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Abstract
Seismic inversion in geophysics is an effective way to obtain underground rock properties 
from seismic survey data on the Earth’s surface. In particular, we can obtain much more 
information to characterize subsurface geological structure and lithology via pre-stack seis-
mic inversion, with offset information added to the inversion, than by post-stack seismic 
inversion. However, pre-stack seismic inversion is usually a nonlinear and complicated pro-
cess. In this article, we adopt a L

1−2-norm as a constraint on pre-stack seismic inversion, 
promoting the generation of a sparse solution. We also propose a novel pre-stack seismic 
inversion method that reduces the complexity of the solving method by utilizing an objec-
tive function decomposition scheme. Comparison of calculation time, accuracy and spar-
sity of the inversion solutions indicates that the proposed algorithm has better accuracy and 
robustness. Moreover, considering the difficulty of regularization parameter selection, we 
develop an adaptive parameter selection strategy based on generalized Stein unbiased risk 
estimation (G-SURE) and incorporate it into the solving algorithm. The adaptive approach 
finds an appropriate regularization parameter in each iteration and obtains the optimal 
solution directly, which is beneficial for improving computational efficiency. A synthetic 
data test verifies that the adaptive method can converge to the optimal solution iteratively 
in the case of arbitrary initial regularization parameters. Finally, in application to real field 
data, we explain why the adaptive method is the better choice even though adaptive and 
non-adaptive methods can obtain solutions with similar accuracy.
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1  Introduction

It is necessary to obtain velocity and density information representing the characteristics 
of an underground medium based on the pre-stack seismic gather with the help of opti-
mization theory. This process is called seismic inversion, which is essentially an opti-
mization problem in mathematics (Wang 2016). Seismic inversion methods generally 
include linear and nonlinear methods. Nonlinear inversion methods are easier for solv-
ing the global optimal solution because they continuously search in the solution space, 
but linear inversion significantly reduces the computational cost of nonlinear methods 
and is more suitable for fast inversion of large-scale seismic data (Maurya et al. 2020). 
However, seismic inversion is generally an underdetermined problem, making the linear 
inversion algorithm more dependent on the initial model. To make linear inversion con-
verge at the global extreme value and reduce the instability and multiplicity of the inver-
sion solutions, a regularization constraint is generally used to solve the inverse problem 
in geophysics (Tarantola 2005).

The sparse constraint is common in signal processing; due to its ability in noise sup-
pression, it has been applied in geophysics for a long time. Claerbout and Muir (1973) 
proved that L1-norm could obtain much better results than L2-norm in most cases for 
seismic numerical modeling. Mainly, with compressed sensing (CS) technology in sig-
nal processing, more researchers have focused widely on deconvolution, seismic inver-
sion and seismic data reconstruction (Kazemi and Sacchi 2014; She et  al. 2019; Ma 
2013). In seismic inversion, Zhang and Castagna (2011) applied the basis pursuit (BP) 
algorithm to post-stack seismic data to solve the L1-norm constrained objective func-
tion. This practice shows that the inverted impedance has a higher resolution than the 
traditional method. Total variation (TV) regularization is a special form of sparse con-
straint, which is not the L1-norm of the parameters calculated directly but the L1-norm 
of the calculated parameters after difference calculation. In this way, sparse edges can 
be controlled, and the parameters obtained by inversion show characteristics of peri-
odic variation. In seismic inversion, TV regularization can highlight vertical variation 
characteristics of strata, and the elastic parameters of discontinuous variation can be 
obtained by inversion (Mozayan et  al. 2018). Scholars have applied various methods, 
such as Iteratively Reweighted Least Squares (IRLS), the split-Bregman and the Alter-
nating Direction Method of Multipliers (ADMM), to retrieve elastic parameters from 
post-stack data (Zhang et al. 2014; Liu and Yin 2015; Pan et al. 2017). Compared with 
post-stack data, pre-stack data contain more lithology and fluid information, and a rela-
tively stable solution can also be obtained after extending the L1-norm regularization 
method to the pre-stack AVA inversion (Li and Zhang 2017; Zhi et al. 2016).

L1−2-norm is a recently proposed sparse constrained regularization term. It was first 
addressed by Lou et al. (2015) in the context of nonnegative least squares problems and 
group sparsity with applications to spectroscopic imaging. Some efforts have been made in 
an application and solving algorithm which has made L1−2-norm gradually applied to geo-
physics. Wang et al. (2018) make use of the sparsity of L1−2-norm to compensate for the 
attenuation of seismic data and effectively improve signal resolution. Wang et al. (2019) 
carried out pre-stack seismic inversion under the constraint of L1−2-norm regularization 
and improved the lateral continuity of inversion results by using f-x prediction filtering and 
obtained a high-quality elastic parameter inversion result. Huang et  al. (2021) used L1−2
-norm regularization to carry out AVA joint inversion based on time domain matching of 
PP- and PS-waves by using the DTW algorithm, and the algorithm showed good stability.



