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Abstract
The harmonic correction (HC) is one of the key quantities when using residual terrain 
modelling (RTM) for high-frequency gravity field modelling. In the RTM technique, high-
frequency topographic gravitational signals are obtained through removing gravitational 
effects of a long-wavelength reference surface, e.g., MERIT2160. There might be points 
located below the reference surface. In such cases, the RTM gravity field is calculated in 
the non-harmonic condition, HC is therefore required. Over past decades, though various 
methods have been proposed to handle the HC issue for the RTM technique, most of them 
were focused on the HC for RTM gravity anomaly rather than for other gravity function-
als, such as RTM geoid height. In practice, the HC for RTM geoid height was generally 
assumed to be negligible, but a detailed quantification was missing for present-day RTM 
computations. This might cause large errors in the regional geoid determination over 
rugged areas. In this study, we derive HC expressions for the RTM geoid height in the 
framework of the classical condensation method. The HC terms are derived under four 
different assumptions separately: residual masses approximated by an unlimited Bouguer 
plate, residual masses approximated by a limited Bouguer plate which overcomes the mass 
inconsistency effect, residual masses approximated by a Bouguer shell which overcomes 
the effect of planar approximation, and residual masses approximated by a limited Bouguer 
shell which overcomes the errors induced by both planar approximation and mass-incon-
sistency. The errors due to various approximations in HC terms are investigated through 
comparison among various terms. Besides, HC terms are computed using an expansion 
up to degree and order 2159. Our results show that HC for RTM geoid height is less 1 
mm and could be ignored over ∼ 99 % of continental areas, but be of great significance for 
regional geoid determination over mountain areas, e.g., more than 10 cm effect over very 
rugged areas. The validation through comparison with terrestrial measurements and a base-
line solution of the RTM technique proves that the HC terms provided in this study can 
improve the accuracy of RTM geoid heights and are expected to be useful for applications 
of the RTM technique in regional and global gravity field modelling.
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Article Highlights 

• Provide expressions of harmonic correction for the RTM geoid height under various 
approximations

• Investigate the errors due to the planar approximation and the mass-inconsistency effect 
in harmonic correction

• Evaluate the quantification of harmonic correction for the RTM geoid heights on the 
Earth’s surface

Abbreviations
BS  Bouguer shell
DEM  Digital elevation model
DL  Disc layer
RTM  Residual terrain modelling
GGM  Global gravity field model
HC  Harmonic correction
LBP  Limited Bouguer plate
LBS  Limited Bouguer shell
LSL  Limited Spherical layer
ML  Mass layer
NI  Numerical integration
SGM  Spectral gravity forward modelling
SHC  Spherical harmonic coefficients
SL  Spherical layer
UBP  Unlimited Bouguer plate

1 Introduction

Residual Terrain Modelling (RTM), as a key technique to retrieve the terrain-generated 
high-frequency gravity field signal, has been widely applied to a vast number of applica-
tions in physical geodesy and geophysics, such as to the smoothing of terrestrial and air-
borne gravity field observations prior to their continuation and interpolation in the frame-
work of remove-compute-restore procedure (Forsberg and Tscherning 1981; Mainville 
et al. 1995; Forsberg and Tscherning 1997; Yildiz et al. 2012; Forsberg et al. 2014; Bucha 
et al. 2016; Wu et al. 2019; Willberg et al. 2019, 2020), to the augmentation of the global 
gravity field models (GGMs) by retrieving gravity functionals in high-frequency bands 
(Hirt et  al. 2019), to ultra-high resolution gravity field determination of the Earth (Hirt 
et  al. 2013; Zingerle et  al. 2020) and of other planets (Hirt and Featherstone 2012; Hirt 
et al. 2012; Li et al. 2015), to the global height datum unification problem (Gruber et al. 
2012; Grombein et al. 2017; Willberg et al. 2017; Vergos et al. 2018), to the determination 
of the combined GGMs as fill-in data, especially over remote countries where devoid of 
terrestrial measurements (Pavlis et al. 2007, 2012), or to the geophysical applications, such 
as gravity reduction for detection of near-surface mass-density anomalies (AllahTavakoli 
et al. 2015; Simav 2020; Tziavos et al. 2010). 

The basic idea of the RTM technique is presented in Fig. 1 (Forsberg 1984). A detailed 
representation of the Earth’s surface, e.g., through a high-resolution digital elevation model 
(DEM) (Merryman Boncori 2016; Fujisada et al. 2012; Jarvis et  al. 2008; Tadono et al. 
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2014; Yamazaki et al. 2017; Wessel et al. 2018), is generally high-pass filtered by removing 
a long-wavelength reference surface often directly calculated from a detailed DEM through 
spherical harmonic analysis (Hirt et al. 2019a). With the assumption of spectral consist-
ency between filtering in the gravitational and geometric domains, the RTM technique 
delivers the high-frequency spectral contents of the topography implied gravitational field 
signal (Rexer et al. 2018; Bucha et al. 2019). As is shown in Fig. 1, the computation point, 
e.g., PD

2
 , may be located below the reference surface. In such cases, the computation point 

is located in the masses, therefore, the directly calculated gravitational functionals from 
RTM cannot be used to describe the Earth’s external gravity field (Forsberg 1984, 1993; 
Bucha et al. 2019; Hirt et al. 2019a). Therefore, a harmonic correction (HC) is required to 
achieve harmonic condition which is almost exclusively required for the purpose of physi-
cal geodesy.

Over past decades, many efforts have been taken to reduce the effect of the “non-harmo-
nicity” problem in the RTM technique when the computation points reside inside the refer-
ence topography (Forsberg and Tscherning 1981; Forsberg 1984; Harrison and Dickinson 
1989; Elhabiby et al. 2009; Kadlec 2011; Omang et al. 2012; Bucha et al. 2016; Root et al. 
2016; Duríčková and Janák 2016) (Bucha et al. 2019; Hirt et al. 2019a). These studies can 
be divided into three different categories: 

1 the treatment of HC being avoided by involving some numerical methods. Here, the 
RTM gravity field is divided into two parts, the full-scale gravity signal implied by the 
detailed topography depending on global numerical integration in the spatial domain 
and its low-pass filtered version of the reference topography and related ultra-high fre-
quency correction relying on spectral gravity forward modelling (SGM) (Bucha et al. 
2019; Hirt et al. 2019a, 2019; Yang 2020). Because the computation points are located 
outside the detailed topography, the global numerical integration outside the Earth satis-
fies the harmonic condition. Besides, the SGM relies on the external spherical harmonic 
analysis and synthesis, the generated gravity field always represents the Earth’s external 
gravity field. Therefore, the “non-harmonicity problem” is well handled in such case. 
This method has been applied in the RTM gravity anomaly/disturbance recovering and 
improved the accuracy of RTM technique down to a sub-mGal level (Hirt et al. 2019a, 
2019). However, it has not been used for RTM geoid height calculation up to the present. 
The treatment of HC can also be avoided by splitting the RTM gravity signal into four 
constituents, the effect of a Bouguer layer of thickness H(PD

2
) (from the detailed DEM) 

and corresponding terrain effect referring to the Earth’s surface, and the Bouguer effect 

Fig. 1  Principle of the Residual 
Terrain Modelling (RTM) 
technique (Forsberg 1984; Bucha 
et al. 2019; Yang 2020). DS, RS, 
and SL/E represent the detailed 
topographic surface (DS), refer-
ence surface (RS) and sea level/
ellipsoid (SL/E), respectively. 
The PD

1
 and PD

2
 represent points 

on the Earth’s surface, and PD

1
 

is located above the reference 
surface while PD

2
 below the refer-

ence surface. Points PR

1
 and PR

2
 

are the respective points on the 
reference surface of PD

1
 and PD

2
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of thickness H(PR

2
) and corresponding terrain effect referring to the reference surface 

(Kadlec 2011; Duríčková and Janák 2016). This method has been tested based on ter-
restrial measurements of geoid height, gravity anomaly and gravity gradient over Czech 
Republic (Kadlec 2011). Though the treatment of HC in these methods is avoided, the 
high numerical cost generally makes them challenging (Bucha et al. 2019; Hirt et al. 
2019a, 2019).

