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Abstract
Geophysical well-log evaluation in the era of unconventional hydrocarbon resources (mainly 
tight oil and gas, shale oil and gas) is complicated and challenging. This review aims to fill this 
gap between well-log evaluation and unconventional hydrocarbon resources by characteriz-
ing the source rock property, reservoir property and engineering property using petrophysical 
well logs. The advanced well-log series used for unconventional oil and gas evaluation include 
nuclear magnetic resonance (NMR) log, image logs, array acoustic logs, elemental capture 
spectroscopy (ECS) and LithoScanner logs. The source rock property in terms of total organic 
carbon content is predicted using conventional logs and LithoScanner log. Then petrophysical 
parameters including porosity, permeability and oil saturation are calculated, and the appear-
ance of natural fracture is predicted from conventional, sonic logs, image logs and NMR logs. 
Additionally, the reservoir property is evaluated to optimize the favorable layers with high 
hydrocarbon bearing property and productivity. Brittleness index as well as in situ stress direc-
tion and magnitudes are characterized by the comprehensive use of density, sonic log, ECS 
log and image logs. Then, the engineering property (high brittleness index but low horizontal 
stress difference) is evaluated to screen out the prospected layers for hydraulic fracturing. The 
internal relationships between the three types of properties are unraveled, and the geological 
and engineering sweet spots are optimized by integrating lithology, reservoir quality, hydrocar-
bon bearing property, source rock property, brittleness and in situ stress magnitude and direc-
tion. This multidisciplinary approach provides a comprehensive method for optimizing sweet 
spots in unconventional play, and will support petroleum geoscientists’ and engineers’ deci-
sions in exploration and exploitation of unconventional hydrocarbon resources.

Article Highlights 

• This paper surveys the current status and prospects of well log evaluation of unconven-
tional oil and gas
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• Geophysical well log evaluation of unconventional hydrocarbon resources character-
izes source rock property, reservoir property and engineering property

• Geological and engineering sweet spots can be optimized by petrophysical and geome-
chanical properties determined from well logs

Keywords Unconventional hydrocarbon resources · Source rock property · Reservoir 
property · Engineering property · Sweet spot · Well logs

List of symbols

Well‑log curve names:
AC  Sonic interval transit time
AT90, AT60, AT30, AT20, AT10  High definition induction logs
CAL, CALI  Caliper log
CNL  Compensated neutron log
CGR   GR log without U contribution
DEN  Bulk density
DT  Sonic transit time log
ECS  Elemental capture spectroscopy
FMI  Fullbore formation microimager
GR  Natural gamma-ray
ILM  Medium induction logs
ILD  Deep induction logs
K, Th, U  Spectral gamma-ray log
KTH  GR log without U contribution
LLS, LLD  Shallow and deep lateral log
M2Rx, M2R9, M2R6, M2R3, M2R2, M2R1  High definition induction logs
MSFL  Micro spherically focused log
MSIP  Modular sonic imaging platform
NPHI  Neutron porosity logs
NMR  Nuclear magnetic resonance
Pe  Litho-density
RHOB  Density log
RI  Induction logs
Ro  Vitrinite reflectance
Rxo, Rt  Resistivity of flushed zone and uninvaded 

zone
SGR  Total gamma-ray log
SP  Spontaneous potential
SFLU  Micro-resistivity log
T1  Longitudinal relaxation time
T2  Transversal relaxation time
T2gm  T2 Weighted mean on a logarithmic scale
T2cutoff  Transition T2 value separating immobile fluid 

from mobile fluid

Other Nomenclatures
ANN  Artificial neural network
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BVI  Bulk volume irreducible
CT  Computed tomography
ELAN  Quanti elemental log analysis
E  Young’s modulus
FFI  FFI free fluid index
MICP  Mercury injection capillary pressure
RQI  Reservoir quality index
SDR  Schlumberger-Doll research
SEM  Scanning electron microscopy
Sh  Hydrocarbon saturation
Sv  Vertical stress
SHmax  Magnitudes of maximum horizontal stress
Shmin  Minimum horizontal stress
S1  Volatile hydrocarbon
S2  Remaining hydrocarbon
SVM  Support vector machine
TOC  Total organic carbon
TIC  Total inorganic carbon
TC  Total carbon
v  Poisson’s ratio
φ  Porosity
K  Permeability

1 Introduction

Unconventional hydrocarbon resources, which mainly include tight and shale oil and gas, 
etc., play more and more important roles in the world energy structure (Zou et  al. 2019; 
Nikolaev and Kazak 2019; Wu et  al. 2019; Amosu et  al. 2021; Mukhametdinova et  al. 
2021). The increasing market demand and technological advances in directional geosteer-
ing, horizontal drilling and multi-stage hydraulic fracturing have made unconventional plays 
a major focus for the global petroleum industry (Qiu et al. 2016; Curtis et al. 2012; Rybacki 
et al. 2016; Iqbal et al. 2018; Sun et al. 2021). However, unconventional tight to shale reser-
voirs have varied lithologies (structure and composition) (Chen et al. 2017; Cao et al. 2017; 
Li Maowen et al. 2019), ultra-low permeability (Gale et al. 2007; Josh et al. 2012; Avanzini 
et al. 2016; Bai et al. 2017) and the pore systems are dominated by highly heterogeneous 
nano- to microscale pore assemblages (Curtis et al. 2012; Loucks et al. 2012; Manjunath 
and Jha 2019; Chandra and Vishal 2021). Therefore, unconventional reservoirs commonly 
have remarkably different well-log responses compared with conventional reservoirs (Iqbal 
et al. 2018), and formation evaluation for unconventional plays using petrophysical well logs 
remains complicated and challenging (Du et al. 2021; Amosu et al. 2021; Liu 2021).

Source rock property needs to be evaluated via well logs for the self-sourced and self-
retained unconventional resources (Zhao et al. 2019). Reservoir quality is also one of the 
key risk factors for productivity (Zhang et al. 2015; Mukhametdinova et al. 2021). In addi-
tion, unconventional reservoirs have no natural productivity, and therefore, hydraulic frac-
turing is required for the economic production (Gale et al. 2007; Josh et al. 2012; Avanzini 
et  al. 2016; Dong et  al. 2018; Manjunath and Jha 2019). Consequently, the engineering 
property (brittleness and in situ stress states) has become critical petrophysical parameters 
for screening prospected layers for hydraulic fracturing (Lai et al. 2015; Iqbal et al. 2018). 
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The optimization of “sweet spots” (hydrocarbon-rich zones with matured high-quality 
source rocks, favorable reservoir quality and prospected layers for stimulation) integrating 
source rock property, reservoir property and engineering property is essential for exploita-
tion of unconventional resources (Zou et al. 2013; Lu et al. 2019). Petrophysical well logs, 
when calibrated with core analysis data, have the advantages for continuous evaluation of 
source rock property, reservoir property and engineering property of unconventional plays 
with low cost (Clarkson et al. 2012; Avanzini et al. 2016; Iqbal et al. 2018).

Due to the fundamental difference in petrophysical and geomechanical properties of 
unconventional plays, a systematic workflow is required to characterize the seven kinds 
of parameters (lithology, reservoir quality, hydrocarbon bearing property, electronic well-
log responses, source rock property, brittleness and in situ stress magnitude and direction) 
and the three kinds of properties (source rock property, reservoir property and engineering 
property) (Zou et al. 2019; Mukhametdinova et al. 2021). This review aims to fill the gap 
between geological and petrophysical characterization of unconventional resources, and the 
different types of logs from the Ordos Basin, the Subei Basin, the Junngar Basin and the 
Tarim Basin are used. Firstly, the commonly used geophysical well-log series are reviewed. 
Secondly, the source rock property in terms of TOC abundance is evaluated using con-
ventional, spectrum gamma-ray and LithoScanner logs. Thirdly, the reservoir property in 
terms of lithology, porosity, permeability, oil saturation and the presences of fractures is 
predicted by conventional, sonic logs, image logs and NMR logs. Fourthly, the engineering 
property in terms of in situ stress direction and magnitudes as well as brittleness index is 
characterized by sonic logs and image logs. Lastly, the geological and engineering sweet 
spots optimization is performed by unraveling the relationships between three types of 
properties. This study critically reviews the petrophysical well-log evaluation of unconven-
tional resources, as assessed from peer reviewed papers and from the authors’ personal 
experiences, with the aim that readers can use these results for their future work.