1819Surveys in Geophysics (2022) 43:1817–1843	

1 3

In fact, a more complex iterative algorithm is needed to solve the sub-problems in 
each iteration for pre-stack seismic inversion, a large-scale problem, by using L1−2-norm, 
because the traditional difference-of-convex algorithm (DCA) may lead to high cost in 
large-scale inverse problems (Gotoh et al. 2018). Therefore, in this article, we propose a 
novel pre-stack seismic inversion scheme by using L1−2-norm. The objective function is 
composed of a misfit function and a constraint term of L1−2-norm. Based on the proximal 
DCA, we develop an optimization algorithm by reformulating the objective function as the 
difference between two convex functions. In each iteration of DCA, we extrapolate the last 
solution to obtain the starting point of the new iteration and then use the soft thresholding 
algorithm to calculate the optimal solution of the current iteration. Moreover, we introduce 
an adaptive regularization parameter selection method into the new algorithm and propose 
a strategy to solve the problem that the amplitude of the inversion parameters cannot be 
well recovered in some cases. To verify the effectiveness of the algorithm and the adap-
tive parameter selection method, we use synthetic data and actual data to test, respectively. 
The inversion results verify that the new method is effective for the inverse problem con-
strained by L1−2-norm in the pre-stack seismic inversion, and the adaptive parameter selec-
tion method is appropriate.

2 � Theory and Methodology

2.1 � Pre‑Stack Seismic Forward Model

According to the seismic convolution model (Robinson 1967), the pre-stack seismic gather 
can be represented as reflectivity coefficients for different angles convoluted with the seis-
mic wavelet. A noise term should also be added for real field seismic records. Therefore, 
for an N-trace pre-stack angle gather, the forward modeling can be expressed as

where �
(
�i
)
 , �

(
�i
)
 , �

(
�i
)
 and �

(
�i
)
 are the pre-stack seismic trace data, the seismic wave-

let source, the reflectivity coefficient series and the noise at the ith angle of incidence �i , 
respectively. ⟨∗⟩ represents the convolution operation. In Eq.  1, the reflection coefficient 
controls the amplitude of the seismic reflection wave and directly reflects the difference of 
impedance between the upper and lower layers of the reflection interface.

Mathematically, the pre-stack seismic forward modeling can be written as, omitting the 
noise term for simplicity,

where d represents the pre-stack seismic gather, G is the forward modeling operator, and m 
represents the model parameters vector.

2.2 � L
1−2‑Norm in Seismic Inversion

The inverse problem of seismic inversion is highly ill-posed which leads to multiple solu-
tions, especially for pre-stack seismic. By adding prior knowledge into the inverse problem, 
the regularization method in mathematics can solve the problem and obtain a consistent 
solution with the prior information. Because seismic inversion is mainly for the reflection 
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coefficient sequence in the time domain, and the reflection coefficient of underground 
media has obvious sparsity, we can use sparsity and add it into the inversion process. That 
is the sparse regularization in the optimization of inverse problems in mathematics.

At present, there are three commonly used regularization operators: L0-norm, L1-norm 
and L2-norm, while L0-norm and L1-norm are referred to as sparse regularization con-
straints. As an optimal convex approximation of L0-norm, L1-norm can guarantee sparsity 
and it has better solving characteristics. However, the optimization problem containing L0
-norm belongs to an NP-hard problem, which is challenging to solve. Therefore, L1-norm 
is generally used to construct the objective function, which aims to solve the sparse solu-
tion in image processing or geophysical inverse problems (Oldenburg et al. 1983; Yin et 
al. 2015b; Hamid and Pidlisecky 2015). As a recently emerging sparse constraint method, 
L1−2-norm is getting more attention (Wang et al. 2018, 2019; Huang et al. 2021).

By comparing the four different regularization terms ( L0 , L1−2 , L1 and L2 ), the advan-
tage of L1−2 norm in sparse constraints can be illustrated. The three-dimensional surface 
comparison of the four different norms ( L0 , L1−2 , L1 and L2 ) function values is shown 
in Fig. 1. The function values are calculated by different norm terms using a set of two-
dimensional data, and the projection of different surfaces on the two-dimensional plane is 

Fig. 1   Comparison of 3D surface and 2D contour of the values for the different norms. a L0-norm. b L1-2-
norm. c L1-norm. d L2-norm
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a contour map. Under the assumption of the misfit function being unchanged, the process 
of minimizing the objective function can be regarded as finding the solution of minimiz-
ing the regularization term in three-dimensional space. The lowest point of the surface is 
the optimal point to be searched. After the 3D surface is projected to a 2D plane, it can 
be found that the lowest point is close to the x-axis and y-axis on the 2D contours. An 
obvious conclusion is that the closer the norm curve is to the x-axis, the more possibility 
there is of obtaining the sparse solution by inversion. Therefore, the solution of L0-norm 
regularization is the sparsest among these regularization terms. Although the solution of L2
-norm regularization is not sparse, it will make the solving process fast and stable. Another 
important conclusion is that L1−2-norm is better than the traditional L1-norm in sparsity as 
a regularization penalty term, and it is more likely to get a sparse solution.

According to the pre-stack seismic forward equation, Eq.  (2), the pre-stack seismic 
inversion estimates the model parameters m by using the pre-stack seismic data d . Moreo-
ver, Eq. (2) represents an underdetermined linear equation. Considering the layered distri-
bution of underground media, a sparse regularization constraint is helpful to obtain sparse 
reflection coefficient sequences. As in the case of the seismic deconvolution method (Old-
enburg et  al. 1983), a stable and sparse solution is inverted by using the L2-norm misfit 
function with L1-norm regularization

In Eq.  (3), � is a trade-off parameter to balance the first error, or misfit, term and the 
second term.