2 the HC can be evaluated by means of the regularized analytical downward continuation 
(Forsberg and Tscherning 1997), e.g., via a Taylor series expansion (Harrison and Dick-
inson 1989; Elhabiby et al. 2009; Omang et al. 2012; Bucha et al. 2016). This method 
generally requires numerical integration of higher-order derivatives at computation 
points, for example, the third- or even higher-order derivatives for the evaluation of the 
HC for the second-order derivatives of the gravitational potential. Though it is possible 
to calculate the third-order derivatives of the gravitational potential of a tesseroid (Deng 
and Shen 2017, 2018a, b, 2019) and of a prism (Nagy et al. 2000; D’Urso 2017) directly, 
or from other gravitational functionals (Šprlák and Novák 2015), the calculation time 
of HC based on the analytical continuation increases with more computation points and 
detailed DEM models involved.

3 the classical condensation method (Forsberg and Tscherning 1981; Forsberg 1984). The 
residual masses between the computation point and the reference surface are approxi-
mated by an infinite Bouguer plate and then are compressed into an infinitesimal thick 
mass layer immediately below the computation point. The HC for RTM gravity anomaly 
is the difference between the gravity anomaly generated by this Bouguer plate and the 
gravity anomaly generated by its compressed infinitesimal thick mass layer. As a func-
tion of residual height at the computation point, the calculation of HC with the classical 
condensation method is much more efficient. Furthermore, the condensation method is 
capable of achieving mGal-level accuracy over the most rugged area of the Earth (Hirt 
et al. 2019a, 2019). Therefore, as one of the classical methods, the mass condensation 
method has been widely used for HC over the past decades (Forsberg and Tscherning 
1997; Tziavos et al. 2010; Hirt et al. 2013; Yang et al. 2018, 2020). However, it suffers 
from two main problems: 

(a) In terms of the classical mass condensation method, only the formula of HC for 
RTM gravity anomaly exists, which means that the HC terms for the other gravi-
tational functionals (e.g., RTM geoid height) need to be defined. The HC for RTM 
geoid height was generally assumed to be negligible (Forsberg 1984), but quan-
tification is not available. This brings great uncertainty in practical applications. 
Therefore, with regards to the condensation method, the formula of HC for geoid 
height is missing, and quantification is required when a reference topography with 
spherical harmonic coefficients (SHCs) is utilized to degree and order 2159 (Hirt 
et al. 2019a).

(b) In the classical condensation method for HC, the masses below the reference 
surface and above the Earth’s surface is approximated by an unlimited Bouguer 
plate. There are two main problems in this method that might affect the accuracy 
of HC and further affect the accuracy of the recovered gravitational field (Bucha 
et al. 2019; Hirt et al. 2019; Yang 2020): 1) only masses within a limited zone 
around the computation point are considered in the RTM technique, while infinite 
masses are involved by the infinite Bouguer plate model; 2) the planar assumption 
ignores the Earth’s curvature. Hirt et al. (2019a) promoted that the mass incon-
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sistency and planar approximation would affect the accuracy of HC terms and 
should be evaluated. The task to study the errors due to mass inconsistency and 
the planar assumption is of great significance to the accurate evaluation of HC 
in the framework of the classical condensation method and gives insights into its 
applicability.

In terms of HC for RTM geoid height, Forsberg and Tscherning (1997) showed that 
HC for RTM geoid height is zero. This work was conducted through moving down the 
unlimited Bouguer plate and calculated differences between generated gravitational 
potentials before and after moving down. Theoretically, the infinite gravitational poten-
tials are generated before and after moving down, therefore causing zero differences. 
However, it ignored the very smaller differences, therefore underestimating the value of 
HC for the RTM geoid height. This will be improved in this study. Kadlec (2011) put 
forward the problem of HC for RTM geoid height and also for the radial tensor compo-
nent. They avoided HC by dividing RTM geoid height into four parts as introduced in 
the method 1. However, it endures a high numerical cost. Omang et al. (2012) gave the 
HC expression for RTM height anomalies as �

HC
= −4�G�Δh2∕� , where G denotes the 

gravitational constant, � the mass density, Δh the RTM height and � the normal gravity 
on the ellipsoid. This is obtained following from continuation theory and assumed the 
vertical gradient of potential is a constant −4�G�Δh . Actually, following the theory of 
Omang et al. (2012) deriving the above formula, the gradient of potential is a function 
of variable Δh varying from reference surface to the Earth’s surface. More rigorously, it 
is �V∕�r.

As the main contribution of this work, the formulas of HC for the RTM geoid height 
are derived relying on various approximations: (1) with the residual masses approxi-
mated by an unlimited Bouguer plate (HC-UBP) which is in the scope of the classi-
cal condensation method; (2) residual masses being approximated by a limited Bouguer 
plate (HC-LBP); (3) residual masses being approximated by a Bouguer shell (HC-BS); 
and (4) the method how to calculate HC under limited Bouguer shell approximation 
(HC-LBS) will be introduced. When the radius of the LBS equals the integration radius 
considered in the RTM technique, the mass inconsistency effect should be reduced and 
its magnitude would decrease with the integration radius increasing. The differences 
between HC-UBP and HC-LBP indicate the effect of mass inconsistency on HC in the 
classical condensation method. Similarly, the HC-BS terms are derived with residual 
mass approximated by a spherical shell and including the effect of the Earth’s curva-
ture. Therefore, the effect of the planar assumption on HC terms could be ignored in the 
HC-BS terms. The differences between HC-UBP and HC-BS provide insights into the 
effect of planar approximation on HC terms in the classical condensation method.

The paper is organized as follows. The formulas of HC for the RTM geoid height are 
firstly derived with the residual masses approximated by an unlimited Bouguer plate 
(Sect.  2.1), residual masses are approximated by a limited Bouguer plate (Sect.  2.1). 
Sect. 2.2 describes the HC-BS method, where the residual masses are approximated by 
a Bouguer shell. Section 2.3 shows the calculation of HC based on the limited Bouguer 
shell approximation. The errors due to mass inconsistency (Sect. 3.1) and planar approx-
imation (Sect. 3.2) are investigated. The quantification of HC with a reference surface 
computed for N = 2159 on the Earth’s surface is provided in Sect. 3.3. The new formu-
las are validated in Sect. 4 through comparisons with an artificial solution of RTM geoid 
height which is devoid of the harmonic correction and with terrestrial measurements 
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over New Zealand and in the Bavarian Alps in Germany. Finally, the main conclusions 
and outlooks on future studies are given in Sect. 5.

2  Methodology

2.1  HC Terms in the Unlimited Bouguer Plate Approximation and Limited Bouguer 
Plate Approximation

In this section, P denotes the computation point when it is located below the reference 
surface and the subscript �+� indicates that the point adheres to or is just above the Earth’s 
surface. The magnitude of height difference between P

+
 and its respective point PR on the 

reference surface is h. In the scope of unlimited Bouguer plate approximation (left figure 
of Fig. 2), the masses between the surface defined by the computation point P

+
 and the 

surface defined by PR on the reference surface are approximated by an unlimited Bouguer 
plate of constant thickness h and constant density � . In order to solve the “non-harmonicity 
problem”, the masses represented by the unlimited Bouguer plate above the computation 
point are compressed into a single mass layer of density �h and infinitesimal thickness, 
and moved just below the computation point P

+
 as shown in Fig. 2. Thus, the computation 

point is located outside the masses defined by the single mass layer. Therefore, the single 
mass layer generated gravitational potential at computation point P

+
 satisfies the harmonic 

condition. The HC-UBP terms are derived as the differences between gravitational func-
tionals due to the unlimited Bouguer plate at point P

+
 (left figure in Fig. 2) and the gravita-

tional functionals due to the single mass layer at point P
+
 (right figure in Fig. 2).

