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Abstract
High-frequency surface-wave methods have been widely used for surveying near-surface 
shear-wave velocities. A key step in high-frequency surface-wave methods is to acquire 
dispersion curves in the frequency–velocity domain. The traditional way to acquire the 
dispersion curves is to identify the dispersion energy and manually pick phase velocities 
by following energy peaks at different frequencies. A large number of dispersion curves 
need to be extracted for inversion, especially for surveys with long two-dimensional sec-
tions or large three-dimensional (3D) coverages. Human–machine interaction-based dis-
persion curves extraction, however, is still common, which is time-consuming. We devel-
oped a deep learning model, termed Dispersion Curves Network (DCNet), that can rapidly 
extract dispersion curves from dispersion images by treating dispersion curves extraction 
as an instance segmentation task. The accuracy of the dispersion curves extracted by our 
DCNet model is demonstrated by theoretical data. We used a 3D field application of ambi-
ent seismic noise to demonstrate the effectiveness and robustness of our method. The real-
world results showed that the accuracy of the dispersion curves extracted from the field 
data using our method can achieve human-level performance and our method can meet the 
requirement of geoengineering surveys in rapidly extracting massive dispersion curves of 
surface waves.

Keywords Surface waves · Dispersion curves · Deep learning · Convolutional networks

1 Introduction

High-frequency surface-wave methods (Xia et al. 1999, 2002) have been widely used for 
near-surface shear (S)-wave velocity survey among active (e.g., Xia et al. 2003, 2012; Xia 
2014; Ivanov et al. 2006; Luo et al. 2007; Socco et al. 2010; Foti et al. 2011; Pan et al. 
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2016a; Zhang and Alkhalifah 2019a) and passive seismic investigations (e.g., Louie 2001; 
Okada 2003; Park and Miller 2008; Cheng et al. 2015, 2016; Zhang et al. 2020). By using 
dispersion imaging methods, such as the τ–p transformation (McMechan and Yedlin 1981), 
the F–K transformation (Yilmaz 1987), the phase shift (Park et  al. 1998), the frequency 
decomposition and slant stacking (Xia et al. 2007), and the high-resolution linear Radon 
transformation (HRLRT) (Luo et  al. 2008), dispersion images can be easily transformed 
from shot gathers. A one-dimensional (1D) S-wave velocity can be achieved by inverting 
the dispersion curves (Xia et al. 1999; Socco and Boiero 2008; Boaga et al. 2011) picked 
from each dispersion image. Based on the 1D approximation, each inverted model of dis-
persion curves represents the mean S-wave velocity of the underground structure (Boiero 
and Socco 2010). Two-dimensional (2D) S-wave velocity profile or three-dimensional (3D) 
S-wave velocity model can be constructed by combining multiple 1D results. The key step 
to ensure the accuracy of inversion is to acquire the reliable dispersion curves of surface 
waves in the frequency–velocity (f–v) domain (Shen et al. 2015). The most traditional way 
to acquire the dispersion curves is to identify the dispersion energy from dispersion image 
and manually pick phase velocities by following peaks at different frequencies. At pre-
sent, the human–machine interaction method can achieve semi-automatically extraction of 
dispersion curves by manually clicking at dispersion energy areas (Shen 2014); however, 
manual identification of different dispersion energy modes is still indispensable.

With the widespread use of high-frequency surface-wave methods and the increasing 
number of seismic data we need to deal with, people are reluctant to spend much time on 
duplicating tasks of acquiring dispersion curves. The common tasks are: 1. generating 2D 
S-wave velocity profiles by aligning a large number of 1D S-wave velocity models (Bohlen 
et al. 2004; Yin et al. 2016; Mi et al. 2017; Pan et al. 2019), 2. delineating shallow S-wave 
velocity structure using multiple ambient-noise surface-wave methods (Pan et al. 2016b), 
and 3. estimating for a 3D S-wave velocity model (Pilz et al. 2013; Ikeda and Tsuji 2015; 
Pan et al. 2018; Mi et al. 2020). Meanwhile, there is a newly developed seismic data acqui-
sition technology—Distributed Acoustic Sensing (DAS) (Daley et al. 2013; Ning and Sava 
2018; Song et al. 2019). Innumerable amounts of data can be acquired by this new technol-
ogy. There is no doubt that manually picking dispersion curves will be unrealistic in the 
near future. In addition, the dispersion curves of manual extraction have certain subjectiv-
ity. Some significant energy (i.e., spatial aliasing and “crossed” artifacts) (Dai et al. 2018a; 
Cheng et al. 2018a) confuse people when picking dispersion curves because each person 
has different experiences in the surface-wave data processing.

In recent years, as a new research direction, data-driven deep learning has aroused 
the interest of geophysicists. Deep learning models, building a layered architecture simi-
lar to the human brain, can extract the features from the bottom to the top of the input 
data layer by layer, thus establishing a good mapping between signal and semantic (LeCun 
et al. 2015). With the rapid development of deep learning, more powerful computing, and 
the increasing data processing capacity, recent researches have applied deep learning to 
geophysics. Perol et  al. (2018) presented a convolutional neural network for earthquake 
detection and location. Zachary et al. (2018) trained a convolutional neural network (CNN) 
to detect seismic body wave phases. Zhang et al. (2018) applied CNN to predict seismic 
lithology. Mao et al. (2019) developed a CNN to predict the subsurface velocity informa-
tion. Wang and Chen (2019) used residual learning of deep CNN for seismic random noise 
attenuation. Wang et al. (2019) developed a deep learning model to automatically pick a 
great number of first P- and S-wave arrival times precisely from local earthquake seismo-
grams. Wu et al. (2019) proposed a multiple-task learning CNN to simultaneously perform 
three seismic image processing tasks of detecting faults, structure-oriented smoothing with 
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edge preserving, and estimating seismic local structure orientations. Yang and Ma (2019) 
proposed a deep fully convolutional neural network for velocity model building directly 
from raw seismograms. In addition, within the framework of full waveform inversion, 
Ovcharenko et  al. (2019) used deep learning to extrapolate data at low frequencies, and 
Zhang and Alkhalifah (2019b) utilized deep neural networks to estimate the distribution 
of facies in the subsurface as constraints. Few studies (e.g., Dai et  al. 2018b), however, 
have applied deep learning to the surface-wave dispersion curves extraction. It is impera-
tive to adopt deep learning technology for tasks with large volumes of data and tedious 
work. It often leads to greater efficiency of geophysical data processing, reduces cost, and 
reduces biases associated with human–machine interaction influenced by past professional 
experience.