By adopting L1−2-norm to regularize the pre-stack seismic inverse problem, the con-
structed objective function includes a general misfit function and a sparse constraint regu-
larization term

where f (�) = ‖�� − �‖2
2
, H(�) = �
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�
. H(�) is the L1−2-norm regulari-

zation penalty term, and � ∈ (0, 1] is a constant, which can promote the generation of a 
sparse solution (Lou et al. 2015).

2.3 � Inversion Algorithm

For the objective function of the pre-stack seismic inversion in Eq. (4), we can use the dif-
ference-of-convex algorithm (DCA) to solve. In general, we need to set H(�) in the form 
of the difference between two scalar norms

Therefore, the algorithm then transforms the solution of Eq. (4) into alternate iterations 
of two variables

where �k is a subgradient of H2
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)
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form, which can be solved with the help of the ADMM algorithm (Yin et al. 2015a; Wang 
et al. 2019).

The mathematical derivation has shown that the stability and convergence of DCA depend 
on the concrete decomposition form of H(�) (Tao and An 1998). To get the closed-form solu-
tion of each subproblem, Gotoh et al. (2018) designed a new type of DCA, which is called 
proximal DCA (pDCA)

where L is the Lipschitz constant, and it can be obtained by calculating max
(
svd

(
�� ∗ �

))
 . 

Through this algorithm, each component of DC decomposition will be strongly convex. 
Equation (4) can be written as

By taking the derivative with respect to � in Eq. (8) and making it equal to zero, we can 
solve the extremum problem of the objective function J(�) to obtain the inversion solution in 
each iteration. The solution of Eq. (8) is given by Wen et al. (2018)

In order to accelerate the convergence speed, we can extrapolate a point �k in the direc-
tion of gradient descent on the line between �k−1 and �k according to the FISTA (Aster et al. 
2012)
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Thus, the solution is given by

Since hkand �∕L are constants in Eq.  (15), we can get the solution by the soft thresh-
olding algorithm (Aster et  al. 2012). When �k > 𝜆∕L , if � < 0 , then sgn(�) = −1 and 
� = �k + 𝜆∕L > 0 , and there is a contradiction. But if � > 0 , then sgn(�) = 1 and 
� = �k − 𝜆∕L > 0 , which is the correct solution in accordance with the conditions. In the 
same way, we can also derive the solution when �k < 𝜆∕L . In summary, the solution can be 
expressed as

 
According to the above statements, the procedure for our inversion method is as follows:
(1) Set the initial solution �0 , tolerance value � and the number of iterations N.
(2) Calculate the Lipschitz constant L.
(3) For each iteration k = 1, 2, 3, …, N:
(a) Update � and �k

(b) Compute �k

and �k
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3 � Synthetic Data Test and Analysis

3.1 � Strata Model

A multilayer geological model (Fig.  2) is created and used to generate a pre-stack seis-
mic gather dataset to elucidate the robustness, convergence speed and stability of the pro-
posed inversion method. The detailed model parameters are shown in Table 1, including 
the P-wave velocity VP , S-wave velocity VS and bulk density � of each layer. The model 
consists of 21 layers with different thicknesses, which generates 20 spike reflection coef-
ficients at the interface between two adjacent strata. According to the vertical variation of 
the model parameters, there will be some small reflection coefficients in the spike sequence 
(e.g., 2nd, 9th, 11th). The pre-stack reflection coefficient series r(t, �) at different incidence 
angles are generated by the Aki–Richards approximate equation (Aki and Richards 1980). 
We assume that the wavelet is a zero-phase Ricker wavelet whose peak frequency is 30 Hz. 
The synthetic gathers with different incidence angles (5°, 15° and 25°) can be obtained by 
convolution. Moreover, we add Gaussian random noise with different signal-to-noise ratios 
(SNR, of 15, 10 and 5, respectively) to verify the robustness of the inversion method in the 
following section. Noise-free and noisy records are shown in Fig. 3.

3.2 � Analysis of L
1−2‑Norm Sparse Constraint.

To illustrate the sparsity advantage of the L1−2-norm over the L1-norm, inversion meth-
ods based on different regularization terms are applied to the synthetic data. First, we 

Fig. 2   Strata model with differ-
ent velocities and bulk density in 
21 layers
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adopted the FISTA (Pérez et  al. 2012) method to do the pre-stack inversion, which 
utilizes the L1-norm regularization term to solve the objective function. Furthermore, 
our proposed algorithm is implemented, in which L1−2-norm regularization is adopted. 
Both algorithms stop the iteration process under the same convergence condition, that 
is, Eq. (21). The tolerance value is set to 1 × 10−5 . The input data are synthetic data with 
SNR = 5 in the inversion. The inversion results are shown in Fig. 4, including the reflec-
tion coefficient inversion results for three angles. The gray bars represent the true reflec-
tivity series, and the black bars are the inversion results.