2  Geophysical Well‑Log Series

A series of geophysical well-log suits spanning from conventional well logs to advanced 
well-log suits, which have varied vertical resolution and depth of investigation, can be used 
for unconventional oil and gas resource evaluation (Fig. 1) (Yarmohammadi et  al. 2020; 
Mukhametdinova et al. 2021).

Conventional well-log series include caliper (CAL), spontaneous potential (SP), natural 
gamma-ray (GR), litho-density (Pe), sonic interval transit time or acoustic log (AC), compen-
sated neutron log (CNL) and bulk density (DEN) (Fig. 1). Three resistivity logs can be divided 
according to their depth of investigation, and micro log (MSFL, MIL) measures the resistivity 
of mudcake with a depth of investigation of 2.5–10 cm. Lateral logs (LLS, LLD) and induction 
logs (ILM, ILD) can measure the resistivity of flushed zone (Rxo) and uninvaded zone (Rt) 
(Fig. 1). In addition, in order to improve the vertical resolution and depth of investigation, high 
definition induction logs HDIL (M2Rx, M2R9, M2R6, M2R3, M2R2, M2R1), which have a 
vertical resolution of 1–2 ft, and depths of investigation of 10–120 ft, are developed (Fig. 1).

Electrical or ultrasonic borehole image logs, which measure the electrical resistivity or acous-
tic impedance of borehole wall (Khoshbakht et al. 2009), provide very high-resolution (5 mm) 
borehole pictures (Prioul et al. 2007; Folkestad et al. 2012). FMI (fullbore formation microim-
ager) imaging tool, which have 8 pads and each contains 24 buttons, electrically scan the bore-
hole wall, and a total of 192 micro-resistivity curves are collected (Khoshbakht et  al. 2009; 
Rajabi et al. 2010). Then, the micro-resistivity curves are used to build up a “pseudo-picture” of 
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the wellbore through speed correction, eccentering correction and normalization (Goodall et al. 
1998; Rajabi et al. 2010; Wilson et al. 2013; Keeton et al. 2015). Geological features in terms 
of fracture, fault, bedding and vug as well as cavity can be picked out from the high-resolution 
images (Fig. 1) (Xu et al. 2009; Khoshbakht et al. 2012; Lai et al. 2018a; Wang et al. 2020).

Nuclear magnetic resonance (NMR) logging tool measures the longitudinal relaxation 
time (T1), transversal relaxation time (T2) spectrum and diffusion coefficient (D) and has 
a vertical resolution of 0.2 m (Kleinberg et al. 2005; Tan et al. 2014; Bauer et al. 2015; Liu 
et al. 2019; Wang et al. 2020). The NMR  T2 spectrum is widely used for fluid property dis-
crimination (Wang et al. 2020), and can be used for determination of porosity, estimation 
of permeability, evaluating irreducible water saturation and hydrocarbon saturation (Fig. 1) 
(Dunn et al. 2002; Kleinberg et al. 2005; Hübner 2014; Bauer et al. 2015; Olatinsu et al. 
2017). Additionally, plot of T1 versus T2 as well as plot of T2 versus diffusion coefficient 
can be used for fluid property determination since the hydrocarbon and water signals can 
be clearly separated due to the large contrast between diffusion coefficients of hydrocarbon 
and water (Sun and Dunn 2005).

The elemental capture spectroscopy (ECS) and LithoScanner logs with a vertical reso-
lution of 0.457 m (1.5 ft) can directly provide the rock compositions (clay, quartz, feldspar, 

Fig. 1  Conventional geophysical well-log data and advanced well-log suits with various vertical resolutions 
used in well-log evaluation
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and mica (Q-F-M), carbonate and pyrite, etc.) (Maliva et al. 2009; Collett et al. 2011), and 
are widely used for mineral content determination, lithology recognition and even TOC 
calculation (Fig. 1) (Guo et al. 2019).

Array acoustic logging tools or sonic scanner (MSIP—modular sonic imaging platform) 
logs, which have a vertical resolution of 3.0  m, measure the full wave-forms including 
compressional wave slownesses, shear-wave slownesses, Stoneley wave and pseudo-Ray-
leigh wave (Collett et al. 2011; Zaree et al. 2016). Therefore, sonic logs are widely used 
in the fields of engineering geology in calculating geomechanical parameters, determining 
in situ stress and rock anisotropy (Fig. 1) (Liu et al. 2018).

Conventional well logs can be collected in most of the wells, while the advanced well 
logs (image logs, NMR log, LithoScanner log, array sonic logs) are too expensive, and are 
not available for all the wells drilled.

3  Source Rock Property

Quality (types), quantity (abundance) and thermal maturity are three important geochemi-
cal parameters for source rock evaluation (Zhao et  al. 2019). Organic matter abundance 
(quantity) can be characterized by total organic carbon content (TOC), which is defined as 
the organic richness or amount of organics within source rocks (Jarvie et al. 2007; Iqbal 
et  al. 2018). Thermal maturity is the degree or stage of organic matters transformation 
into hydrocarbon at adequate pressure and temperature with increase in burial depth (Zhao 
et al. 2019). Vitrinite reflectance (Ro, %) is often used as a measure of thermal maturity of 
source rocks (Zhao et al. 2019). Zhao et al. (2019) integrates resistivity, neutron and den-
sity logs to estimate thermal maturity index for Barnett shale.

3.1  Well‑log Responses of Source Rocks

Shales have distinct responses in well logs due to the unique physical properties of the 
organic matters (Aziz et al. 2020). Source rocks are organic matter-rich mudstones/shales, 
which can be qualitatively recognized by conventional well logs due to their distinct petro-
physical properties compared with reservoir rocks. Mudstones and shales are inherently 
different from sandstones or carbonate rocks due to their high gamma-ray; additionally, 
the presences of organic matters will amplify this effect (Aziz et al. 2020). Conventional 
well-log series which are sensitive to organic matters include gamma-ray (GR), sonic tran-
sit interval time (AC), neutron porosity (CNL), bulk density (DEN) and resistivity (RT) 
(Wang et al. 2019; Aziz et al. 2020).

GR tool measures the radioactivity, and the presence of organic matter-rich source rocks 
will cause intense radioactivity and consequently high GR values (Shalaby et al. 2019). For 
instance, the source rocks in Yanchang Formation Member 7 of Ordos Basin, West China, 
have high GR readings (Fig.  2). The anomalously high GR was mainly ascribed to ura-
nium, which is related to the organic matter (Fig. 2) (Wang et al. 2019).

Mudstones conventionally show high AC values than sandstones, and transit interval 
time of organic matters (about 500 μs/m) is much larger than that of rock matrix. There-
fore, organic matter-rich source rocks will show much higher AC logging values (Fig. 2) 
(Wang et al. 2019).
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Neutron log measures the hydrogen index in rocks (Shalaby et al. 2019). Organic mat-
ters commonly have high hydrogen index, which gives high neutron porosity logging 
(CNL) value (Fig. 2) (Wang et al. 2019).

Density log is the comprehensive reflection of fluids and matrix components (Shalaby 
et  al. 2019). Organic matters (kerogen) have much lower bulk density (about 1.0 g/cm3) 
than the matrix rocks (2.5–2.7 g/cm3); consequently, the density log value will significantly 
decrease when encountered with source rocks (Fig. 2) (Wang et  al. 2019; Shalaby et  al. 
2019).

The mudstone intervals generally exhibit low resistivity because of the good conductiv-
ity of clay minerals and pore water. However, the organic matter-rich mudstones (shales) 
are non-conductive; additionally, in mature source rocks, the non-conductive hydrocarbon 
will further cause a high anomaly in the resistivity logs (Passey et al. 1990; Wang et al. 
2019; Shalaby et al. 2019; Wood 2020a). The high definition resistivity log (AT10-AT90) 
shows abnormally high readings and is deviated evidently in the source rock intervals 
(Fig. 2) (Shalaby et al. 2019).