In order to solve the infinite problem, one typically defines the limits into a bounded 
domain. Regarding the unlimited Bouguer plate, when the plate is truncated at radius R 
from the computation point, the limited Bouguer plate as a shape of a cylinder is obtained 
and shown in Fig. 3. In the right-handed Cartesian coordinate system, the origin lies on 
the top centre of the cylinder, the z axis is in the vertical direction and points outwards. 
The coordinates of any computation point P lying on the z axis are (0,  0,  z). The posi-
tion of infinitesimal mass-elements describing the integration is denoted as (x�, y�, z�) with 
x� = r� cos�� , y� = r� sin�� and (r�,��

) the polar coordinates of integration masses. The 
gravitational potential at P induced by this cylinder is (Hofmann-Wellenhof and Moritz 
2006; Na et al. 2015):

Fig. 2  Unlimited Bouguer plate after Kadlec (2011) and respective unlimited mass layer. Left figure: unlim-
ited Bouguer plate with P

+
 and PR indicating the computation point on and above the bottom of the plate 

and its respective point on the top of the plate; Right figure: an unlimited mass layer of infinitesimal thick-
ness with P

+
 indicating the calculating points residing on and above this layer
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where G is the gravitational constant. With l indicating the distance between computation 
point and integration mass-element, it is

In case the computation point is located above the bottom and below the top of the cylin-
der, z < 0 and z + h > 0 . The solution of Eq. (1) becomes (Hofmann-Wellenhof and Moritz 
2006; Kadlec 2011; Na et al. 2015)

where lh =
√
R2

+ (z + h)2 and l0 =
√
R2

+ z2.
For a computation point P

+
 , where z + h → 0+ , the above expression becomes

In the framework of the condensation method under limited Bouguer plate approximation, 
the cylinder is compressed into a layer of the disc with a constant radius R, surface density 
�h , and infinitesimal thickness. This layer disc is moved down to just below the computation 
point. The general expression of the gravitational potential and its derivatives due to a disc 
and the related efficient methods for their calculation were investigated over the past decades 
(Singh 1977; Krogh et al. 1982; Tsoulis 1999; Hofmann-Wellenhof and Moritz 2006; Tatum 
2007; Fukushima 2010).

In this case, the computation point P
+
 has the coordinate of (0, 0, z), where z → 0

+
 . The 

disc generated gravitational potential at P
+
 is (Lass and Blitzer 1983; Tsoulis 1999; Hofmann-

Wellenhof and Moritz 2006)

The HC for RTM geoid height in the limited Bouguer plate approximation is defined as 
the difference between the disc produced gravitational potential ( VDL ) at point P

+
 and the 

cylinder produced gravitational potential at point P
+
 ( VLBP).

(1)VLBP

(P) = G�

2�

∫
0

R

∫
0

0

∫
−h

r�

l
dz�dr�d��

(2)l =
√
r�2 + (z� − z)2

(3)VLBP

(P) = �G�[R2 ln
lh + h + z

l0 + z
− h2 + h(lh − 2z) − 2z2 + z(lh − l0)];

(4)VLBP

(P
+
) = lim

z+h→0+
VLBP

(P) = �G�(R2 ln
R

√
R2

+ h2 − h
− h2 + h

√
R2

+ h2);

(5)VDL

(P
+
) = 2�G�hR

Fig. 3  Cylinder or limited 
Bouguer plate in right-handed 
Cartesian coordinate system xyz. 
The cylinder is of radius R and 
thickness h. P

+
 and PR indicate 

the computation point on and 
above the bottom of cylinder 
and its respective point on the 
top (Hofmann-Wellenhof and 
Moritz 2006; Kadlec 2011; Na 
et al. 2015)
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Considering the relationship between the topographic generated geoid height and potential, 
the HC for RTM geoid height is

with � indicating the normal gravity value of respective point on the ellipsoid. When 
R → ∞ , the cylinder and corresponding disc become an unlimited Bouguer plate and an 
unlimited mass layer, respectively. Therefore, in the infinite Bouguer plate approximation, 
the HC for RTM geoid height is defined as the limiting values of Eq. (7) when R → ∞ . 
There is

Introducing this limit into Eqs. (6) and (7), we get

For the detailed derivation process, please refer to Appendix A.

2.2  HC Terms in the Bouguer Shell Approximation

The geometries of a Bouguer shell and a spherical layer are shown in Fig. 4. In the condensa-
tion method using a Bouguer shell approximation, the masses between the computation point 
P
+
(�, �, r) and its respective point PR on the reference surface are approximated by a spheri-

cal shell with the inner radius r1 and outer radius r2 . The subscript �+� indicates that the com-
putation point is located outside the sphere of radius r1 . The gravitational potential V due to 
this spherical shell is defined as (Alex 2005; Kadlec 2011),

with l =
√
r2 + r�2 − 2rr� cos�  , and cos� = sin� sin��

+ cos� cos�� cos(�� − �) indi-
cating the distance and angular distance between P

+
 and the integration element (��, ��, r�).

In case of r1 < r < r2 , the solution of the integral (Alex 2005; Kadlec 2011) follows,

When the computation point is located on the spherical layer defined by radius r1 , i.e. for 
r → r1 , the above equation array becomes

(6)
V
HC-LBP

(P
+
) =V

DL

(P
+
) − V

LBP

(P
+
)

= 2�G�hR − �G�
�
R
2 log

R
√
R2

+ h2 − h

− h
2
+ h

√
R2

+ h2
�

(7)NHC-LBP
(P

+
) =

VHC-LBP
(P

+
)

�

(8)lim
R→∞

h

R
→ 0

(9)NHC-UBP
(P

+
) = lim

R→∞

NHC-LBP
(P

+
) =

�G�h2

�

(10)VBS

(P) = G�

2�

∫
0

�

∫
0

r2

∫
r1

r�

l
dr�d��d��

(11)

VBS

(P) =
�G�

3r
[(r2 + r2r − 2r2

2
)(r2 − r) − (r2 + rr1 − 2r2

1
)(r − r1) − 2r3

1
− 3rr2

1
+ 2r3

2
+ 3rr2

2
]

=

2�G�

3r
(3r2

2
r − r3 − 2r3

1
)



1209Surveys in Geophysics (2022) 43:1201–1231 

1 3

In the scope of the condensation method, the spherical shell of thickness h is compressed 
into a spherical layer (SL) of constant radius r1 , density �(h + h2

r1
) and infinitesimal thick-

ness. As shown in Fig. 4, the computation point P
+
 is located outside the spherical layer. 