In FISTA, the regularization parameter is assigned to be 5 × 10−2 , which was selected 
by the L-curve. In our proposed method, there are two regularization parameters that 
need to be determined, of which � = 8 × 10−3 and � = 1 × 10−3 in this example. The 
iteration numbers of the new algorithm and FISTA are 163 and 59, respectively. For the 
environment we tested (i7-10700F processor, 32G memory, 64-bit processing system), 
it took about 3.3520 s and 0.4292 s, respectively. The comparison shows that FISTA has 
a faster speed when reaching the same convergence condition. At the same time, we car-
ried out error analysis of the different inversion results. The correlation coefficient (CC) 
is 0.9762, and the normalized root-mean-square error (NRMSe) is 1.46% in FISTA. 
Correspondingly, our proposed method adopting L1−2-norm regularization can signifi-
cantly reduce the error of the solution, the CC is increased to 0.9971, and the NRMSe 
is reduced to 0.55% . Since most of the elements in the sparse solution are zero, the dif-
ference in error analysis may not be as significant as in Fig. 4. Obviously, the inversion 
results based on L1-norm regularization are not consistent with the amplitude of the real 

Table 1   Elastic parameters of the 
multilayer model in the synthetic 
example

Layer v
p
(m/s) v

s
(m/s) �(kg/m3)

L1 4378.10 2330.70 2525.70
L2 4396.60 2359.70 2555.00
L3 4398.50 2395.60 2610.70
L4 4582.40 2462.00 2624.30
L5 4585.40 2543.70 2628.20
L6 4602.50 2547.40 2633.30
L7 4671.00 2593.30 2634.00
L8 4711.10 2631.00 2637.50
L9 4727.80 2646.60 2644.30
L10 4775.30 2659.30 2649.00
L11 4784.10 2686.90 2672.10
L12 4787.60 2743.40 2678.00
L13 4866.80 2747.20 2678.80
L14 4971.10 2814.70 2678.90
L15 5012.30 2855.20 2685.50
L16 5016.10 2893.90 2698.90
L17 5080.80 2909.70 2709.80
L18 5313.00 2985.00 2714.80
L19 5368.10 3133.30 2716.50
L20 5409.60 3169.90 2741.00
L21 5660.60 3239.80 2756.30
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reflection coefficient at some time points. L1−2-norm regularization can make up for this 
deficiency under the condition of sparsity. The analysis of the first numerical experi-
ment shows that the L1−2-norm regularization can significantly improve the accuracy of 
the inversion solution compared with the common L1-norm regularization.

3.3 � Analysis of Inversion Solving Method

In the methodology section, we briefly introduced common methods for solving the L1−2
-norm regularization, one of which is DCA-ADMM. For the detailed derivation of DCA-
ADMM, please refer to Yin et  al. (2015b). However, it is quite different from our new 

Fig. 3   Synthetic pre-stack gathers with different signal-to-noise (SNR). Three incidence angles seismic 
traces are shown, for 5, 15, and 25 degrees. a No noise. b SNR = 15. c SNR = 10. d SNR = 5
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algorithm, whether the construction of DCA, or the subsequent iterative solution method. 
Compared with the DCA-ADMM method, our proposed algorithm has a more straightfor-
ward solving process in L1−2-norm regularization since there is no need to update multiple 
variables alternately.

We also use synthetic data with SNR = 5 to compare the advantages and disadvantages 
of two different solving methods. The inversion results are shown in Fig.  5. As before, 
the gray and black bars represent the real reflection coefficient and the inversion result. In 
contrast to the previous comparison, the solutions based on the same regularization have 
no noticeable difference in Fig.  5. Combined with the results of error analysis, there is 

Fig. 4   Comparison of inversion results with two sparse constraints for the pre-stack seismic inversion. a-c 
Inversion results with L1-2-norm constraint. d-f Inversion results with L1-norm constraint. The results are 
estimated with different incident angles: (a, d) 5 degrees, (b, e) 15 degrees, and (c, f) 25 degrees. The gray 
and black bars correspond to the actual reflectivity series and the inversion results, respectively
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little difference between the DCA-ADMM and new algorithm in CC (0.9963 and 0.9971), 
NRMSe ( 0.57% and 0.55% ) and program running time (3.1973  s and 3.6673  s) in this 
example. The main difference between the two algorithms is sparsity. The previous section 
introduced the model with 20 reflection interfaces, so in the case of three incidence angles, 
the L0-norm of the real reflection coefficient is 60, which is called sparsity. By calculating 
the norm of the solution obtained by the two methods, we can determine the ability of the 
two algorithms to obtain sparse solutions. The sparsity of the solution obtained by using 
the proposed algorithm in this paper is 80. However, the sparsity of the solution obtained 

Fig. 5   Comparison of inversion results with different solving methods by L1-2-norm sparse constraint. a-c 
Inversion results by the new method. d-f Inversion results by DCA-ADMM. The results are estimated with 
different incident angles; (a, d) 5 degrees, (b, e) 15 degrees, and (c, f) 25 degrees. The gray and black bars 
correspond to the actual reflectivity series and the inversion results, respectively
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by using DCA-ADMM reaches 1497, which means that the solution is not strictly sparse. 
There are a lot of tiny values in many places that are supposed to be zero. Even if val-
ues below 1.9 × 10−4 are ignored, which is the calculation result of multiplying the mini-
mum real reflection coefficient amplitude 1.9 × 10−3 by 0.1 , and the L0-norm is reduced to 
158, the sparsity is still lower than the solution obtained by the new method. This can be 
observed in Fig. 5a-c, where there are fewer small spikes than in Fig. 5d-f. Therefore, our 
proposed new method is more suitable for sparse constraint inversion.