In Fig. 2, the source rocks are therefore evidently recognized in the 1710–1718 m depth 
intervals and are characteristic of abnormal high GR readings, low bulk density, but high 

Fig. 2  Well-log responses of  source rocks in Yanchang Formation Member 7 of Ordos Basin, West China
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sonic transit time, high neutron porosity and high resistivity (Fig. 2). The image logs are 
white due to the high resistivity and abundant lamina is recognized. The NMR logs and 
array acoustic logs show no evident responses in the source rock intervals (Fig. 2).

3.2  TOC Prediction via Well Logs

TOC, volatile hydrocarbon (S1) and remaining hydrocarbon (S2), which reflect richness 
and hydrocarbon generation potential of organic matters, are three significant factors for 
source rock property evaluation (Aziz et al. 2020). The content of S1 and S2 estimations 
can be processed through regression analysis between TOC and (S1 + S2) content (Wang 
et al. 2019). TOC is the organic richness or amount of organics within rock (Jarvie et al. 
2007; Iqbal et al. 2018). TOC value can be accurately measured using rock pyrolysis (Iqbal 
et al 2018); however, core data are not available in all intervals or wells due to high cost 
and low recovery rate (Aghli et al. 2016; Lai et al. 2017). Therefore, TOC estimation using 
well logs is vital for continuous evaluation of source rock property. There are various meth-
ods proposed to calculate TOC using well logs, including (1) ΔlogR method, (2) spectral 
gamma-ray log, (3) multivariate fitting method and (4) advanced log method (LithoScan-
ner log), (5) machine Learning (learning) method, etc.

3.2.1  ΔlogR Method

The ΔlogR method was initially proposed by Passey et  al. (1990), and had been widely 
used for TOC estimation using well logs in carbonates and clastic rocks. ΔlogR, i.e., the 
sonic-resistivity overlay plot AC and true formation resistivity Rt logs in one track, addi-
tionally AC and RT are scaled as a ratio of 50 μs/ft to one resistivity cycle. The separation 
between two curves (AC to the left and RT to the right) is defined as ΔlogR (Passey et al. 
1990; Shalaby et al. 2019). The AC curve will reflect low density/low velocity kerogens, 
while the Rt curve will respond to formation fluid (Tenaglia et al. 2020).

The method of sonic-resistivity overlay (ΔlogR) is used to calculate TOC content (Eqs. 1, 2).

R is deep resistivity log (Ω  m−1), and the RT and LLD logs can be used; Δt (AC) is the 
sonic transit time (μs/ft or μs/m), almost all suits of logs give the AC curve; RBaseline and 
ΔtBaseline are the resistivity and sonic transit time values at the base line; LOM (local level 
of organic metamorphism) is a constant related to thermal maturity. In some cases, sonic 
transit time curve may not be unavailable, and then, density or neutron log can be used 
instead (Shalaby et al. 2019; Tenaglia et al. 2020).

The scaling of sonic and resistivity well logs during overlaying is set as a ratio 
of − 164 μs/m (− 50 μs/ft) sonic transit time (Δt) to one logarithm resistivity cycle Ω  m−1 
(for instance, 1–10 Ω  m−1) (Passey et al. 1990; Iqbal et al. 2018; Godfray and Seethara-
maiah 2019; Wang et al. 2019; Shalaby et al. 2019). The TOC can be calculated using the 
above ΔlogR method providing that the baseline of AC and RT is determined. The TOC 
predicted from ΔlogR methods is in accordance with the core-measured TOC content in 
Lucaogou Formation of Jimusar Sag, Junggar Basin, West China (Fig. 3). Then, the TOC 

(1)

Δ logR = log(R∕RBaseline) + 0.02(Δt − Δt
Baseline

)

(2)
TOC = Δ logR × 10(2.297−0.1688LOM)



921Surveys in Geophysics (2022) 43:913–957 

1 3

Fig. 3  TOC estimation using ΔlogR method in Lucaogou Formation of Jimusar Sag, Junggar Basin, West 
China
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content is estimated using the above formula, and the results are in accordance with core-
measured TOC content (Fig. 3).

Source rock intervals can be firstly qualitatively identified using GR, CNL, DEN and 
resistivity log curves. Additionally, plotted AC and RT in one track with scaling of 100 μs/ft 
(for instance 140–40 μs/ft) transit time to two logarithm resistivity cycle (10–1000 Ω  m−1) 
also give the source rock intervals. As is known, AC and RT logs will overlap with each 
other in non-source rock interval, while the two logs will deviate evidently at the source 
rock intervals. There are many ΔLogR-based methods widely used to estimate TOC con-
tent using well logs (Zhao et al. 2016).

The limitation of ΔlogR is that the baselines vary from formation to formation and well 
to well (Wang et al. 2019). Additionally, the presence of pyrite will mask resistivity profile 
and show low resistivity (Passey et al. 1990; Iqbal et al. 2018).

3.2.2  Spectral Gamma‑Ray Log

GR logging tool measures the total intensity of radioactivity of formation which come from 
K, Th and U elements. GR spectrometer allows to detect the individual concentrations of 
K (%), U (ppm) and Th (ppm) (Sérgio et al. 2018). Spectral gamma-ray logs are therefore 
widely used for estimating clay content, paleoclimate reconstruction grain size evaluation 
(Sérgio et al. 2018). Organic matters can absorb abundant U elements, and therefore, U log 
curve or KTH (GR log without U contribution) can be used for TOC estimation. As can be 
observed in Fig. 4, in Funing Formation in Subei Basin, East China, the TOC value shows 
negative relationship with KTH log with high correlation coefficient (Fig. 4).

Fig. 4  Crossplot of KTH versus core-measured TOC content of Funing Formation in Subei Basin, East 
China. KTH is the GR log without U contribution derived from spectral gamma-ray log
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3.2.3  Multivariate Fitting Method

The multivariate fitting method is integrating two or more log curves which are sensitive 
to the source rocks to establish a model to calculate TOC (Aziz et al. 2020). For instance, 
the model used to estimate TOC using well logs can be written as the following Eq.  (3) 
through multivariate fitting method. Consequently, the TOC content in well intervals can 
be predicted, and the results are in good accordance with core-measured TOC (Fig. 5).

 

3.2.4  LithoScanner Logs

The LithoScanner logging technology, which was proposed by Schlumberger Company, 
is the improvement of elemental capture spectroscopy (ECS) log (Guo et  al. 2019). 
LithoScanner logs can measure the content of common elements including carbon, potas-
sium, magnesium, aluminum and sodium (Guo et al. 2019). Through data processing, the 
element content can be transformed into the mineralogy content, including clay, Q–F–M 
(quartz–feldspar–mica), carbonate (calcite and dolomite) and pyrite (Fig. 1). Consequently, 
the ECS and LithoScanner logs are widely used for mineral composition determination, 
lithology recognition or even brittleness index evaluation (Maliva et al. 2009; Collett et al. 
2011; Lai et al. 2015).

(3)
TOC = 0.0194GR + 3.582AC − 0.0051LLD − 8.124DEN − 175.352

Fig. 5  TOC content calculated from multivariate fitting method in Tarim Basin, West China
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LithoScanner provides the total carbon element (TC) content; however, there is also 
inorganic carbon (TIC) in the formation (Fig. 6). In hydrocarbon reservoirs, the inorganic 
carbon is mainly associated with carbonate rocks  (Ca2CO3, Ca(Mg)CO3, etc.). Conse-
quently, the TOC content can be obtained, providing that the inorganic carbon content is 
eliminated (Fig. 6). The TOC content calculated from LithoScanner log in Yanchang For-
mation Member 7 of Ordos Basin is consistent with the core analysis data (Fig. 6).

3.2.5  Machine Learning Methods

The relationships between TOC and logs (GR, AC, DEN, RT, etc.) are complicated and 
nonlinear; therefore, machine learning methods should be integrated to predict TOC con-
tent (Mahmoud et al. 2017; Wang et al. 2019). Wang et al. (2019) uses the artificial neural 
network (ANN) method to predict TOC content using AC and DEN logs, which improve 
the efficiency. The support vector machine (SVM) method can also be adopted in TOC pre-
diction via GR, AC and DEN logs (Amosu and Sun 2021). The machine learning methods 
have the advantages of high accuracy (Mahmoud et al. 2017; Amosu and Sun 2021).

