
Vol.:(0123456789)

Surveys in Geophysics (2021) 42:625–671
https://doi.org/10.1007/s10712-021-09636-6

1 3

The Slope‑Attribute‑Regularized High‑Resolution Prestack 
Seismic Inversion

Guangtan Huang1  · Xiaohong Chen2 · Jingye Li2 · Omar M. Saad3,4 · Sergey Fomel5 · 
Cong Luo6 · Hang Wang3 · Yangkang Chen3

Received: 9 November 2020 / Accepted: 19 February 2021 / Published online: 31 March 2021 
© The Author(s), under exclusive licence to Springer Nature B.V. 2021

Abstract
Prestack seismic inversion can be regarded as an optimization problem, which minimizes 
the error between the observed and synthetic data under the premise of certain geological/
geophysical a priori information constraints. It has been proved to be a powerful approach 
for reconstructing the subsurface properties and building the elastic parameter models 
(e.g., P- and S-wave velocity, and density). With respect to the specific expressions of a pri-
ori information, the starting model and regularization are expected to be the most widely 
used and indispensable constraints to reconstruct structural features and subsurface proper-
ties. The conventional prestack inversion (trace-by-trace) methods perform well when the 
geological structure of the target area is not too complex. However, due to the lack of lat-
eral constraint, such trace-independent methods are inevitably limited by their capability 
of characterization (including accuracy, resolution, and robustness) in the case of geologi-
cally complex structures, such as tilted stratum and steep faults. The geological structure-
guided constraint, herein referred to as the seismic slope attribute, can be exploited as a 
lateral constraint integrated into the prestack inversion algorithm. In this work, the seis-
mic slope attribute is introduced to the amplitude variation with offset/angle inversion from 
two aspects, i.e., starting model building and regularization penalty. Firstly, using the seis-
mic slope attribute, instead of the traditional manual interpreted geological horizons, as a 
constraint, the well-log data are interpolated to build the initial model. The interpolation 
algorithm is formulated as solving the inverse problem by using the shaping regularization 
method rather than the kriging-based algorithm. Secondly, by rotating the coordinate sys-
tem according to the seismic slope attribute, the directional total variation regularization is 
used as a constraint to improve the resolution (in both vertical and horizontal directions) 
and lateral continuity of the inversion results. Finally, the proposed methods are applied 
to synthetic and real seismic data. Synthetic tests and field data applications demonstrate 
that the proposed method is capable of revealing complex structural features and achieving 
stabilized inversion of multi-parameters with less uncertainty.
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Article Highlights 

• First, we review a structure-oriented starting model method by interpolating well-log 
data, and the interpolation algorithm is formulated as solving the inverse problem by 
using the shaping regularization method rather than the Kriging-based algorithm.

• Second, we review a structure-guided directional total variation (DTV) regularization, 
which is exploited as a constraint to improve the resolution (in both vertical and hori-
zontal directions) and lateral continuity of the inversion results.

• Finally, to maximize the generalization performance, the proposed methods are applied 
to several complex synthetic and real seismic datasets.

1 Introduction

Prestack AVO/AVA inversion has been proved to be one of the most important technolo-
gies for exploration geophysics. It can quantitatively extract multiple elastic parameters 
regarding the subsurface properties from the observed seismic data (Karimpouli and Male-
hmir 2015; Li et al. 2017; Liu et al. 2018; Cheng et al. 2019; Pan et al. 2020; Luo et al. 
2020). Sustained efforts have been devoted to both theoretical and engineering applica-
tions of prestack inversion. At present, it has established itself as one of the most effective 
approaches for reservoir characterization and fluid identification (Huang et al. 2017; Guo 
et al. 2018a; Huang et al. 2018a; Guo et al. 2018b, 2019; Luo et al. 2019). However, due to 
various reasons, such as noise, a band-limited intrinsic property of seismic data, and inap-
propriate forward operators, ill-posedness is still one of the most common and intractable 
issues that arise when solving the inverse problem. Aiming to mitigate the ill-posedness, 
regularization has been achieved high-quality (including accuracy, resolution, and robust-
ness) inversion results by incorporating prior information into seismic inversion. Thus, the 
prior information is important to improve the quality of inversion results.

With respect to the specific expressions of the prior information, it can be well-log data, 
the probability distribution of desired parameters, geological information, etc. (Chen and 
Zhang 2017; Pan et al. 2018a, b; Pan and Zhang 2018; Chen 2020). The statistical-based 
inversion methods are developed under a Bayesian linearized inversion and geostatistical 
framework. They make full use of the probability distribution information as constraints for 
the inversion (Grana and Rossa 2010; Grana et al. 2017; Azevedo et al. 2018, 2019; Pereira 
et al. 2020). However, such methods are a kind of statistical inversion or random inversion, 
and the inversion results are highly uncertain. This paper mainly focuses on the work of 
deterministic inversion. For the deterministic inversion, a priori constraints are essential 
for the accuracy and resolution of the final inversion results. In particular, among variants 
of prior constraints, the starting model of the inversion and Tikhonov-type regularization 
are expected to be the most widely used constraints to reconstruct structural features and 
subsurface parameters. However, conventional prestack inversion algorithms are always 
conducted trace by trace; therefore, almost no lateral constraints are used during the inver-
sion process. In the horizontal direction, the association to the parameters almost depends 
on the initial model, which provides the background trend of the subsurface properties. 
However, structural features of the desired model are always presumed or hypothesized as 
low geological complexity. In terms of the complex geological structures, it is difficult to 
yield an ideal result by the conventional method unless some geological structure-guided 
information can be involved in the model building algorithm.
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The seismic data itself contain some geological structural information, but the utiliza-
tion of seismic data is still not enough, especially for the long-wavelength component of 
seismic data. The travel time information in seismic data corresponds to the long-wave-
length component (Zelt and Barton 1998; Korenaga et al. 2000; Osypov 2000; Noble et al. 
2010; Li 2013; Chen et al. 2013; Huang et al. 2020), which is often closely related to tec-
tonic information, while the amplitude and waveform information usually corresponds to 
the mid-to-short-wavelength component, which is often related to lithological information 
(Sen and Roy 2003; Zong et al. 2015; Wang et al. 2020). Generally, the present prestack 
AVA inversion methods mainly focus on amplitude information, and the long-wavelength 
components related to structural information have not caught enough attention. Therefore, 
introducing long-wavelength information hidden in seismic data into the inversion algo-
rithm can well resolve the complex geological structures (Ba et al. 2017; Guo et al. 2020). 
Here, we briefly review the widely used prior information from the two perspectives, i.e., 
the initial model building and regularization constraints, and then attempt to introduce the 
geological structure factor to this prior information.