Dai et  al. (2018b) discussed that dispersion curves extraction can be regarded as a 
semantic segmentation (Long et al. 2015; Badrinarayanan et al. 2017) task. For multimode 
or more complex dispersion images, however, the concept was not suitable. The gener-
ated binary segmentation still needs to be separated into the different surface-wave modes, 
especially when the convergence of dispersion energy is insufficient thereby causing the 
energy of different surface-wave modes to be very close to each other. Inspired by the suc-
cess of instance segmentation which has been well studied in computer vision via deep 
learning models (e.g., Dai et  al. 2015; Romera-Paredes and Torr 2016; Bai and Urtasun 
2017; Ren and Zemel 2017; He et al. 2017; Neven et al. 2018; Chen et al. 2020), we regard 
the dispersion curves extraction as an instance segmentation task.

In this paper, we adopt the ideas from these previous studies and develop a deep learn-
ing model, called Dispersion Curves Network (DCNet), to extract dispersion curves in the 
f–v domain. DCNet is a multitask network model (e.g., Caruana 1997; Ruder 2017; Wu 
et al. 2019), which consists of a segmentation branch and an embedding branch. Learning 
multiple related tasks from data improves efficiency and prediction accuracy by exploit-
ing commonalities and differences through the multiple tasks (Evgeniou and Pontil 2004). 
The segmentation branch segments the dispersion images into two classes, background and 
dispersion energy, while the embedding branch further distinguishes the segmented disper-
sion energy pixels into different mode instances. Surface-wave mode separation technique 
(Luo et al. 2009a) can be achieved, in which each mode of dispersion curve forms its own 
instance within the dispersion energy class. We design a data augmentation method for 
surface-wave energy recognition and create a data set with 25,000 labeled surface-wave 
dispersion energy data for training the DCNet model. We test the accuracy of the DCNet 
model extracted results by comparing them with the theoretical dispersion curves of simu-
lated data. These tests indicate that our DCNet model is very effective with high accuracy. 
We also apply the DCNet model to a 3D passive surface-wave field data to automatically 
extract a large number of dispersion curves and generate a 3D S-wave velocity model by 
assembling the 1D S-wave velocity profiles inverted from each dispersion curve. The effec-
tiveness and robustness of our method were demonstrated by comparing the 3D S-wave 
velocity model with the borehole data.
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2  Method and Experiments

2.1  Network Architecture

DCNet is trained end to end for surface-wave dispersion curves extraction, by regrad-
ing dispersion curves extraction as an instance segmentation task. In this way, the 
network can extract surface-wave multimode dispersion curves. DCNet is a multitask 
encoder–decoder network structure consisting of a segmentation branch and an embed-
ding branch (Fig. 1). Formulas of operations defined in DCNet are listed in Table 1. The 
encoder part of DCNet is modified from the VGGNet (Simonyan and Zisserman 2014) 
network model, which has a simple architecture with convolution, pooling, and fully 
connected layers. It is mainly used for image classification tasks. The decoder part is 
designed based on the idea of the fully convolutional networks (Long et al. 2015).

DCNet shares the first four stages of encoder between the two branches, while the 
last stage of the encoder and the full decoder are each a separate branch. The segmenta-
tion branch is trained to segment the dispersion images into two classes, background 
and dispersion energy. To distinguish the dispersion energy pixels identified by the seg-
mentation branch, we trained another branch of DCNet for dispersion energy embed-
ding. The last layer of the segmentation branch outputs a one channel image, whereas 
the last layer of the embedding branch outputs a three-channel image. As shown in 
Fig.  1, each branch’s loss term is equally weighted and back-propagated through the 
network. By using the discriminative loss function proposed by De Brabandere et  al. 
(2017), the embedding branch is trained to output an embedding for each surface-wave 
mode. The discriminative loss function has a good performance on segmentation task of 
single class with multiple instances, and accepts any number of instances. The distance 
between pixel embeddings belonging to the same surface-wave mode is small, whereas 
the distance between pixel embeddings belonging to different surface-wave modes is 
maximized. After using the output of the segmentation branch (Fig. 2b) as a mask on 
the output of the embedding branch (Fig. 2c, d), the surface-wave embeddings (Fig. 2e, 
f) are clustered together and assigned to their mode cluster centers using DBSCAN 
(Ester et al. 1996) with the parameters of the radius Eps = 0.5 and the minimum number 
of neighboring points MinPts = 50 in this paper (Fig. 2g). Finally, an instance segmen-
tation image (Fig. 2h) of surface waves with mode separation can be achieved, and then 
we can fit a curve through the corresponding peaks of phase velocity from each surface-
wave mode instance to obtain the final extracted dispersion curves (Fig. 2i, j).

Fig. 1  The architecture of the DCNet. The end of each Pooling indicates the end of a stage of the encoder 
part in the middle of the architecture. The left and right parts show the segmentation and embedding 
branches, respectively. Each rounded block represents input or output. Each block corresponds to an opera-
tion. The abbreviations of operations are shown in the network architecture, i.e., Conv, Pooling, Deconv, 
Fusing, are defined in Table 1. Specifically, Conv and Deconv represent the convolution layer and decon-
volution layer with batch normalization (BN) operation and rectified linear unit (ReLU) operation, respec-
tively. The first three-dimensional parameter in the Conv and Deconv operation means the size of its con-
volutional kernels; the last parameter means the number of convolutional kernels; the strides of Conv is 
1 × 1; the strides of Deconv is 2 × 2; the padding use “same”, which means output filled with zeros is the 
same size with input. The kernel size of Pooling is 2 × 2. The image size for each input or output is shown 
between two dashed lines

▸
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2.2  Datasets and Training

To ensure the training results cover a variety of scenarios, we used a large amount of labeled 
dispersion images (Fig.  3) for training our DCNet model. We used 200 real-world active 
source data, 1000 real-world passive source data, and 600 simulated data (the creation step 
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is shown in Table 2) to generate the dispersion images by using the common imaging meth-
ods, such as τ–p transformation (McMechan and Yedlin 1981), phase shift (Park et al. 1998), 
frequency decomposition and slant stacking (Xia et al. 2007), and HRLRT (Luo et al. 2008). 
They contain not only dispersion images with the fundamental mode but also dispersion 
images with fundamental and higher modes, or theoretical dispersion images with multimode. 
The data set contains real-world data with a lot of noise, spatial aliasing (Dai et al. 2018a) or 
“crossed” artifacts (Cheng et al. 2018a), and synthetic data with spatial aliasing or “crossed” 
artifacts, to ensure that the training result can cope with the existence of useless or fake energy. 
With a large number of real-world surface-wave data, we can simulate many theoretical data. 
However, it is still not enough to train a neural network only by manual data labeling. To solve 
this problem, we expanded the dataset through data augmentation, which can improve the 
robustness of the model and avoid overfitting. General data augmentation methods were not 
suitable for dispersion energy recognition, such as flipping, rotating, zooming, translating, and 
color jittering (Howard 2013). Therefore, we added different levels of noise to each (real-world 
or simulated) shot gather and generated dispersion images with different frequency ranges and 
velocity ranges. The imaging results are both normalized and non-normalized in the frequency 
domain (Fig. 4), which increases the number of samples. In this way, we obtained 25,000 sam-
ples in total, of which 80% were used for training and the rest for validation.