Fig. 6  TOC content calculated from LithoScanner log in Yanchang Formation Member 7 of Ordos Basin, 
West China
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4  Reservoir Property

Reservoir property evaluation aims at characterizing the lithology, porosity (φ), permeabil-
ity (K) and hydrocarbon saturation (Sh). Conventional (full suite) logs can be used for cal-
culation of these petrophysical parameters for conventional hydrocarbon reservoirs (Yar-
mohammadi et al. 2020). However, advanced well-log suits including LithoScanner logs, 
image logs, NMR logs and sonic array logs are required to evaluate the reservoir property 
(lithology, reservoir quality, fracture, as well as oil bearing property) for unconventional 
reservoirs due to the complex pore assemblage and petrophysical log responses (Rybacki 
et al. 2016; Avanzini et al. 2016; Iqbal et al. 2018; Zhao et al. 2019; Yarmohammadi et al. 
2020; Liu 2021).

4.1  Well‑Log Responses of Oil and Water Bearing Layers

The dry layers (non-reservoir intervals) of Yanchang Formation Member 7 in Ordos Basin 
have low porosity as can be evidenced by the three porosity logs, and no evident deviations 
of the deep (AT60–AT90) and shallow (AT10–AT20) induction logs (Fig.  7). Reservoir 
layers are characterized by high reservoir quality. As can be observed in Layer 1 and Layer 
2 in Fig. 7, the high sonic transit time, high CNL but low bulk density gives signatures of 

Fig. 7  Well-log responses of typical reservoirs (water and oil bearing layer) in Yanchang Formation Mem-
ber 7 of Ordos Basin, West China
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high reservoir quality (Fig. 7). However, the reservoirs can be water saturated and oil satu-
rated, and the water bearing layers commonly have no deviations of resistivity logs with 
various depth of investigation (Fig. 7). Conversely, the oil bearing layers are recognized by 
evident deviations in deep (AT60–AT90) and shallow (AT10–AT20) resistivity logs (Liu 
et al. 2020) (Fig. 7).

Additionally, NMR logs can also be used for of the fluid type identification and estima-
tion of fluid volumes (Anand 2017). Typical oil bearing layers have high T2 amplitudes and 
wide T2 spectrum or even contain tail distribution (Fig. 7) (Liu et al. 2020). Water bearing 
layers are characterized by low T2 amplitudes and have narrow T2 spectrum, containing no 
tail distributions (Fig. 7) (Liu et al. 2020). The T2 spectrum of dry layer is very narrow and 
the T2 amplitudes are low (Fig. 7).

4.2  Lithology

The unconventional hydrocarbon resources are mainly reserved in the fine-grained sed-
imentary rocks, which consist of carbonate, silt and clay (Zhao et  al. 2019; Yang et  al. 
2019). In shale reservoirs, the various mineral compositions including felsic, clay, carbon-
ate or even organic matters can form a complex lamina assemblage (Zhao et al. 2019; Wang 
et al. 2021). The complexity of unconventional resources requires an accurate evaluation of 
a petrophysical model for lithology prediction (Stadtmuller et al. 2018). Mudstone/shales 
mainly constitute the source rock intervals, while the interbedded thin layer of siltstone 
and/or carbonate rocks with a wide range of pore spaces from microscale to nanoscale will 
act as the reservoir rocks (Gao et al. 2016; Li et al. 2019; Liu et al. 2020).

Lithology can be identified by core observation, and the discontinuous core can be trans-
lated to the continuous petrophysical logs (He et al. 2019; Su et al. 2019). Wireline logs 
that can be used for lithology identification and prediction include GR, bulk DEN, CNL, 
AC, resistivity and image logs (Hsieh et al. 2005; He et al. 2019; Nhabanga et al. 2021; 
Venieri et al. 2021). The organic matter-rich shales and siltstones of Yanchang Formation 
Member 7 in Ordos Basin have distinct responses on the GR, AC and RT logs (Fig. 8). 
The black shales recognized on the core have very high GR, high resistivity and high sonic 
transit time (Venieri et al. 2021) (Fig. 8). For siltstones saturated with oil, the resistivity is 
also high, but has low GR and low sonic transit time compared with shales (Fig. 8). Addi-
tionally, the image logs reveal the internal laminated structure (bedding planes) of shales, 
while at the siltstone-shale contact surface, a scour surface can be observed (Ran et  al. 
2016) (Fig. 8). In addition, petrophysical inversion methods can also be used for mineral 
composition and lithology prediction (Doveton 2014; Ran et al. 2016).

Besides conventional logs, the advanced logs including LithoScanner logs and log pro-
cessing methods of Quanti elemental log analysis (ELAN) are also useful for lithology 
identification (Stadtmuller et al. 2018). The prediction of lithology from wireline logs will 
help extend observations from core scale (centimeters to meters) to the well scale (meters 
or tens of meters) (He et al. 2019).

4.3  Reservoir Properties and Pore Systems

A series of geological and petrophysical measurements including thin section, scanning 
electron microscopy (SEM), mercury injection capillary pressure (MICP), nuclear mag-
netic resonance spectroscopy (NMR) and computed tomography (CT) can be used to 
characterize the various types of spaces spanning a wide range from nanometer scale to 
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microscales (Josh et al. 2012; Lai et al. 2018b; Zhao et al. 2019; Liu et al. 2019; Du et al. 
2021).

In the unconventional hydrocarbon resources, the interbedded siltstone or sandstone as 
well as carbonate rocks (dolomite, etc.) have anomalously high porosity (Zhao et al. 2019). 
The siltstone or sandstone intervals contain abundant intergranular pores and intragranu-
lar dissolution pores (Fig. 9a, b) (Lai et al. 2018b), while the dolomites (mainly dolomic-
rite) are dominated by intercrystalline pores as well as intercrystalline dissolution pores 
(Fig. 9c, d). Fracture and microfracture (aperture < 0.1 mm) also constitute the important 
reservoir pore spaces in unconventional hydrocarbon reservoirs (Fig. 9e, f).

Shales have ultra-low porosity and the pore spaces (nanopores) are commonly below 
the resolution of optical microscope (10 μm), but can be easily detected by SEM images 
(Loucks et al. 2012; Josh et al. 2012; Zhao et al. 2019). The shale reservoirs mainly con-
tain interparticle pores (Fig.  10a), intraparticle pores (Fig.  10b, c), organic matter pores 
(Fig. 10d) as well as microfractures (Fig. 10e, f) (Loucks et al. 2012; Josh et al. 2012; Su 
et al. 2018; Chandra and Vishal 2021).

Reservoir quality evaluation using well logs aims at calculating porosity and permeabil-
ity of the unconventional petroleum reservoir (Schmid et al. 2004). Reservoirs with rela-
tively higher porosity and permeability are called “sweet spots” (Huang et al. 2017). Pre-
dicting porosity (including effective porosity), permeability and oil saturation (discussed 
below) from well-log data is a challenging task because core data are not available for all 
intervals or wells (Wood 2020b).

Fig. 8  Well-log expressions of sandstones and shales in Yanchang Formation Member 7 of Ordos Basin, 
West China



928 Surveys in Geophysics (2022) 43:913–957

1 3

Porosity can be computed using the density log (Iqbal et al. 2018). The effective poros-
ity, which is total porosity without the clay-bound water, can be calculated using the 
density neutron crossplot method, and also the NMR logs (Stadtmuller et  al. 2018). For 
instance, the ratio of NMR T2 components > 1.7 ms to the total T2 components is calculated 
as effective porosity in Lucaogou Formation in Jimusar Sag of Junggar Basin, and the pre-
dicted results are in accordance with the core porosity (Fig. 11) (Wang et al. 2019).

