through the 1-D inverse FFT. This framework outlines the primary steps 
of the proposed ADRR method. Similar to the low-rank methods, our ADRR method is 
augmented with the damped adaptive operator to enhance the denoising performance.

3 � Examples

In this section, we apply the RR (Oropeza and Sacchi 2011), DRR (Chen et  al. 2016a), 
ODRR (Chen et  al. 2020), and the proposed ADRR methods to three-dimensional syn-
thetic and field seismic data using small and very large rank values. Then, we apply each 
rank-reduction approach using a very large rank value. In each case, the rank value should 
be able to deal with noise and signal preservation issues simultaneously. In this work, the 
small rank corresponds to the value that should be adequate to provide the best results 
based on the linear events assumption. The very large rank values are selected to further 
deal with noise and signal preservation issues simultaneously. In each case, we compare 
the denoising performance of the proposed ADRR method to those of the traditional RR, 
DRR, and ODRR methods based on the visual examinations of each denoised data and 
their corresponding frequency-wavenumber spectra. Besides, to further display the denois-
ing performance of each method, we use the local similarity map introduced by Chen and 
Fomel (2015). The local similarity estimates the damage that the noise attenuation method 
can cause to the useful signals. The most significant damages are shown by the higher local 



856	 Surveys in Geophysics (2023) 44:847–875

1 3

similarity between the denoised data and the suppressed noise. We conduct several quan-
titative analyses to compare denoising quality based on the signal-to-noise ratio (SNR) 
(Chen et al. 2016b) expressed as follows:

where �� and �� show the vectorized true and denoised data, respectively.
These qualitative and quantitative analyses provide a comprehensive demonstration of 

the effectiveness of the proposed ADRR method on synthetic and field seismic data using 
different rank values.

3.1 � Synthetic Data Examples

This section demonstrates the performance of the proposed ADRR algorithm on one 
synthetic data containing four planar events and one synthetic data including five curved 
events. We generate noisy data by adding random noise with a variance of 0.2 to the clean 
data. The SNR of this noisy data is about −3.56 dB. After applying the four rank-reduc-
tion methods, we first display the results for synthetic data having planar events. We start 
the comparison between each approach by displaying the results for a small value of rank 
( n = 4 ). Figure 1a and b shows the clean and noisy data, respectively. Figure 2a–d is the 
denoised data from the conventional RR, DRR, ODRR, and the proposed ADRR methods, 
respectively. The denoised data from the RR method (Fig. 2a) contain a significant amount 
of residual noise compared to the other three rank-reduction methods. The output SNRs 

(29)SNR = 10 log10
‖��‖2

2

‖�� − ��‖2
2

,

Fig. 1   Synthetic data with four simple planar events. a and b are from the clean and the noisy data, respec-
tively
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of the RR, DRR, ODRR, and the proposed ADRR approaches are about 7.95 dB, 13.64 
dB, 13.89 dB, and 13.91 dB, respectively. This comparison shows that the DRR, ODRR, 
and the proposed ADRR method can obtain almost the same denoising performance with 
a smaller value of rank (e.g., rank =4). However, n = 4 induces signal leakage because of 
the high level of smoothing. Therefore, to obtain the best trade-off between random noise 
attenuation and useful signal preserving, we increase the rank value from 4 to 30, and we 
conduct another example by applying the four rank-reduction methods to the same noisy 
synthetic data. We compare the denoising performance in Fig. 2e–h. From Fig. 2h, it is 
clear that the estimated signal using the ADRR method is much cleaner than those of the 
other three methods. Figure 3a–d corresponds to the removed noise from the RR, DRR, 
ODRR, and the proposed ADRR methods, respectively. We find that the proposed ADRR 
method can remove more noise compared to the RR, DRR, and ODRR methods. To further 
show the difference between each method, we display their corresponding local similar-
ity maps in Fig. 3e–h. The comparison of the local similarity maps shows the much better 
denoising performance of the proposed scheme when the rank value increases. The DRR 
method seems to induce more signal leakage compared to the other three methods. The 
frequency-wavenumber spectra displayed in Fig.  4c and f vividly confirm the superior-
ity of our approach in terms of random noise attenuation when a very large rank value is 
selected. The RR, DRR, ODRR, and the ADRR methods provide SNR values of −0.8 dB, 
6.22 dB, 9.73 dB, and 11.08 dB, respectively. The SNR comparison confirms the visual 