3.4 � Analysis of Noise Effects

Different amounts of noise are generally included in pre-stack synthetic data. It is a crucial 
problem to ensure the stability of the inversion method without the influence of noise. The 
SNRs of the synthetic data used for inversion analysis are 5, 10 and 15. The corresponding 
results are shown in Fig. 6 by using the new method. Regardless of the noise level, a suit-
able regularization parameter can be determined to make the inversion results match well 
with the actual model. The CC of the inversion result reaches 0.9996 when the SNR is 15. 
Even if the SNR decreases to 5 due to a noise increase in the gather, the CC is still as high 
as 0.9971. The analysis shows that the proposed algorithm is robust for noisy seismic data.

4 � Adaptive Regularization Parameter Selection Method

4.1 � Analysis of Regularization Parameters

The last problem that needs to be considered is the selection of regularization parameter in 
inversion processing. In our proposed algorithm, there are two regularization parameters 
� and � that need to be determined. The effect of � is like the regularization parameter 
in Tikhonov regularization, which is used to adjust the weight of the misfit function and 
regularization constraint. As a weight parameter within the L1−2 norm, the influence of 
� is rarely analyzed. Here, we update the sparsity of the model parameters by adding or 
combining thin layers based on the original multilayer model. The sparsity of the two new 
models is 30 and 90. By changing � in a wide range, we analyze the influence of weight 
parameter on the inversion results by using three models, which are different in sparsity. 
We implemented the algorithm on the synthetic records related to these models and cal-
culated the NRMSe of the solutions. Figure 7 shows the variation of NRMSe with regu-
larization parameter � . We find that the influence of parameter � on the inversion results is 
closely related to its value. According to the analysis, the error of the solution will decrease 
rapidly when � is less than 1 and then settles into a stable state. Likewise, the trend of the 
variation curve is like the L-curve, where there is an inflection point. More importantly, 
the influence of � on the solution tends to be stable when it is less than 0.1. Therefore, to 
reduce the difficulty of solving the inverse problem, we set the parameter � to a fixed value 
of 0.01 in the following test.

4.2 � Adaptive Selection Method

Since the algorithm only updates the solution in a critical step and does not need to update 
multiple variables alternately like ADMM, it is possible to use other methods to obtain regu-
larization parameters adaptively. By reasonably changing the regularization parameters to 
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adjust the weight of the regularization term, L1−2-norm regularization can effectively solve 
the ill-posedness of the inverse problem and help us obtain a sparse solution, as shown in the 
previous section. Generally, the larger the regularization parameter, the greater the depend-
ence of the inversion solution on the initial model, and the less sensitive to small perturba-
tions (Thore 2015). The strategy to select an appropriate regularization parameter quickly and 
effectively is an important problem to be solved. Common methods include L-curve (Hansen 
1992) and GCV (Golub et al. 1979) and have been widely used in seismic inversion (Gholami 
2016; Huang et al. 2017). To adjust the regularization parameters adaptively during inversion 
iteration, we introduce a parameter selection method based on generalized Stein unbiased risk 
estimation (G-SURE) (Eldar 2008).

In order to find a function F(�) = �̂ with noisy data �
(
�i
)
 to minimize the mean square 

error (MSE), where �̂ represents an arbitrary estimate of � , Stein (1981) proposed Stein’s 
unbiased risk estimate (SURE), which is proved to be better than the common maximum like-
lihood estimation. To further extend the applicability of the SURE to a broad class of prob-
lems, Eldar (2008) proposed a generalized SURE by adding a penalty term to the expression. . 
For example, a sufficient statistic � for estimating � in linear Gaussian model is given by

In any case, F(�) can be expressed as F(�) based on sufficient statistic � . We can express 
the MSE of �̂ as

where ‖�‖2
2
 is a constant. The purpose of G-SURE is to minimize MSE, so we define

where v(F,�) is a function that estimates the parameters of the model, and it can help us 
estimate MSE accurately. In Eq. (24), the size of MSE depends on the actual model param-
eter � and F(�) , while � is unknown. Specifically, Eldar (2008) solved the problem by 
constructing a function g(F(�))  which satisfies

Then, unbiased estimation of v(F,m) can be expressed as

The details of Eq. (26) are provided in Appendix A. The unbiased risk estimation based on 
F(�) can be expressed as

(22)� = ���.

(23)E
�
‖�̂ −�‖2

2

�
= ‖�‖2

2
+ E

�‖F(�)‖2
2

�
− 2E

�
FT (�)�

�
,

(24)v(F,�) = E
�‖F(�)‖2

2

�
− 2E

�
FT (�)�

�
,

(25)E{g(F(�))} = E
{
FT (�)�

}
.

(26)v̂(F) = ‖F(�)‖2
2
− 2g(F(�)).

(27)v̂(F) = ‖F(�)‖2
2
+ 2Tr

�
𝜕F(�)

𝜕�

�
− 2FT (�)

�
���

�−1
�.

Fig. 6   Comparison of inversion results with different SNR. a-c SNR = 5, d-f SNR = 10, g-i SNR = 15. The 
results are estimated with different incident angles: (a, d, g) 5 degrees, (b, e, h) 15 degrees, and (c, f, i) 
25 degrees. The gray and black bars correspond to the actual reflectivity series and the inversion results, 
respectively

▸



1831Surveys in Geophysics (2022) 43:1817–1843	

1 3



1832	 Surveys in Geophysics (2022) 43:1817–1843

1 3

In each solving algorithm, once the critical steps of the iterative solution are determined, 
the detailed form of Eq. (27) can be obtained. By deriving v̂(F) for the regularization parame-
ter � and making it equal to 0, the regularization parameters in each iteration can be calculated.