DCNet was trained by using TensorFlow libraries (Abadi et  al. 2016). The dispersion 
images were rescaled to 512 × 256. We used the Adam (Kingma and Ba 2014) for optimiz-
ing the network parameters. The beginning learning rate was 0.0005 and linearly decays to 
its 1% with 36 epochs, and all the 20,000 training data sets were processed at each epoch. We 
initialize random weights and use a batch size of 8 considering a trade-off between generaliza-
tion performance and memory limitation on a personal laptop with an NVIDIA GeForce RTX 
2060 GPU.

The loss function of segmentation branch Lseg is,

where wclass =
1

ln
(
�+

Nclass

N

) is a bounded inverse class weighting (Paszke et  al. 2016), 

because the dispersion energy area is always much smaller than the background area; Nclass 
represents pixel number of the class (dispersion energy or background) in label and N rep-
resents the pixel number of the whole label; � = 1.02 which is a control parameter that 

(1)
Lseg =

∑N

i=1
y�
i
log

�
eyi

∑N

i=1
eyi

�
wclass

N

Table 1  Formulas of operations 
defined in DCNet, where 
* refers to a 4-dimensional 
convolution; K and K̄ represent 
the convolutional kernels; b 
represents the bias; and ksize 
represents the kernel size; input1 
and input2 represents the outputs 
of the Conv and Deconv at the 
same stage, respectively

Operation Formula

Conv (convolution) output = K ∗ input + b

Deconv (deconvolution) output = K̄ ∗ input + b

BN (batch normalization) output =
input−mean[input]√

Var[input]

ReLU (rectified linear unit) output = max(0, input)

Pooling (max-pooling) output = max
[
input

]
ksize

Fusing output = input1 + input2



75Surveys in Geophysics (2021) 42:69–95 

1 3

limits wclass to the interval of [1:50]. yi and y′

i
 represent the prediction values and label val-

ues, respectively.
The loss function of embedding branch Lemb is,

where Lvar is a variance term, which applies a pull force on each embedding toward 
the mean embedding of a surface-wave mode and it only activates when an embedding 
is further than �v from its mode cluster center; Ldist is a distance term, which pushes 
the cluster centers of different surface-wave modes away from each other and it only 
activates when they are closer than 2�d to each other; C is the number of surface-wave 
modes; Nc is the number of elements in mode cluster; xi represents a pixel embedding and 
mc =

1

N

∑Nc

i=1
xi represents the mean embedding of the mode cluster; ‖ ⋅ ‖ is the L2 distance 

and [x]+ = max(0, x) ; Lreg is a regularization term to keep the activations bounded, which 
applies a small pull force on all mode clusters toward the origin.

When 𝛿d > 𝛿v , each embedding is closer to its own mode cluster center than to any 
others. When 𝛿d > 2𝛿v , each embedding is closer to all embeddings of its own mode 
cluster than to any embedding of a different mode cluster. Therefore, we set �v = 0.5 
and �d = 3 to ensure that the embedding of each mode is far away from any other 
embedding of different modes, and keep Lseg and Lemb values on a comparable order of 
magnitude. We set Lvar and Ldist to have the same weight and Lreg has a small weight 
with � = � = 1 and � = 0.001.

The accuracy is calculated as the average correct number of points per image:

where Cimg represents the number of correct points and Timg represents the number of 
ground-truth points, and M represents the number of images.

As shown in Fig. 5, the loss functions for training (the blue curves in Fig. 5a, b) and 
validation (the orange curves in Fig. 5a, b) converge to small values while the accuracy 
(the orange curves in Fig. 5c) gradually increases to 95% after 36 epochs. Figure 6 also 
shows that the first two epochs converged rapidly. After 36 epochs, the embeddings 
of different modes were gradually separated, and embeddings of the same mode were 
gathered together.

Lvar =

∑C

c=1

∑Nc

i=1

�
‖mc − xi‖ − �v

�2
+

CNc

Ldist =

∑C

ca=1

∑C

cb=1

�
2�d − ‖mca

− mcb
‖
�2
+

C(C − 1)
,
�
ca ≠ cb

�

Lreg =

∑C

c=1
‖mc‖
C

(2)Lemb = � ⋅ Lvar + � ⋅ Ldist + � ⋅ Lreg

(3)accuracy =
1

M

M∑

img=1

Cimg

Timg
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2.3  Theoretical Data Tests

In order to test the accuracy of the results of DCNet model, we simulated two typical mod-
els which parameters are shown in Table 3. The geophone interval was 1 m with the near-
est offset of 10 m. The length of the record was 600 ms with a 0.1 ms sample interval. The 
shot gathers of Models 1 and 2 were simulated by a finite-difference method for modeling 
Rayleigh (Zeng et  al. 2011) and Love waves (Luo et  al. 2010), respectively. Their shot 
gathers and dispersion images generated by the phase shift (Park et al. 1998) are shown 
in Fig. 7. Model 1 was a common layered earth model with obvious fundamental mode 
dispersion energy (Fig. 7a, c) and Model 2 with stronger multimode surface-wave energy 
(Fig. 7b, d). We input their dispersion images into the DCNet model, and the processes of 
dispersion curves extraction are similar to Fig. 2. Their theoretical dispersion curves were 
calculated by Knopoff’s method (Schwab and Knopoff 1972). Comparisons between dis-
persion curves extracted by DCNet and theoretically calculated by Knopoff’s method are 
shown in Fig. 8a, b. The mean error of dispersion curves obtained by theoretical calcula-
tion and DCNet model is calculated by the following formula.

where Tfi and Mfi
 represent the velocities of theoretical calculation and DCNet model 

at the i th frequency, respectively. Nf  is the number of frequency points participating in 
comparison.