It is widely known that seismic data are band-limited, i.e., lacking low-frequency 
information in the seismic amplitude (Oezsen 2004; Jiao et  al. 2008). Such missing 
information is closely related to the geological structure, thereby leading to the lack 
of accurate structural information in the seismic inversion results (Wang et  al. 2008; 
Zhang and Castagna 2011). Thus, seismic inversion methods are generally model-based 
and the initial model should first be built before the inversion. Then the model can be 
updated according to the specific inversion approach. Based on artificial interpreta-
tion results, traditional initial model building methods extend the well-log data along 
with the horizontal direction by using interpolation algorithms, such as inverse dis-
tance power and kriging-based interpolation (Deutsch and Journel 1994; Piatanesi et al. 
2001). The geological prior information can be horizons, faults, lithologies, and lithofa-
cies. Lateral interpolation of well-log data with geological information as a constraint 
makes the initial model contain structural information (Greenberg and Castagna 1992; 
Li et  al. 2016; Hamid et  al. 2018; Chen et  al. 2019b). Although the existing starting 
model building approaches have achieved effective results in solving the prestack seis-
mic inversion problems, there remain two limitations that ought to be addressed, i.e., 
manual interpretation errors and labor costs. Reservoirs that have the characteristics of 
large structural undulations, complex internal structures, and strong lateral heteroge-
neity are difficult to build an accurate initial model for inversion. It is also one of the 
reasons for limiting the accuracy of modeling in oil and gas recovery. Due to the close 
relationship between a highly accurate initial model and final inversion results, the ini-
tial model has a prominent impact on reservoir characterization with a high geological 
structure complexity. If the conventional modeling method is still used for the complex 
structural medium, it will not only introduce unpredictable artificial errors but also con-
sume a lot of manual interpretation costs. Instead of interpreting each layer, the horizon 
picking operation can be conducted to some specific horizons of the target area, which 
makes the initial model usually have the same structural fluctuation characteristics that 
are inconsistent with the real case. Thus, the conventional initial model building relies 
too much on the manually interpreted geological information, which is prone to errors 
and labor costs. Here, we introduce a geological structure-guided initial model building 
approach (Chen et al. 2016, 2019a), which interpolates the well-log data with the seis-
mic slope attribute as a lateral constraint.
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In addition to the low-frequency components, the mid- and high-frequency components 
of the seismic data are also very important for reservoir characterization. The mid- and 
high-frequency components are related to the detailed information for lithological inter-
pretation. Generally, the prestack AVA inversion performs on the angle gathers trace by 
trace, and there are few horizontal constraints introduced for regularization (Tarantola 
2005; Velis 2005; Buland and Omre 2003; Erik Rabben et al. 2008; Pérez et al. 2017; Li 
and Zhang 2017). Due to the lack of constraints in the lateral direction, it sometimes causes 
poor lateral resolution and continuity. It is mainly reflected in the insufficient ability to 
describe faults, titled strata with a large slope, and some special rock bodies. Especially 
when the nonlinear forward operator, such as the exact Zoeppritz equation (Zhi et al. 2016; 
Huang et al. 2018b), is exploited as a forward operator to directly invert vp , vs , and � , the 
Gaussian distribution (corresponding to the �2 norm) is usually exploited as a priori dis-
tribution. Such constraints will greatly decrease the resolution of the inverted parameters, 
resulting in the defects of blurred reflection interfaces and insufficient ability to describe 
special geological structures (Castagna and Smith 1994; Zhang et al. 2015).

Therefore, with respect to the incorporation of a priori information into seismic inver-
sion, both the stability of the inversion algorithm and the resolution of the inverted results 
(in both horizontal and vertical directions) should be taken into account (Geman and 
Geman 1984; Terzopoulos 1986; Geman and Reynolds 1992; Geman and Yang 1995; 
Charbonnier et al. 1997; Bhatt and Joshi 2016). Some researchers have been introducing 
several AVA inversion methods based on a global approach. These methods use geosta-
tistics as model perturbation technique and update. However, most prestack deterministic 
inversion algorithms are based on a single prestack angle gather at present. These gather-
based algorithms do not take into account adjacent data, and the inversion process of each 
trace is conducted independently. The total variation (TV) regularization (or Markov ran-
dom field (MRF)) is generally exploited as a constraint to a deblurring image by decon-
volution methods, which is an effective spatial texture modeling tool (Zhang et al. 2007; 
Qu and Verschuur 2016; Guo et al. 2017; Liang et al. 2017; Zhang et al. 2018). However, 
different from the digital images, the subsurface properties always change according to 
some specific geologic structures, such as the tilted layers, faults, and edges of some spe-
cial geological bodies. Regardless of the geologic direction of the subsurface medium, the 
TV regularization only tends to reduce the horizontal and vertical gradients of each grid 
point in the model. Therefore, TV is not suitable for the stratum where the local structure 
has a dominant direction (Bayram and Kamasak 2012a, b). Here, we can also introduce the 
seismic slope attribute to the TV regularization algorithm so that the method can be used 
effectively.

In summary, the key to the two problems mentioned above lies in the extraction of seis-
mic slope attributes, which can be extracted by using the plane wave destruction (PWD) 
technique (Claerbout 1992; Fomel 2002; Fomel et al. 2003; Fomel 2005). Indeed, the seis-
mic local slope attribute is a useful lateral constraint condition, which has been widely 
used in the data regularization (Chen et al. 2017, 2018) and full-waveform inversion (Qu 
et  al. 2017, 2019) by using shaping regularization constraints. In this paper, the seismic 
slope attribute is introduced to two perspectives, i.e., the starting model building and the 
TV regularization, as the lateral constraint to help achieve a high-accuracy and high-reso-
lution prestack inversion results.

To handle the problem mentioned above, firstly, we abandon the traditional artificial 
horizon interpretation results and use seismic slope attributes as lateral interpolation con-
straints. Besides, instead of using the kriging-based interpolation method, the interpolation 
is formulated as an inverse problem by the sampling operator. The shaping regularization 
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is used here to solve the inverse problem and then yield the initial models of multi-param-
eter simultaneous inversion of prestack inversion. Note that it is a part of our preliminary 
work Huang et al. (2020), where we introduce the geological structure-guided initial model 
building method for the AVA inversion and validated via it field data. Furthermore, the 
seismic slope attribute is introduced to the total variation (TV) regularization to extend 
the total variation prior constraints from the Cartesian coordinates to geological structure-
oriented coordinates, so as to enhance the stability and lateral resolution of the inversion 
results. Besides, it is the first time that the DTV regularization is utilized in the AVA/AVO 
inversion and validated via two sets of field data.

In this work, we first briefly review the seismic slope estimation, which is also an essen-
tial theoretical basis of this work. Then, we introduce the starting model building method 
based on the seismic slope attribute and directional total variation regularized seismic 
inversion. Finally, both slope attribute-based methods are demonstrated by the synthetic 
data and further validated by the real seismic data.

2  Theory

2.1  Seismic Local Slope Attribute Extraction

Seismic local slope attribute is one of the seismic kinematic attributes, which describe the 
distribution of seismic wave events in the space-time domain. It can also indirectly charac-
terize the spatial structure of underground media, which has been widely used in explora-
tion geophysics, including wave-field separation, denoising, seislet transform, predictive 
painting, etc. The seismic slope attribute can be extracted using the plane-wave destruc-
tion (PWD) algorithm (Fomel 2002). According to Claerbout (1992), plane waves can be 
expressed by the first-order differential equation as follows:

where P(x,  t) denotes the wave field of plane waves and �(x, t) corresponds to the local 
slope of the seismic event. In the discrete domain, the slope between the adjacent points 
(spatial interval Δx ) can be expressed by the time interval Δt and �(x, t):

P(x, t) can be calculated by its neighbor point via

By using Z-transform, the above equation can be transformed from X − T  domain to the 
Zx − Zt domain as:

where Zx and Zt are the unit of spatial- and time-shift operators. Here we refer 
C(p) = (1 − ZxZ

p

t ) as a plane-wave destructor. By using Thiran’s fractional delay filter 

(1)
�P(x, t)

�x
+ �(x, t)

�P(x, t)

�t
= 0,

(2)p = �(x, t)Δx∕Δt.

(3)P(x, t) = P(x + Δx, t + pΔt).