Now, we extend the approach to the algorithm proposed in the paper. Substituting Eq. (19) 
and Eq. (22) into Eq. (16),

We suppose that there are p components greater than �∕L and q components less than 
−�∕L in the kth iteration. By arranging them together, we can form two vectors with dimen-
sions p and q , marked as �1 and �2 . In the same iteration, the components of (���)−1� cor-
responding to the indexes �1 and �2 in v̂(F) are recorded as �1 and �2 , respectively. Therefore, 
we can get the expression of each term in Eq. (27)

and

We can get that the specific form of Eq. (27) under the framework of the new algorithm

(28)F(�) =

⎧
⎪⎪⎨⎪⎪⎩

�k −
1

L

�
����k − � − �k

�
−

𝜆

L
, h

k >
𝜆

L

�k −
1

L

�
����k − � − �k

�
+

𝜆

L
, h

k < −
𝜆

L

0, otherwise

.

(29)‖F(�)‖2
2
=

p�
i=1

�
�i
1
−

�

L

�2

+

q�
j=1

�
�
j

2
+

�

L

�2

,

(30)Tr

[
�F(�)

��

]
=

p + q

L
,

(31)FT (�)
(
���

)−1
� =

p∑
i=1

(
�i
1
−

�

L

)
�i

1
+

q∑
j=1

(
�
j

2
+

�

L

)
�

j

2
.

Fig. 7   Variation of NRMSe with regularization parameter � in different sparsity models (sparsity = 30, 60, 
90)
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To obtain the optimal regularization parameter �k in kth iteration, we have that

We can conclude that

It is worth noting that the solution is unstable if (GTG)−1u is calculated directly in 
Eq.  (31); we can solve the problem by calculating the generalized inverse G† (Infante-
Pacheco et  al. 2020). Both singular value decomposition (SVD) and truncated singular 
value decomposition (TSVD) are alternative methods. If the latter method is selected, the 
GCV method can determine the truncation parameter.

4.3 � Applicability of L
1−2‑Norm Regularization

To study the applicability of this adaptive strategy in L1−2-norm regularization, we use 
the noisy synthetic data (SNR = 5) in numerical examples as the input data for verifica-
tion. Before we apply the adaptive strategy to seismic data, a significant problem is the 
determination of iterative convergence conditions. Once this condition is met, the inversion 
process is suspended to avoid meaningless computation. In the numerical experiments, we 
found that the sparsity of the solution will be continuously reduced if Eq. (21) is taken as 
the convergence condition in the adaptive process, which will cause the components of the 
solution to disappear. To illustrate this process, we tested the adaptive parameter selection 
method with three different regularization parameters as initial values independently and 
recorded the regularization parameters � in the adaptive iterative process.

Figure 8 shows the recorded results in this process and depicts the variation of solu-
tion and regularization parameters. The change of the solution is represented by the 
L1−2 norm, which reflects sparsity. The three initial parameters are 1 × 10−3 , 1 × 10−5 
and 1 × 10−7 , corresponding to the light gray, black and dark gray lines, respectively, 
in Fig. 8. During the initial iteration, there is a significant increase in the regularization 
term. The reason for this change is that the initial solution of the inversion is zero, and 
the solution is rapidly searching in the direction of descending gradient, while the solu-
tion is not sparse. After several times of jitter reduction, the value of the regularization 
term will decrease sharply, and the regularization parameter � will move away from the 
low-value range and increase significantly in a few successive iterations. In this case, 
the solution is optimal in the whole iterative process. If the iterative process does not 
stop, then a following adaptive iterative process will continue to increase the sparsity 
of the solution until almost all the elements in the inverse solution are zero, which will 
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obviously obtain a solution that is different from the actual model. Equation (21) is not 
satisfied at the optimal points, which shows that it is not suitable as an iterative conver-
gence condition.

Combined with the above analysis results, we choose the following conditions as the 
convergence condition during iteration

The establishment of a new convergence condition combines the rules of parametric 
variation in Fig.  8. Obviously, Eq.  (35) shows that the slope of the regularization term 
curve is positive, which is opposite to that of the regularization parameter variation curve, 
and the difference of the regularization parameters between the k and k + 1 iteration is 
greater than the tolerance �.

In the synthetic data test, we set the tolerance � to 0.03 and the parameter � to 0.01. 
Figure 9a-c shows the inversion results using these three regularization parameters directly, 
and Fig. 9d-f shows the inversion results using the adaptive adjustment strategy, where they 
are only used as initial values. It is worth mentioning that we only compare the situation 
when the incidence angle is 5° which is like that of other incidence angles. Obviously, a 
wrong solution can be obtained by directly applying the inversion method in the case of 
inappropriate regularization parameters. After applying the adaptive strategy, the sparsity 
of the solution is greatly improved compared with Fig. 9a-c. Nevertheless, the solution is 
still not optimal because the amplitude of the reflection coefficient has not been well recov-
ered, even if the reflection coefficient appears at the correct time. Moreover, we can adjust 
the amplitude of the spike to the appropriate value with the help of a hybrid FISTA least-
squares strategy (Pérez et al. 2013).