Calculated using Formula (4), the mean errors of the fundamental mode of surface 
waves (Fig.  8a) and the multimodes of surface waves (Fig.  8b) are 0.77% and 1.18%, 
respectively. Due to the errors expected in finite-difference simulation, the energy peaks 
at low-frequency (Fig. 8a) and high-mode (Fig. 8b) dispersion energy match the theoreti-
cal dispersion curves with relatively low accuracy. The comparisons demonstrated that our 
DCNet model was able to effectively pick accurate dispersion curves. Taking Model 2 as 
an example, as shown in Fig. 8f, the extracted results from dispersion images generated 
using different imaging methods (the phase shift, the τ-p transformation, the frequency 
decomposition and slant stacking, and the HRLRT) are almost the same. This indicates that 
the method we proposed has low sensitivity to different imaging methods.

2.4  Method Comparison

We compared our method with an automated extraction method of the fundamental 
mode dispersion curve (Taipodia et al. 2020) which is based on a threshold energy fil-
tering of the dispersion image. We used the simulated data of Model 2 (Table 3) for a 

(4)
error =

∑Nf

i=1

�����
Tfi

−Mfi

Tfi

����

�

Nf

Fig. 2  The process of extracting dispersion curves by DCNet. a The input dispersion image. b Output of the 
segmentation branch (white areas represent dispersion energy and black areas represent the background). c 
Output of the embedding branch (a 2D representation). d Output of the embedding branch (a 3D represen-
tation). e Using the output of the segmentation branch as a mask on the output of the embedding branch (a 
2D representation). f Using the output of the segmentation branch as a mask on the output of the embed-
ding branch (a 3D representation). g Using DBSCAN (Ester et al. 1996) to cluster the embeddings together. 
h The instance output. i The dispersion curves extracted from the energy of each mode. j The final extrac-
tion result

▸
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comparative experiment. This threshold energy filtering method can mainly be summa-
rized into three steps: first, to read an RGB (red–green–blue) dispersion image gener-
ated from  SurfSeis® (developed by Kansas Geological Survey) (Fig.  9a) into an HSV 

Fig. 3  Examples of dataset for training DCNet. Each column represents one sample. Each sample contains 
dispersion image, binary ground truth, and instance ground truth. The top row is the dispersion images, in 
which we hid the coordinate information that was not used during the training. The middle and bottom rows 
are the binary and instance ground truths, respectively. Columns 1–6, respectively, denote the common dis-
persion image, dispersion image with a higher mode, dispersion image with higher modes, dispersion image 
with a lot of noise, dispersion image with spatial aliasing, and dispersion image with “crossed” artifacts

Table 2  The steps of simulated data set creation

Step Description

1 Randomly generate the number of receivers nx (12–36); Randomly generate the spacing interval dx 
(1–3 m)

2 Set the minimum offset Xmin = 5 ∗ dx ; Set the model size xy = (nx ∗ dx + Xmin) ∗ 1.1 + 20 ; The 
arrangement is set at the center of the model surface; Randomly set main frequency (15–30 Hz) 
Ricker wavelet

3 Use the random number � (0–1), set the thickness of the first layer thks1 = dx ∗ 1.2 + �
1
∗ 0.5 , and 

set the thickness of the second layer thks2 = thks1 ∗ 1.2 + �
2
∗ 0.5 , and so on, until the cumula-

tive depth is greater than nx ∗ dx ; randomly initialize a Poisson’s ratio � (0.42–0.43); for each 
layer, use the corresponding � to initialize an increasing � with 1 + � ∗ 0.005 times for each layer. 
This determines the number of layers, the thicknesses of each layer, and initial � of each layer

4 Randomly initialize a Vs (150–300 m/s), and generate a 1.1–1.2 times random increment Vs model; 
generate a random sequence and perturb Vs and � of the corresponding layer by up to 20% and 
5%, respectively. This determines the Vs and � of each layer

5 Vp of each layer can be calculated by Vp =
Vs√

(1−2�)∕(2−2�)
 . This determines the Vp of each layer

6 Randomly initialize a density � (1.818–1.854), and generate a 1.01–1.03 times random increment � 
model. This determines the � of each layer

7 Use the generated random layered model to simulate shot gathers by a finite-difference method for 
modeling Rayleigh (Zeng et al. 2011) and Love waves (Luo et al. 2010); use the generated ran-
dom layered model to simulate noise recordings (Lawrence et al. 2013); and obtain virtual shot 
gathers by MAPS (Cheng et al. 2018a, b)
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(hue–saturation–value) representation; second, to select different colors of pixels of 
the HSV model using different thresholds and mapping them linearly (Fig. 9b) in dif-
ferent ranges (Table 4); third, to find the energy that is higher than 99.9% (red points 
in Fig.  9d) from local peaks in the 3D dispersion image (Fig.  9c). We extracted the 
dispersion curves of the same data (Model 2 in Table 3) through our DCNet, and the 
outputs of the intermediate processes are shown in Fig. 10. Figure 10b and 10c shows 
the outputs of the segmentation and embedding branches, respectively. We compared 
the final results (Figs. 9d, 10d) of the extraction by DCNet and threshold energy filter-
ing method with the theoretical dispersion curves (Fig. 11). Calculated by the Formula 
(4), the mean errors of the fundamental mode dispersion curve extracted by DCNet and 
threshold energy filtering method are 1.13% and 7.98%, respectively. The mean error of 
DCNet is just 0.14 times that of the threshold energy filtering method. The mean speed 
of DCNet is 0.5  s per dispersion image on a personal laptop, 18 times faster than the 
threshold energy filtering method. Table  5 shows the comparison in detail. The com-
parison shows that DCNet can extract more accurate and credible dispersion curves in a 
much shorter time and can separate different modes, which is unable to be done with the 
threshold energy filtering method.

Fig. 4  Data augmentation process. One dispersion image, one binary label, and one instance label as one 
sample. The dispersion images of odd and even rows are normalized and non-normalized, respectively
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Fig. 5  The training log. a Losses of segmentation branch for training (the blue curve) and validation (the 
orange curve) data sets. b Losses of embedding branch for training (the blue curve) and validation (the 
orange curve) data sets. c Mean accuracy rate of DCNet for training (the blue curve) and validation (the 
orange curve) data sets

Fig. 6  Convergence of the training process on a dispersion image. a The input dispersion image, binary 
ground truth, and instance ground truth. b The outputs of epochs of 0, 1, 2, 12, and 36. The first row rep-
resents the outputs of the segmentation branch; the second row represents the outputs of the embedding 
branch (a 2D representation); the third row represents the outputs of the embedding branch (a 3D represen-
tation); the fourth row represents the outputs of the embedding branch (a 3D representation) with outputs 
of the segmentation branch as mask; and the last row represents the outputs of the embedding branch (a 3D 
representation) with instance ground truth labels
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Table 3  The parameters of two typical simulated models

Layer number VP (m/s) VS (m/s) Density (g/cm3) Thickness (m)