Fig. 2   Comparison of denoising performance using different rank values. a–d are from the RR, DRR, 
ODRR, and the proposed ADRR methods using rank n = 4. e–h are from the RR, DRR, ODRR, and the 
proposed ADRR methods using rank n = 30



858	 Surveys in Geophysics (2023) 44:847–875

1 3

examination. Then, we subtract the SNR values of this test from the previous to quantify 
the difference in terms of SNR values. As a result, we obtain 8.75 dB, 7.42 dB, 4.16 dB, 
and 2.83 dB, respectively, for the RR, DRR, ODRR, and the proposed ADRR approaches. 
From this analysis, we deduce that while the RR, DRR, and the ODRR methods are influ-
enced by the larger rank value, the ADRR approach seems to be stable. Our approach 
adapts better to different choices of the rank value.

Then, we carry out some numerical tests to highlight the main difference between the 
damped rank-reduction method and the adaptive damped rank-reductions algorithm as the 
noise variance increases. For this case, we select a relatively large value of rank ( n = 10 ) 
to investigate the behavior of each approach under different noise levels. Figure 5a shows 
the comparison. The plot shows the much better performance of the ADRR algorithm (red 
line) for different noise variances. As manifested, when the data include significant random 
noise, the new method still outperforms the DRR method. Then, in the same noise condi-
tion, we display a comparison between the ODRR and the proposed ADRR approaches to 
show their performance under a very large rank value ( n = 30 ). Figure 5b plots the dif-
ference between both of them in terms of SNRs value. It is clear that the red line, which 
denotes the new method, is above the green line (ODRR method). The ADRR method pro-
vides much better denoising performance compared to the ODRR method. However, it is 
also clear that as the noise level increases, the contrast between both approaches decreases 
very slightly.

Fig. 3   Removed noise sections and local similarity maps using rank n = 30 . a–d Removed noise sections 
from the RR, DRR, ODRR, and the proposed ADRR methods, respectively. e–h Local similarity maps from 
the RR, DRR, ODRR, and the proposed ADRR methods, respectively
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We then apply the four aforementioned methods to data with curved events. Here, we 
add the same noise variance as in the previous examples. First, we apply the RR, DRR, 
ODRR, and the ADRR methods with rank n = 15 to compare the performance. Figure 6a 
and b shows the clean and the noisy data, respectively. Figure 7a–d shows the denoised 
data from the conventional RR, DRR, ODRR, and the proposed ADRR approaches, 
respectively. We find that the denoised data using the RR operator contain significant 
residual noise compared to the other three methods. The SNR values of the noisy data, the 
RR, DRR, ODRR, and the proposed ADRR approaches are −1.17 dB, 6.94 dB, 11.14 dB, 
11.22 dB, and 11.31 dB, respectively. The DRR, ODRR, and the proposed ADRR methods 
can remove random noise at a lower level. But we find that the result from our denoising 
framework is much cleaner than those of the other rank-reduction methods. By selecting 
n = 15 , the four rank-reduction methods obtain their best performance in terms of SNR and 
visual observations. However, this rank value causes signal leakage. In the next example, 
we select a very large rank value (n = 60) to preserve the significant details of the useful 
signals. Figure 7e–h shows the comparison between the four denoising frameworks. From 

Fig. 4   Comparison of denoising performance via the frequency-wavenumber spectra (synthetic data includ-
ing four simple planar events). a–c show the denoised data from the RR, DRR, ODRR, and the proposed 
ADRR approaches for rank n = 4 . d–f plot the denoised data from the RR, the DRR, and the proposed 
approaches for rank n = 30
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Fig. 5   Comparison of SNRs diagram (synthetic data having planar events). a Denoising performance from 
the DRR approach (blue line) and the ADRR approach (red line) for rank n = 10 . b Denoising performance 
from the ODRR approach (green line) and the ADRR approach (red line) for rank n = 30