(4)(1 − ZxZ
p

t )P(Zx, Zt) = 0,
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1∕B(Zt)

B(Zt)
 to approximate the time-shift operator ei�� , the plane-wave destructor can be formu-

lated as (Thiran 1971):

The coefficient of filter B(Zt) can be derived by fitting the filter frequency response at low 
frequencies to the response of the phase-shift operator. Besides, P is dependent on the local 
slope � ; thus, we can determine the slope by minimizing the following least-squares goal 
by using an iterative method, such as conjugate gradient method,

2.2  A Data‑Driven Initial Model Building

Assume that several well logs are randomly and sparsely are distributed in a 2-D or 3-D 
work area, which can be regarded as a sparse spatial sampling of subsurface properties. 
The well-log data acquisition can be expressed as a process of spatial sampling (Chen et al. 
2016; Gan et al. 2016; Liu et al. 2016):

where S denotes the sampling or mask operator, m denotes the subsurface properties, 
which is a spatial varying parameter, and �log denotes the well-log data. Due to the high 
condition number of the sampling operator S, solving Eqn. 7 is an ill-posed problem. The 
regularization approach, which introduces some additional prior knowledge related to 
the target parameters, has been proved to be effective to mitigate the ill-posedness of the 
inverse problems. The Tikhonov-type regularization is one of the most widely used meth-
ods, which can be expressed as:

where � is the regularization weight, and �̂ corresponds to the interpolated model. The 
interpolation without horizontal constraints is not meaningful for the seismic inversion. 
Then, we introduce the information related to the geological structures into equation 8, to 
better constrain the well-log interpolation problem. Here, the shaping regularization is used 
to solve the inverse problem.

Shaping regularization introduces a shaping operator P and a backward operator B 
(Chen et al. 2015; Xue et al. 2016; Hestenes and Stiefel 1952; Diaz 2012).

When the operators S and B are both linear operators, and the iteration converges at �̂:

Then we can obtain the �̂ as:

(5)C(p, Zt, Zx) = B(Zt) − ZxB(
1

Zt
), B(Zt) =

N∑
n=−N

bkZ
−k
t
.

(6)C(�, Zx, Zt)P(Zx, Zt) ≈ 0.

(7)�� = �log,

(8)�̂ = argmin ||�� − �log||22 + 𝜆2||�||2
2
,

(9)�n+1 = �
[
�n + ��(�log − ��n)

]
.

(10)�̂ = �
[
�̂ + 𝜆�(�log − ��̂)

]
.

(11)�̂ =
[
� − � + 𝜆���−1

]
𝜆���log.
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Since this operator is usually related to construction information, it is also called structural 
smoothing operator. It applies the role of horizontal constraint for the model interpolation. 
The operator is generally obtained according to the prior information, such as sparsity, 
coherency, and smoothness. Here, define the shaping operator P as:

where ()∗ denotes adjoint operator and T stands for a triangle smoothing operator (Xue 
et al. 2016). L is a summation operator along with the local slope attribute retrieved from 
the above subsection. Here, define the backforward operator � = �∗ , then

and it can also be expressed as:

Since the sampling operator S is a block diagonal matrix, i.e., �∗ = � , the equation can be 
rewritten as:

Then the equation can be solved via conjugate gradient algorithm.

2.3  Automatic Directional Total Variation Constraint

The proposed initial model building algorithm uses the kinematic attribute of seismic data 
as constraints, i.e., travel time information, to interpolate the well-log data. In addition to 
the low-frequency component of structural information, the exploration and development 
process requires more detailed information in the reservoir, especially the fluid. Thus, we 
attempt to introduce kinematic attributes (seismic slope attribute) into the seismic prestack 
inversion algorithm to improve the accuracy and resolution of dynamic attributes (the 
amplitude-related attributes). Here, the dynamic properties refer to elastic parameters, such 
as vp∕vs , Poisson’s ratio � , and bulk density � , which are related to the physical character-
istics of the reservoir. In this paper, in order to improve the simulation accuracy of mid- 
and far-angle seismic data, the exact Zoeppritz equation is adopted as a forward operator, 
whose expression and derivative are shown in Appendix A. Thus, the forward problem can 
be defined as:

where m corresponds to the elastic properties of the subsurface rock [vp, vs, �]T , d denotes 
measured data, G(⋅) is the forward operator as a nonlinear function of m, and the misfit n 
denotes the noise.

However, solving the inverse problem corresponding to Eqn. 16 is usually ill-posed. In 
particular, Tikhonov-type regularization is usually exploited to ameliorate the ill-posed-
ness. By introducing prior constraints into the inversion algorithm can not only enhance the 
uniqueness of the solution, but also helps to improve the accuracy of parameter inversion. 
According to the Tikhonov regularization theory, the objective function can be expressed 
as:

(12)� = ���
∗
�
∗,

(13)�̂ = [� − ���
∗
� + 𝜆2���∗

�
∗
�]−1𝜆2���∗

�
∗
��log,

(14)�̂ = ��[� + �
∗
�
∗(𝜆2�∗� − �)��]−1�∗

�
∗
��log.

(15)�̂ = ��[� + �
∗
�
∗(𝜆2�� − �)��]−1�∗

�
∗
��log.

(16)F(�,�) = � − G(�) = �,
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where � denotes the regularization weight or trade-off factor, which balances the noise and 
the prior information. ||� − G(�)|| denotes the misfit function, and Rc(m) represents the 
prior regularization, also known as a penalty norm. The prior distribution can impose the 
distribution of the target parameters, and correlate the target multi-parameters and stabilize 
the results. The structural features of the desired model are always presumed or hypoth-
esized to be smooth ( �2 regularization), blocky (TV regularization), sparse ( �1 regulariza-
tion), etc.

Generally, the elastic parameters [vp, vs, �]T are assumed to conform to the Gaussian dis-
tribution. However, such an assumption would lead to over-smooth results. Such inversion 
results have a poor ability to describe the internal and boundary details of the reservoirs.

Thus, in addition to the accuracy of the results, edge preservation is important in seis-
mic inversion as well. TV regularization can be adopted as the regularization method, 
because it can smooth the model and preserve blocky features by enhancing the sparsity of 
the spatial gradient of the velocity difference. Furthermore, we restrict ourselves to the 2D 
case, although an extension to the full 3D situation is straightforward.

The augmented misfit function with TV regularization can be expressed as:

where ∇x and ∇z correspond to the horizontal and vertical gradient operators in a Cartesian 
coordinate, which takes the forms of:

The horizontal and vertical gradient is the spatial finite difference of the model, which is 
also called a Markov random field (MRF). More points can be introduced to the difference 
operations to avoid the continuity becoming worse due to the abnormality of individual 
points. According to the number of points ( 2k + 1 ) involved in the difference calculation, it 
is also called a kth-order Markov random field. Thus, Eqn. 19 corresponds to the first-order 
Markov random field.

However, conventional TV regularization can only regularize the model in the horizon-
tal (x) and vertical (y) direction regardless of the geological structure information. Thus, 
the target parameters with severe lateral tectonic fluctuations, such as tilted layers, faults, 
and salt body, cannot be completely represented by using the conventional TV regulariza-
tion. However, the x and y directions can be decomposed along and perpendicular to the 
seismic local slope. The seismic local slope attribute can be retrieved from subsection 1.