Model 1 1 800 200 2.0 10
2 1200 400 2.0 Infinite

Model 2 1 800 200 2.0 5
2 1200 400 2.0 5
3 1600 600 2.0 Infinite

Fig. 7  The shot gathers and dispersion images of the simulated models. a The shot gather of Model 1. b 
The shot gather of Model 2. c The dispersion image of Model 1 generated using the phase shift method. d 
The dispersion image of Model 2 generated using the phase shift method
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Fig. 8  Comparisons of the dispersion curves extracted by different methods. The white lines with white 
dots represent the dispersion curves extracted by DCNet; the black dashed lines with smaller dots represent 
the dispersion curves calculated theoretically. a Comparisons of the dispersion curves extracted by DCNet 
and the theoretically calculated one corresponding to Model 1. b Comparisons of the dispersion curves 
extracted by DCNet and the theoretically calculated one for Model 2. c The dispersion image of Model 
2 generated using the τ–p transformation. d The dispersion image of Model 2 generated using frequency 
decomposition and slant stacking. e The dispersion image of Model 2 generated using HRLRT. f Compari-
sons of the dispersion curves extracted by DCNet using different imaging methods
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3  Field Data Application

3.1  Fieldwork

Our fieldwork was carried out in the city of Hangzhou, China (Fig. 12). It was a rela-
tively flat area and near two busy roads that are located at the south and west of the field 

Fig. 9  The process of extracting dispersion curves by a threshold energy filtering method. a The disper-
sion image obtain from  SurfSeis® (frequency normalization is not applied). b The dispersion image divided 
into different levels of energy according to the set threshold. c The 3D dispersion image representation. d 
Extraction of all possible local peaks from the 3D dispersion image (gray points with different depths repre-
senting the extraction of different thresholds) and identification of the fundamental dispersion curve (local 
highest energy peaks, the red points)

Table 4  Parameters of threshold energy filter method

Color H (Hue) S (Saturation) V (Value) Range (%)

Blue (0.566, 0.832) (0.274, 1.000) (0.000, 1.000) 0–30
Aqua (0.103, 0.565) (0.274, 1.000) (0.000, 1.000) 30–70
Red (0.000, 0.102) or (0.897, 1.000) (0.230, 1.000) (0.314, 1.000) 70–90
Black (0.000, 0.102) or (0.897, 1.000) (0.230, 1.000) (0.000, 0.314) 90–100
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survey area. The test site was covered by silty clay near the tens of meters of near sur-
face. There was a borehole with a depth of 95 m about 50 m from the east of the field-
work area (the red pentagram highlighted in Fig. 12). The borehole results were used to 
verify the reliability of the application results.

We designed our field measurements with 14 linear passive survey arrays that 
contain 13 three-component receivers (the white dots highlighted in Fig.  12) in each 
array with the 10-m receiver separation (Fig. 13a). The size of the fieldwork area was 
130 × 120  m2, with a total of 182 three-component receivers with a predominant fre-
quency of 5  Hz placed with a 10-m interval both in north and east directions (black 
triangles in Fig. 13a). The noise records were recorded with the sampling frequency of 
1000 Hz from local time 17:24 on June 15 to 17:19 on June 16 2019.

In the passive seismic data processing of this application, we only utilized the ver-
tical component data to acquire the information of Rayleigh waves. We used the 

Fig. 10  The process of extracting dispersion curves by DCNet. a The same dispersion image as Fig. 9a with 
a normal color-bar representation (frequency normalization is not applied). b Output of the segmentation 
branch (white areas represent dispersion energy and black areas represent background). c Output of the 
embedding branch (different colors represent different modes). d The instance output (light red and blue 
areas represent energy areas of the fundamental mode and the first higher mode, respectively) and the dis-
persion curves extracted from the energy of each mode (lines with red and blue dots represent fundamental 
mode and first higher mode, respectively)
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Fig. 11  Comparison of disper-
sion curves extracted by DCNet 
(red lines with red dots) and 
threshold energy filtering method 
(the blue dotted line with blue 
crosses) and theoretical calcula-
tion (the black dashed lines with 
black dots)

Table 5  Comparisons between 
DCNet and threshold energy 
filtering method

Method DCNet Threshold 
energy filter-
ing

Mean error (fundamental) 1.13% 7.98%
Mean speed (s/dispersion image) 0.5 9
Modes number 2 1
Nf  (minimum frequency interval is 1 Hz) 68 25
Frequency range (Hz) (fundamental) 3.6–49.3 3.6–28.1

Fig. 12  The location of the fieldwork (produced by Google Earth and Google Maps). The red circle land-
mark in the map represents the location of the fieldwork area, the white dots in the satellite map represent 
the true coordinate information of all the three-component receivers, and the red pentagram represents the 
borehole near the survey line
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Fig. 13  a The field measurements. Black triangles represent the 14 arrays (east–west) × 13 traces (north–
south) three-component receivers placed with a 10-m interval both in north and east directions. A receiver 
is named by “array number–trace number”. The colored pentagonal stars represent samples of measurement 
points. The colored dots represent the measurement points generated by recordings from receivers in differ-
ent combinations. The colored boxes represent the combinations corresponding to the same colored meas-
urement points. b, c Virtual shot gathers marked by red boxes for measurement point A; d the virtual shot 
gather marked by the orange box for measurement point B; e the virtual shot gather marked by the blue box 
for measurement point C; and f the virtual shot gather marked by the green box for measurement point D
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multichannel analysis of passive surface-wave method (MAPS) (Cheng et  al. 2016) 
to process the passive seismic data. After preprocessing, cross-correlation functions 
between line-arranged traces were used to form the virtual shot gathers according to 
their internal distance, and then dispersion images were computed by the phase shift 
method (Park et al. 1998). The 1D S-wave velocity models can be constructed by invert-
ing surface-wave dispersion curves (Xia et al. 1999).