Fig. 9  Thin section images showing the pore spaces of unconventional reservoirs. a Intergranular pores in 
siltstones, Yanchang Formation, Zhuang 234, 1297.07  m, b Intragranular dissolution pores in siltstones, 
Yanchang Formation, Zhuang 233, 1399.32 m, c Intercrystal and dissolution pores in dolomicrite, Luca-
ogou Formation, Ji 174, d Intercrystal pores and dissolution pores in dolomicrite, Lucaogou Formation, Ji 
174, e Microfracture in tight sandstones, DB 14, 6349.34 m, f Note that the microfracture is the only pore 
spaces, DB 17, 6149.24 m
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There are no direct well logs for permeability, but permeability can be derived from NMR 
logs, and there are two classical model models: the SDR model (Shlumberger Doll research 
center) (Eq. 4) and the Timur–Coates model (Eq. 5) (Fig. 11) (Coates et al. 1999; Yarmoham-
madi et al. 2020):

(4)

KSDR = D�4
(

T2gm

)2

(5)

KTimu =

[

(

�

C

)2
(

FFI

BVI

)

]2

Fig. 10  SEM images showing the pore spaces of oil shale reservoirs. a Interparticle pores, b Intraparticle 
pores, c Intraparticle pores, d Nanopores in organic matters, e Microfracture, f Microfracture
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KSDR (mD) is permeability from SDR model, and D is a constant (Glover et  al. 2006; 
Rezaee et al. 2012). Where KTimu is permeability in mD, φ is fractional NMR porosity, and 
FFI free fluid index (FFI) as well as the bulk volume irreducible (BVI). C is also a constant 
(Rezaee et al. 2012; Yarmohammadi et al. 2020).

Additionally, reservoir quality index (RQI), which was proposed by Amaefule et  al. 
(1993) as the ratio of permeability to porosity under the square root, links the microscopic 
pore structure with macroscopic reservoir quality (Lai et al. 2016; Henares et al. 2016).

4.4  Oiliness and Oil Bearing Property

Core observation can show the oil bearing grade from low to high grade as fluorescence 
(no visible oil), oil trace, oil patch, oil immersion, etc. (Wu et al. 2017). Core observa-
tion under the fluorescence light will evidently reveal the oil bearing property (Fig. 12). 
The fluorescence scanning of core shows the varied degree of oil bearing for various 

Fig. 11  Calculation of porosity, permeability and oil saturation using NMR log in oil shale reservoirs of 
Lucaogou Formation in Jimusar Sag, Junggar Basin, West China
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Fig. 12  Core photo taken under the normal and fluorescence light to show the oil bearing property
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lithologies. The carbonate intervals show strong fluorescence intensity, and the siltstone 
as well as the dolomite lamina is also fluorescent (Fig. 12).

Interparticle pores are favorable pore spaces for unconventional reservoirs, and 
almost all the edges of the particles emit strong fluorescences (Fig. 13a, b) (Liu et al. 
2020). The intraparticle pores, especially those within carbonate particles, are fluo-
rescent since the carbonate minerals (mainly microcrystalline dolomite) are oil-wet 
(Fig.  13c, d) (Xi et  al. 2019). Organic matter pores as well as micropore associated 
with clay minerals emit scattered strong blue fluorescence (Fig.  13e, f) (Liu et  al. 
2020). Microfractures, especially those remain open status, emit strong fluorescences 
(Fig. 13g–h). The fluorescence thin sections reveal that almost all the entire pore sys-
tems in shales are fluorescent (Liu et al. 2021).

Hydrocarbon saturation is also a vital petrophysical parameter, but  is difficult to pre-
dict via well logs (Zhao et  al. 2020). Archie’s equation, which is commonly used for 
fluid saturation calculation, may not be applicable for unconventional reservoirs (Clark-
son et al. 2012; Li et al. 2021). The nondestructive NMR log has a distinctive advantage 
over conventional well logs in unconventional hydrocarbon reservoirs since it can provide 
petrophysical parameters of porosity, permeability and NMR  T2 amplitude and distribu-
tion (Deng et al. 2014; Guo et al. 2020; Li et al. 2020, 2021; Du et al. 2021; Zhang et al. 
2021). Therefore, NMR logs are required to provide an accurate estimation of oil saturation 
(Wang et al. 2020). As is known, hydrocarbon is mainly associated with long T2 compo-
nents. Therefore, the NMR T2 signal amplitudes longer than certain T2 values (for instance, 
the threshold value of T2 is set as 7.0  ms are for Lucaogou Formation in Jimusar Sag) 
can be treated as hydrocarbon signals, and consequently, the ratio of  T2 components larger 
than the threshold values to the total effective porosity is calculated as oil saturation (Wang 
et  al. 2019) (Fig.  11). The calculated oil saturation is also in accordance with the core-
measured oil saturation (Fig. 11).

4.5  Fracture

Unconventional oil and gas reservoirs (especially shales) have no natural productivity 
due to their complex pore structure and inherent strong heterogeneity (Zhang et al. 2021). 
Natural fractures are widespread in unconventional reservoirs (Gale et al. 2014; Lee et al. 
2015; Li et al. 2018; Xu et al. 2020). Fractures not only provide pore space for fluid stor-
age, but also greatly improve the reservoir performance, fluid flow, gas enrichment and 
hydrocarbon productivity (Curtis 2002; Zeng and Li 2009; Zeng et al. 2016; Li et al. 2018; 
Ladevèze et al. 2018; Basa et al. 2019; Zhang et al. 2021). Additionally, unconventional 
reservoir relies on hydraulic fracture stimulation (Curtis et al. 2012), and the preexisting 
(opening-mode) natural fractures will be further reactivated during stimulation and there-
fore enhance hydrocarbon productivity (Gale et al. 2007, 2014).

The fracture effectiveness of fracture is determined by the attitudes of fractures (high-
angle, low-angle, horizontal and network fractures), scale of fractures (macroscopic and 
microfractures) and status fracture surface (open and closed fracture) (Gale et  al. 2014; 

Fig. 13  Thin section images under plane polarized light and fluorescence light showing the microscopic 
oil bearing property. a Intraparticle dissolution pores, b Intraparticle dissolution pores are fluorescent, c 
Microcrystalline dolomite, the dark areas are organic matters, Ji19, 3820.83 m, d The dolomite particles are 
fluorescent, the same field view under fluorescence light of c, e Organic matter pores and clay minerals, f 
The organic matter pores and micropores within clays are fluorescent, g Filled microfracture, dark organic 
matters, h The microfracture emits blue fluorescence, the same field view under fluorescence light of G

▸
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Hooker et  al. 2017; Zhang et  al. 2021). Consequently, the prediction and evaluation of 
subsurface fracture are important for unconventional hydrocarbon reservoir assessment 
(McGinnis et al. 2017; Lai et al. 2018a; Ladevèze et al. 2018).

Borehole image logs, which have a vertical resolution of 5 mm, are sensitive for the 
rock composition, structure and fluids in the formation (Ameen 2014; Zhang Shaolong 
et al. 2021). The presence of natural fractures will cause a rapid decrease in resistivity, 
and the fracture planes will appear as a sinusoidal wave on the image logs (Lai et  al. 
2021). Fractures in the Xujiahe Formation Member 2 of Sichuan Basin have caused 
rapid decrease in resistivity (Fig. 14). The fracture attitudes (dip and dip angles), frac-
ture status (open, sealed, partly sealed) and fracture parameters (fracture length, aper-
ture, porosity and density) can be picked out from the sinusoidal curves on image logs 
(Fig. 14) (Lai et al. 2019). Fractures can be divided into conductive and resistive types, 
and interpreted as partially or fully open and sealed fractures in terms of image log 
interpretation (Hooker et al. 2017). High-angle fractures will trace as sinusoids, whereas 
the planar or horizontal fractures intersect the circular wellbore (Fig. 14) (Hooker et al. 
2017).

The conventional well-log suits sensitive for the natural fractures include deep and 
shallow resistivity logs (Rt, Rxo), CAL as well as three porosity logs, especially AC, are 
sensitive for the presences of natural fractures (Khoshbakht et al. 2012; Zazoun 2013; 

Fig. 14  Fracture responses on conventional and image logs in tight gas sandstones (Xujiahe Formation 
Member 2 of Sichuan Basin, West China)
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Aghli et al. 2016; Lai et al. 2021). There is an evident decrease in lateral resistivity logs 
and density logs, while the AC values are significantly increased in the fractured inter-
vals (Fig. 14).

Bed-parallel (horizontal) fractures are more prevalent in unconventional reser-
voirs (primarily fine-grained sedimentary rocks) than in sandstone or carbonate rocks 
(Fig. 15) (Gale et al. 2014). Layered structures are common in the fine-grained sedimen-
tary rocks, which act as reservoirs for unconventional resources (Gale et al. 2014; Yawar 
and Schieber 2017). The multiple lamina or weak bedding interfaces, which are easily 
opened due to changing of in situ stress status, are favorable for formation of bedding 
parallel fractures (Zhang et al. 2017a, b). These bedding parallel fractures, which occur 
as horizontal fractures (Fig. 15), strongly influence fluid flow, and therefore hydrocar-
bon storage and productivity (McGinnis et al. 2017; Basa et al. 2019; Liang et al. 2021).

