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Abstract
Reliable dispersion measurement between two seismic stations is an essential basis of 
surface wave imaging. Noise source directivity has become an inescapable obstacle and 
a main concern for passive seismic survey: It basically breaks the principle of Green’s 
function retrieval in travel-time tomography; moreover, the azimuthal effect of heterogene-
ous ambient noise sources will inherently cause different levels of early arrival on cross-
correlation functions, and the apparent velocity of surface waves can be overestimated by 
either multichannel slant stackings or interstation frequency–time analysis. Waveforms 
intrinsically contain the features of travel-time, energy and asymmetry in cross-correlation 
functions, and in return, they can be mapped into the causative noise sources and medium 
structures. Based on the theoretical framework of full waveform ambient noise inversion, 
we proposed a method to jointly invert noise source distributions and the corresponding 
unbiased surface wave velocities. The coupled dependencies of source distributions and 
path velocities in waveform misfit function show necessity of source–structure joint inver-
sion. The decoupling strategy of partial derivatives is approved by the synthetic tests. Field 
experiments in the Hangzhou urban area further reveal the practicability of the theory. The 
inverted noise source models are comparable with the in situ noise distributions in urban 
environment, and the delineated surface wave velocities have been verified by local bore-
hole datasets. Finally, we concluded that the developed waveform joint imaging algorithm 
can well relieve the dilemma of source induced velocity uncertainties.
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Article Highlights 

• Inapplicability of Green’s function retrieval due to the ambient noise heterogeneity can 
be relieved by the newly developed algorithm

• We present a fundamental architecture of the algorithm including the source-velocity 
parameterizations and joint inversions. Unbiased path velocities and ensemble source 
model are well recovered in numerical tests

• Near-surface seismic experiments conducted in the Hangzhou urban area have evalu-
ated and verified the feasibility of the algorithm along with local borehole datasets

1 Introduction

Over the past decades, ambient noise recordings from worldwide seismic networks have been 
taken to infer the Earth’s interior based on seismic interferometry (e.g., Shapiro et al. 2005; 
Nakata et  al. 2019). Green’s function is empirically expected after the cross-correlation of 
two-station time series. The interstation correlation function is proportionally related to the 
medium impulse response between two receivers, and this procedure has been revealed by 
both theory and laboratory experiments (Lobkis and Weaver 2001; Snieder 2004) assuming 
a homogeneous source distribution or wavefield equipartitioning. Intensive studies investigate 
continental or global structures utilizing low-frequency vibrations containing the Earth’s hum, 
the primary and the secondary microseism (e.g., Yang et al. 2007; Ardhuin et al. 2015; Bao 
et al. 2015). These large-scale studies were to readily approach the theoretical assumption of 
dissipative wavefields considering the averaging effects of long recordings for omnidirectional 
natural sources. However, for the seismic observations in more localized regions with shorter 
durations, the microseisms may not sufficiently illuminate the subsurface, and this so-called 
azimuthal effect (Cheng et al. 2015, 2016; Xu et al. 2017) will pose uncertainties on Green’s 
function retrieval (Tsai 2009; Delaney et al. 2017). Near-surface seismology has become an 
important supplement in multiscale imaging of the solid earth (Picozzi et al. 2009; Xia et al. 
2012; Pilz et al. 2012; de Ridder and Biondi 2013, 2015; Nakata et al. 2015; Mi et al. 2020; 
Chen et  al. 2021). Recent studies commonly retrieve high-frequency surface waves from 
coherent noise signals above 1 Hz, which are dominantly generated by human activities (Xu 
et al. 2016; Zhou et al. 2021; Cheng et al. 2018, 2019, 2021). Abundant traffic/construction 
noise sources are crucial for the passive seismic survey in urban area (Chang et al. 2016), and 
they provide energetic surface wavefield, but also bring the preferential directions of emitting 
source (e.g., along the road). Those heterogeneous wavefield propagations can hardly meet the 
premise of Green’s function recovery. This obvious discrepancy indicates that the imaging of 
noise source distributions and velocity structures should be integrally reviewed.

To deal with the azimuthal effects on ambient noise imaging, the community has paid great 
attention to different kinds of algorithm. They can be generally summarized as: (1) Data seg-
ment stacking and selection. Preprocessing schemes (Bensen et al. 2007) intend to enhance 
noise source stationarity and have been widely applied for ambient noise imaging. Weaver 
et  al. (2018) revised the conventional linear stackings by temporally reweighing the noise 
wavefields to improve Green’s function retrieval. The symmetric correlation functions with 
higher signal-to-noise ratios (SNRs) were selected to reduce the effects of non-stationary 
or destructive noise sources (Zhou et al. 2018; Li et al. 2020; Xie et al 2020); (2) Iterative 
method. Yao and van der Hilst (2009) proposed the inversion approach to update an azimuth-
source amplitude model, and thus, the resulted surface wave velocity bias can be corrected 
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iteratively. The method was efficient for tomographic applications assuming that the simplified 
1-D source distribution model was correctly recovered from the observed empirical Green’s 
functions, and this approximation can be guaranteed rely on a qualified velocity model (Wang 
et al. 2016; Lehujeur et al. 2016); (3) Beamforming correction. Beamforming analysis presents 
the constructive summation of time series shifted appropriately for the matching azimuth and 
slowness (Rost and Thosmas 2002). Cheng et al. (2016) correct the azimuthal term of phase-
shift dispersion equation according to one dominant source direction revealed by beamform-
ing. The method was further developed by adapting the seismic-array geometry to circumvent 
offline sources or to improve beamforming resolution (Pan et al. 2016; Liu et al. 2020); (4) 
Waveform inversion. Tromp et al (2010), Hanasoge (2014) and Fichtner (2015) lay the the-
oretical foundations of cross-correlation waveform modeling and sensitivity kernel analysis, 
which make it prospective to implement interferometric wavefield adjoint technique for more 
complex source–structure inversions. The method successfully reveals the global distributions 
of Earth’s hum based on the reference velocity model (Ermert et al. 2016, 2017; Sager et al. 
2020). Sager et al (2018) conclude the framework of full waveform ambient noise inversion 
and numerically investigate the performance of different misfit functions on source- and struc-
ture-inversion resolutions. Xu et al (2019, 2020) demonstrate the benefits of multicomponent 
source inversion (the background velocity was predefined as a planar homogeneous model, 
see also Datta et al. 2019) by both synthetic and field-data tests. Current stage calls for further 
steps toward structure inversion and more applied research on this theory.