The gravitational potential due to this spherical layer at any exterior point is:

The general solution of Eq.  (13) has been given in various studies, e.g., (Tsoulis 1999; 
Alex 2005; Roy 2008). At the computation point P

+
 , there is

The HC-BS at point P
+
 is the difference between VSL

(P
+
) and VBS

(P
+
) . And the HC-BS 

terms for RTM geoid height is

(12)VBS

(P
+
) = 2�G�(r2

2
− r2

1
)

(13)VSL

(P) = G�(h +
h2

r1
)

2�

∫
0

�

∫
0

r� sin��

l
d��d��

(14)VSL

(P
+
) = 4�G�hr1 + 4�G�h2

Fig. 4  Bouguer shell and Bouguer spherical layer (Kadlec 2011; Alex 2005). Left figure: the Bouguer shell 
is of inner radius r1 and outer radius r2 where r2 = r1 + h , and constant density � . P

+
 and PR indicate the 

computation point residing on and above the inner spherical surface and its respective point on the outer 
spherical surface. Right figure: a spherical layer of constant radius r1 , constant density �(h + h

2

r1

) , and 
infinitesmal thickness. P

+
 is the computation point on the spherical surface. � is the angle distance between 

computation point and integration elements in both figures
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2.3  HC Terms in the Limited Bouguer Shell Approximation

A Bouguer spherical cap with constant thick and constant density is generally used for rep-
resentation of limited Bouguer shell. Its generated gravity field has been widely discussed 
in LaFehr (1991), Hensel (1992), Heck and Seitz (2007), and Tenzer et  al. (2007). Instead 
of a spherical cap, a “limited Bouguer shell (LBS)” approximation is applied in this study. 
As shown in Fig. 5, the masses between the computation point P

+
(�, �, r1) and its respec-

tive point PR on the reference surface are approximated by a “limited spherical shell” defined 
by three pairs of surfaces: a pair of concentric spheres ( r1 , r2 = r1 + h ), a pair of meridional 
planes ( �1 = � − Δ�,�2 = � + Δ� ), and a pair of parallels ( �1 = � − Δ� , �2 = � + Δ� ). 

(15)

NHC-BS
(P

+
) =

VHC-BS
(P

+
)

�

=

1

�

[
VSL

(P
+
) − VBS

(P
+
)

]

=

1

�

[
4�G�hr1 + 4�G�h2 − 2�G�(r2

2
− r2

1
)

]

=

1

�

[
4�G�hr1 + 4�G�h2 − 2�G�((r1 + h)2 − r2

1
)

]

=

2�G�h2

�

Fig. 5  Limited Bouguer shell (left figure) and the respective compressed layer (right figure). In the left fig-
ure, r1 and r2 indicate the lower and upper boundaries of the limited Bouguer shell, respectively. P

+
 and PR 

are the computation point residing on and above the lower boundary and its respective point on the upper 
boundary. 2Δ� and 2Δ� are the latitude differences and longitude differences of boundaries. The right fig-
ure is obtained by compressing the masses of the limited Bouguer shell into a surface of infinitesimal thick-
ness
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The subscript �+� indicates that the computation point is located outside the inner surface of 
radius r1 . This kind of geometry is a tesseroid horizontally symmetric around the computation 
point (Anderson 1976). Using the “limited Bouguer shell” rather than the general Bouguer 
spherical shell is because that this study is a continuous work of Yang (2020) and is expected 
to be added in the Terrain-related Gravity Field TGF software (Yang et al. 2020). In the TGF 
software, the integration masses around computation point are divided into four zones. The 
boundary of each zone is defined by a pair of meridional planes � ± Δ�i and a pair of parallels 
� ± Δ�i , with Δ�i and Δ�i indicating the longitude difference and latitude difference between 
boundary of i-th zone to the computation point. The masses in various zones are approximated 
by four kinds of geometries, i.e. polyhedron, prism, tesseroid and point mass separately.

The gravitational potential generated by the tesseroid is (Anderson 1976):

where l =
√

r2
1
+ r�2 − 2r1r

� cos�  denotes the Euclidean distance between the computa-
tion point P

+
(�, �, r1) and the integration point Q(��, ��, r�) . � is the spherical distance 

between P
+
 and Q.

In the scope of the condensation method, the limited spherical shell of thickness h is com-
pressed into a “limited spherical layer” (LSL) of constant radius r1 , density �(h + h2

r1
) and 

infinitesimal thickness. As shown in Fig. 4, the computation point P
+
 is located outside the 

“limited spherical layer”. Its generated gravitational field is:

The HC-LBS at point P
+
 is the difference between VLBS

(P
+
) and VHC-BS

(P
+
) . And the HC-

LBS for geoid height is

Though various methods have been provided for the numerical solution of Eqs. (16) and 
(17) (Heck and Seitz 2007; Wild-Pfeiffer 2008; Grombein et al. 2013; Deng et al. 2016; 
Uieda et al. 2016; Deng and Shen 2018b; Fukushima 2018), Eq. (18) is the general solution 
of HC for RTM geoid height under limited Bouguer shell approximation. In the following 
experiments, the LBS is divided into a series (e.g., n) of finite elements and each approxi-
mated by a prism. The gravitational potential generated by the limited Bouguer shell is the 
comprehensive effect of all prisms (Wild-Pfeiffer 2008),

(16)VLBS

(P
+
) = G�∫

�+Δ�

�−Δ�
∫

�+Δ�

�−Δ�
∫

r2

r1

r�2 cos��

l
dr�d��d��

(17)VLSL

(P
+
) = G�(h +

h2

r1
)∫

�+Δ�

�−Δ�
∫

�+Δ�

�−Δ�

r2
1
cos��

l
d��d��

(18)
NHC-LBS

(P
+
) =

VHC-LBS
(P

+
)

�

=

VLSL
(P

+
) − VLBS

(P
+
)

�

(19)

VLBS

(P
+
) =

∑
VPrism

(P
+
) =

∑
G�

[
− (y − y�)(z − z�) ln(x − x� + l) − (x − x�)(y − y�) ln(z − z� + l)

− (x − x�)(z − z�) ln(y − y� + l) +
(x − x�)2

2
arctan

(y − y�)(z − z�)

(x − x�)l

+

(y − y�)2

2
arctan

(x − x�)(z − z�)

(y − y�)l
+

(z − z�)2

2
arctan

(y − y�)(x − x�)

(z − z�)l

]
|x2,y2,z2
x1,y1,z1
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where l =
√
(x − x�)2 + (y − y�)2 + (z − z�)2 indicates the distance between the computa-

tion point P
+
(x, y, z) and integration point Q(x�, y�, z�).

Accordingly, the limited spherical layer is divided into a series (e.g., n) of mass lay-
ers sharing the same size as the top of the prism. The gravitational potential generated by 
the limited spherical layer is the comprehensive effect of mass layers (ML) (Wild-Pfeiffer 
2008),

where z� = z1 , l =
√
(x − x�)2 + (y − y�)2 + (z − z�)2.

In the general case, the limited Bouguer shell is represented by a Bouguer spherical cap. 
The expression of HC for geoid height in such cases is given in Appendix B.

3  Numerical Experiments

Currently, the most widely used global gravity field model EGM2008 and the upcoming 
EGM2020 are provided as spherical harmonic series expansions to degree and order (d/o) 
of 2159 (Pavlis et al. 2012; Barnes et al. 2020), which means that gravity details with a 
half-wavelength of ∼ 9 km can be recovered reliably from GGMs. The details beyond the 
∼ 9 km threshold are linked to terrain fluctuations and to be obtained approximately via 
the RTM technique. All following experiments rely on this assumption. In terms of the 
main inputs, a detailed DEM model—MERIT2017 (Yamazaki et al. 2017) at a resolution 
of 3′′—is used to represent the Earth’s surface, and its directly derived spherical harmonic 
expansion to d/o 2159—MERIT2160 (Hirt et al. 2019a)—provides the smooth reference 
surface. RTM heights, differences between MERIT2017 heights and MERIT2160 heights, 
show that ∼ 50 % of the continental areas located below the reference surface over where 
HC is required.

3.1  The Effect of Planar Approximation on HC Terms in the Classical Condensation 
Method

The planar assumption is one of the main factors that affect the accuracy of derived HC 
terms in the classical condensation method. The comparisons between HC-UBP Eq. (9) 
and HC-BS Eq. (15), and between HC-LBP Eq. (7) and HC-LBS Eq. (18) provide meas-
ures for the planar approximation effect on HC terms. The HC for geoid height is �G�h2∕� 
in the unlimited Bouguer plate approximation, while it becomes 2�G�h2∕� when using the 
spherical shell approximation. Therefore, the errors in NHC-UBP due to the planar approxi-
mation are �G�h2∕� which has a positive correlation with parameter h2 . When the mag-
nitude of negative residual height has a value larger than 420 m, the errors due to planar 
approximation in NHC-UBP would be larger than 1 cm, and hence could not be ignored in the 
cm- and mm-level geoid determination.