(35)
�
‖�‖k

1
− 𝛼‖�‖k

2

�
−
�
‖�‖k−1

1
− 𝛼‖�‖k−1

2

�
< 0and 𝜆k − 𝜆k−1 > 𝜀.

Fig. 8   a Variation of L1-2-norm in the iteration process. b Variation of regularization parameter � in the 
iteration process. The solid lines represent the variation of properties when the convergence condition is 
satisfied, and the dashed lines represent the variation of properties after the convergence condition is satis-
fied. The optimal points are marked in the case of different initial regularization parameters
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The main idea of the hybrid strategy is to obtain the optimized solution �hybrid by 
rewriting the forward matrix � to � , which is a dimension reduction form. The opti-
mized solution �hybrid is computed by the least squares method

where mspike is the rearranged solution by removing the zero element. The results are shown 
in Fig. 9g-i. After applying the hybrid strategy, the CC of the inversion results is 0.9977, 
0.9973 and 0.9967, respectively. Therefore, the application of the hybrid strategy can effec-
tively improve the quality of inversion. Considering that the selection of fixed regulariza-
tion parameters in the actual data may lead to uncertainty at the non-well location, the 
adaptive method can be applied to the inversion of real data as an optional method.

5 � Real‑Data Application

Finally, we apply the inversion method to real field data to verify the applicability of 
our proposed new algorithm and adaptive parameters selection strategy. To enhance the 
SNR of pre-stack gathers, we utilize partially stacked gathers to do the pre-stack inver-
sion from the original gathers. The near-, mid- and far-angles partially stacked gathers 
are obtained, and the corresponding incidence angles are 8◦ , 16◦ and 24◦ , respectively. 
The time interval of the target layer ranges from 3100 to 4400 ms on the seismic profile 
(Fig. 10a-c), in which there are apparent strong amplitude anomalies and fault develop-
ment, as it is a typical sandstone reservoir. The frequency range of seismic data is about 
4 ~ 80 Hz, and the location of one drilled oil well is at CDP number 292.

Before applying the inversion method, it is necessary to accurately obtain the 
time–depth relationship (TDR) by well-seismic calibration. The corresponding range of 
well-logging data on the seismic profile is 3660 to 4100  ms. Three angle-dependent 
wavelets are estimated from the partially stacked seismic sections. To show the accuracy 
of the TDR and estimated wavelet, we use the velocity and density logging data in the 
well to make synthetic records, which were compared with the field data at the well 
location. The result is shown in Fig.  11, where the x-axis represents incidence angle, 
and the y-axis represents time. The synthetic data are shown as the black curve and the 
field data as the red curve. We analyzed the similarity of seismic traces at different inci-
dence angles. The CC is 0.8813, 0.8751 and 0.7300, which represent incidence angles 
of 8◦ , 16◦ and 24◦ , respectively. The analysis results show that the synthetic records are 
in good agreement with the field data in the time domain. And the SNR of the far-angle 
stack data is not as high as the near-angle stack.

In the case of applying the general inversion method to the actual data, we first need 
to determine the appropriate regularization parameters according to the seismic data at 
the well location and then extend the parameters to the seismic data volume. The regu-
larization parameter selection method proposed in this paper can adaptively select the 
appropriate regularization parameters according to the inversion data and the extracted 
wavelet. It is no longer necessary to extend the regularization parameters determined by 
synthetic data to the whole dataset.

As an effective parameter to identify reservoir properties, seismic impedance can be 
obtained via the following equation according to the convolution model

(36)�hybrid = �spike +
(
���

)−1(
� − ��spike

)
,
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where EI is elastic impedance in time domain t, C is an integral matrix, and exp[⋅] denotes 
exponential operation (Zhang et al. 2014). Here, we adopt Eq. (37) to calculate the seis-
mic impedance from the inverted reflectivity, which is relative impedance. Moreover, for 
real field data, we can compare it with the result calculated by the logging data. Consider-
ing the attenuation in seismic wave propagation, the logging data should be processed by 
a low-pass filter before calculating relative impedance. At the same time, in the process 
of calculating seismic impedance by using Eq.  (37), if there is an error in the reflection 
coefficient at a specific time, there will be a low-frequency cumulative error in the whole 
integration process. To avoid cumulative errors, the usual method is to filter the calculation 
results, which will cause the results to be band-limited, so the calculation results of log-
ging data need to be processed by the same filter (Wang et al. 2019). Figure 12 compares 
the actual well-logging relative impedance trace and the inverted relative impedance traces 
by using two inversion methods. The black solid line represents the relative impedance by 
filtering the well-logging curves. The gray dashed line and gray dotted line represent the 
inversion results of the adaptive and non-adaptive method, with CC of 0.7585 and 0.7521, 
respectively. Although the CC between two inversion methods is equivalent, significant 
errors may occur if the optimal regularization parameters obtained from the trace at the 
well location are extended to other traces.

Through the comparison of inversion results at the well location, the accuracy and effec-
tiveness of our proposed inversion method are verified. Therefore, we inverted the whole 
seismic section data (shown in Fig. 10). Three angle reflectivity series sections are obtained 
by using the proposed inversion method and the adaptive parameters selection strategy for 
real field data processing. Moreover, we can calculate the relative seismic impedance using 
Eq. 37, which is based on the convolution model of reflectivity coefficient. The inversion 
results for three-angle stack seismic sections are shown in Fig. 13. Comparing the near- and 
mid-angles relative impedance sections, at 3700 ms, there is a bright spot, and its imped-
ance is significantly higher than that of the surrounding rocks, so it can be considered as a 
favorable exploration target. The relative impedance section of the far-angle stacked seis-
mic section (Fig.  13c) is not consistent with the inversion results of the near- and mid-
angles stacked seismic sections, but it is consistent with the pre-stack seismic gathers as 
shown in Fig. 11 and the stacked seismic section as shown in Fig. 10c.