Compared with the first three kinds of method, ambient noise cross-correlation wave-
form inversion exploits physical properties (e.g., symmetry, travel-time and energy) of the 
cross-correlation function (CCF) and directly maps them into the noise source distribu-
tion and velocity structures. Instead of accommodating the fundamental assumptions of 
Green’s function retrieval, the actual waveform of CCF with even spurious arrival (e.g., 
near the zero time lag) can be preserved as meaningful information. In this context, many 
preprocessing like time/frequency domain normalizations or nonlinear stackings are not 
plausible for the waveform inversion, since they can change the sensitivities of CCF to the 
coupled effects of source and structure (Fichtner et al. 2017). Xu et al (2019) and Bowden 
et al (2020) bridge the matched field processing (MFP) to the theoretical source kernel of 
observed CCFs, which indicates that both of them have potential to provide a reference 
source model for the inversion. The average path dispersions contained in CCFs between 
station pairs are integrally controlled by both noise source distributions and velocity struc-
tures. Group/phase velocity measurements for classic tomography have to account for the 
possible bias caused by azimuthal effects. Therefore, neither the source distribution nor 
the velocity model can be treated as an isolated issue during the whole iterative inversions. 
They depend on each other to calculate corresponding kernel functions. This inherent 
trade-off (Fichtner 2015) also leads to the limitation of the pre-assumption in the iterative 
method. This study tries to relieve the trade-off or to decouple the nonlinear inverse prob-
lem, by jointly optimizing source and velocity parameters in the waveform misfit functions. 
The noise sources are characterized by strengths and spatial distributions in a 2-D surface, 
while the velocity model is built by a numeric collection of path velocities between all 
involved station pairs. We take the observed CCF waveforms as fitting targets because the 
waveforms integrally reflect the physical properties resulting from sources and structures. 
Partial derivatives of the bivariate objective function are simultaneously updated upon 
source and velocity parameters in each iteration. We abbreviate this joint-imaging algo-
rithm to be ModAS (i.e., Modeling Ambient noise distributions for Surface wave imaging).

In this study, we develop ModAS to enrich the ambient noise joint inversion theory and 
show its applicability for near-surface imaging (e.g., urban underground detections and 
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environmental noise monitoring). The sections are organized as follows: The workflows 
of ModAS including forward/inversion procedures and model parameterizations are elabo-
rated in Sects. 2 and 3; azimuthal effects, sensitivity kernels, dense array performance, and 
joint inversion schemes are investigated by synthetic tests in Sect. 4. In Sect. 5, field data-
sets collected in Hangzhou urban area (Fig. 1) will show the practicability of ModAS by 
local borehole verifications.

2  Forward Theory

2.1  Modeling Cross‑Correlation Function

Noise correlation functions are used to be simulated by cross-correlating the recorded 
wavelets which are randomly activated by point-like distributed sources (Wapenaar et al. 
2010; Lawrence et al. 2013). This conventional way has been widely used to investigate 
the azimuthal effects in layered medium, but it is time-consuming and cannot handle lat-
eral heterogeneous velocity models. Tromp et al (2010) deduced CCF simulation based on 
the ensemble averaged noise source model. This forward calculation is more convenient 

Fig. 1  a Field-experiment locations in the Hangzhou urban area, southeast China. b Experimental seismic 
geometry (alphabetically named A to I in upper case) of field work #1 in Qianjiang new city. c Experimen-
tal seismic geometry (alphabetically named a to i in lower case) of field work #2 in Yunqi town. d Shear 
(S)-wave velocity loggings obtained from the boreholes of field work #2. The deployed seismic stations are 
represented by black dots, and the well-log locations are indicated by gray crosses
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or suitable for iterative waveform inversions, since it consists of two deterministic wave-
field modelings for a station pair: one forward wavefield from the reference station and one 
ensemble correlation wavefield from source distributions.

We routinely focus on the vertical-component seismic data in this study. The synthetic 
seismic record can be obtained by solving a linear time-invariant forward problem. Its 
underlying physic is the time-domain convolution of source time function and Green’s 
function response between source and receiver. The frequency domain equivalent form of a 
trace record u(�) can be expressed as the linear equation (Eq. 1):

where xr and xs represent receiver and source locations, and � is angular frequency. 
F
(
xs,�

)
 represents the source spectrum. The Green’s function between sources and 

receiver is calculated using wavefield reciprocity, to avoid the realizations of wave propa-
gation emitted by many sources (e.g., Ermert et  al.2017; Xu et  al. 2019). Moreover, the 
analytical form of fundamental mode Rayleigh wave Green’s function (Eq. 2) is utilized to 
directly model the vertically polarized impulse response (Xu et al. 2019, 2020):

where c is the Rayleigh wave velocity and dr is the source–receiver distance:

The frequency domain CCF is obtained by the conjugated multiplication of station-
pair seismic noise records (substituting Eqs. 1 and 2 into the cross-correlation function in 
Eq. (4)):

where xrec and xref  are the sequences, respectively, containing locations of the reference 
stations and their corresponding receiver stations. The source terms S
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 in Eq. (5) are 

commonly supposed to be neighboring and spatially uncorrelated, and thus, they can be 
simplified as the source power spectral density (psd) which characterize the average cor-
relations of spatially distributed noise sources. The multiplication of reciprocally conju-
gated Green’s function and source psd depicts a forward wave propagation from the refer-
ence station to the distributed sources. And then, it acts as the source term of a correlation 
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wavefield modeling. Finally, the frequency domain wavefield sampled at the receiver sta-
tion can be converted to time domain CCF as Eq.  (6). ( F−1 denotes the inverse Fourier 
transform.)