Similarly, the difference between HC-LBP and HC-LBS provides insights on the errors 
in NHC-LBP due to planar approximation. Considering the character of Earth’s curvature, 
the errors due to planar approximation has a positive correlation with integration radius R. 

(20)

VLSL

(P
+
) =

∑
VML

(P
+
) =

∑
G�h

[
(x − x�) ln(y − y� + l) + (y − y�) ln(x − x� + l)

− (z − z�) arctan
(x − x�)(y − y�)

(z − z�)l

]
|x2,y2
x1,y1
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This is verified in Fig. 6. In this study, the Earth’s density of constant value � = 2670 kg/
m3 , and RTM height in extreme case h = 1350 m are adopted for the calculation of NHC-LBP 
and NHC-LBS . Besides, the integration masses around the computation point is divided into 
a grid at 15�� × 15�� resolution and each grid element is then approximated by a prism for 
the calculation of NHC-LBS . The integration radius changes from 1 km to 550 km with a step 
of 10 km both under LBS and under LBP. The results show that the magnitude of errors 
rises with the increased integration radius. With an integration radius of within 200 km, the 
errors due to planar approximation would be less than 0.5 cm.

3.2  The Effect of Mass Inconsistency on HC Terms in the Classical Condensation 
Method

In this experiment, the effect of mass inconsistency on HC for RTM geoid height is studied 
through a comparison between HC-UBP and HC-LBP, and HC-BS and HC-LBS. From 
Eqs. (7), (9), (15), and (18), it is obvious that mass inconsistency effect is a function of 
parameter R and h.

In order to study the variation of errors due to mass inconsistency with increasing R, 
a constant residual height of h = 1350 m was adopted. This is based on the positive cor-
relation between error terms and the magnitude of the residual height. The maximum 
magnitude of negative residual height h = 1350 m provides the extreme case in this study. 
The results are presented in Fig. 7a, c with R increasing from 0 km to 550 km. It is obvi-
ous that the effect of mass inconsistency on HC for geoid height shows the same trend in 
both spherical and planar approximations. The error magnitudes firstly decrease fast with 
increasing of integration radius R and then tend to be stable when R extends to enough 
distance. The difference between NHC-UBP and NHC-LBP tends to be less than 0.25 cm when 
R > 20 km (Fig. 7a), which is a rather negligible value in present applications. However, 
the difference between NHC-BS and NHC-LBS is much larger than a magnitude of ∼ 10 cm.

Fixing R = 110 km, which is sometimes applied in RTM gravity field calculation (Yang 
et al. 2018), the variation of errors due to mass inconsistency with increasing h is shown 
in Fig. 7b, d. The results confirmed that the errors increase with increasing height h. The 
magnitude of errors in NHC-UBP is less than 0.07 cm with h < 1500 m and R > 110 km. 
When masses extending to an adequately distant area are considered in the RTM technique, 

Fig. 6  The effect of pla-
nar approximation. Here, 
N

HC-LBS
− N

HC-LBP indicates the 
differences between HC for geoid 
height under LBS approximation 
and under LBP approximation. 
Radius of limited Bouguer plate 
means that masses within the 
radius-defined zone are consid-
ered in the forward modelling
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such as for R > 110 km, the effect due to mass inconsistency could be ignored in the cm-
level gravity field determination. However, the mass inconsistency effect between NHC-BS 
and NHC-LBS would reach more than 10 cm and could not be ignored.

3.3  The Harmonic Correction on the Earth’s Surface

The HC on the Earth’s surface is calculated. This provides insight into the quantification 
of HC for RTM geoid height. The computation points are arranged in a grid of 15�� × 15�� 
and are located on the Earth’s surface defined by MERIT2017. The residual heights are 
obtained by subtracting MERIT2160 from MERIT2017.

HC for RTM geoid height is calculated under various approximations. For the cal-
culation of HC under LBS approximation, the integration masses within 110 km from 
the computation point are divided into a grid at 5�� × 5�� resolution and each element 
is approximated by a prism. Figure 8 shows the residual height and the respective HC 
for geoid height under unlimited Bouguer plate approximation. With the negative radial 
heights varying between −1350 m and 0 m (Fig.  8a), the HC for RTM geoid height 
(Fig.  8b) varies from ∼ −10.49 cm to ∼ 0 cm with a mean of −0.33 cm and RMS of 
0.11 cm for NHC-UBP . When integration radius extends far than 110 km, the differences 
between NHC-UBP , NHC-LBP and NHC-LBS are negligible. This could be clearly verified in 

Fig. 7  The effect of mass inconsistency effect. a, c display the infinite approximation (mass inconsistency) 
effect on the HC for geoid height with varying integration radius; b, d display the infinite approximation 
(mass inconsistency) effect on the HC for geoid height with varying residual height
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the Sects. 3.1 and 3.2. Besides, the value of NHC-BS is double of NHC-UBP . It is obvious 
that the HC for RTM geoid height is very small and could be ignored over most of the 
flat area on the Earth. However, over very rugged areas, such as Himalayas (Fig.  9), 

Table 1  The magnitude of HC 
on geoid height NHC-BS and 
N

HC-UBP , and their variations 
with changing of magnitude of 
RTM height H

RTM

With NHC-BS indicating HC for geoid heights under unlimited Bouguer 
shell approximation, NHC-UBP HC for geoid heights under unlimited 
Bouguer plate approximation, � = �

interval
∕� , where �

interval
 indicates 

the number of points located in the interval, and � the number of cal-
culated points

||HRTM
|| (m) ||NHC-BS|| cm ||NHC-UBP|| cm � (%)

||HRTM

|| ≤ 93 ≤ 0.1 ≤ 0.05 90.94
||HRTM

|| ≤ 295 ≤ 1 ≤ 0.5 99.08
||HRTM

|| 295 ≥ 1 ≥ 0.5 0.92

Fig. 8  Harmonic correction for RTM geoid heights on the Earth’s surface. a shows the residual height over 
places with H

RTM
< 0 . In order to display the correspondence between residual heights and HC, b shows 

the negative value of HC for RTM geoid height with reference surface of N = 2159

Fig. 9  Harmonic correction for RTM geoid heights over Himalaya areas. a shows the residual height at 
points with H

RTM
< 0 over Himalaya areas; b displays the HC for RTM geoid height for reference surface 

of N = 2159 over Himalaya areas
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Tibetan Plateau, European Alps, American Rocky mountains, and Andes mountains, the 
HC for RTM geoid height reaches up to several cm.

Table 1 gives a detailed statistical description of the magnitude of HC for geoid height 
and its variation with changing of the magnitude of RTM height. Over areas with a mag-
nitude of RTM height less than 93 m which occupies about 90.94% continent, the HC for 
geoid height would be less than 1 mm. Over these areas, the HC for RTM geoid height 
could be ignored in the mm-level geoid height determination. Similarly, over 99.08% of 
continental areas, the HC for geoid height would be less than 1 cm and could be ignored in 
the cm-level geoid determination. However, over very rugged areas, which occupied about 
0.92% of continental areas, the HC for RTM geoid height could be large than 1 cm and 
would reach ∼ 20 cm in extreme cases. Therefore, HC should be carefully considered in 
these areas.