3.2  Extracting Dispersion Curves

Based on the middle-of-receiver-spread assumption (Luo et al. 2009b), implying that the 
1D S-wave velocity profile obtained by inversion reflects the medium below the receiver 
spread, we used recordings from 7 successive receivers to obtain the dispersion curves 
of the measurement points at the middle of the 7-receiver spread (e.g., the measurement 
point A generated by recordings from the receivers in the red boxes in Fig. 13a and its vir-
tual shot gathers shown in Fig. 13b, c). The 7-receiver spread is moved 1 receiver position 
toward the north direction each time, and 7 dispersion curves along array 4 can be obtained. 
Thus, the dispersion curves of the red measurement points in Fig. 13a can be obtained. In 
addition, we used recordings from 6 successive receivers to obtain the dispersion curves 
of the measurement points at the middle of the 6-receiver spread (e.g., the measurement 
point B generated by recordings from the receivers in the orange box in Fig. 13a and its 
virtual shot gather shown in Fig. 13d). Thus, the dispersion curves of the orange measure-
ment points in Fig. 13 can be obtained, which made the acquired measurement data denser. 
We also used recordings from 6 successive receivers in the northeast direction to obtain 
the dispersion curves of the measurement points in the middle of the 6-receiver spreads 
(e.g., the measurement point C generated by recordings from the receivers in the blue box 
in Fig. 13a and its virtual shot gather shown in Fig. 13e). By moving the receiver spread, 
the dispersion curves of the blue measurement points in Fig. 13a can be obtained. We got a 
nominal resolution of 5 m × 5 m in the central part of the survey area. We used recordings 
from 5, 4, or 3 receivers to obtain the measurement data along edges and at corners (e.g., 
the measurement point D generated by recordings from the receivers in the green box in 
Fig. 13a and its virtual shot gather shown in Fig. 13f). Therefore, a total of 589 dispersion 
curves need to be extracted.

We made a list of the receivers required for each measurement point, keeping the same 
frequency and velocity ranges (Table 6). Then, the dispersion images were calculated in 
batches. After generating all the dispersion images, all dispersion curves were extracted 
within 5 min (Fig. 14) with an average speed of only half a second per dispersion image. 

Table 6  Examples of the 
receivers list required for 
measurement points

Measurement 
point

Receivers Spacing 
interval 
(m)

A_1 4-1, 4-2, 4-3, 4-4, 4-5, 4-6, 4-7 10
A_2 1-4, 2-4, 3-4, 4-4, 5-4, 6-4, 7-4 10
B 2-1, 2-2, 2-3, 2-4, 2-5, 2-6 10
C 1-1, 2-2, 3-3, 4-4, 5-5, 6-6 14.14
D 1-1, 1-2, 1-3 10
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This batch processing saved a lot of time on human–machine interaction and did not require 
the experience of extracting the dispersion curves. For the same measurement location, the 
dispersion curves obtained by different receiver spreads were averaged to obtain more reli-
able results (e.g., as Fig. 14 and Table 6 show, measurement point A can be obtained by 
recordings from the receivers in red boxes toward two directions). Finally, the dispersion 
curves of 533 measurement points were generated.

Fig. 14  Examples of the dispersion curves extracted from the field data application. The white lines with 
white dots represent the dispersion curves extracted by DCNet
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3.3  3D S‑wave Velocity Model

After obtaining a large number of dispersion curves, batch inversion can be carried out 
with the same initial model. In general, manual intervention was not required; however, 
occasionally individual points need to be debugged. We obtained a total of 533 1D S-wave 
velocity profiles, by inverting each extracted dispersion curve independently using a Lev-
enberg–Marquardt algorithm discussed in Xia et al. (1999). Each 1D inverted model like a 
virtual borehole was placed at its location of the corresponding measurement point (cyan 
points in Fig. 15). We used the inverted model of the measurement point 27-19 (Fig. 15), 
which was closest to the borehole, to compare the results with the borehole measurements 
(Fig. 16a). The RMS error dropped to 6 m/s (Fig. 16c). Our inverted model fits well with 
the borehole measurements, which shows that the processing results of the field data are 
reliable. Each virtual borehole at edges and corners (each red point in Fig.  15), which 
has no extracted dispersion curve for inversion, is obtained via linear interpolation of the 

Fig. 15  1D S-wave velocity model assembly. The cyan points represent the inverted 1D S-wave veloc-
ity models, and the red points represent the 1D S-wave velocity models generated by linear interpolation. 
Measurement points are named by “line number–point number”
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virtual boreholes (cyan points in Fig.  15) from its 8 adjacent positions. We generated a 
3D S-wave velocity model (Fig. 17) by assembling all the virtual boreholes. Figure 17b 
contains vertical sections along the Y direction displayed every 20 m from 15 m to 115 m. 

Fig. 16  Comparison with borehole results. a The inversion result of the nearest measurement point from 
the borehole (measurement point 27-19 in Fig. 15). The black line represents the borehole S-wave velocity, 
the blue dotted line represents the initial S-wave velocity, and the red line represents the inverted S-wave 
velocity. The S-wave velocity initial model was set according to the borehole data to constrain the inversion 
results. b The dispersion curve extracted by DCNet. c The inversion of the dispersion curve. The black dots 
represent the extracted dispersion curve, the blue dots represent the dispersion curve of initial model with 
RMS error of 16.1 m/s, and the red dots represent the dispersion curve of the inverted model with RMS 
error of 6.0 m/s

Fig. 17  Final 3D S-wave velocity model of the field data application. a Complete 3D S-wave velocity struc-
ture via linear interpolation. b The vertical sections along the Y direction displayed every 20 m from 15 to 
115 m
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It shows that the lateral variation of velocity is small and there is a high-velocity layer at 
40 m and 50 m deep.

The isosurfaces of the 3D S-wave velocity model were compared with the borehole his-
togram (Fig.  18). The S-wave velocity of the first isosurface near the ground surface is 
200 m/s, which represents the bottom S-wave velocity interface of silt. The second isosur-
face is the interface between sandy silt and silty clay. Its S-wave velocity is 250 m/s. The 
S-wave velocities of third and fourth isosurfaces are 370 m/s, which represent the upper 
and lower S-wave velocity interfaces of gravel layer. The S-wave velocity of the fifth iso-
surface is 400 m/s, and then the velocities below the fifth isosurface increase dramatically. 
It demonstrated that there is a distinct bedrock interface compared to the 56 m depth of 
borehole histogram. These S-wave velocity isosurfaces are fitting well with the depths of 
interfaces in the borehole histogram. In the entire process, we only need to set the param-
eters; then most of the work is done by a computer to obtain such a fine 3D S-wave velocity 
model, instead of picking the dispersion curves manually point by point as in the past.

4  Discussion and Conclusions

In fact, besides the extracted dispersion curves that can be used for inversion, different 
outputs of DCNet can be used for different tasks according to the requirements. The 
output of segmentation branch is exactly the area of surface-wave energy. It can avoid 
fitting the useless and fake energy in the phase-velocity spectra inversion (Ryden and 
Park 2006). It can also be used for surface-wave extraction and suppression (Hu et al. 
2016). The instance output is exactly the energy areas of different surface-wave modes, 
which can be used for mode separation by the HRLRT (Luo et al. 2009a). These outputs 

Fig. 18  Isosurfaces of the 3D S-wave velocity model (left) compared with the borehole histogram (right)
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are used for identifying surface-wave energy instead of manually selection. With the 
continuous improvement of surface-wave imaging processing (e.g., Bensen et al. 2007; 
Groos et al. 2012; Ikeda et al. 2013; Shen et al. 2015; Cheng et al. 2018a, b; Zhou et al. 
2018; Pang et al. 2019), the quality of the dispersion images is increasing. DCNet can 
be continuously trained and its training set is expanding all the time. The identification 
of dispersion energy is becoming easier and easier, and the accuracy of extracted disper-
sion curves will keep improving. In addition, because of its efficient extraction, this kind 
of automatic dispersion curves extraction combined with an inversion can produce the 
real-time profiles, which can offer immediate guidance to fieldwork.