2.2  Example for Model Parameterizations and Waveform Comparisons

We present a simple numerical example based on the seismic geometry in Fig. 1b to exem-
plify our scheme of source-velocity parameterization, which is the key part for the CCF 
forward modeling in ModAS. Noise sources are discretized in a planar grid for the purpose 
of surface wave generation. These 2-D source power spectral density (psd) models consist 
of source strengths, geometric distributions (Fig. 2a) and the source spectrum (Fig. 2b). As 
for the velocity model, we use a set of path-velocity values to build the observable system. 
In this way, different interstation path velocities constitute an apparent structure, and then, 
the analytical Green’s function in Eq. (2) can be readily applied to CCF forward modeling 
for each station pair. Finally, the gather of waveforms is achieved in the context of our 
parameterized source model and heterogeneous apparent structures.

Note that the colored straight lines in Fig. 2a connecting different station pairs are uti-
lized to explicitly represent the surface wave velocities. However, they do not necessarily 
mean that the waves propagate along the straight rays. The medium structures are actually 
parameterized as the averaging path velocity between each station pair which conforms to 
Fermat’s principle. The path velocities represent the averaged velocities along the ray paths 
connecting the station pairs. Actually, this pattern is readily understood and widely utilized 
in tomographic data preparations for further inversions. We make two assumptions to con-
solidate the physics of mathematical modeling for above model parameterizations: (1) All 
ambient noise sources share a similar shape of source spectrum; (2) the formation of CCF 
is most sensitive to the wavefields propagating along the medium between two stations. 
The first assumption has been demonstrated by Xu et al (2020) that the recorded signals 

Fig. 2  Source-velocity model setups. a The blue Gaussian blob represents the source psd anomaly, while 
the colored lines indicate interstation path velocities. The black dots represent different stations (A to D 
extracted from Fig. 1b). b Gaussian source spectrum of the source anomaly
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possess similar energy spectral density in small-scale and short-time observations. The 
second assumption can be supported by the generally elliptical structure sensitivity kernel 
connecting two involved stations (Tromp et al. 2010; Fichtner 2015). We calculate CCFs of 
all possible station pairs under the seismic geometry and the source-velocity models given 
in Fig. 2. And they are compared with the CCFs calculated from the same velocity models 
but differently using homogeneous source distributions (not shown here). The differences 
between the two kinds of waveform (Fig. 3) are caused by the Gaussian source anomaly. 
Obvious discrepancies of asymmetries, travel times and energies in acausal and causal side 
of the waveforms reveal the azimuthal effects that bias the conventional Green’s function 
approximation.

3  Inversion Procedures

3.1  Source Misfit Kernel and Velocity Gradient

We define the misfit function � based on the cross-correlation waveform differences. A tra-
ditional and widely applied strategy is to find model parameters that minimize the L2-norm 
(Euclidean length) of the residual vector (Tarantola 2005).

In Eq. (7), the quadratic summation of windowed residuals between the synthetic and the 
observed CCFs in time domain ( Cw(t)

syn  and Cw(t)

obs
 , respectively) is halved to facilitate the dif-

ferential calculation. Perturbations of the misfit function with respect to perturbations of the 
synthetic CCF waveforms are further transformed into frequency domain. (Fourier transforms 
are concisely omitted in Eq. (8)). The first term in the right side of Eq. (8) is referred to as the 
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Fig. 3  Cross-correlation func-
tions of different station pairs 
forwarded from homogeneous 
source (orange lines) and the 
Gaussian source anomaly (blue 
lines)
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adjoint source ( f (�) in Eq. 9), which corresponds to the Fréchet derivative on modeled CCF 
waveforms as indicated in Eq. (10).

According to the forward equation (Eq. 4), the perturbation of CCF waveforms can be cal-
culated by the Fréchet derivatives of source parameters and velocity models as expressed in 
Eq. (11):

Substituting Eq. (11) into Eq. (10), the partial differentials of sources ( ��S ) can be firstly 
expressed as follows:

where KS in Eq. (12) represents the source kernel function. And its general form (Eq. 13) 
consists of the Green’s functions of subsurface structure and the adjoint source of a specific 
misfit function. This source misfit kernel indicates the sensitivity of misfit variation to the 
changes in the synthetic source model. Detailed numerical investigations of KS are pre-
sented in Sect. 4.

For the partial derivative of the misfit with respect to velocity ( ��c ) in Eq. (14), we use the 
chain rule to compute the differentials ( �c ) of Green’s functions with respect to the path veloci-
ties in ModAS. Since the analytical form of Green’s function (Eq. 2) is only phase-velocity 
dependent, our parameterizations of two-station velocities can be explicitly involved in the 
gradient ( gc
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 ) of waveform misfit function. We expand the Green’s function differ-

ential and then recap the formula as Eq. (15) to present the final gc . Note that we omitted the 
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3.2  Joint Inversion Scheme

Estimating two kinds of model parameter boils down to minimizing the multivariate misfit 
function. The CCF waveform misfit functions are finally stacked to obtain a total misfit �̂� 
(Eq. 16). Source sensitivity kernels also have to be summed ( ̂KS in Eq. 17) to characterize 
the overall source model variations reacted to the whole observing system.

As introduced in our velocity parameterization section, the path velocities correspond-
ing to one finite frequency band are gathered to form an interstation-velocity model. Thus, 
the velocity gradient gc calculated from each station-pair misfit derivative is then allocated 
to the updating of corresponding path velocity value. The total misfit variations ( Δ�̂� ) with 
respect to the model updating ( ΔM ) can be rewritten as Eq. (18) by combining Eqs. (8), 
(11) and (16):

For a set of source-velocity model parameters ( M ) within a finite frequency band, the 
2-D source model is discretized as m × n grid points and the path velocities are constant 
values related to total p station pairs (Eq. 19). The set of corresponding gradients ( ℊ ) con-
sists of the total source kernel K̂S and all velocity gradients gc1 ∼ gcp (Eq. 20). Note that the 
2-D kernel K̂S is flattened as a 1-D sequence in Eq. (20) to achieve pointwise correspond-
ences with source model grids s1 ∼ sm×n in Eq. (19).