Figure 1 shows a stratum with steep fault, and we use the Models 1, 2, 3, and 4 cor-
respond to different geological conditions. The points in the red boxes denote the data 
involved in the first-order difference operation. Model 1 represents the point within an iso-
tropic stratum, which can get satisfactory results by using traditional inversion algorithms. 
The others indicate the points associated with the geological edge. Model 2 denotes the 
point located at the horizontal interface. In order to clearly depict the lateral boundary/
edge, using sparse spike inversion or the traditional TV regularization can yield encourag-
ing results. Model 3 denotes the point at the tilted fault (emphasized in this work), which 
can hardly depict the fault interface well and even introduce undesired bias to the results 
when using the conventional TV regularization. The same situation will appear in Model 4, 
corresponding to the point of the stratum extinction zone.

(17)J(�) = ||� − G(�)||2
2
+ �2Rc(�),

(18)Jtv(�) = J(�) + �(||∇x�||1 + ||∇z�||1),

(19)∇x�(i, j) = �i+1,j −�i,j,∇z�(i, j) = �i,j+1 −�i,j.
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By introducing the seismic slope attribute, the directional TV (DTV) regularization project 
the data from the Cartesian coordinate system to the directions along and perpendicular to the 
seismic slope, and then implements the differential operation. An illustration of the transform 
from the conventional TV regularization (corresponding to the black solid arrows) to the DTV 
regularization (corresponding to the dashed blue arrows) is shown in Fig. 1. Thus, according 
to the idea of the DTV regularization, the objective function (equation 19) can be rewritten as:

where ∇x� and ∇y� represent the gradient operators along and perpendicular to the dominant 
direction of the seismic slope. With the seismic slope, the regularization can be easily pro-
jected from the Cartesian coordinates to the appropriate coordinates for the local area as:

where the scaling matrix Λ and rotation matrix � can be expressed as:

and �1 and �2 represent the scale on the gradient parallel and perpendicular to the seismic 
local slope �.

The objective function like equation  17 can be solved by the alternating direction 
method of multipliers (ADMM) algorithm (see Algorithm 2) as follows:

(20)Jdtv(�) = J(�) + �(||∇x��||1 + ||∇y��||1),

(21)

(
∇x��(i, j)

∇y��(i, j)

)
= Λ�

(
∇x�(i, j)

∇y�(i, j)

)
,

(22)Λ =

(
�1 0

0 �2

)
,� =

(
cos � − sin �

sin � cos �

)
,

(23)

�
k+1 = argmin

{
[� −�(�k)]T [� −�(�k)] + (mk)T�m(�

k)
}
,

�
k+1 = �

k+1 − �(∇T
1
(�k

1
− ∇1�

k − �
k
1
) + ∇T

2
(�k

2
− ∇2�

k − �
k
2
),

�
k+1
1

= shrink
(
∇1�

k+1 + �
k
1
,
1

�

)
, �k+1

1
= �

k
1
+ (∇1�

k+1 − �
k+1
1

),

�
k+1
2

= shrink
(
∇2�

k+1 + �
k
2
,
1

�

)
, �k+1

2
= �

k
2
+ (∇2�

k+1 − �
k+1
2

),

Fig. 1  Schematic illustration 
of geological structure with 
the models (spatial points) for 
the first-order difference TV 
regularization (within the red 
lines). Note that: Model 1 cor-
responds to the points located 
at the isotropic media; Models 
2 denotes the points located at 
the horizontal interface; Model 
3 stands for the points located at 
the tilted boundary; and Model 
4 represents the points located 
at the vanishing point of special 
geological body
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where a and b are the temporary variables during iterations, and shrink represents the soft 
thresholding operator, which can be expressed as:

3  Analysis

3.1  Impact on Initial Model

As shown in step 6 of Algorithm 2, the ADMM algorithm decomposes the original opti-
mization problem into two (or more) subproblems. Firstly, we use a conventional gradient-
based method to minimize the objective function J(m). Then, the algorithm highlights the 
sparsity of the first-order spatial difference by using soft thresholding. Finally, both two 
subproblems can be optimized through multiple iterations.

Algorithm 1 Geological structure-oriented starting model for prestack inversion

Input: well-log data, post-stack seismic data
Output: high-accuracy starting model
1. Executing seismic migration process to obtain the

post-stack or seismic images.
2. Extracting seismic slope from post-stack data with

PWD algorithm
3. Establish objective function of the inversion-based

interpolation
            �̂ = argmin ||�� − �log||22 + 𝜆||�||2

2

 4. Minimizing the shaping regularized function to obtain 
the interpolated model with conjugate gradient method
�̂ = ��[� + �∗�∗(𝜆2�∗� − �)��]−1�∗�∗��log.

5. Output the interpolated model with geological structure
constraint.

Algorithm 2 The seismic slope regularized high-resolution prestack inversion

Input: well-log data, seismic data or image
Output: high-resolution inversion results, starting model
1. Executing seismic migration process to obtain the

post-stack or seismic images.
2. Extracting seismic slope from seismic data or images

of Step 2 with PWD algorithm
3. Establish objective function of the inversion-based

interpolation
            �̂ = argmin ||�� − �log||22 + 𝜆||�||2

2

4. Minimizing the shaping regularized function to obtain
the interpolated model with conjugate gradient method
�̂ = ��[� + �∗�∗(𝜆2�∗� − �)��]−1�∗�∗��log.

5. Initializing: �0 = �̂ , and a0
1
 = a0

2
 = b0

1
 = b0

2
 = 0.

(24)shrink(m, �) =
m

|m| ∗ max(|m| − �, 0).



635Surveys in Geophysics (2021) 42:625–671 

1 3

Algorithm 2 The seismic slope regularized high-resolution prestack inversion

6. do while(iter≤Maxiter or misfit≤ �)
      �k+1 = argmin

{
[� −�(�k)]T [� −�(�k)] + (mk)T�

m
(�k)

}
      mk+1 = mk+1 − �(∇T

1
(ak

1
− ∇1 mk − �

k

1
)+∇T

2
(ak

2
− ∇2 mk − �

k

2
)

      ak+1
1

=shrink(∇1�
k+1 + �

k

1
,
1

�
) , bk+1

1
=bk

1
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1

)

      ak+1
2

=shrink(∇2�
k+1 + �

k

2
,
1

�
) , bk+1

2
=bk

2
+(∇2�

k+1 − �
k+1
2

)

   end
7. Output the inversion result m

k+1 and starting model �̂

With respect to the objective function like Eqn. 14, the gradient-based methods can be 
used to achieve optimization. The m-update can be obtained by the following equation:

where k is the iteration times, � is the gradient of the objective function, and � is the Hes-
sian matrix. The specific expression of the exact Zoeppritz equation and its gradient is 
given in Appendix.

Thus, the final inversion results are closely related to the initial model m0 . Moreover, 
m-update Δ�k = −�(�k)−1�(�k) is a model-dependent variable as well. In other words, 
the initial model �0 can not only provide a low-frequency model basis for the inversion, 
but also have a significant impact on the m-update. The m-update is closely related to the 
misfit between the observed and synthetic data Δ�.

Here a two-layer model is exploited to demonstrate the importance of the initial model 
to the m-update. The two-layer model is shown in Fig. 2a. By adjusting the lower-layer 
parameters, we can obtain the physical realization by using the exact Zoeppritz equation. 
The variations of the seismic response relative to match pre- and post-perturbation are 
shown in Fig. 2b (blue solid line).

Gradient-based optimization step along with the first- or second-order gradient of the 
objective function to get the optimal solutions. Thus, when dealing with a nonlinear opti-
mization problem, the optimization itself is actually an approximation. The red dashed 
line in Fig. 2b shows the approximated seismic response physical realization of the model 
perturbations. Due to the inaccuracy of the model, we can find that the nonlinear forward 
operator itself will also be biased. Besides, a severe deviation of the errors will occur as the 
model increases bias, as shown in Fig. 2c.