Fig. 6   Synthetic data with curved events. a and b are from the clean and noisy data, respectively
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the visual inspections, it is clear that our denoising workflow can suppress more noise 
compared to the other rank-reduction methods. Then, we display the removed noise sec-
tions (Fig. 8a–d), the similarity maps (Fig. 8e–h), and the frequency-wavenumber spectra 
(Fig. 9a–f) for further comparison. Here, from the comparison of each subfigure, it is much 
clear that the RR approach is not effective to handle the residual noise well because of the 
weakness of the TSVD operator when the rank value increases. The denoised data from the 
DRR algorithm contain a significant amount of residual. But the improvement is much bet-
ter than the RR method. The ODRR method can remove more random noise compared to 
the RR and the DRR methods.

The comparison of each subfigure above mentioned demonstrates that the ADRR 
approach works better than the RR, DRR, and the ODRR approaches. The lower similarity 
values (Fig. 8h) demonstrate that the ADRR approach can obtain the best trade-off between 
random noise attenuation and signal preservation when a large rank value is selected. The 
frequency-wavenumber spectrum (Fig.  9f) confirms the better denoising performance of 
the proposed ADRR method in terms of visual observations compared to the other rank-
reduction methods. The RR, DRR, ODRR, and the proposed ADRR approaches achieve 
the denoising performance with SNRs of 1.94 dB, 4.74 dB, 8.64 dB, and 10.18 dB, respec-
tively. The difference in terms of SNRs shows the lower sensitivity of our approach under 
a very large rank value. This quantitative comparison shows the much better denoising per-
formance of our approach and its adaptability to data containing curved events.

Fig. 7   Comparison of denoising performance for synthetic data having curved events. a–d are from the RR, 
DRR, ODRR, and the proposed ADRR methods using rank n = 15 . e–h are from the RR, DRR, ODRR, 
and the proposed ADRR methods using rank n = 60
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To numerically show the performance of our proposed method on data containing 
curved events for varying noise levels, we set the rank parameter first at 25. Figure 10a 
shows the comparison between the DRR and the proposed ADRR approaches. The 
SNRs of the proposed approach (red line) surpass those of the DRR approach (blue 
line) for all the noise levels. Based on the distance between both approaches, we find 
that even though their performance decreases as the random noise becomes significant, 
our strategy can provide a much better result.

To evaluate the computation cost of each approach, we test their efficiency on three-
dimensional synthetic data with three planar and curved events. The four low-rank 
methods were performed in MATLAB R2017a on a Linux computer having an Intel 
Core i7 7th generation and 8 GB RAM. We run the four codes 3 times in the temporal 
frequencies band of 0 Hz–250 Hz for synthetic data having planar events and 0 Hz–80 
Hz for the synthetic data with curved events. We display the average computation time 
in seconds (s) in Tables 1 and 2, respectively, for data with planar and curved events. 
From Table 1, we find that the RR, the ODRR, and the proposed ADRR approaches 
work with almost the same computation time. From Table  2, we find that both the 
ODRR and the proposed ADRR approaches run at almost the same time to process the 
synthetic data containing curved events. Here, the RR and the DRR methods take simi-
lar running times and are less expensive compared with the ODRR and the proposed 
ADRR approaches.