Iterative gradient-based method is utilized in the inversion module of ModAS. L-BFGS 
algorithm (Nocedal and Wright 2006; Modrak and Tromp 2016) is the most effective 
quasi-Newton method. Its approximated inverse Hessian matrix can generally overcome 
singularities and improve numerical stability in iterations. And it is appropriate for inverse 
problems where batch optimization makes sense.

Implementing the L-BFGS scheme, the estimated total gradients are packaged as ℊ to 
jointly update the corresponding source and velocity parameters in M for the minimization 
of total waveform misfit �̂� . We apply Gaussian smoothing as regularizations in which the 
updated grid models are smoothed over the minimum wavelength (Xu et al. 2020; Ermert 
et al. 2020). Furthermore, we utilize implicit constraints of the expected models to regu-
larize the inversions. For both source and velocity models, we set minimum boundaries 
to ensure the nonnegativity or the accordance with possible prior information. It can be 
reasonably deduced that the azimuthal effects lead to early arrivals on CCFs in most cases. 
We suggest that the inverted interstation velocities should be no larger than the apparent 
velocities extracted from main arrivals or time–frequency analysis. Therefore, the maxi-
mum boundary of velocity parameters can be the observed velocities themselves to force 
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the generally decreased update of path velocities. The iterative inversion will be terminated 
when the norm of projected gradient ||ℊ|| is lower than the stopping threshold � ( � = 10−5 ). 
Meanwhile, the BFGS optimizations satisfy the Wolfe conditions (Liu and Nocedal 1989; 
Modrak and Tromp 2016) which are commonly adopted as built-in functions to terminate 
the line search for gradient evaluations. For practical cases where the prior information is 
absent, the observed apparent velocities can be utilized as initial velocity models. And the 
source beamforming analysis can also provide reference models to initiate source inver-
sions to relieve multiple solutions or local minimum.

4  Synthetic Tests

4.1  Seismic‑Array Performance in Source Inversion

Recent studies of dense-array seismology have emerged to enable and refresh the high-
resolution ambient noise imaging techniques (de Ridder and Maddison 2018; Wang et al. 
2020). In this section, we investigate the path-density performance of seismic array in 
recovering different source distributions. We utilize the geometry in Fig. 1b and the source 
spectrum in Fig. 2b. We predefine the path-velocity models (Fig. 4a) as background inputs 
for the source inversions. The observed CCFs will be generated by two kinds of synthetic 
noise source model, respectively (Fig. 4b, c). And for each case, we compare the imaging 
performance between 4-station (A ~ D) and 9-station (A ~ I) seismic array.

Fig. 4  a Path-velocity models of the seismic array given in Fig. 1b. b A Gaussian source power spectral 
density model. c A complex source model including two Gaussian anomalies and a banded source distribu-
tion
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Source distribution in the first case (Fig.  4b) is the same to that in Fig.  2a: One 
Gaussian-shaped source anomaly is placed on the northeast, outside of the recording 
geometry. We set homogeneous noise source distributions as the initial model ( Sini ) 
to compute synthetic CCF waveforms for the first iteration. The stacked misfit kernels 
(Eq.  17) for 4-station and 9-station array are presented in Fig.  5a, b. Negative gradi-
ent values in the kernel actually indicate the directions to update the source model for 
the next iteration. When we increase the involved stations, 9-station array can achieve 
more sufficient interferences on misfit kernel stackings than 4-station array. Accord-
ingly, the 9-station array is more capable to reduce the imaging artifacts on the inverted 
source model (Fig. 5c, d). Either 9-station or 4-station inverted results can recover the 
main direction of true source anomaly and also fit well on the observed CCF waveforms 
(Fig. 6).

We further consider a more complex source model in the second case (Fig. 4c). One 
smaller Gaussian-shaped source anomaly is supplemented inside of the array, and a 
NE-SW banded source distribution is set across the array to imitate the urban traffic 
environment. The influences of interference stacking still lead to different resolutions on 
the initial misfit kernel from 4-staion and 9-station array (Fig. 7a, b). After the iterative 
optimizations, three source anomalies can be distinguished in the inverted source model 
of 4-station array, but they are more smeared than those of 9-staion array (Fig. 7c, d).

Fig. 5  Based on the target source model in Fig. 4b, we have the upper panel: initial misfit kernels of wave-
form differentials from a 4-station and b 9-station array; the lower panel: final source inversion results from 
c 4-station and d 9-station array. The involved seismic stations in this study are marked by either white 
circles or black dots
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Although both 9-station and 4-station arrays have achieved good fittings on waveforms 
in two cases (Figs. 6a, b, 8a, b), the 4-station source inversions converge into equivalent 
models or local minimums with more imaging artifacts than those of 9-station array. 
Moreover, the relative waveform misfits gain more reductions in denser networks (Figs. 6c, 
8c). The source anomalies inside of the array are better qualified in terms of their accu-
rate shapes, locations and relative strengths, while the noise sources gathered far from the 
entire seismic networks are less constrained. All station-pair source sensitivity kernels 
are stacked. The hyperbolic Fresnel zones extend externally from the geometry. Thus, the 
interferences outside of the array are not as sufficient as in-array kernel stackings. Conse-
quently, source signals far from the network tend to provide less detailed indications for 
model updating. Their directions rather than accurate shapes or locations are expected to 
be recovered.

4.2  Source‑Velocity Joint Inversions

We have proved the good recovery of heterogeneous source models based on the prede-
fined true path velocities. However, incorrect background velocity models tend to mislead 
the source kernels when we purely invert source distributions and vice versa. Given the 
complex structures and the lack of velocity reference models in the near-surface applica-
tion, these two kinds of model parameters are both unknown targets. Thus, they are not 
suitable to be optimized by separated or alternate/sequential inversions. In ModAS, they 

Fig. 6  Waveform comparisons (based on the target source model in Fig.  4b) from source inversion con-
ducted in a 9-station and b 4-station array, respectively. They are normalized by their maximum amplitudes 
and arranged as shot gathers with respect to the involved station pairs. c Misfits comparison between two 
kinds of array. The misfit curves are normalized by their initial misfits
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are put together to be iteratively updated to account for the coupled dependencies in Fré-
chet derivatives.