Therefore, the accuracy of the initial model �0 can not only provide low-frequency 
components to avoid being trapped into more local extrema, but also directly affect the 
accuracy of the forward operator. In terms of gradient-based optimization, a good initial 
model building algorithm lays a fundamental basis for the solution of subsequent inverse 
problems.

3.2  Impact on Regularization

As mentioned above, obtaining the optimal solution when minimizing J(m) is the first step 
of the proposed method. To describe the boundaries/edges of strata or faults, conventional 
regularizations are not enough. The TV regularization can highlight the spatial sparsity of 
the first-order difference, that is, to make use of the characteristics of discontinuous inter-
face information to highlight anomalies. However, some problems will occur when using 

(25)�
k+1 = �

k −�(�k)−1�(�k),
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conventional TV regularization to characterize tilted strata. Here, a set of two-layer models 
with 0◦ , 30◦ , 60◦ , 90◦ tilted layers are exploited to verify the superiority of the DTV regu-
larization. The models are shown in Fig. 3a–d.

Figure 3e–h corresponds to the smooth-constraint regularized results. We can see that 
the smooth constraint results cannot accurately locate interfaces, but present a data transi-
tion zone. In the case of complex strata, such results cannot be used to distinguish the stra-
tum, not to mention the internal details of the reservoir.

Further, conventional TV and DTV regularizations are implemented to these models to 
demonstrate their difference, and the results are shown in Fig. 3. Figure 3i–l indicates the 
deblurred results by using TV regularization, and Fig.  3m–p denotes the corresponding 
results of the DTV regularization.

When strata are horizontal or vertical in the Cartesian coordinate system, correspond-
ing to the models shown in Fig. 3a, d, both the conventional and the proposed DTV regu-
larizations can well characterize the boundaries/edge of the geological bodies. However, 
when the reflecting interface is inclined, results yielded by the conventional TV regulari-
zation present some characterization defects. In this case, the difference in the traditional 

Fig. 2  a Two-layer model with v
p
 , v

s
 , and � , and b the comparison of the variations of real seismic response 

perturbation (blue line) and the approximated perturbation (red line) simulated by the linearized operator 
with different initial models, and c the relative difference of the perturbation with different initial models
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Cartesian coordinate system is likely to cause anomalies due to the drastic lateral change of 
parameters. Some artifacts can be found in the results shown in Fig. 3j and k. However, the 
DTV regularization solves this problem well, as shown in Fig. 3n and o.

To further verify the effects of the DTV regularization, we zoomed in some parts of 
the result corresponding to the red boxes in Fig. 3. The highlighted results are shown in 
Fig. 4. By comparison, we can find that the DTV regularization is obviously advantageous 
in describing information of the tilted strata.

By the theoretical and numerical analysis above, we can find that the initial model and 
regularization are the key factors affecting the final inversion results. Both factors provide 
prior information for prestack inversion. Therefore, providing accurate prior information 
is essential for improving inversion accuracy and resolution. Besides, structure-oriented 
information is important for the inversion, especially for the cases with geological struc-
tural complexity or limited prior information.

Fig. 3  Two-layer models with a)0◦ , b 30◦ , c 60◦ , and d)90◦ faults, and the corresponding edge-blurred mod-
els (e-h). The deblurring results using the conventional TV regularization and the DTV regularization
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4  Numerical Examples

In order to demonstrate the proposed method, the SEAM model is exploited for seismic 
inversion. Several tests of inversion using different regularization methods are performed 
for comparison.

The elastic parameters vp , vs , and � of partial SEAM model in the time domain are 
shown in Fig. 5. The prestack seismic inversion tests are conducted to verify the effective-
ness and superiority of the proposed strategy. As shown in Fig.  5, the geological struc-
ture of the model is relatively complex, including many tilted formations, faults, and other 
complex-textured geological structures. Obviously, the initial model of such a geologically 
complex structure cannot be well prepared using the traditional artificial interpretation and 
kriging-based well-log interpolation method. Here the traditional artificial interpretation 
refers to manually picking up seismic horizon information. The geological structure of the 
model is complex, including many special geological bodies. Thus, manual interpretation 
cannot only introduce artificial errors, but also consumes a lot of labor. The effect of the 
kriging-based method will largely depend on the number of wells versus the spatial conti-
nuity model imposed.

The essential factor in the proposed strategy is the seismic slope attribute, which can be 
extracted from the migrated images or post-stack seismic profiles. The slope attribute can 
be in the time domain (for prestack inversion) and depth domain (full-waveform inversion) 
according to the requirement. Here we use a synthetic seismic post-stack profile for extract-
ing this attribute. With the elastic parameters shown in Fig. 5, the reflection coefficient can 
be obtained. Then, the model reflectivities are convolved with a 30 Hz Ricker wavelet, and 
we obtain a zero-offset synthetic profile, as shown in Fig. 6a. By using the PWD algorithm, 

Fig. 4  Zoomed parts of the deluring results with 0◦ (a, b, c) and 45◦ (d, e, f) faults by using the �
2
-norm(a, 

d), the TV(b, e), and the DTV (c, f) regularizations
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the seismic slope attribute of the seismic data can be extracted as shown in Fig. 6b. The 
estimated slope provides us with the key to the lateral constraint of well-log data interpola-
tion and essential factors to rotate the coordinate system when using the proposed DTV 
regularization.

4.1  Starting Model Building

Here, we extract elastic parameters of several CDPs as well-log data, and the well-log dis-
tribution is shown in Fig.  7a. By using the proposed initial model building method, we 
obtain the interpolated P-wave velocity, as shown in Fig. 7b. Comparing Figs. 5a and 7b, 
we can find that the interpolation result is very similar to the real model.

To further verify the superiority of the proposed method, we highlight the most complex 
part of the model (corresponding to the data in the black dashed rectangle). We compare 
the interpolated result with the ray-tracing-based tomography result, as shown in Fig. 8. 
Figure 8a shows the initial model using tomography, and Fig. 8b plots the zoomed inter-
polated results. One can find that the slope attribute-guided well-log data interpolation can 

Fig. 5  Elastic parameter a v
p
 , b v

s
 , and c � of the SEAM model
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obtain an initial model with a higher resolution and higher accuracy than the conventional 
one, which lays a good foundation for later seismic inversion. Similarly, we can obtain the 
S-wave velocity vs and bulk density � of the SEAM model, as shown in Figure 9.

From the above experiments, we can find that the key to the interpolation lies in the 
estimation of seismic slope and the quantity of well-log data. Firstly, as mentioned above, 
to build a high-fidelity initial model for seismic inversion, a highly accurate seismic slope 
should be extracted from the seismic data, which closely depends on the quality of the seis-
mic data. Secondly, the locations and quantity of well-log data are of importance as well.

Thus, seismic data with several noise levels and different well-log numbers are imple-
mented for inversion. By calculating the correlation between the interpolated results and 
the real model, we can find the impact of these two elements on model building (see 
Table 1). The S/N metric is defined as (Chen et al. 2019a):

Fig. 6  a Zero-offset synthetic 
data profile and b estimated seis-
mic slope using PWD algorithm
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where �ref and � denote the reference data with and without noise, respectively.
By comparison, one can find that the interpolation effect is less sensitive to the noise, 

while the well-log data shows a greater impact on the interpolation. The random noise cor-
rupted seismic section ( S/N = 3 ) is shown in Fig. 10. Figure 11 shows the starting models 
built under SNR = 3 with ten well logs as the constraint.