The bedding parallel fractures in Yanchang Formation Member 7 of Ordos Basin 
result in the reduction of resistivity and bulk density, but the sonic transit time increases 
(Fig. 15). Besides conventional logs and image logs, sonic scanner logs are also sensitive 
for the fractures (Zaree et al. 2016). The sonic transit time will increase, and the ampli-
tudes of full wave forms will be attenuated, showing V-shape interferometric fringe in the 

Fig. 15  Well-log responses of horizontal fractures in shale oil reservoirs (Yanchang Formation Member 7 
of Ordos Basin, West China)
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fractured zones (Collett et al. 2011; Assousa and Elkington 2014; Zaree et al. 2016; Lai 
et al. 2017) (Fig. 15).

5  Engineering Property

Horizontal well drilling and multi-stage hydraulic (volume) fracturing are required for efficient 
exploitation of unconventional hydrocarbon resources due to their ultra-low matrix permeabil-
ity (Curtis et al. 2012; Clarkson 2013; Fuentes-Cruz et al. 2014; Avanzini et al. 2016; Dong 
et al. 2018; Liu 2021). The implementation of advanced drilling and completion techniques 
significantly improve the successful production of hydrocarbons (Curtis et al. 2012; Clarkson 
2013). Engineering property evaluates the brittleness, fracability, in situ stress anisotropy and 
magnitudes for unconventional hydrocarbon resources (Rybacki et  al. 2016; Avanzini et  al. 
2016; Iqbal et al. 2018; Zhao et al. 2019; Yarmohammadi et al. 2020). Therefore, brittleness 
and in  situ stress states and magnitudes are critical parameters for optimizing engineering 
sweet spots during hydraulic fracturing in unconventional reservoirs (Gale et al. 2007; Iqbal 
et al. 2018).

Brittleness evaluates the rock behavior of fracability during hydraulic fracturing (Verma 
et al. 2016; Iqbal et al. 2018). Brittle layers are easier to form fracture network than ductile 
layers (Soliman and Kabir 2012; Iqbal et al. 2018; Sun et al. 2021). The present-day maximum 
horizontal stress controls the geometry of the natural fracture system and direction of hydrau-
lic fracture propagation, and therefore is important for design of hydraulic fracture treatment 
(Gale et al. 2007). Therefore, engineering property evaluation mainly focuses on the brittle-
ness index and in situ stress fields (Avanzini et al. 2016; Iqbal et al. 2018).

5.1  Brittleness Index

Brittle layers with high brittleness index, which are easier to be fractured (brittle enough to 
initiate fractures), and to keep the fractures open, will be optimized for hydraulic fracturing 
in unconventional resources (Rickman et al. 2008; Sondergeld et al. 2010; Josh et al. 2012; 
Lai et al. 2015; Gholami et al. 2016; Iqbal et al. 2018; Nhabanga et al. 2021). In terms of 
geomechanical evaluation, brittleness is closely associated with elastic parameters Young’s 
modulus (E) and Poisson’s ratio (v) (Iqbal et al. 2018; Mews et al. 2019). Poisson’s ratio is 
the ratio of transverse to axial strain, and measures the rock’s ability to form fractures under 
stress. Young’s modulus is a ratio of stress to strain, and measures the rock’s ability to main-
tain fracture after treatment (Iqbal et al. 2018). Ductile rock may require more energy/fractur-
ing pressure to break, and fractures formed by hydraulic fracturing in ductile rocks may easily 
be healed (Iqbal et al. 2018).

From a petrophysical point of view, there are two commonly used methods to calculate 
brittleness index. The first is the brittle mineral content, while the second is the elastic rock 
parameters (Young’s modulus and Poisson’s ratio) (Guo et al. 2015; Lai et al. 2015; Fan et al. 
2019; Zhao et al. 2019; Wood 2021).

The brittleness index (%) derived from Young’s modulus and Poisson’s ratio can be defined 
as the average of the  BIE and  BIν (Eqs. 6–8) (Lai et al. 2015; Iqbal et al. 2018; Fan et al. 2019). 
Brittle rocks have higher Young’s modulus and lower Poisson’s ratio (Rybacki et  al. 2016; 
Zhang et al. 2016; Iqbal et al. 2018; Kumar et al. 2018). High Young’s modulus is associated 
with layers of low porosities but high brittle minerals (quartz, carbonate and feldspar) (Liu 
et al. 2018).
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where E (GPa) is Young’s modulus and v (dimensionless) is Poisson’s ratio. vmin and vmax 
are the minimum and maximum Poisson’s ratio, whereas Emin and Emax are the minimum 
and maximum Young’s modulus.

The dynamic Young’s modulus and Poisson’s ratio can be calculated from Vp, Vs and 
bulk density logs (Eqs. 9–10) (Lai et al. 2015).

where ρ is the bulk density log (kg/m3), while Vp is the P (compressive) wave velocity 

(m/s), and Vs is S (shear) wave velocity (m/s) (Lai et al. 2015).
Dynamic Young’s modulus and Poisson’s ratio calculated using sonic and density logs 

should be calibrated with the static elastic parameters (core-measured) to improve accuracy 
(Iqbal et al. 2018).

Jarvie et al. (2007) defined the mass ratio of quartz to all minerals as index of brittle-
ness. However, besides quartz, the carbonates are also brittle minerals (Jarvie et al. 2007; 
Rybacki et al. 2016; Fan et al. 2019; Qian et al. 2020).

The method to calculate brittleness index using brittle mineral content is written as 
(Eq. 11).

Qz is quartz content, %, Car is the carbonate content, %, Fels is the feldspar content, %, and 
Clay is the total clay content by weight, %. Rocks with brittleness index > 40% are treated 
as brittle rocks (Guo et al. 2015; Lai et al. 2015; Iqbal et al. 2018).

The elastic parameters (v and E) can be calculated from the well logs of Vp, Vs and den-
sity logs. Then, the Poisson’s ratio–Young’s modulus method can be adapted to calculate 
brittleness index (Kumar et al. 2018). Layers with low Poisson’s ratio and high Young’s 
modulus contribute to a high brittleness index, and they are favorable for hydraulic 
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fracturing, and maintaining as well as propagating fractures (Fig. 16) (Rybacki et al. 2015; 
Kumar et al. 2018).

Additionally, the ECS logs, which can derive the rock compositions of clay, Q–F–M 
(quartz, feldspar and mica), carbonate, etc., can be used to calculate the brittleness index 
using the method of brittle mineral ratio (Fig.  16) (Maliva et  al. 2009; Lai et  al. 2015; 
Kumar et  al. 2018). The brittleness index calculated by the two methods (mineralogy 
method and elastic parameter method) is generally in accordance with each other (Fig. 16).

5.2  In Situ Stress Status and Direction

The in situ stress fields commonly include vertical stress (Sv), direction and magnitudes of 
maximum horizontal stress  (SHmax) and minimum horizontal stress  (Shmin), as well as forma-
tion pressure (Pp) (Zoback et al. 2003; Verweij et al. 2016; Dixit et al. 2017; Lai et al. 2019).

Fig. 16  Comparison of brittleness index calculated by Young’s modulus–Poisson’s method and by ECS 
logs
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Besides brittleness index, in situ stress fields also play critical roles in hydraulic fractur-
ing and horizontal well trajectory design (Qian et al. 2020). For engineering “sweet spot” 
evaluation, brittleness measures the ability to form fracture and keep fracture open, while 
the in  situ stress field (direction and magnitude) evaluates the horizontal well trajectory 
design and propagation of hydraulic fractures (Josh et al. 2012). A large amount of high-
pressure fluids are injected into the formation to reopen the natural fracture system and 
create new hydraulic fractures during hydraulic fracturing (Rybacki et al. 2016; Zhao et al. 
2019). Consequently, a complex and new pore–fracture network system will be formed and 
hydrocarbon will migrate toward the wellbore for production (Zhao et al. 2019).