4  Validation Results

4.1  Validation with Baseline Solution

In this experiment, we used an artificial method developed by Hirt et al. (2019a) for the 
RTM gravitational field calculation which avoids HC through dividing the RTM geoid 
height NRTM-baseline into two parts: (1) the full-scale gravity field signals implied by the 
detailed DEM depending on global numerical integration N

NI
 , (2) long-wavelength gravity 

field N
SGM

 and ultra-high frequency correction N
HF

 relying on spectral forward modelling. 
Though the performance of this method in RTM geoid height calculation is not numeri-
cally investigated up to the present, it has been used in the calculation of RTM gravity 
disturbances globally and achieved great improvement in the accuracy of RTM technique 
to a sub-mGal level (Hirt et al. 2019a, 2019). This suggests the better performance of the 
artificial method than the classical method in the high-frequency gravity field recovering. 
Therefore, it is expected to yield better performance in RTM geoid height calculation and 
provide a reference for the validation of HC in RTM geoid height. In this validation exper-
iment, the studied area is located in the most rugged area of the Earth, the Himalayas, 
bounded by latitudes of 27◦ N and 28◦ N, and longitudes of 87◦ E and 88◦ E. This area cov-
ers the Himalaya Southern flanks and provides the extreme mountain topography which 
could serve as a worst-case example for RTM errors. Over this area, RTM geoid heights 
are calculated through the artificial method and RTM with various types of HC (i.e. HC-
LBP, HC-UBP, HC-BS, HC-LBS) and without HC separately. Constant density assump-
tion and same DEM models will be used in the artificial method, direct RTM technique, 
and HC.

RTM geoid heights are calculated with integration masses extending to 110 km from 
the calculation point. The directly calculated RTM geoid heights are corrected by adding 
HC under various approximations and are then compared with the RTM baseline solution 
NRTM-baseline . The calculations of HC under LBP and LBS share the same integration radius 
with the calculation of RTM geoid heights. Table 2 gives statistical information of com-
parison results, while their distributions are shown in Fig. 10. Figure 11 displays the varia-
tion of residuals with changing of RTM heights. The values of RTM baseline solution vary 
from −36.80 to 32.08 cm (Fig.  10a), with a mean −1.15 and RMS 10.06 cm (Table  2). 
This indicates the significance of high-frequency signals for cm-level geoid determina-
tion. The residuals between directly calculated RTM geoid heights and RTM baseline 
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solution vary between ∼ 2.13 cm and ∼ 17.98 cm with RMS ∼ 2.21 cm. It is obvious that 
the large differences mainly occur when the computation points are located below the ref-
erence surface (Fig. 10b, c). The magnitudes of differences have a high correlation with 
the magnitude of RTM heights (Fig. 11a) for points located in masses. When the compu-
tation points are located outside masses, the differences vary around zero (Fig. 11a). The 
involvement of HC greatly improves results which could be seen from the minimized RMS 
values of ΔNRTM-HC-UBP ∼ 1.23 cm, ΔNRTM-HC-LBP ∼ 1.23 cm, ΔNRTM-HC-LBS ∼ 1.21 cm and 
ΔNRTM-HC-BS ∼ 0.64 cm (Table 2). The values of ΔNRTM-HC-UBP (Fig. 10c) tend to be posi-
tive over points located in masses. This is in agreement with HC for RTM gravity anomaly 
results in Hirt et al. (2019a). When the integration masses are extended up to 110 km from 
the computation points, the mass inconsistency effect could be ignored (Table 2). The HC 
formulas under Bouguer spherical shell approximation achieve the best performance with 
the minimum magnitude (within 3 cm) and RMS of ΔNbaseline

RTM-HC-BS
 of 0.64 cm. This is rea-

sonable considering the global masses are included in the calculation of baseline solution 
and distant masses would come into effect.

4.2  Validation with Terrestrial Measurements

One of the main applications of the RTM technique is the determination of an ultra-high-
resolution gravity field through combining GGMs at long- and medium-wavelength bands 
and the RTM gravity field at short-wavelength bands. The accurate terrestrial geoid meas-
urements are supposed to provide the full-scale gravity field signal on the Earth’s surface. 
Therefore, it is appropriate to use terrestrial measurements as reference values for evaluat-
ing the accuracy of the recovered gravity field model from GGM and RTM and investi-
gating the performance of the RTM technique (Yang et al. 2018; Hirt et al. 2019). In this 

Table 2  The statistical 
information of various types of 
RTM geoid height

With N
RTM-baseline

= N
NI

− N
SGM

− N
HF

 indicating RTM geoid height 
derived from artificial method, ΔN

baseline

RTM

= N
RTM-baseline

− N
RTM

 
with N

RTM
 indicating directly calculated RTM without 

HC, and ΔN
baseline

RTM-HC-UBP
= N

RTM-baseline
− N

RTM-HC-UBP
 with 

N
RTM-HC-UBP

 indicating directly calculated RTM with HC-
UBP, and Δ

baseline

RTM-HC-LBP
= N

RTM-baseline
− N

RTM-HC-LBP
 with 

N
RTM-HC-LBP

 indicating directly calculated RTM with HC-LBP, 
ΔN

baseline

RTM-HC-LBS
= N

RTM-baseline
− N

RTM-HC-LBS
 with N

RTM-HC-LBS
 

indicating directly calculated RTM with HC-LBS and 
ΔN

baseline

RTM-HC-BS
= N

RTM-baseline
− N

RTM-HC-BS
 with N

RTM-HC-BS
 indicating 

directly calculated RTM with HC-BS

Variants Min Max Mean Rms

N
RTM-baseline

 (cm) −36.80 32.08 −1.1510.06
ΔN

baseline

RTM

 (cm) −2.13 17.98 0.93 2.21

ΔN
baseline

RTM-HC-UBP
 (cm) −2.16 9.23 0.46 1.23

ΔN
baseline

RTM-HC-LBP
 (cm) −2.16 9.25 0.46 1.23

ΔN
baseline

RTM-HC-LBS
 (cm) −2.16 9.25 0.46 1.21

ΔN
baseline

RTM-HC-BS
 (cm) −2.32 2.62 0.00 0.64

|ΔNbaseline

RTM-HC-LBS
| − |ΔNbaseline

RTM

| (cm) −9.02 0.98 −0.44 1.06

|ΔNbaseline

RTM-HC-BS
| − |ΔNbaseline

RTM

| (cm) −17.79 1.92 −0.75 1.96
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Fig. 10  Residual geoid heights compared to RTM-baseline solution. a displays the RTM baseline solu-
tion for geoid height; b is the RTM heights; c shows residual geoid heights after removing the RTM geoid 
heights with HC under unlimited Bouguer plate approximation; d is the absolute difference between resid-
ual geoid heights using RTM geoid heights with HC under unlimited Bouguer plate approximation and 
under Bouguer shell approximation, the bluish indicates the better performance of HC under Bouguer shell 
approximation

Fig. 11  Residual geoid heights with changing of RTM height over Himalaya area. a is residual geoid 
heights after removing directly calculated RTM geoid heights without HC; b shows residual geoid heights 
after removing the RTM geoid heights with HC under unlimited Bouguer plate approximation
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paper, terrestrial GPS/leveling over New Zealand and in the Bavarian Alps in Germany are 
used to validate the performance of RTM with various types of HC and without HC.

The validation experiment is implemented through comparison with 1272 first- to 
fourth-order GPS/leveling measurements over New Zealand. This means that the value of 
root mean squared error (RMSE) is less than 1 cm when the level line less than 1 km. Yang 
et al. (2018) and Yang (2020) have given detailed descriptions of this dataset. In this study, 
the synthesized geoid height model with EGM2008 N

EGM2008
 , a combination of EGM2008 

and direct RTM N
RTM

 without HC, a combination of EGM2008 and RTM with HC-LBP, a 
combination of EGM2008 and RTM with HC-UBP, a combination of EGM2008 and RTM 
with HC-BS and a combination of EGM2008 and RTM with HC-LBS are calculated sepa-
rately. The 110 km integration radius is used for the calculations of RTM geoid heights, 
HC under limited Bouguer plate approximation, and limited Bouguer shell approxima-
tion. The residual geoid heights, being the differences between observed and synthesized 
geoid heights, indicate the representativity of synthesized geoid heights and therefore give 
insights into the performance of RTM with various types of HC and without HC. Consid-
ering the difference between the gravity potential of the global model and of vertical datum 
for the leveling work, a bias fit, e.g., the mean value of residuals, is applied to each of the 
comparisons.