The initial model generally selects the low-frequency model for inversion. The inac-
curate mid- and high-frequency components of the initial model are likely to induce local 

(26)S/N = 10log10
||�ref||22

||�ref − �||2
2

,

Fig. 7  a Well-log data extracted 
from the SEAM model, where 
the yellow lines indicate the 
well-log locations, and b the 
interpolated initial P-wave veloc-
ity model
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extrema in subsequent inversion algorithms. Therefore, the interpolated starting models 
ought to be smoothed before the seismic inversion.

4.1.1  DTV Regularized Prestack AVA Inversion

Next, we conduct the parameter inversion with the smoothed interpolated results. To dem-
onstrate the importance of structure-oriented factors prestack inversion in geologically 
complex media, several methods are implemented for the inversion test. Here we apply the 
conventional �2-norm regularized method, TV regularized method, and the DTV regular-
ized method for the prestack seismic inversion, where the forward operator is the exact 
Zoeppritz equation. Figures 12a, 13a, and 14a correspond to the initial model by smooth-
ing the interpolated well-log data vp , vs and � in the above section. The prestack AVA inver-
sion results using these methods are shown in Figs. 12, 13, 14, respectively.

Figures  12b–d corresponds to the inverted vp parameters by using (b) �2-norm regu-
larization, (c) conventional TV regularization, and (d) the proposed DTV regularization, 
respectively. The smooth constraint ( �2-norm regularization) yields spatial blurred results, 

Fig. 8  a Initial model from seis-
mic tomography, and b zoomed 
interpolated initial model



643Surveys in Geophysics (2021) 42:625–671 

1 3

which are difficult to describe the boundary/edge. Even though such spatial blurred results 
can restore some structures of the subsurface medium, it cannot be reliable enough for the 
interpretation, especially for the tilted stratum, steep faults, etc.

Fig. 9  Interpolated a S-wave 
velocity v

s
 and b bulk density  

� initial models using the slope-
attribute-regularized inversion

Table 1  Correlation between the 
real model and the initial model 
using different numbers of wells 
and under different signal-to-
noise ratio (S/N) conditions

N
well

SNR

10 5 3

15 0.9347 0.9287 0.9165
10 0.8795 0.8630 0.8431
5 0.8194 0.7933 0.7729
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Fig. 10  Random noise corrupted 
post-stack seismic data

Fig. 11  Interpolated a P-wave velocity v
p
 , b S-wave velocity v

s
 , and c bulk density � models from ten wells 

with SNR = 5 dB
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Different from the smoothed constraint, i.e., the �2-norm regularization, the TV regu-
larization presents a stronger for reservoir characterization, as shown in Figs. 12c and d. 
Besides, the TV regularization better resolves some defects of the conventional single-trace 
method, i.e., being able to describe the lateral perturbation. In particular, both the vertical 
and horizontal resolutions of the inversion results have been improved where the seismic 
slope is small. However, the conventional TV method causes a discontinuity in the hori-
zontal direction when the seismic slope becomes large, e.g., for tilted stratum and steep 
faults. Thus, some vertical artifacts can be found where there are severe lateral variations 
in the inversion results. The reason for these artifacts is that the difference in the Cartesian 
coordinate system is likely to cause anomalies due to the drastic lateral change of parame-
ters. TV regularization describes the spatial variation boundary of data by highlighting the 
sparsity of the first-order difference. However, when the data do not vary abruptly along 
the spatial grid direction, the TV regularization is prone to a staircase effect.

By introducing the seismic slope attribute to the TV regularization, the spatial variation 
boundaries have been fully described, as shown in Fig. 12d. Structure-oriented information 

Fig. 12  a Smoothed initial model and inverted results of the P-wave velocity v
p
 by using b the �

2
-norm 

regularized method, c the conventional TV regularization, and d the DTV regularization
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enhances the sparsity of the first-order difference. The inverted results using the proposed 
method improves the inverted results by avoiding the artifacts in the inverted results. 
Hence, the interface, tilted strata, and steep faults have been characterized well. Besides, 
the details have been preserved due to the essence of the TV regularization. When dealing 
with the tilted interface, the DTV regularization can rotate the coordinate system according 
to the slope to highlight this abnormality to the greatest extent. It is obvious that introduc-
ing the structure-guided information to the inversion algorithm is an effective strategy to 
make the tilted interface better preserved. Through the comparison, we can observe similar 
phenomena from the inversion results of S-wave velocity and density, as shown in Figs. 13 
and 14.

To further highlight the superiority of the detailed characterization, we magnified 
the most violent part of the strata, which corresponds to the black dotted rectangle in 
Figs.  12b–d. The highlighted results of the P-wave velocities are shown in Fig.  15. The 
tilted interface information is sufficiently described, and the details of the reservoir are 

Fig. 13  a Smoothed initial model and inverted results of the S-wave velocity v
s
 by using b the �

2
-norm 

regularized method, c the conventional TV regularization, and d the DTV regularization
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clearly characterized. The results are consistent with the previous conclusions but are much 
clearer. However, compared with vp and � , the results of vs are slightly worse due to the 
insensitivity of the P–P-wave seismic data to the vs property.

Figure 16 corresponds to the DTV regularization interfaces of the final results. From 
the figure, we can see that the DTV constraint well describes the interface information. We 
extracted the first trace of these inverted results. Figure 17a shows the comparison of the 
extracted vp from the inverted results by using the �2-norm regularization (blue line), the 
conventional TV regularization (green line), and the proposed TV regularization (red line). 
By comparison, we can find that the proposed method can indeed obtain a better inversion 
result than the other two.

Figure 17b shows the normalized data misfit between the observed and synthetic data 
for the conventional TV regularization and the DTV regularization. We can conclude that 
the DTV regularization converges faster than the TV regularization.

Fig. 14  a Smoothed initial model and inverted results of the density � by using b the �
2
-norm regularized 

method, c the conventional TV regularization, and d the DTV regularization
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5  Real Data Application

The proposed inversion method is tested via two field datasets. Both datasets come from an 
oilfield locating in the southern part of the central Congo. The oil/gas mainly accumulates 
in the Lower Congo Basin and the Kwanza Basin. The total sedimental system includes 
both subsalt and post-salt source rocks and Oligocene to Miocene turbidite reservoirs. The 
research area is distributed along the South Atlantic Ocean Coast and lies primarily in the 
deep water. Thus, the quality of the acquired seismic data is low. However, due to the geo-
logical structural complexity, the inversion results obtained by the traditional methods in 
this area are unsatisfactory.

Fig. 15  Partially zoomed inverted v
p
 using a the �

2
-norm regularized method, b the conventional TV regu-

larized method, c the proposed DTV regularized method, and d the reference truth
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Fig. 16  Boundary characteriza-
tion by using DTV regulariza-
tion of the final results shown in 
Fig. 12d

Fig. 17  a Single-trace inversion results extracted from Fig. 12 using the conventional method and the DTV 
method (red), and b the convergence diagrams of prestack AVA inversion with the conventional TV regu-
larization method (black) and the DTV method (red)
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5.1  Field Data I

The post-stack profile of the first field data is shown in Fig. 18a. We can find that the geo-
logical structure of this area is relatively complex, including obvious faults and fluctuate 
strata. As shown in Fig. 18a, we can see an obvious dominant fault, corresponding to the 
red dashed line. Based on the PWD algorithm, we can extract the slope attribute from the 
post-stack seismic data, as shown in Fig. 18b.