Fig. 8   Removed noise sections and local similarity maps using rank n = 30 . a–d Removed noise sections 
from the RR, DRR, ODRR, and the proposed ADRR methods, respectively. e–h Local similarity maps from 
the RR, DRR, ODRR, and the proposed ADRR methods, respectively
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3.2 � Field Data Examples

This section demonstrates the effectiveness of the proposed ADRR method in prac-
tice. We apply the four aforementioned RR methods to three-dimensional field seismic 
data. Since we do not have the clean data, we cannot make a judgment of the denois-
ing performance by SNR. Therefore, we assess the denoising performance with the 
visual examination of the spatial coherency of the denoised data and local similarity 
maps. Figure 11a and b shows the noisy seismic data and the corresponding frequency-
wavenumber spectrum. To show the performance of each approach as the rank value 
increases, we apply the four rank-reduction methods on the same noisy field data by 
varying the rank value like in the synthetic data examples. First, we apply the denois-
ing methods using rank = 25 to restore the useful signal. Figure  12a–d shows the 
comparison. Each approach can successfully remove noise using n = 25 . But this rank 
value cannot preserve the useful signal energy. Figure 13a–d shows visible signal leak-
age in the removed noise sections of each approach. The similarity maps (Fig. 14a–d) 
further confirm that this relatively large rank value is not adequate to preserve the sig-
nal energy because of the complexity of the input data. Therefore, after several tests, 

Fig. 9   Comparison of frequency-wavenumber spectra. a–b Frequency-wavenumber spectra of the clean and 
noisy data, respectively. c–e Frequency-wavenumber spectra using the RR, the DRR, ODRR, and the pro-
posed ADRR approaches using rank n=60
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Fig. 10   Comparison of SNR diagram (synthetic data containing curved events). a Denoising performance 
from the DRR approach (blue line), and the ADRR approach (red line) for rank n = 25 . b Denoising perfor-
mance from the ODRR approach (green line), and the ADRR approach (red line) for rank n = 80

Fig. 11   Field data comparison. a Noisy data. b Frequency-wavenumber spectrum from the noisy data
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we adopted a very large rank value (n = 50) to preserve the useful signal during the 
denoising process. Figure 12e–h shows the denoised data from the RR, DRR, ODRR, 
and the proposed ADRR methods using rank = 50. The estimated signal using the pro-
posed method (Fig.  12h) is much cleaner than the other three denoising approaches. 
The removed noise sections (Fig.  13e–h) from each approach contain negligible sig-
nal leakage compared to the results using rank = 25. From the local similarity maps, 
we find that the four RR methods can preserve the signal as the rank value increases. 
But the proposed method can obtain the best trade-off between noise suppression and 
signal preservation. To show the difference between each method more clearly, we dis-
play the zoomed sections of each data marked by the blue frame boxes (Figs. 11a and 
12e–h) in Fig. 15a–e. The zoomed section from our denoising framework (Fig. 15e) is 
much smoother and cleaner than the other three RR methods (Fig.  15b–d). The pro-
posed ADRR method still removes noise at a lower level when a very large rank value 
is selected to preserve the useful signal. Finally, we use the frequency-wavenumber 
spectra (Fig. 16a–d) to compare the quality of the estimated signal from each method 
using rank n = 50. Here, it is more obvious that the denoised data from the proposed 
ADRR method (Fig. 16d) contain the least amount of residual noise compared to the 
other rank-reduction methods (Fig. 16a–c).

Fig. 12   Field data comparison. a–d Denoised data from the RR, DRR, ODRR, and the proposed ADRR 
methods ( n = 25 ). a–d Denoised data from the RR, DRR, ODRR, and the proposed ADRR methods 
( n = 50)
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4 � Discussion

4.1 � Comparison of the Sensitivity of Different Rank‑Reduction Methods

In this section, we focus on investigating the sensitivity of each rank-reduction approach to 
the input rank value. By using the synthetic data of the examples section, we display the 
performance of each approach in terms of SNRs as a function of rank (Figs. 17 and 18). 
We corrupt the clean synthetic data with a noise level of 0.2, and we apply each approach 
to analyze their strength and weakness for random noise suppression. From the comparison 
of the SNR diagrams using the RR approach (blue line) and the DRR method (green line), 
we find that the DRR operator can obtain higher SNRs than the RR operator. The higher 
SNRs from the DRR method show the better denoising performance using the damped 
TSVD operator (Chen et al. 2016b) compared to the traditional TSVD (Oropeza and Sacchi 
2011). The remaining noise in the estimated signals from the RR method is mainly caused 
by the inability of the conventional TSVD process to further shrink the singular value as 
the rank values increase (Nadakuditi 2014). The DRR method further removes the remain-
ing noise and improves the SNRs because of the introduction of the damping operator just 
after the TSVD operation. It eases the dependency of the RR method on rank selection 
since a relatively large rank can be set to improve the SNR of the denoised data by damp-
ing the extra noise induced by the TSVD process. We control the damping operator by 