We proposed a deep learning model (DCNet) to rapidly extract numerous multimode 
surface-wave dispersion curves in the f-v domain. We also presented a method to gener-
ate a large number of labeled surface-wave data for training DCNet model. We com-
pared the theoretical dispersion curves of synthetic data to prove the reliability of our 
results. By automatically extracting dispersion curves in each window, we obtained a 
3D S-wave velocity model by assembling 533 individual inverted 1D S-wave velocity 
models. The field data application demonstrated the effectiveness and robustness of our 
method. Data processing automation can improve the efficiency and stability when deal-
ing with such a task with a large amount of data.

Acknowledgements The authors would like to thank associate editor Yu Jeffrey Gu and two anonymous 
reviewers for their constructive comments and suggestions. This study is supported by the National Natural 
Science Foundation of China (NSFC) under Grant No. 41774115 and Nanjing Center of China Geological 
Survey under Grant No. DD20190281. The authors appreciate Binbin Mi, Jingyin Pang, Changjiang Zhou, 
Hongyu Zhang, and Xinhua Chen for their help in field data collection. The authors also appreciate Xiaojun 
Chang of Nanjing Center of China Geological Survey for their assistance in field data collection and provid-
ing borehole data.

References

Abadi M, Barham P, Chen J, Chen Z, Davis A, Devin M et al (2016) TensorFlow: a system for large-
scale machine learning. In: Proceedings of the 12th USENIX symposium on operating systems 
design and implementation, pp 265–283

Badrinarayanan V, Kendall A, Cipolla R (2017) SegNet: a deep convolutional encoder-decoder architec-
ture for image segmentation. IEEE Trans Pattern Anal Mach Intell 39(12):2481–2495

Bai M, Urtasun R (2017) Deep watershed transform for instance segmentation. arXiv :1802.05591 v1 [cs.
CV]. https ://arxiv .org/abs/1802.05591 

Bensen GD, Ritzwoller MH, Barmin MP, Levshin AL, Lin F, Moschetti MP, Shaoiro NM, Yang Y 
(2007) Processing seismic ambient noise data to obtain reliable broad-band surface wave dispersion 
measurements. Geophys J Int 169:1239–1260

Boaga J, Vignoli G, Cassiani G (2011) Shear wave profiles from surface wave inversion: the impact of 
uncertainty on seismic site response analysis. J Geophys Eng 8(2):162–174

Bohlen T, Kugler S, Klein G, Theilen F (2004) 1.5D inversion of lateral variation of Scholte wave dis-
persion. Geophysics 69(2):330–344

Boiero D, Socco LV (2010) Retrieving lateral variations from surface wave dispersion curves. Geophys 
Prospect 58(6):977–996

Caruana R (1997) Multitask learning. Mach Learn 28(1):41–75
Chen H, Sun K, Tian Z, Shen C, Huang Y, Yan Y (2020) BlendMask: top-down meets bottom-up for 

instance segmentation. arXiv :2001.00309 v1 [cs.CV]. https ://arxiv .org/abs/2001.00309 
Cheng F, Xia J, Xu Y, Xu Z, Pan Y (2015) A new passive seismic method based on seismic interferom-

etry and multichannel analysis of surface waves. J Appl Geophys 117:126–135
Cheng F, Xia J, Luo Y, Xu Z, Wang L, Shen C, Liu R, Pan Y, Mi B, Hu Y (2016) Multichannel analysis 

of passive surface waves based on cross-correlations. Geophysics 81(5):EN57–EN66

http://arxiv.org/abs/1802.05591v1
https://arxiv.org/abs/1802.05591
http://arxiv.org/abs/2001.00309v1
https://arxiv.org/abs/2001.00309


93Surveys in Geophysics (2021) 42:69–95 

1 3

Cheng F, Xia J, Xu Z, Mi B (2018a) Frequency-wavenumber (FK)-based data selection in high-fre-
quency passive surface wave survey. Surv Geophys 39(4):661–682

Cheng F, Xia J, Xu Z, Hu Y, Mi B (2018b) Automated data selection in the Tau-p domain: application to 
passive surface wave imaging. Surv Geophys 40(5):1211–1228

Dai J, He K, Sun J (2015) Instance-aware semantic segmentation via multi-task network cascades. arXiv 
:1512.04412 v1 [cs.CV]. https ://arxiv .org/abs/1512.04412 

Dai T, Hu Y, Ning L, Cheng F, Pang J (2018a) Effects due to aliasing on the surface-wave extraction and 
suppression in frequency-velocity domain. J Appl Geophys 158:71–81

Dai T, Xia J, Ning L (2018b) Extracting dispersion curves using semantic segmentation of fully convo-
lutional networks. In: Proceeding of 8th international conference on environmental and engineering 
geophysics, pp 150–155

Daley T, Freifeld B, Ajo-Frankline J, Dou S, Pevzner R, Shulakova V, Kashikar S, Miller D, Götz J, 
Henninges J, Lüth S (2013) Field testing of fiber-optic distributed acoustic sensing (DAS) for sub-
surface seismic monitoring. Lead Edge 32(6):699–706

De Brabandere B, Neven D, Van Gool L (2017) Semantic instance segmentation with a discriminative 
loss function. arXiv :1708.02551 v1 [cs.CV]. https ://arxiv .org/abs/1708.02551 

Ester M, Kriegel HP, Sander J, Xu X (1996) A density-based algorithm for discovering clusters in large 
spatial databases with noise. In: Proceedings of 2nd international conference on knowledge discov-
ery and data mining (KDD-96)

Evgeniou T, Pontil M (2004) Regularized multi-task learning. In: Proceedings of the 10th ACM SIG-
KDD international conference on knowledge discovery and data mining, pp 109–117

Foti S, Parolai S, Albarello D, Picozzi M (2011) Application of surface-wave methods for seismic site 
characterization. Surv Geophys 32:777–825

Groos JC, Bussat S, Ritter JRR (2012) Performance of different processing schemes in seismic noise 
cross-correlations. Geophys J Int 188:498–512