Therefore, the magnitude and direction of in situ stresses are also required to optimize 
the prospected layers for hydraulic fracturing (Josh et  al. 2012; Iqbal et  al. 2018). The 
direction of in situ stress fields determines the drilling direction of horizontal wells, and the 
propagation of hydraulic fractures. Brittleness alone is not sufficient to optimize prospected 
layers, and the magnitudes of in situ stress are also an important index for optimizing pros-
pected layers for engineering sweet spots. Complex and new pore–fracture systems will be 
formed in layers with low horizontal stress differences.

5.2.1  Direction of In Situ Stress

The brittleness affects the formation and preservation of natural fractures, while the 
in situ stress fields control the initiation and propagation of hydraulic fractures (Fig. 17) 
(Josh et al. 2012; Rybacki et al. 2016). Brittle rocks are expected to contain more natural 

Fig. 17  Horizontal drilling direction, hydraulic fracture propagation and in  situ stress field in unconven-
tional hydrocarbon resources
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fractures and are more easily to be fractured by hydraulic stimulation (Gale et  al. 2007; 
Rybacki et  al. 2016; Zhang et  al. 2016). In addition, the hydraulic fractures will propa-
gate along the direction of maximum horizontal stress  (SHmax) (Kingdon et al. 2016; Iqbal 
et al. 2018). Hydraulic fractures follow  SHmax, until they encounter the preexisting natural 
fractures, and then, the hydraulic fractures will be blocked from further propagation (Gale 
et  al. 2007). Consequently, the horizontal wells are drilled along the minimum horizon-
tal stress  (Shmin), and hydraulic stimulation will be toward the  SHmax direction (Josh et al. 
2012; Iqbal et  al. 2018). In this situation, a large number of hydraulic fractures will be 
formed along the  SHmax direction, and these induced fractures will intersect with the preex-
isting fractures to form complex fracture networks (Fig. 17).

Image logs, which can pick out the borehole breakouts and induced fractures, are widely 
used for the determination of  SHmax and  Shmin (Lai et al. 2018a; Stadtmuller et al. 2018). 
The borehole breakouts, which appear as broad, parallel, dark bands with 180° apart 
on image logs, indicate the orientations of  Shmin (Massiot et  al. 2015; Nian et  al. 2016) 
(Fig.  18a). The drilling induced fractures are recognized as two vertical fractures (“two 
ways”) with 180° offset at the borehole surfaces on the image logs (Fig.  18b), and they 
show the orientations of  SHmax (Ameen et al. 2012; Khair et al. 2013; Nian et al. 2016; Lai 
et al. 2019). Consequently, both the induced fractures and borehole breakouts can unravel 
the in situ orientation. Natural fractures can be distinguished from drilling induced frac-
tures and borehole breakouts on image logs by their continuous sinusoid nature (Fig. 14) 
(Khair et al. 2015).

Besides image logs, the sonic logs, which provide the shear-wave velocities and 
direction, can reveal the in situ stress fields (Stadtmuller et al. 2018). As is known, in 
anisotropic rocks, the shear wave will be split into fast and slow waves, i.e., shear-wave 
birefringence (Liu et  al. 2018). Therefore, fast S-wave azimuth indicates the  SHmax 
direction (Liu et al. 2018; Stadtmuller et al. 2018) (Fig. 19). The  SHmax direction can 
be determined from the fast S-wave azimuth as near NW–SE to S–E direction (Fig. 19).

5.2.2  In Situ Stress Magnitudes

In situ stress magnitudes play vital roles in different aspects of hydraulic fracturing 
treatment (Iqbal et al. 2018). The difference between  SHmax and  Shmin  (SHmax–Shmin) is 
important for directional drilling, hydraulic fracturing design, and optimization of engi-
neering “sweet spots” (Stadtmuller et al. 2018). Intervals with low differences between 
 SHmax and  Shmin are suggested to be easily fractured and therefore will be optimized for 
hydraulic fracturing.

The vertical stress (Sv) is commonly calculated by integrating the weight of the over-
burden rocks by well logs (Eq. 12) (Fig. 20) (Maleki et al. 2014; Verweij et al. 2016; 
Iqbal et al. 2018; Lai et al. 2022).

In this formula, Z is the burial depth, m, g is the gravitational acceleration (m/s2), and ρ is 
the bulk density, kg/m3 (Maleki et al. 2014; Verweij et al. 2016).

(12)

Sv = ∫
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Fig. 18  In situ stress direction determined from image logs
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The two components of horizontal stress  (SHmax,  Shmin) are closely associated with 
elastic modulus (Young’s modulus and Poisson’s ratio) (Du et  al. 2021). The one-
dimensional mechanical earth model is commonly adopted to calculate the horizontal 
stresses using poroelastic theory (Eqs. 13, 14) (Fig. 20) (Engelder 1993; Zoback et al. 
2003; Stadtmuller et al. 2018; Lai et al. 2022).

(13)

SHmax =
�

1 − �
(Sv − �Pp) + �Pp +

E�

1 − �2

(14)

Shmin =
�

1 − �
(Sv − �Pp) + �Pp +

E��

1 − �2

Fig. 19  Maximum horizontal stress (SHmax) direction from sonic fast shear-wave orientation
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Fig. 20  The in situ stress fields (direction and magnitudes) and brittleness index calculated from well logs
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In Eqs. (13) and (14), α is the Biot’s coefficient. Pp is pore pressure, and can be 
derived from the Eaton’s method. The ε is strain factor (Stadtmuller et al. 2018; Iqbal 
et al. 2018). Consequently, the horizontal stresses can be calculated from Sv, E, v, Biot’s 
coefficient, strain factor and pore pressure (Iqbal et al. 2018).

The tectonic regimes proposed by Anderson (1951) can be determined from the relative 
amplitudes of the three stress components, and they include normal (Sv >  SHmax >  Shmin), 
strike-slip  (SHmax > Sv >  Shmin) and thrust faulting stress regime  (SHmax >  Shmin > Sv) 
(Zoback et al. 2003; Verweij et al. 2016; Dixit et al. 2017; Stadtmuller et al. 2018; Lai et al. 
2019). The strike-slip faulting stress regime is encountered in Fig. 20 (Lai et al. 2022).

Engineering property evaluation should comprehensively take brittleness index as 
well as in situ stress direction and magnitude into consideration. The horizontal wells are 
designed to drill parallel to Shmin, with the aim to maximize the volume stimulated by 
induced fractures (Gale et  al. 2007). The dominant  SHmax direction (fast shear wave) is 
NE–SW direction (Fig. 20) (Lai et al. 2022). Then, the layers with high brittleness index 
but low horizontal principle stress differences will be optimized for hydraulic fracturing 
in order to create the most abundant hydraulic fracture networks (Stadtmuller et al. 2018).

6  Optimization of Sweet Spots

Unconventional hydrocarbon resources have no natural productivity; therefore, the iden-
tification of sweet spots is important (Zou et  al. 2019). Sweet spots in unconventional 
resources refer to the best zones or intervals for hydrocarbon exploration and exploitation, 
and there are mainly geological and engineering sweet spots (Lu et al. 2019; Zhao et al. 
2019; Zou et al. 2019). Geological sweet spots are the zone or intervals with the best res-
ervoir quality and oil bearing property, and they can be optimized considering reservoir 
property (lithology, porosity, oil saturation), and presence of natural fractures (Zhao et al. 
2019; Zou et al. 2019). Engineering sweet spots refer to the zone or intervals prospected 
for hydraulic fracturing stimulation, and therefore, brittleness and in situ stress anisotropy 
are the critical parameters to be evaluated (Rybacki et  al. 2016; Iqbal et  al. 2018; Zhao 
et al. 2019).