Fig. 13   Field data comparison. a–d Removed noise from the RR, DRR, ODRR, and the ADRR methods 
using rank n = 25. e–h Removed noise section from the RR, DRR, ODRR, and the ADRR methods using 
rank n = 50
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Fig. 14   a–d Local similarity from the RR, DRR, ODRR, and the ADRR methods using rank n = 25 . e–h 
Local similarity from the RR, DRR, ODRR, and the ADRR methods using rank n = 50

Fig. 15   Zoomed section comparison of each data displayed in Fig. 12e–h. a Noisy data. b Denoised data from 
the RR method. c–e Denoised data from the DRR, the ODRR, and the proposed ADRR approaches, respectively
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adjusting a damping factor, which aids in decomposing the noisy seismic section into sig-
nal and noise components (Chen et al. 2016b; Huang et al. 2016). However, as shown in 
Figs. 17 and 18, when the input rank becomes large, the SNR diagrams obtained from the 
DRR method decrease significantly. But the SRNs using the ODRR approach (green lines) 
outperform those using the traditional RR and the DRR methods as already demonstrated 
by Chen et al. (2020) and Bai et al. (2020). This comparison underlines the shortcoming of 
the damped TSVD when we need to select large rank values to improve the quality of the 
useful signals. The ODRR method compensates for the DRR method by using an optimally 
damped TSVD, which relieves the dependence of most RR-based approaches. From the 
smaller values to the relatively larger values of the input rank value, the ODRR and the 
proposed ADRR approaches (red line) obtain almost the same SNRs. However, it is clear 

Fig. 16   Comparison of frequency-wavenumber spectra. a–d Frequency-wavenumber spectra from the RR 
and DRR, ODRR, and the proposed ADRR approaches using rank n = 50
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that as the rank value becomes very large, the SNR diagram from the ADRR approach sur-
passes those of the other low-rank methods including the ODRR algorithm. It means that 
by introducing the gain matrix into the ODRR formula, we can obtain a much better result 
(red line) compared to the former (green line) when the rank parameter increases gradually.

Fig. 17   SNR diagram of different rank-reduction methods for the selected rank parameters concerning syn-
thetic data having simple linear events. The black and blue lines are from the RR and the DRR methods, 
respectively. The green and red lines correspond to the ODRR and the ADRR methods, respectively

Fig. 18   SNR diagram of different rank-reduction methods for the selected rank parameters concerning syn-
thetic data containing curved events. The black and blue lines are from the RR and the DRR methods, 
respectively. The green and red lines correspond to the ODRR and the ADRR methods, respectively
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For the synthetic data having linear events, it is obvious that the SNRs obtained by the 
proposed ADRR method are almost consistent for the rank values ranging from 3 to 20. 
The SNR decreases slightly above n = 20 (Fig.  17). For data containing curved events, 
the SNR values seem to be slightly consistent as the rank value increases from n = 15 to 
n = 40 (Figure 18). Based on the smaller SNRs value, we find that the lower value of n 
(1 and 2) is not suitable to provide better results (see Fig. 17). The result obtained from 
such rank value contains a significant amount of residual noise. However, all values of n 
selected above 2 can obtain much better denoising performance. The SNR using the tradi-
tional RR method is the highest when we select ranks 1 and 2 because the estimated signal 
is not too smooth compared to those of the DRR, ODRR, and the proposed ADRR meth-
ods. We find that the smoothing degree of the damping factor induces much signal leakage, 
which negatively influences the SNR of the estimated signal when the rank is defined as 
1 and 2. As shown in Fig. 18, smaller values of n are not appropriate for data containing 
curved events or complex structures. We need to select a sufficiently large rank value to 
reach better denoising performance (Cadzow 1988; Trickett 2008a; Oropeza and Sacchi 
2011). When data contain linear or curved events, we find that the proposed algorithm 
is less sensitive to the very large rank constraint compared to the other algorithms. The 
ADRR approach adapts better when the rank increases.