Although it is an anticline structure, the seismic slope of the upper and lower strata is 
different. Thus, in order to ensure the accuracy of the initial model, it is necessary to pick 
the geological horizon information as much as possible. But obviously, this will not only 
introduce a lot of artifact errors but also cost-intensive labor.

Instead of using the artificially picked horizons as a constraint, the seismic slope attrib-
ute is exploited to interpolate the well-log data. Figure 19 shows the initial models for the 
multi-parameter prestack seismic inversion using the well-log interpolation using the con-
ventional method (a, c, e) and the proposed method (b, d, f).

The comparison demonstrates that the proposed method can yield a set of initial models 
that are more consistent with the seismic data structure than the conventional methods. 
Moreover, the proposed method can characterize some geological details, especially fault 
structures. As mentioned in the previous analysis, the accuracy of the low-frequency mod-
els is essential for the seismic inversion. Therefore, such models lay a good foundation for 
the subsequent inversion.

In addition to the seismic data and initial model, seismic wavelets are another significant 
factor for the seismic inversion. We extract the seismic wavelets from the prestack seismic 
data. Then, we exploit the exact Zoeppritz equation as the forward operator for inversion. 
Then, we use the conventional and the proposed method to build the initial model, and 
adopt the �2 norm and the proposed DTV norm as the penalty norm for the prestack inver-
sion. Figures 20-22 show the inversion results. After comparing these results, the following 
phenomena can be observed: 

(1) Figures 20a, 21a, and 22a show the inverted vp , vs , and � properties by using the 
smoothness constrained regularization with the initial models shown in Fig. 19. The 
standard Tikhonov regularization reveals detailed structural information with blurred 
boundaries and edges. Besides, the faults within this area are difficult to be identified 
by such results.

(2) Figures 20b, 21b, and 22b correspond to the inverted properties by using the Tikhonov 
regularization with the well-log interpolated initial model. Comparing the results with 
the former one, we can clearly find that the low-frequency components of the final 
inversion results are dominated by the initial model. Based on these low-frequency 
components, which are closely related to the structure, the inversion can describe 
some details of the subsurface. The blue boxes in Figs. 20a and 20b highlight the dif-
ference between the two sets of results. The structural information at the bottom of the 
stratigraphic uplift can be well characterized. However, the defects of the smoothness 
constraint can not be overcome by only improving the accuracy of the initial model.

(3) Figures 20c, 21c, and 22c show the results of the proposed DTV regularization 
algorithm but using the traditional initial model building method. Comparing with 
Figs. 20a, 21a, and 22a, these results can describe more details of the subsurface prop-
erties, especially for the boundaries of the geological bodies and edges of the faults. As 
shown in Figs. 20c, 21c, and 22c, we can see some obvious fault structures. However, 
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it is difficult to judge which is better when comparing the second set of results with 
this one.

(4) Combining the initial model building method based on well-log interpolation and 
the DTV regularization method, we obtained the inverted properties as shown in 
Figs. 20d, 21d, and 22d. Compared with the former three, we can find that the resolu-
tion has been improved a lot in both vertical and horizontal directions. We can clearly 
see the distribution of fault layers and the interface information of strata. We can pick 
the faults with such results, as shown in Fig. 23a. However, it is difficult to get such 
good results using the traditional method. It can not only accurately represent the low-
frequency structure information by using the geological structure-guided model build-
ing method, but also describe the detailed information by applying the directional total 

Fig. 18  a Post-stack seismic profile of the real seismic data and the seismic slope attribute of the real seis-
mic data estimated by PWD algorithm. The red dashed line is the dominate fault of the field data, and black 
dashed line indicates the well-log location
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variation regularization. The real data application demonstrates that the effectiveness 
of the seismic slope-attribute-regularized seismic inversion.

For oil/gas exploration and development, it is not intuitive with the elastic parameters. In 
contrast, reservoir parameters have a better fluid indication, like the Poisson’s ratio. The 
reservoir fluid will mainly have an impact on the P-wave velocity vp , but will not greatly 
change the S-wave velocity vs . Therefore, when encountering a fluid, Poisson’s ratio usu-
ally decreases. Figure 23b shows the converted Poisson’s ratio by using the inverted results 
of the proposed method. The high-resolution results perform well on the characterization 
of the deepwater reservoir.

Likewise, by using the petrophysical model as a bridge, we can invert some reservoir 
parameters, such as porosity � and water saturation Sw. Thus, we apply the Hertz–Mindlin 
(H–M) model to simulate the elastic behavior of a turbidite sandstone by establishing a link 
between reservoir parameters and elastic parameters. The details about the model are given 
in Appendix B. Fig. 24a and b correspond to the inverted porosity � and water saturation 
Sw.

Fig. 19  Interpolated starting models based on the conventional method (a, c, e) and the proposed method 
(b, d, f)
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Fig. 20  Inverted P-wave velocity v
p
 properties using the conventional smooth constraint (a, b) and the pro-

posed DTV regularization (c, d) with the initial models built by the conventional and proposed methods
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Fig. 21  Inverted S-wave velocity v
s
 properties using conventional smooth constraint (a, b) and the proposed 

DTV regularization (c, d) with the initial models built by the conventional and proposed methods
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Fig. 22  Inverted density � properties using conventional smooth constraint (a, b) and the proposed DTV 
regularization (c, d) with the initial models built by the conventional and proposed methods
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5.2  Field Data II

Then, we applied the conventional and the proposed methods to another field dataset with 
a more complex geological structure. Figure 25a shows the post-stack seismic profile. It 
can be found that the structure of the subsurface medium is complex and the seismic S/N 
is low. The undulations of the strata in this area are more obvious, and there are even many 
dithering strata. The faults are commonly distributed in this complex geological structural 
area. Therefore, it is very difficult to carry out horizon picking and fault interpretation of 
this dataset. In order to compare with the traditional method, we spent a lot of time to pick 
the geological horizons and faults. Then, the seismic slope attribute is extracted from the 
post-stack seismic data by using the PWD algorithm for the proposed method, as shown in 
Fig. 25b. Then we use the results of geological horizon interpretation and the seismic slope 
attribute as constraints to build the initial model, respectively.

For the conventional initial model building method, geological horizon piking is essen-
tial. Figure 26 shows the initial model with a small number of horizons. We can find that 
the obtained initial model generally maintains the same structural characteristics when 
there are fewer layers. Obviously, such initial models are inappropriate but have been 

Fig. 23  Geological faults interpretation and Poisson’s ratio with the inversion result of the proposed method
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widely used in the industry, since we cannot pick all the layers, especially the 3D work 
area.

To improve the accuracy of the initial model, we pick as many geological horizons and 
faults as possible, which is shown in Fig. 27. With these interpreted results, we obtained 
the interpolated initial models by using the inverse distance power algorithm. Figure 27 
shows that the results of geological horizon constraints are much affected by the inter-
pretation of horizons. Comparing the models shown in Figs. 26 and 27, we can find that 
increasing number of horizons can yield an initial model close to the facies of the seismic 
data. However, once the horizon interpretation includes errors, it will affect the quality of 
the inversion results. Because the seismic data itself lacks low-frequency information, it is 
problematic if inaccurate low-frequency information is provided for the inversion.

Figure 28 corresponds to the starting models of the multi-parameter inversion by using 
the seismic slope-attributes-regularized modeling method. Note that there is no need to 
manually interpret any horizons or faults throughout the modeling process. Besides, the 
morphology of the models and the seismic data maintain a high consistency. By compar-
ing the models in Figs. 26, 27, 28, we can find that when the geological horizons are not 
enough or there are obvious errors in the interpretation results of geological horizons, the 

Fig. 24  Inverted a porosity � and b water saturation Sw by using Hertz–Mindlin model
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initial model is not reliable. If the results shown in Fig. 26 are used for subsequent inver-
sion, it will significantly affect the accuracy of the final inversion results.