Table 3 gives the statistical information of differences between geoid height measure-
ments and synthesized geoid heights from EGM2008 and RTM without and with various 
HCs over New Zealand. Figure 12 shows the distribution of these differences. It is obvi-
ous from Table  3, EGM2008 is capable of recovering 99.4% of GPS/leveling measured 
geoid heights. This might be because that the GPS/leveling measurements in this study are 
mainly distributed in the relatively flat area where long-wavelength signals play a dominant 
role. The involvement of direct RTM determined geoid heights without HC achieved little 
improvement (Table 3, Fig. 12a, c). The involvement of HC reduces the values of RMS 
from 11.09 cm of ΔN

RTM
 to less 11.08 cm of ΔNRTM-HC-UBP , ΔNRTM-HC-LBP , ΔNRTM-HC-BS 

and ΔNRTM-HC-LBS (Table  3). The improvement mainly takes place over valley points 
(Fig 12b, c). Besides, the application of RTM with HC under Bouguer shell approximation 
achieves the smallest value of RMS. The RMS of ΔNRTM-HC-BS is reduced to ∼ 11.05 cm 
(Table 3) and the improvement varies within ∼ 6 cm.

A similar experiment is implemented over the Bavarian area in the south of Germany. 
34 GPS/leveling measurements over this area (Hirt et  al. 2010) are used to validate the 
performance of derived HC expressions. The accuracy of these measurements is 1 − 2 
cm. Table  3 gives the detailed descriptive statistics of comparisons. Adding the HC for 
geoid height reduces the values of RMS from ∼ 2.59 cm to ∼ 2.53 cm. With integration 
radius extending up to 110 km from the measurement points, the effect involved by mass 
inconsistency and planar approximation is neglectable. The expressions of HC under UBP, 
LBP, and LBS show equivalent performance. Like the results showed in New Zealand, the 
expression of HC under BS achieved the minimal RMS ∼ 2.49 cm. Figure 13 shows the 
values of residuals after removing synthesized geoid heights from observed geoid heights. 
Over points located below the reference surface, the involvement of the HC for RTM geoid 
height reduces the magnitude of residuals (Fig. 13d).

The involvement of HC for RTM geoid height achieves improvements in the above two 
validation experiments. However, there are still significant residuals after involving HC 
for geoid height, e.g., the residuals varying within 60 cm over New Zealand and varying 
within ∼ 10 cm over the Bavarian area (Fig. 12c, 13c), this may be caused by various rea-
sons, such as the spectral filter problem encountered in the RTM technique (Rexer et al. 
2018; Bucha et al. 2019), the accuracy of applied DEM and its spherical harmonic (SH) 
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expansions, high-frequency signals due to density anomaly, ultra-high frequency signals 
exceeding the resolution of applied DEMs, the errors in HC, etc. Besides, the accuracy and 
distribution of terrestrial measurements would also affect the results. However, the reduced 
RMS of residuals after involving HC for RTM geoid height proves the feasibility of the 
derived formulas.

5  Discussion and Conclusions

RTM retrieved gravity functionals are the primary source of high-frequency gravity 
field signals and therefore are widely applied in the fine regional and global gravity 
field determination through combining gravity field-related measurements and GGMs. 
When using RTM gravity forward modelling, the computation point might reside in the 
masses defined by the reference surface. In such a  case, the RTM directly recovered 
gravity field is not commensurate with values obtained in the harmonic condition and 

Table 3  The statistical information of geoid height N
obs

 and differences with synthesized geoid height from 
EGM2008 and RTM without and with various HCs over New Zealand and Bavarian area

With N
obs

 indicating observed geoid heights, N
EGM2008

 geoid heights from EGM2008, 
ΔN

RTM
= N

obs
− N

EGM2008
− N

RTM
 with N

RTM
 indicating directly calculated RTM without HC, and 

ΔN
RTM-HC-UBP

= N
obs

− N
EGM2008

− N
RTM-HC-UBP

 with N
RTM−HC−UBP

 indicating directly calculated RTM 
with HC-UBP, and ΔN

RTM-HC-LBP
= N

obs
− N

EGM2008
− N

RTM-HC-LBP
 with N

RTM-HC-LBP
 indicating directly 

calculated RTM with HC-LBP, ΔN
RTM-HC-BS

= N
obs

− N
EGM2008

− N
RTM-HC-BS

 with N
RTM-HC-BS

 indicat-
ing directly calculated RTM with HC-BS, and ΔN

RTM-HC-LBS
= N

obs
− N

EGM2008
− N

RTM-HC-LBS
 with 

N
RTM-HC-LBS

 indicating directly calculated RTM with HC-LBS. A bias fit is applied to each of the compari-
sons

Variants Min (cm) Max (cm) Mean (cm) Rms (cm)

New Zealand
N
obs

387.20 3944.80 1378.60 2009.40
N
obs

− N
EGM2008

−47.04 59.72 0.00 11.30
ΔN

RTM
−47.05 60.31 0.00 11.09

ΔN
RTM-HC-UBP

−47.10 60.26 0.00 11.08
ΔN

RTM-HC-LBP
−47.10 60.26 0.00 11.08

ΔN
RTM-HC-LBS

−47.10 60.26 0.00 11.08
ΔN

RTM-HC-BS
−47.00 60.36 0.00 11.05

|ΔN
RTM-HC-LBS

| − |ΔN
RTM

| −2.94 1.34 −0.03 0.21
|ΔN

RTM-HC-BS
| − |ΔN

RTM
| −5.84 4.98 0.00 0.42

Bavarian Area
N
obs

4512.50 4912.60 4718.10 4719.22
N
obs

− N
EGM2008

−8.41 13.65 0.00 4.05
ΔN

RTM
−5.43 8.30 0.00 2.59

ΔN
RTM-HC-UBP

−5.52 8.19 0.00 2.53
ΔN

RTM-HC-LBP
−5.53 8.19 0.00 2.53

ΔN
RTM-HC-LBS

−5.52 8.19 0.00 2.53
ΔN

RTM-HC-BS
−5.62 8.09 0.00 2.49

|ΔN
RTM-HC-LBS

| − |ΔN
RTM

| −1.26 0.00 0.00 0.25
|ΔN

RTM-HC-BS
| − |ΔN

RTM
| −1.59 0.72 0.00 0.38
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HC is required. The classical condensation method, as one of the most used techniques 
for HC, only provided the solution of HC for RTM gravity anomaly and its accuracy 
was compromised to infinite Bouguer plate approximation. In this study, the HC formu-
las for RTM geoid height are presented in the framework of the condensation method.