4.2 � Signal Improvement Under Different Frequency Bands

Using the noisy synthetic data of the first example, we compare the SNR values among 
the RR, DRR, ODRR, and the proposed ADRR methods using rank n = 30 under dif-
ferent frequency bands. Table 3 shows the comparison. We find that SNR values change 
with frequency for the four rank-reduction methods. As the frequency band becomes 
large, the SNR values increase. But the distance between the proposed method and the 

Table 1   Computation time comparison in seconds for the synthetic data, including simple linear events. We 
execute the three codes in MATLAB R2017 on a Linux computer having an Intel Core i7 7th generation 
and 8 GB RAM in a temporal frequencies band 0 − 250 Hz

Rank (n) 4 8 12 16

RR (s) 10.48 11.83 11.53 10.14
DRR (s) 9.98 10.73 8.80 8.59
ODRR (s) 12.44 11.95 10.94 11.89
Proposed (s) 11.45 11.71 10.88 10.41

Table 2   Computation time comparison in seconds for the synthetic data, including curved events. We exe-
cute the three codes in MATLAB R2017 on a Linux computer having an Intel Core i7 7th generation, and 8 
GB RAM in a temporal frequencies band 0 − 80 Hz

Rank (n) 10 20 30 40

RR (s) 5.67 6.93 8.45 8.78
DRR (s) 5.26 6.68 7.87 8.05
ODRR (s) 10.26 11.68 13.87 17.05
Proposed (s) 10.12 11.48 13.27 17.01
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other rank-reduction methods is still obvious. It is clear that our denoising framework can 
improve the quality of the useful signal in different frequency bands under a very large 
rank value.

4.3 � Signal Preservation of the ADRR Method

Preserving the useful signal features when attenuating the residual noise is one of the most 
important aims in seismic data processing. Therefore, we analyze the effects of the rank 
parameter on the quality of the estimated signal. From Fig. 3h, the local similarity dem-
onstrates that the proposed ADRR method can effectively attenuate random noise and pre-
serve the significant signal features when we select a large rank parameter ( n = 30 ). The 
different rank-reduction operators can further shrink the singular value and obtain a bet-
ter quality of the denoised data using rank n = 4 as shown in Fig. 2a–d. But the ADRR 
operator (Eq. 26) can achieve this task even better compared with the RR and the DRR 
methods. The rank parameter n = 4 corresponds exactly to the number of dip components 
in the first synthetic data. As shown in Fig. 17, this rank parameter produces a higher SNR 
for the proposed approach. Therefore, we understand that like the RR-based methods, the 
proposed ADRR method also relies on the linear events assumption (Oropeza and Sacchi 
2011). As shown in Fig. 17, when we select a moderately rank parameter n = 10 , the SNRs 
of both the RR and the DRR methods decrease considerably because of the sensitivity of 
their operator to the input rank value. Furthermore, we find that the RR and the DRR meth-
ods induce more signal leakage because of the inadequacy of the TSVD and the DTSVD 
processes to preserve the useful features of the estimated signal when a relatively larger 
rank value is selected for removing the residual noise. In contrast, by using n = 10 , the 
ADRR operator produces almost the same SNR because of its insensitivity to the input 
rank parameter. The local similarity map plotted in Fig. 8h shows that the ADRR process 
can preserve the signal energy while removing the residual noise when a very large value 
is selected ( n = 60 ). As shown in Figs. 14h, 15e and 16d, the ADRR method can attenuate 
the residual noise while keeping the useful signal features using a very large rank param-
eter ( n = 50 ) in practice.