6 � Conclusions

We have combined the sparse regularization of L1−2-norm and the proximal difference-of-
convex algorithm (pDCA) to implement a pre-stack seismic inversion technique to obtain 
reflectivity coefficients from pre-stack seismic gather data. The analysis of synthetic data 
inversion results verified that L1−2-norm is better than the traditional L1-norm in sparsity 
as a regularization penalty term. At the same time, the analysis of the inversion solving 
method and noise effects indicated that our implemented inversion method by using the 

(37)EI(t) = EI
(
t0
)
∗ exp [2 ∗ C ∗ r(t)],

Fig. 9   Inversion results of three strategies for regularization parameter. a-c Fixed regularization parameter 
strategy, d-f adaptive method and g-i hybrid strategy. The results are estimated with different initial regu-
larization parameters: (a, d, g) 1 × 10

−3 , (b, e, h) 1 × 10
−5 , and (c, f, i) 1 × 10

−7 . The gray and black bars 
correspond to the actual reflectivity series and the inversion results, respectively

▸
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pDCA is also more suitable for sparse constraint inversion than the DCA-ADMM, which is 
a valuable inversion algorithm used in seismic inversion.

We presented an adaptive hybrid strategy, discussing the influence of regularization 
parameter � in L1−2-norm and deriving the adaptive selection method of regularization 
parameter � based on G-SURE, which could reduce the computation time to obtain the 
appropriate parameter. The analysis of different sparsity inversions of synthetic data inver-
sion indicated that our adaptive parameter section method could effectively improve the 
quality of inversion results. Considering that the selection of fixed regularization param-
eters in real data may lead to uncertainty at the non-well location, the adaptive method can 
be applied to the inversion of real data as an optional method.

If only one optimization parameter is considered, the computing times of adaptive 
and non-adaptive methods are the same. However, the limitation of the non-adaptive 
method is that it needs many tests to obtain a stable regularization parameter. Therefore, 

Fig. 10   Three partial stacked seismic sections. a Near-angle stacked section, b mid-angle stacked section, 
and c far-angle stacked section
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the non-adaptive method is more time-consuming in obtaining a solution with the same 
precision. The adaptive method simplifies the process of parameter selection, which only 
requires an initial value to update the regularization parameters in the iterative process. 
Nevertheless, the adaptive method based on G-SURE needs to use the generalized inverse 
operator G† to obtain a low-precision initial solution (GTG)−1u . Each component of the 
initial solution will be tested to determine whether it is appropriate in the iterative pro-
cess. There is no doubt that the choice of the initial solution will influence the effect of the 
adaptive method. In this paper, we use truncated singular value decomposition (TSVD) to 
obtain a generalized inverse, which has an obvious effect and avoids the introduction of 
more regularization parameters.

We presented an application to real field data by using the proposed pre-stack seismic 
inversion and adaptive hybrid strategy for selection of regularization parameters. The 
results showed that our inversion method is effective and stable for real field seismic 

Fig. 11   Comparison of field data (red) and synthetic data (black) at the well location in the time domain

Fig. 12   Comparison of the actual well-logging relative impedance trace and the inverted relative impedance 
traces by using two inversion methods in the time domain. The black line is relative impedance by filtering 
from the well-logging curves, the gray dashed line represents the result by the adaptive method, and the 
gray dotted line represents the result by the non-adaptive method
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data, which is generally contaminated by ambient noise. In this paper, we calculated the 
relative impedance from the inverted reflectivity coefficient series in the time domain 
according to the convolution model. The relative impedance is band-limited because the 
seismic data are band-limited, and filtering is required to eliminate the low frequency 
accumulated error in the integration process. More importantly, the elastic parameters 
cannot be directly inverted from the relative impedance; this requires wide-band imped-
ance data based on a low-frequency model, but this is not the focus of this paper. Con-
sidering the wider application of sparse constraints in geophysics as reviewed in the 
introduction, our proposed inversion method based on L1−2-norm can be applied to 

Fig. 13   Inverted relative impedance section of a the near-angle stacked seismic section, b the mid-angle 
stacked seismic section and c the far-angle stacked seismic section, which corresponds to Fig. 10
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many real problems, such as improving seismic resolution as a deconvolution method, 
which is another important application direction.

Appendix

To get a concrete form of function v̂(F) , firstly we need to determine g(F(�)) . In math-
ematics, the MSE can be written in the form of an integral

Under the assumption of zero-mean Gaussian distribution, the distribution function 
of u can be expressed as

where K is a constant only related to Gaussian distribution and 
�(�) = K exp

{
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}

 . Equation (38) could be rewritten as

According to the derivative property of the exponential function and the partial inte-
gration method, we have that

Substituting Eq. 41 into Eq. 38,

According to the above derivation, the specific form of g(F(u)) can be obtained:

Now,
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where Tr[⋅] denotes the trace of a matrix.
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