Insights into the seven kinds of parameters (lithology, reservoir quality, hydrocarbon 
bearing property, well-log responses, source rock property, brittleness and in  situ stress 
field) and three types of properties (source rock property, reservoir property and engi-
neering property) lay the foundation for sweet spot optimization using well logs (Zou 
et  al. 2019). Geological sweet spot evaluation aims at selecting the favorable hydrocar-
bon bearing reservoirs; therefore, the lithology, porosity, hydrocarbon saturation, fracture 
and source–reservoir assemblage should be evaluated. Engineering sweet spot evaluation 
focuses on optimizing the prospected layers for hydraulic stimulation, and therefore, evalu-
ation of geomechanical property (brittleness index, in situ stress) is particularly important 
(Zhang et al. 2017a, b; Iqbal et al. 2018; Zhao et al. 2019). Both the petrophysical attrib-
utes and geomechanical properties need to be fully understood to identify the prospected 
sweet spots (Iqbal et al. 2018).
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6.1  Relationships Between the Three Types of Properties

Relationships between the source rock property, reservoir property and engineering prop-
erty should be unraveled when selecting the prospected layers for production. TOC is an 
excellent indicator of organic matrix and hydrocarbon potential as well as source rock 
property, and TOC can be continuously evaluated via well logs (Amosu et al. 2021). Reser-
voir property in terms of porosity, permeability and oil saturation can be predicted by inte-
grating conventional logs and NMR log (Wang et al. 2019). Brittleness and in situ stresses, 
which describe the engineering property, can be estimated according to the elastic param-
eters using sonic logs (Iqbal et al. 2018; Zhao et al. 2019).

Source rock intervals in Funing Formation in Subei Basin (East China), which have 
high TOC content, have low reservoir property as can be observed from the crossplot of 
porosity versus TOC content (Fig. 21). In addition, TOC shows negative correlation rela-
tionships with horizontal stress difference  (SHmax–Shmin) (Fig. 22a), indicating that source 
rock intervals can also be fractured due to the low horizontal stress differences. The brittle-
ness index shows complex relationship with TOC and rocks with brittleness index 40–60% 
have the highest TOC values, indicating brittleness is complex reflection of lithology, com-
position, TOC and diagenesis (Clarkson et al. 2012; Iqbal et al. 2018) (Fig. 22b). 

Petrophysical properties affect the geomechanical properties of unconventional reser-
voirs (Iqbal et al. 2018; Zhao et al. 2019). Engineering property shows complex relation-
ships with reservoir property as can be indicated by the crossplots of brittleness index and 
horizontal stress difference with porosity (Fig. 23a, b). Therefore, the reservoir property, 
which describes the geological sweet spots, is not matching the engineering property char-
acterizing the engineering sweet spots (Fig. 23).

Fig. 21  Crossplot of porosity versus TOC of Funing Formation in Subei Basin, East China
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6.2  Optimization of Geological and Engineering Sweet Spots

The three types of properties determine the distribution of sweet spots (Zhao et al. 2019). 
The source rock property is evaluated in terms of TOC content as well as the conventional 

Fig. 22  Crossplots of TOC versus horizontal stress difference and brittleness index in Funing Formation in 
Subei Basin, East China
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well-log responses (Fig.  24). Lithology is predicted by ECS log profile. Then, porosity, 
permeability and oil saturation are determined from the NMR logs, and NMR  T2 spectrum 
is also presented to show the fluid bearing property. Additionally, the image logs are used 
to pick out the fracture traces and derive the in  situ stress direction using induced frac-
tures. Consequently, the reservoir property can be evaluated in terms of reservoir quality 

Fig. 23  Crossplots of horizontal stress difference and brittleness index versus porosity in Funing Formation 
in Subei Basin, East China
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(porosity, permeability), oil bearing property (oil saturation and  T2 spectrum) and the pres-
ences of natural fractures (Fig. 24). The in situ stress profiles including vertical/overburden 
stress and maximum/minimum horizontal stress are calculated by density and sonic logs. 
Brittleness index is determined using Poisson’s ratio and Young’s modulus (Fig. 24). Addi-
tionally, the in situ stress anisotropy profile is generated by picking out the fast shear-wave 
direction (Fig. 24).

The best source rock intervals are easily recognized by the conventional well logs as 
well as the calculated TOC content (Fig. 24). The best reservoir property intervals can 
be distinguished by the wide and high amplitudes of NMR  T2 spectrum. Additionally, 
the high values of calculated petrophysical parameters of porosity, permeability and oil 
saturation prove the presences of best reservoir property. Furthermore, the appearances 
of natural fractures will improve the permeability and form favorable geological sweet 
spots (Fig. 24). The interconnectivity of the source rock and reservoir is also important 
for sweet spots in unconventional resources (Kumar et al. 2018; Zhao et al. 2019; Rad-
wan et al. 2021). Therefore, the reservoirs adjacent with the source rock intervals have 
the best potential for accumulating oil and gas resources (Fig. 24).

Fig. 24  Comprehensive diagram of the seven types of relationships and three types of properties in Well 
Cheng 96 in Ordos Basin, West China
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The economic production of unconventional reservoirs strongly relies on the hydrau-
lic induced fracture system (Fuentes-Cruz et al. 2014; Iqbal et al. 2018). The direction of 
stimulation treatments is toward the  SHmax direction in order to create complex fracture 
network for oil and gas to flow into the borehole since the hydraulic fractures propagate 
along  SHmax (Fig. 17). In addition, the prospected layers optimizing for hydraulic fractur-
ing are those layers with high brittleness index but low horizontal stress differences (Zhang 
et al. 2017a, b). Layer with high brittleness index (> 0.5) but low horizontal stress differ-
ences (< 15 MPa) are optimized for hydraulic fracturing layers (Fig. 24).

7  Prospects

Geophysical well logs play important roles in the exploration and development of 
unconventional hydrocarbon resources. However, the high cost of acquiring a compre-
hensive suite of the required well logs (especially advanced well logs including spec-
tral gamma-ray, NMR, image logs, ECS, etc.) will hinder the application of geophysical 
well logs in the fields of unconventional hydrocarbon resources. Therefore, the basic 
suite of well logs should be optimized. Conventional well logs are necessary for source 
rock property evaluation, and image logs as well as NMR logs need to be logged with 
the aim for reservoir property evaluation. Array sonic logs and image logs should be 
optimized for engineering property determination. In addition, the calibration of well-
log data with core analysis data will reduce uncertainty, and the optimum sampling of 
core data will help improve the accuracy of well-log data interpretation.

Geophysical well logs precisely evaluate the petrophysical properties (lithology, 
porosity, permeability and oil saturation) and geomechanical properties (Poisson’s ratio, 
Young’s modulus, brittleness index and in  situ stress) of unconventional hydrocarbon 
resources (Avanzini et  al. 2016; Kumar et  al. 2018). Consequently, the well logs are 
widely adopted to answer the key questions in unconventional oil and gas geology and 
engineering: “Whether there contains abundant oil and gas resources?”, “Where are 
the hydrocarbon reserved?” and “How to optimize the prospected layers for stimula-
tion?”. The comprehensive petrophysical approaches will support petroleum geoscien-
tists’ and engineers’ decisions throughout whole life of unconventional hydrocarbon 
resources including horizontal drilling, resource assessment, reservoir characterization 
and hydraulic fracture simulation (Avanzini et al. 2016).

8  Summary and Conclusions

The advanced well-log series used in unconventional oil and gas play evaluation include 
high definition induction logs, image logs, array acoustic logs, nuclear magnetic reso-
nance (NMR) log, elemental capture spectroscopy (ECS) as well as LithoScanner logs.

Source rock intervals are recognized on the conventional well logs as high GR, low 
density, high CNL, AC and resistivity values. TOC can be predicted by the ΔlogR 
method, spectral GR logs, multivariate fitting method and LithoScanner logs.

Lithology can be predicted by conventional and image logs. Porosity, permeability 
and oil saturation can be calculated from NMR logs combined with conventional well 
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logs. Fracture can be picked out from the image logs. Reservoir property can be evalu-
ated from the combination of lithology, reservoir quality and the presences of natural 
fractures. Intervals with high reservoir quality and hydrocarbon bearing property and 
adjacent with the source rock interval are screened out as the geological sweet spots.

Brittleness can be determined not only from Young’s modulus also from rock com-
position. Brittleness should be well evaluated in terms of fracture initiation and propa-
gation, as well as keeping fracture reopening. Additionally, in situ stress direction and 
magnitudes also need well understood in terms of horizontal well drilling direction and 
optimizing propertied hydraulic fracturing intervals. Layers with high brittleness index 
but low horizontal stress difference are optimized as engineering sweet spots.

Geophysical well logs can characterize the seven kinds of parameters (lithology, res-
ervoir quality, hydrocarbon bearing property, electronic well-log responses, source rock 
property, brittleness, and in situ stress magnitude and direction) and three kinds of prop-
erties (source rock property, reservoir property and engineering property), and therefore 
will be widely used in optimizing sweet spots in unconventional play in the future.
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