4.4 � Main Contribution

When implementing the proposed ADRR algorithm, we introduced a gain matrix (Eq. 16) 
to make the new rank-reduction formula (Eq. 26) less sensitive to the input rank parameter, 
and thus to further deal with strong random noise while preserving the properties of the 
estimated seismic signal. From Tables 1 and 2, both the ODRR and the proposed ADRR 
approaches perform with similar running time. Therefore, the introduced gain matrix does 

Table 3   Comparison of S/N 
values among the RR, DRR, 
ODRR, and the proposed ADRR 
methods using rank n = 30 under 
different frequency bands

Frequency (Hz) 0 − 5 0 − 30 0 − 90

RR (dB) −0.12 1.63 3.70
DRR (dB) −0.017 2.37 10.16
ODRR (dB) −0.0059 2.48 12.65
Proposed (dB) −0.0015 2.78 13.77
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not negatively affect the computing time of the ODRR method. This is very competitive for 
the processing of multi-dimensional seismic data.

Chen et al. (2020) introduce the damping operator (Chen et al. 2016a, b; Huang et al. 
2016) into the optimal weighting (Nadakuditi 2014) formula (Eq. 13) to propose the ODRR 
method. It is clear that, in the ODRR framework, it is the damping operator that makes the 
optimal weighting operator more robust to further remove random noise as the rank value 
increases. However, when we select a very large value, the damping operator loses its abil-
ity to further attenuate the extra noise. We find that the damping factor only is not enough 
to further shrink the singular values when the input rank becomes too large. Therefore, we 
first develop a gain matrix (Eq. 13) into the optimal weighting operator (Eq. 17) to further 
shrink the singular values as the rank increases. The gain matrix improves the performance 
of the adaptive singular-value weighting method (Nadakuditi 2014) since the resulting 
algorithm becomes more stable as the rank value increases. However, the estimated signal 
contains a significant amount residual noise. To solve the residual noise problem as the 
rank value becomes very large, we introduce the damping operator into Eq. 17. We find 
that the proposed ADRR framework succeeds for a very large rank because of the gain 
matrix. The proposed gain matrix has been developed in this paper to further fit the sin-
gular values of the noisy data when it is necessary to select a very large rank parameter to 
restore the whole features of the useful signal. We have adopted the formula of � after sev-
eral tests conducted on different datasets. In this matrix, the term k is the adaptation factor. 
The value of k may vary depending on the type of data to be processed. In this paper, we 
have adopted k = 8 when dealing with all types of data because it provides the best quality 
of results.

The window size is a trade-off between ensuring the planar-event assumption and maxi-
mizing the feature extraction ability. It is known that the smaller the window, the better 
suitability of rank-reduction methods due to more planar events in the smaller windows. 
However, if the window is too small, it fails to include some locally complex structures of 
the nonstationary seismic data. As a result, a window that is too small cannot be applied 
in complicated situations. Since the window size cannot be too small, even for the smallest 
windows that are allowed to maintain the structural complexity in the data, the rank could 
vary greatly across all windows. Our approach provides a solution to those cases where 
seismic data are extremely complex and ranks across windows vary dramatically.

A crucial problem in seismic noise attenuation using RR-based approaches is the choice 
of the rank value (Bai et al. 2020; Chen et al. 2020). Since the proposed ADRR approach is 
highly insensitive to the rank parameter, we can choose a sufficiently large rank to attenu-
ate the random noise in seismic data containing complex structures, which is the primary 
advantage of the proposed ADRR method.  

5 � Conclusions

Based on the special features of the optimal weighting operator, the proposed gain matrix, 
and the damping operator, we introduce an adaptive damped rank-reduction (ADRR) 
approach for denoising of 3-D seismic data. The ADRR framework is proposed to solve 
the residual noise problem due to the high sensitivity of the low-rank methods to the input 
rank parameter. As demonstrated in our analysis, the denoised data produced by the ADRR 
method are smoother and cleaner. Compared with the conventional rank-reduction, the 
damped rank-reduction, and the optimally damped rank-reduction methods, the proposed 
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ADRR method has been verified to be more competitive to decompose the 3-D synthetic 
and real seismic data into signal and noise subspaces even when a very large rank param-
eter is used.
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