The source-velocity models shown in Fig. 4a, c are still regarded as the targets of joint 
imaging. In Fig. 9a, 36 CCFs are forwarded from all station pairs of the 9-station array. 
Then, the phase arrivals are manually picked in CCFs’ main wavepackets to calculate 
the path velocities ( Vobs in Fig.  9b). All these roughly “observed” velocities exceed the 
true path velocities ( Vtrue ), and they reflect the overestimations caused by the azimuthal 
effects in our common practice of velocity extractions. The degree of these biases varies 
in different source–receiver geometries. For station pairs mainly affected by perpendicular 
source distributions, the resulted wavelet will be very close to the zero lag of CCF. Thus, 
in Fig. 9b, very large even infinite velocity values are readily measured under this extreme 
condition (e.g., the NW–SE station pairs C–I, C–H, C–E and B–C).

We exclude the CCF and path velocity value of station pair C–I from the observed 
datasets since its expected velocity can hardly be determined. The relative differences 
between Vtrue and Vobs (Fig. 9c) show 20% average bias, and about 78% of station pairs 
possess biases lower than the average value. For the next inversions, we keep the start-
ing source models the same as the homogeneous noise sources utilized in previous sec-
tions. In the first case, we set the observed path velocities in Fig. 9b as the initial veloc-
ity models, while, in the second case, we set new initial velocity models to be 20% (the 
average bias in Fig. 9c) higher than the true velocities. These two different initial veloc-
ity datasets ( Vini ) are used to obtain the joint imaging products, respectively, in the first 

Fig. 7  Same as Fig. 5 except for different target source models (i.e., Fig. 4c)
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Fig. 8  The same as Fig. 6 except for different target source models (i.e., Fig. 4c)

Fig. 9  a Observed CCF gather forwarded from the target source-velocity models. The picked phase travel 
times are indicated by the red arrows. b Histograms of interstation path-velocity models. c Relative dif-
ferences (the formula is shown in the abscissa) between Vtrue and Vobs are shown by the red-gray dots. The 
averaged bias percentage among the dots is located by the purple line
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(Fig. 10) and the second (Fig. 11) case. The inverted and the observed CCF waveforms 
show well matching in both cases (Figs. 10a, 11a). Except for several obvious velocity 
deviations in the first case (station pairs A–B, A–C, B–C, C–E and C–H in Fig. 10b), 
the corresponding inverted velocity models in both cases fit well with the true models 
within 5% relative differences (cyan area in Figs. 10b, 11b). As for the inverted source 
models (Figs. 10c, 11c), the smaller Gaussian source anomalies inside of the array are 
well recovered in both cases, and the main trend of NE–SW source distributions can be 
identified, but they are more smeared in the first case. The initial waveform misfits are 

Fig. 10  Source-velocity joint inversion results ( Vini = Vobs ). a Waveform comparisons between the inverted 
and the observed CCFs. Note that the station pair C–I was not involved in the optimizations for the first 
case. b Histograms (the upper red abscissa) of interstation velocity models between Vtrue and Vinv . Corre-
sponding relative differences (the lower cyan abscissa) overlay the histograms. c Inverted source model. d 
Normalized misfit curve of the iterative inversions

Fig. 11  The same as Fig. 10 except for different initial velocity models (i.e., Vini = 1.2Vtrue)
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reduced by 80 ~ 90 percent in two cases (Figs. 10d, 11d) after the convergence within 70 
iterations.

The second case entirely avoids the extreme outliers above the 20% average bias in 
the initial velocity models, which results in more accurate inverted solutions. Com-
parisons of the two cases help to investigate the effects of the seemingly unreasona-
ble values in the observed velocities. Take station pairs A–C, B–C, C–E and C–H for 
examples, their waveforms achieve better fittings in the first case; however, they do not 
necessarily result in closer fittings of velocity models than those in the second case. 
Due to their worse initial velocity values of the first case in which they are observed 
to be far from the true models, the joint inversions converge to local optimizations of 
waveform misfits. Thus, they ultimately cannot approach true velocities as well as those 
in the second case, and the inverted source distributions are also more smeared than 
the true model. In general, the inverted source models in both two cases can be deemed 
as equivalent models that approach the globally optimized solutions, and most of the 
inverted path velocities (correspondingly they have good initial models) can recover the 
true models with their deviations less than 5%。

To further improve the noise source imaging in the first case, we modify the initial 
source model based on the sensitivity kernel of the observed CCFs. The source misfit 
kernel KS (Eq. 13) results from the difference between the synthetic and the observed 
source kernels according to the adjoint source function f (�) (Eq.  9). The observed 
source kernel function Kobs (Eq.  21) indicates the sensitivity of observed CCF to the 
source distributions, which is similar to the spatial domain beamforming technique 
termed matched field processing (MFP).

As introduced above, correct background velocity models are essential for accurate 
source kernels. The theoretical source kernels of observed CCFs calculated based on 
Vtrue can generally reconstruct the complex source models (Fig.  12a), while the prac-
tically observed source kernels calculated from the Vobs are more smeared and biased 
(Fig. 12b), but still preserve the features of source anomalies. The observed source ker-
nels cannot be directly taken as a source model due to the constraint of nonnegativity. 
We suggest to average the summation of the observed source kernels (Fig.  12b) and 
the homogeneous source strength model (both of them are normalized by their maxi-
mums), to establish an initial strength-normalized source model (Fig.  12c). Thus, the 
prior information of constructive or destructive sensitivity in the source kernel can be 
brought into the source model.