Then, we adopt the starting model shown in Figs. 27 and 28 to prestack AVA inversion. 
Then, we exploit the exact Zoeppritz equation as a forward operator for the inversion. The 
�2 norm, conventional TV norm, and the proposed directional TV norm are used as the 
penalty norm for the prestack inversion.

Figure 29 corresponds to the inverted vp , vs , and � results using the �2 norm as a pen-
alty. It can be seen that the result is too smooth, the formation interface is blurred, and it is 
almost impossible to distinguish the position of the formation interface. Besides, due to the 
low SNR of seismic data, the inversion results have a poor horizontal continuity.

Figure 30 shows the inversion results using the conventional TV regularization with the 
initial models shown in Fig.  27. Compared with the former, the quality of these results 
have been improved, and the vertical resolution has been enhanced. However, due to the 
inclination of the stratum, the conventional TV regularization method still causes poor ver-
tical and horizontal resolutions, and also the lateral discontinuity.

Figure 31 shows the inverted vp , vs , and � parameters using the proposed method. Com-
pared with the previous two, we can find that the quality of the inversion results has been 
significantly improved. The position highlighted by the black arrows in the figure cor-
responds to the locations of the faults. The location and direction of these faults can be 
clearly described by the inversion results by using the proposed method. Besides, through 
the inversion results, we can also clearly see the formation interface, and the position of the 
reflection interface of the formation, the occurrence of the inclined formation. The good 
lateral continuity demonstrates strong robustness of the proposed method.

Fig. 25  Post-stack seismic profile of the real seismic data and its estimated seismic slope of the seismic data 
using the PWD algorithm
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6  Discussion

Seismic local slope-attribute-regularized prestack seismic inversion has proved to be an 
effective method to accurately describe the subsurface properties with complex geological 
structures. Different from traditional algorithms, the seismic slope attribute plays a crucial 
role here. It is equivalent to an important geological structure-guided constraint, which is 

Fig. 26  Interpolated starting model of a v
p
 , b v

s
 , and c � regularized by the conventional method with less 

picked horizons
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unprecedented in traditional algorithms. In practical applications, the seismic slope attrib-
ute can be extracted from post-stack seismic profiles, images, and inversion results. Here, 
the slope attribute is introduced to the inversion in two aspects, i.e., initial model building 
and regularization. These two aspects correspond to the low-frequency, mid-frequency, and 
high-frequency components of the seismic data. Both of them are vital components in the 
seismic inversion.

Fig. 27  Interpolated starting model of a v
p
 , b v

s
 , and c � regularized by the conventional method with 

enough picked horizons



661Surveys in Geophysics (2021) 42:625–671 

1 3

The initial model building determines the background trend of properties in the inver-
sion results. Due to the lack of low-frequency information, such a trend can not be adjusted 
in subsequent inversion processing. Therefore, the establishment of an accurate low-fre-
quency model is a difficult problem in the inversion of complex geological structure condi-
tions. The proposed model building algorithm with the seismic slope attribute as a con-
straint perfectly solves this problem. However, we can find that both the number of wells 

Fig. 28  Interpolated starting model of a v
p
 , b v

s
 , and c � regularized by the proposed method
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and the quality of seismic data are the key factors affecting the accuracy of constructed 
geological models that are too complex.

With respect to the regularization, the proposed DTV regularization method over-
comes the defects of the traditional single-trace method. The data association is estab-
lished through geological structure guidance. By considering the local structural directions 
of the spatial gradient and their weights according to the local slope attribute, the DTV 

Fig. 29  Inverted results of a v
p
 , b v

s
 , and c � parameters by using the �

2
 regularization with the initial mod-

els shown in Figs. 27
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regularization achieves a better result compared to the �2-norm regularization and the con-
ventional TV regularization.

Fig. 30  Inverted results of a v
p
 , b v

s
 , and c � parameters by using the conventional TV regularization with 

the initial models shown in Figs. 27
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7  Conclusions

Here we review the application of the seismic slope attribute in two specific aspects of the 
prestack inversion algorithm. On the one hand, the seismic slope attribute can be exploited 
as a lateral constraint when building the starting model. The initial model is constructed 
by interpolating the well logs based on the shaping regularization framework. In the well-
log interpolation method, there is no need to manually interpret any horizons or faults 

Fig. 31  Inverted results of a v
p
 , b v

s
 , and c � parameters using the proposed DTV regularization with the 

initial models shown in Fig. 28
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throughout the modeling process, which not only avoids manual interpretation errors, but 
also reduces labor workload. On the other hand, the seismic slope attribute can be intro-
duced into the AVA inversion objective function, through a DTV regularization penalty to 
improve the resolution and lateral continuity of the inversion results. The inversion results 
of the synthetic and real seismic data demonstrate the superiority of the new prestack inver-
sion framework. Taking advantage of the data-driven starting model building approach and 
DTV regularization algorithm, the resulted hybrid inversion framework inverts the subsur-
face properties with higher resolution (in both horizontal and vertical directions) and more 
robust performance in geologically complex structures.

Appendix A: The Exact Zoeppritz Equation

Without loss of generality, the forward problem of seismic wave propagation can be 
expressed as a nonlinear equation as follows:

According to the convolution theory, the seismic data can be considered as the convolution 
between the stationary wavelet and reflectivity: Then, the P–P seismic data can be simu-
lated by convolving the P–P reflectivity coefficient with the stationary wavelet as:

With respect to the prestack seismic inversion, the reflectivity coefficients can be obtained 
by the Zoeppritz’s equation. When a plane-wave propagates onto a surface, according to 
the Zoeppritz’s equation, the reflection and transmission coefficients can be expressed as:

where

where vp1 , vs1 , and �1 denote the elastic parameters of the upper layers, and vp1 , vs1 , and �2 
correspond to the counterpart of the lower layers, �1 and �1 are the angles of the P- and 
S-wave reflections, and �1 and �1 stand for the angles of P- and S-wave transmissions.

The partial derivative with respect to the parameter m can be expressed as:
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Appendix B: The Hertz–Mindlin Model

The Hertz–Mindlin contact model (Mindlin 1949) calculates the bulk and shear modulus 
of two spherical grains in contact. It appears to be the most commonly used contact model 
to describe seismic parameter changes caused by the pressure changes (Dadashpour et al. 
2007). Although the Hertz–Mindlin contact model is proved to be only applicable to per-
fect elastic contacts of spherical bodies, it works fairly well for sandstones (Avseth et al. 
2005). According to he Hertz–Mindlin theory, the effective bulk modulus and shear modu-
lus of a dry random identical sphere packing can be expressed as

where KH-M and GH-M indicate the bulk and shear modulus calculated by the Hertz–Mind-
lin model, �c denotes critical porosity, Peff represents the effective pressure, and G and � 
are the shear modulus and Poisson’s ratio of the solid grains, respectively. n is the coor-
dination number and c denotes the average number of contacts per sphere. In the original 
Hertz–Mindlin theory, n is equal to 3, which indicates that the variation in velocity is pro-
portional to the 1/6 power of Peff.

Some laboratory measurements of samples gave a larger number for n. Vidal et  al. 
(2000) found n = 5.6 for P-wave and n = 3.8 for S-wave for gas-saturated sands, while 
Landro et al. (2001) used n = 5 for oil-saturated sands.
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