The present contribution provides the formulas of HC for RTM geoid height in 
four variants: (1) HC-UBP with the residual masses being approximated by an infi-
nite Bouguer plate, (2) HC-LBP with the residual masses approximated by a limited 
Bouguer plate, (3) HC-BS with the residual masses approximated by a Bouguer shell, 
and (4) HC-LBS with the residual masses approximated by a limited Bouguer shell. 
As a continuous work of TGF (Yang et  al. 2020), a tesseroid of integration radius in 
both latitude and longitude direction is applied for ”limited Bouguer shell” approxima-
tion instead of using a spherical cap. This will generate ∼ 0.04 cm differences in HC 
for geoid height in the extreme case when integration mass extends up to 110 km and 
residual height to 1350 m (Appendix B). Therefore, the errors due to application tesse-
roid could be ignored to some extent. Compared to the classical condensation method 
with infinite Bouguer plate approximation, the limited Bouguer plate approximation 
would reduce the effect of inconsistency between masses involved in the RTM technique 
and masses involved in HC, the Bouguer shell approximation considers the effect of the 
Earth’s curvature, while the limited Bouguer shell approximation overcomes both mass 
inconsistency effect and planar approximation. Therefore, HC-LBP, HC-BS, and HC-
LBS formulas are supposed to be more accurate than HC-UBP terms.

Secondly, based on four types of HC expressions (i.e. HC-UBP, HC-LBP, HC-BS, 
HC-LBS) for RTM geoid height, the effects of mass inconsistency and planar approxi-
mation on HC are studied. The results provide insights into the accuracy of generally 
applied HC-UBP when RTM is used for the augmentation of GGMs beyond d/o 2159. 
With integration masses extending up to a sufficient distance, the errors introduced by 
unlimited Bouguer plate approximation in HC terms can be considered negligible. For 
example, when integration masses extend up to 110 km for RTM geoid height, the infi-
nite approximation effect is less than 0.1 cm. However, the errors introduced by planar 
approximation in HC for RTM geoid height are a function of h2 and could reach a mag-
nitude of ∼ 10 cm over very rugged areas when the entire global masses are considered. 
Theoretically, this error would be largely reduced when the integration radius extends 
up to a limit distance in the RTM technique.

Thirdly, HC for RTM geoid height has been calculated when the reference surface is 
expanded to d/o 2159. Besides the highlighted HC for RTM gravity anomaly in previ-
ous studies, our study proved the significance of HC for geoid height. The HC for RTM 
geoid height may reach up to several cm over very rugged areas, such as Himalayas, 
Tibetan Plateau, European Alps, American Rocky mountains, and Andes mountains. 
These areas occupy ∼ 0.91 % of the continental areas. The HC for RTM geoid height 
should be carefully considered in the cm- and mm-level geoid determination over these 
areas. Over ∼ 99 % of continental areas with RTM height less than 93 m, HC for RTM 
geoid height would be less than 1 mm and could be ignored in the practical calculations.

The validation through comparison with terrestrial measurements and the RTM base-
line solution confirmed that the HC terms provided in this study are suitable to deal 
with the “non-harmonicity problem” encountered in the RTM technique. It is expected 
to improve the RTM performance in geodetic applications, such as gravity continuation, 
interpolation, and regional gravity field determination in the framework of the remove-
compute-restore technique, which will be studied in the future.
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Appendix A: Derivation of Harmonic Correction for the Geoid Height 
under Unlimited Bouguer Plate Approximation

As is introduced in Sect. 2.1, the HC-UBP with unlimited Bouguer plate approximation is 
value of HC-LBP with limited Bouguer plate approximation when R → ∞,

Let � =

1

R
 , then

It follows from L’Hospital’s rule (Taylor 1952) that

When � → 0 , the first term above tends to h2 . The limit of the second term is concluded by 
applying L’Hospital’s rule again, that is

(21)

NHC-UBP
(P

+
) =

1
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lim
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+
)
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Fig. 12  Geoid height over New Zealand. a displays residual geoid heights after removing EGM2008 recov-
ered geoid heights from terrestrial observations; b shows the RTM height; c shows residual geoid heights 
after removing the synthesized geoid height which uses RTM geoid heights with HC under unlimited 
Bouguer plate approximation; d is the absolute difference between residual geoid heights using RTM geoid 
heights with HC under Bouguer shell approximation and with HC under unlimited Bouguer plate approxi-
mation, the bluish indicates the better performance of HC under Bouguer shell approximation

▸
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By direct computation of derivatives, we yield

Therefore,

Combing Eqs. (23), (24) and (27), we obtain
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Fig. 13  Geoid height over the Bavarian area. a displays residual geoid heights after removing EGM2008 
recovered geoid heights from terrestrial observations; b shows the RTM heights; c shows residual geoid 
heights after removing the synthesized geoid height which uses RTM geoid heights with HC under unlim-
ited Bouguer plate approximation; d is the absolute difference between residual geoid heights using RTM 
geoid heights with HC under Bouguer shell approximation and with HC under unlimited Bouguer plate 
approximation, the bluish indicates the better performance of HC under Bouguer shell approximation
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Therefore,

Appendix B: Derivation of Harmonic Correction for Geoid Height 
under Limited Bouguer Shell Approximation

The geometry of the limited Bouguer shell is represented by a spherical cap at the left 
panel of Fig. 14. The inner radius of spherical cap is r1 , outer radius r2 , and density � . 
�0 is the half-angle subtended at the Earth’s centre. P

+
(0, 0, r) denotes the computation 

point when it is located below the reference surface and the subscript �+� indicates that 
the point adheres to or just above the Earth’s surface. The magnitude of height differ-
ence between P

+
 and its respective point PR on the reference surface is h. Its generated 

gravitational potential is (Tenzer et al. 2007; Kadlec 2011)

with (� �, ��, r�) indicating the coordinates of integration point and

(28)lim
�→0

2h +
1

�
ln(

√
1 + �2h2 − �h) − h

√
1 + �2h2

�
= 0

(29)N
HC-UBP

(P
+
) =

�G�h2

�

(30)V = G�∫
2�

0 ∫
�

0 ∫
r2

r1

1

l
r�2 sin� �dr�d� �d��

(31)l =
√
r2 + r�2 − 2rr� cos� �

Fig. 14  Geometry of limited Bouguer shell (spherical cap) and respective compressed mass layer. The left 
panel displays a limited Bouguer shell where the inner radius is denoted as r1 , the outer radius r2 , the thick-
ness h, and the density � . The computation point P

+
 locates above the inner boundary and its respective 

point on the outer boundary is PR . The right panel displays the respective compressed mass layer of the 
limited Bouguer shell. It shares the same masses with the spherical cap. �0 is the half-angle subtended at 
the Earth’s centre
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Its analytical solution was widely discussed by LaFehr (1991), Hensel (1992), Heck and 
Seitz (2007), Tenzer et al. (2007), and Kadlec (2011). Here, the general solution in Kadlec 
(2011) was adopted. It adapts for various cases when computation points are located out or 
in the spherical cap.

where

In the framework of the condensation method under limited Bouguer shell approximation, 
the spherical cap is compressed into a mass layer with a constant radius r1 , infinitesimal 
thickness, and shares the same mass with the spherical cap. The spherical cap layer is 
moved down to just below the computation point P

+
 (right panel at Fig. 14). Its generated 

gravitational potential could be derived following (Tenzer et al. 2007; Kadlec 2011)

with �c indicating the density of compressed masses, (� �, ��, r1) the coordinates of integra-
tion point and

After integration over �′ , we get

After integration over � ′ , we get

For computation point P
+
 , the HC for geoid height is

The comparison between two kinds of HC under LBS is implemented with an integra-
tion radius varying from 0 to 550 km. In this experiment, NHC-LBS is calculated following 
the method introduced in Sect.  2.3. The tesseroid is bounded by surfaces defined by 
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� = −� and � = � , � = −� and � = � , and r = r1 and r = r2 . The HC has calculated 
through diving the integration masses into a series of the prism at a resolution of 15′′ . 
NHC-LBS
Spherical Cap

 is calculated with Eq.(38). The differences are shown in Fig. 15. It is obvious 
that the differences between NHC-LBS and NHC-LBS

Spherical Cap
 reduce with increasing integration 

radius. When the integration radius is larger than ∼ 20 km, the differences would be less 
than 0.05 cm, which is able to be ignored in the most practical applications.
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