Compared to those results of the first case (Fig. 10), the waveform inversions using 
the new initial source model can also fit the CCFs well (Fig. 13a) and achieve a similar 
recovery of path velocities with the relative bias less than 5% except for the certain sta-
tion pairs (Fig. 13b). We further obtain a clearer inverted source image (Fig. 13c) and 
achieve faster convergence of the optimizations (Fig. 13d) than those in the first case. 
The modified source model extracted from the observed CCFs in this case provides an 
initial model closer to the global optimal solution than the purely homogeneous source 
model. Thus, it helps to improve the source imaging. However, the improvement of 
velocity inversions, just like the second case (Fig.  11b), should rely on the absence 
of extreme initial velocity biases (Fig.  9c). Moreover, the inverted source model in 
the second case (Fig.  11c) can also benefit from the good performance of velocity 
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Fig. 12  Noise source kernels of the observed CCFs calculated from a true velocity models and b observed 
velocity models. Note that the positive/negative sensitivity values in the kernels indicate the source loca-
tions where they were constructive/destructive to form the observed CCFs. c The initial source model ( Sini ) 
established from the observed source kernel (b) and the homogeneous source model

Fig. 13  The same as Fig. 10 except for different initial source models (i.e., Sini in Fig. 12c)
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optimizations to achieve the best recovery of banded source anomalies crossing the 
array. Therefore, they may indicate that better initial velocity parameters can impose 
more impacts on the better recovery of source-velocity joint imaging.

5  Experiments in the Hangzhou Urban Area

In the tourist city of Hangzhou, southeast China (Fig.  1a), we conducted two field 
experiments (Fig.  1b, c) to collect ambient noise data for verifying the utility of 
ModAS. Both the field works #1 and #2 consist of one 9-station seismic array equipped 
with 5  Hz Zland-3C nodal sensors. Same preprocessing procedures were applied to 
the two field datasets. The observed one-day noise records (vertical component) were 
down sampled from 1000 to 50 Hz sampling frequency after anti-aliasing low-pass fil-
tering. Then, they were segmented into 30 s time series with de-trending and de-mean-
ing. The segments were synchronously cross-correlated for all station pairs. Finally, 
the stacked CCFs were filtered at the center frequency of 5 Hz (to serve as examples in 
this study) using Gaussian narrow-bandpass filters (Bensen et al. 2007). We utilize the 
power spectrograms of the filtered CCFs as source term input for the forward modeling 
of synthetic data to focus on the source characterization of finite-frequency coherent 
signals. We define the signal windows w(t) as [− 1.5 s, 1.5 s] for the CCFs involved in 

Fig. 14  a Observed CCF gather retrieved from the noise records in field work #1. The picked phase travel 
times are indicated by the red arrows. The CCFs in signal windows [− 1.5  s, 1.5  s] are isolated by two 
shadow blocks to concentrate the coherent wavepackets. b Apparent path velocities observed from the 
picked phase travel times ( Vobs).c Noise source kernels of the observed CCFs calculated from the observed 
path velocities. d The initial source model ( Sini ) established from the observed source kernels (Fig. 14b) and 
the homogeneous source model
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waveform inversions, in which all main wavepackets retrieved from two field datasets 
are embraced.

5.1  Qianjiang New City (Field Work #1)

Following the workflow established in the synthetic tests, we first pick the apparent path 
velocities from the filtered observed CCFs (Fig. 14a, b). Obvious spurious signals peaked 
at the zero lag are not observed in this field-data case (Fig.  14a). These observed path 
velocities used to be routinely regarded as the input for tomographic inversion without 
fully accounting for the complex source azimuthal effects, while in ModAS, they are then 
utilized to derive both the initial velocity (Fig. 14b) and source (Fig. 14c, d) models for 
further joint inversions.

In general, the final inverted CCF waveforms match well with the observed waveforms 
(Fig. 15a). To further quantify the waveform fitting degrees of ith trace ( i = 1, 2,… 36 ), we 
defined the relative confidence for each station-pair inversion result ( RC(i) , the cyan area 
in Fig. 15b). In Eq. (22), the middle value �mid averaged from the minimum and the maxi-
mum misfits is utilized as a reference to measure the relative performance among these 
station-pair waveform misfits.

We find that not only the coherent wavepackets in the signal windows gain recovery 
with high confidence, but also the “coda” like waveforms outside the window (shadow 
area in Fig. 14a) are accordingly restored. The inverted source model (Fig. 15c) generally 
reflects the in situ noise environment that there were mainly human-induced active sources 

(22)

{
�mid =

�max+�min

2

RC(i) =
�mid−�i

�mid

× 50% + 50%

Fig. 15  Source-velocity joint inversion results ( Vini = Vobs , see Sini in Fig. 14c). a Waveform comparisons 
between the inverted and the observed CCFs. b Histograms (the upper red abscissa) of inverted veloc-
ity models Vinv . Corresponding relative confidence (the lower cyan abscissa) overlays the histograms. c 
Inverted source model. d Normalized misfit curve of the iterative inversions
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inside the network. The stronger inside noise strengths are consistent with those investiga-
tions in Sect. 4.1 (Fig. 7d) that they are better qualified by the sufficient interferences inside 
of the array. We finally achieve nearly 80% waveform misfit reduction after 85 iterations 
(Fig. 15d) on this field case.

5.2  Yunqi Town (Field Work #2)

We are able to utilize the borehole datasets of shear (S)-wave loggings (Fig. 1d) provided 
by the China Geological Survey to build a reference velocity model for this field-data case. 
The Poisson ratios are set as 0.42, and the densities are defined to be 2 g/cm3 according to 
local geomechanical parameters. We obtain the fundamental-mode Rayleigh wave phase 
velocity dispersions (Fig. 16a) by forward-modeling the S-wave datasets of each borehole 
using Geopsy (Wathelet et  al. 2020). Then, phase velocities at 5  Hz are extracted from 
those dispersions and interpolated to be a 2-D slice (Fig. 16b). With this prior information, 
station-pair path velocities Vprior

(
xs, xr,�

)
 can be retrieved from the accumulated ray paths 

lp and station-pair travel times t
(
xs, xr,�

)
 in Eq. (23), where t

(
xs, xr,�

)
 are forward-calcu-

lated by the fast marching method (Rawlinson and Sambridge 2005) using the slowness 
v−1
l
(�) along the ray traces (black lines in Fig. 16b).

Firstly, we still pick the apparent phase travel times from the observed CCFs (Fig. 17a) 
and then calculate the path velocities Vobs (Fig. 17b) based on the ray paths in Fig. 16b. The 
obvious zero-lag signals lead to infinite path velocities in station pairs b-h and e-i. Most 
observed interstation velocities are higher than the prior values, while only seven station 
pairs have lower Vobs than Vprior , and they may be caused by the actually existed small-
scale karst anomalies which are not sufficiently sampled by the well-log interpolated slice. 
Therefore, we do not take it for granted that Vprior can be treated equally like Vtrue in Fig. 9 
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Fig. 16  a Fundamental-mode Rayleigh wave dispersions calculated from all borehole datasets. b Phase 
velocity slice at 5 Hz extracted from the dispersions. The black lines represent ray paths connecting all sta-
tion pairs
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as exactly “the standard answers.” They act as essential constraints and references for next 
optimizations and re-evaluations.

We find 28% averaged bias between Vprior and Vobs (where the two abnormal traces 
have been excluded), and their differences can help to reasonably confine the expected 
velocity model space. We replace the two extremely large values of Vobs to better con-
stitute an integrated initial velocity model. Vobs and Vprior further cooperate to regularize 
the boundaries of velocity updating: The minimum and the maximum values are set as [
min

(
Vobs,Vprior

)
, max

(
Vobs,Vprior

)]
 . The observed source kernels calculated either from 

Vprior (Fig. 18a) or from the initial velocity model Vobs (Fig. 18b) show similar construc-
tive source interferences mainly from the southwest. We still build the initial source model 
(Fig. 18c) in the same way introduced at the end of Sect. 4.2.

The inverted CCF waveforms are restored to fit the observed waveforms (Fig. 19a) with 
their normalized misfit reduced by 60% after 16 iterations (Fig. 19e). Moreover, the sta-
tion-pair waveform fittings are quantified by the relative confidence ( RC(i) , the cyan area 
in Fig. 19b). Note that the lower RC , especially for station pairs c-h and c-d, may also in 
turn indicate the less confident constraints provided by the corresponding Vprior . The aver-
aged bias drops to 10% which indicates that the inverted path velocities are more uniformly 
approaching the prior information (Fig. 19c). The strong southwest source anomalies in the 
inverted source model can coincide well with the locations of nearby continuing drilling 
works (the red star in Fig. 19d).

Fig. 17  a Observed CCF gather retrieved from the noise records in field work #2. The picked phase travel 
times are indicated by the red arrows. The CCFs in signal windows [− 1.5  s, 1.5  s] are isolated by two 
shadow blocks to concentrate the coherent wavepackets. b Histograms of interstation path-velocity models. 
c Relative differences between Vprior and Vobs are shown by the red-gray dots. The averaged bias percentage 
among the dots is located by the purple line
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6  Discussion

6.1  Practical Significance of the Path‑Velocity Model Assumption

A heterogeneous noise source distribution can affect noise cross-correlations and hence 
should be accounted for before a more accurate Earth model can be constructed. The new 
waveform approach in this study simultaneously inverts both the noise source distribution 
and ray path velocities. The concept is derived from the earlier interferometric waveform 
inversion theory (e.g., Tromp et al. 2010). In principle, we can hardly obtain the accurate 
Green’s functions of a heterogeneous medium with common numerical techniques, which 
is a major error source in seismic waveform inversion (Yagi and Fukahata 2011). Green’s 
functions can be computed at the beginning and then recycled only when the velocity 
model is predefined for pure source inversions (Ermert et  al. 2020). Although there are 
well-constructed databases such as Syngine (IRIS 2015) and Instaseis (van Driel et  al. 
2015) to provide pre-calculated Green’s functions based on various reference models (e.g., 
PREM), they may hardly cover the demands of small-scale or near-surface high-frequency 
wavefield information and source-velocity joint inversions. Although the computational 
cost of 2-D wavefield modeling is well acceptable, the bandwidth limitation of high-fre-
quency surface wave simulation hampers the exact depth information for a velocity slice. 

Fig. 18  Noise source kernels of the observed CCFs calculated from prior velocity models (a) and observed 
(initial) velocity models (b). c The initial source model ( Sini ) established from the observed source kernel 
(b) and homogeneous source model
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The better solution will be the utilization of structure sensitivity kernels based on 3-D 
wave-equation simulations to directly provide a depth model.

Considering the above reasons, the conventional 2-D ambient noise waveform inver-
sion theory calls for further advancement to be readily applied to actual high-frequency 
surface wave imaging, given the inaccurate and unstable Green’s function modeling under 
heterogeneous medium and long-time wavefield propagations from far-field sources, espe-
cially when the depth information is required. Thus, the earlier studies purely focus on the 
source inversion assuming a homogeneous or predefined velocity model. We then direct 
the theory to the new practical way to further explore the unknown velocities by assuming 
that noise cross-correlation is predicted based on the noise source distribution and the aver-
aged ray-path velocity connecting the two stations (Eq. 4). This is a credible assumption 

Fig. 19  Source-velocity joint inversion results ( Vini = Vobs , see Sini in Fig. 18c). a Waveform comparisons 
between the inverted and the observed CCFs. b Histograms (the upper red abscissa) of inverted velocity 
models Vinv . Corresponding relative confidence (the lower cyan abscissa) overlay the histograms. c Rela-
tive differences between Vprior and Vinv are shown by the red-dark gray dots. The averaged bias percentage 
among the dots is located by the purple line. d Inverted source model. The working drilling machine is 
denoted by the red star. e Normalized misfit curve of the iterative inversions
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because of a simple fact that the cross-correlation function is mostly sensitive to the struc-
ture between two stations (i.e., the banana-doughnut structure kernel; details can be found 
in Dahlen et al. 2000; Zhou et al. 2004; Tromp et al. 2005; Fichtner et al. 2017; Sager et al. 
2018), which is also the basis of Green’s function extractions utilized for the following 
tomography. We note that the structure kernel may be distorted when source distributions 
are so complicated that the medium sensitivity becomes more inclined to source–receiver 
paths. However, the sensitivity kernel still remains connected around two stations, which is 
also the prerequisite for ambient noise imaging. Therefore, the assumption emphasizes that 
the final cross-correlated seismic response will not be affected by the medium unrelated 
to the two-station system, but intently reflect the shortest time paths between station pairs. 
The analytical form of Green’s function helps to build this heterogeneous apparent struc-
ture which is the manifestation of the unknown medium within the observing system. And 
the inverted apparent structure of surface wave velocities (e.g., station-pair path velocities 
at 5 Hz in this study) will be further converted into an integrated 2-D velocity slice at a 
certain frequency by tomographic inversions. In this context, this study aims to produce 
more reliable station-pair surface wave velocities as the input for convincing tomographic 
imaging.

6.2  Prospects

The new method proposed in this study inherits the classic ambient noise inversion the-
ory. And it is developed to practically realize the physical interpretation and reduction of 
source induced velocity bias which has been a basic concern in ambient noise seismology. 
Though the extremely large or infinite velocities caused by zero-lag wavepackets have to be 
excluded, they indicate the relatively perpendicular direction of noise sources which can 
be significant to constrain the source model updating. We suggest an investigation of the 
uses and the influences of these special signals for joint inversion in future works. Direct 
evidence from well logs is indispensable to aid the near-surface imaging of the solid earth. 
Thus, prior information of velocity models that can supplement the absence of unresolv-
able values is essential to solve this dilemma. Moreover, we do not routinely apply pre-
processing schemes even the SNR selection (e.g., Pang et al. 2019), not only because of 
the good quality of the dataset, but also due to the concern that the out-of-sync segment 
selections/stackings will fail to establish the CCFs as self-consistent observables for joint 
inversion. This concern is similar to that possible waveform bias may be caused by non-
linear operations (Zeng et al. 2012; Fichtner et al. 2017, 2020; Delaney et al. 2017; Zhang 
et al. 2021). The issues of simultaneous preprocessing for an equivalent source model (e.g., 
possible secondary vibrations excited by the anisotropic medium) inversion deserve further 
studies. More research can also focus on multiple objective functions such as the waveform 
energy ratio of causal/acausal CCFs and the f-k spectrum (e.g., Pan et al. 2019, 2020) to 
refresh velocities that are trapped into the local minimum caused by waveform cycle skip-
ping. The computational domain of source distributions can be defined depending on the 
scale of seismic geometry and inversion performance. Since our near-surface studies focus 
on local-scale and ultrashort-time observations, seismic noise sources far away from the 
network are reasonably not considered in our computational domain. The source kernel 
also shows major sensitivities around the seismic network, and the inverted distributions 
can be regarded as an equivalent local source model (see also Datta et al. 2019).

The dense network provides high-resolution source distributions using the L2 waveform 
misfit function (Ermert et al. 2020). The scales or resolutions of noise source distributions 
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and interstation velocities are related to the wavelengths or frequency bands that the seis-
mic networks can resolve (Zhou et al. 2021). Small-scale cases in this study suggest that 
ambient noise waveform inversion is capable of handling the imaging from short intersta-
tion distances, even though the wavelengths do not fulfill the restriction of conventional 
plane-wave assumptions (Yao et al. 2009; Luo et al. 2015). Particularly for the nearly zero-
lag signals in field work #2, reliable phase travel times can be retrieved for high-quality 
joint imaging. However, they may be more dependent on subjective judgments and con-
straints from prior information. The global solutions of source-velocity optimization will 
be better achieved by more station-pair datasets available in ModAS, and denser seismic 
networks can be beneficial to better source constraint inside of the networks. Triplet sta-
tions along the common great circle path can also provide consistent velocity constraint 
and strengthen the dependence among related path velocities in the inversion. Larger-scale 
networks covering the whole urban area are useful for city noise monitoring in which the 
human-induced sources play the main roles, and these sources covered by the network are 
preferably recovered by the ambient noise waveform inversion.

We also find the compromise of ModAS: the simultaneously inverted results of two 
kinds of unknown parameters, especially the source models, are not exactly recovered in 
the synthetic tests. We attribute them to the incomplete decoupling in the partial derivative 
of source and velocity. The defined relative confidence for field-data case can be useful to 
weight the inverted path velocities to be input for beamforming and tomography. Evalua-
tions and mitigations of the trade-off deserve further study. Nonlinear Monte Carlo meth-
ods may be constructive to enable global searching in the constrained model spaces at the 
cost of huge computing resources. This study has demonstrated the framework of correla-
tion wavefield modeling for the vertical-component seismic data. However, it also has the 
potential to construct radial/transversal kernel functions based on proper component rota-
tions (Lin et al. 2008; Wang et al. 2019; Xu et al. 2019), which helps to promote the scope 

Fig. 20  Algorithm architecture of ModAS
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of this work on multicomponent seismic data as well as the recently developed fiber-optic 
sensing data (Ajo-Franklin et al. 2019; Song et al. 2021).

7  Conclusions

In this study, we describe a new algorithm ModAS for source-velocity joint imaging based 
on ambient noise waveform inversions. This original study mainly provides a possible solu-
tion for the decoupling of noise sources and velocity structures in passive seismic surveys, 
and we further present the applied research of the algorithm. We establish the novel model 
parameterizations for interstation path velocity, and the joint inversion schemes based on 
partial derivatives of two kinds of parameters. We build the basic framework of ModAS 
(Fig. 20) to be an integrated work flow and verify its modules by synthetic tests. The devel-
oped ModAS improved the applicability of ambient noise cross-correlation waveform 
inversion theory in its attempt for source-velocity joint imaging in small-scale studies. 
And it has been comprehensively qualified through the field datasets in local-scale seismic 
experiments in the Hangzhou urban area.
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