He K, Gkioxari G, Dollár P, Girshick R (2017) Mask R-CNN. arXiv :1703.06870  [cs.CV]. https ://arxiv 
.org/abs/1703.06870 

Howard AG (2013) Some improvements on deep convolutional neural network based image classifica-
tion. arXiv :1312.5402 [cs.CV]. https ://arxiv .org/abs/1312.5402

Hu Y, Wang L, Cheng F, Luo Y, Shen C, Mi B (2016) Ground-roll noise extraction and suppression 
using high-resolution linear Radon transform. J Appl Geophys 128:8–17

Ikeda T, Tsuji T (2015) Advanced surface-wave analysis for 3D ocean bottom cable data to detect local-
ized heterogeneity in shallow geological formation of a  CO2 storage site. Int J Greenhouse Gas 
Control 39:107–118

Ikeda T, Tsuji T, Matsuoka T (2013) Window-controlled CMP cross-correlation analysis for surface 
waves in laterally heterogeneous media. Geophysics 78(6):EN96–EN105

Ivanov J, Miller RD, Lacombe P, Johnson CD, Lane JW (2006) Delineating a shallow fault zone and dip-
ping bedrock strata using multi-channel analysis of surface waves with a land streamer. Geophysics 
71(5):A39–A42

Kingma DP, Ba J (2014) Adam: a method for stochastic optimization. arXiv :1412.6980 [cs.LG]. https ://
arxiv .org/abs/1412.6980

Lawrence JF, Denolle M, Seats KJ, Prieto G (2013) A numeric evaluation of attenuation from ambient 
noise correlation functions. J Geophys Res Solid Earth 188(12):6134–6145

LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521(7553):436–444
Long J, Shelhamer E, Darrell T (2015) Fully convolutional networks for semantic segmentation. In: Pro-

ceedings of the IEEE conference on computer vision and pattern recognition, pp 3431–3440
Louie JN (2001) Faster, better: shear-wave velocity to 100 meters depth from refraction microtremor 

arrays. Bull Seismol Soc Am 91(2):347–364
Luo Y, Xia J, Liu J, Liu Q, Xu S (2007) Joint inversion of high-frequency surface waves with fundamen-

tal and higher modes. J Appl Geophys 62(4):375–384
Luo Y, Xia J, Miller RD, Xu Y, Liu J, Liu Q (2008) Rayleigh-wave dispersive energy imaging using a 

high-resolution linear Radon transform. Pure Apply Geophys 165(5):903–922
Luo Y, Xia J, Miller RD, Xu Y, Liu J, Liu Q (2009a) Rayleigh-wave mode separation by high-resolution 

linear Radon transform. Geophys J Int 179(1):254–264
Luo Y, Xia J, Liu J, Xu Y, Liu Q (2009b) Research on the middle-of receiver-spread assumption of the 

MASW method. Soil Dyn Earthq Eng 29:71–79
Luo Y, Xia J, Xu Y, Zeng C, Liu J (2010) Finite-difference modeling and dispersion analysis of high-

frequency Love waves for near-surface applications. Pure Appl Geophys 167:1525–1536
Mao B, Han L, Feng Q, Yin Y (2019) Subsurface velocity inversion from deep learning-based data 

assimilation. J Appl Geophys 167:172–179

http://arxiv.org/abs/1512.04412v1
http://arxiv.org/abs/1512.04412v1
https://arxiv.org/abs/1512.04412
http://arxiv.org/abs/1708.02551v1
https://arxiv.org/abs/1708.02551
http://arxiv.org/abs/1703.06870
https://arxiv.org/abs/1703.06870
https://arxiv.org/abs/1703.06870
http://arxiv.org/abs/1312.5402
https://arxiv.org/abs/1312.5402
http://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1412.6980


94 Surveys in Geophysics (2021) 42:69–95

1 3

McMechan GA, Yedlin MJ (1981) Analysis of dispersive waves by wave field transformation. Geophys-
ics 46:869–874

Mi B, Xia J, Shen C, Wang L, Hu Y, Cheng F (2017) Horizontal resolution of multichannel analysis of 
surface waves. Geophysics 82(3):EN51–EN66

Mi B, Xia J, Bradford JH, Shen C (2020) Estimating near-surface shear-wave-velocity structures via 
multichannel analysis of Rayleigh and Love waves: an experiment at the Boise Hydrogeophysical 
research site. Surv Geophys. https ://doi.org/10.1007/s1071 2-019-09582 -4

Neven D, De Brabandere B, Georgoulis S, Proesmans M, Van Gool L (2018) Towards end-to-end lane detec-
tion: an instance segmentation approach. arXiv :1802.05591  [cs.CV]. https ://arxiv .org/abs/1802.05591 

Ning ILC, Sava P (2018) High-resolution multicomponent distributed acoustic sensing. Geophys Prospect 
66(6):1111–1122

Okada H (2003) Microtremor survey method. Geophysical Monograph Series, vol 12. Society of Explora-
tion Geophysicists, Tulsa

Ovcharenko O, Kazei V, Kalita M, Peter D, Alkhalifah T (2019) Deep learning for low-frequency extrapola-
tion from multi-offset seismic data. Geophysics 84(6):R1001–R1013

Pan Y, Xia J, Xu Y, Gao L (2016a) Multichannel analysis of Love waves in a 3D seismic acquisition system. 
Geophysics 81:EN67–EN74

Pan Y, Xia J, Xu Y, Xu Z, Cheng F, Xu H, Gao L (2016b) Delineating shallow S-wave velocity structure 
using multiple ambient-noise surface-wave methods: an example from western Junggar, China. Bull 
Seismol Soc Am 106(2):327–336

Pan Y, Schaneng S, Steinweg T, Bohlen T (2018) Estimating S-wave velocities from 3D 9-component 
shallow seismic data using local Rayleigh-wave dispersion curves—a field study. J Appl Geophys 
159:532–539

Pan Y, Gao L, Bohlen T (2019) High-resolution characterization of near-surface structures by surface-wave 
inversions: from dispersion curve to full waveform. Surv Geophys 40:167–195

Pang J, Cheng F, Shen C, Dai T, Ning L, Zhang K (2019) Automatic passive data selection in time domain 
for imaging near-surface surface waves. J Appl Geophys 162:108–117

Park CB, Miller RD (2008) Roadside passive multichannel analysis of surface waves (MASW). J Eng Envi-
ron Geophys 13(1):1–11

Park CB, Miller M, Xia J (1998) Imaging dispersion curves of surface waves on multi-channel record. In: 
Society of Exploration and Geophysics (SEG), 68th Annual Meeting, New Orleans, Louisiana, pp 
1377–1380

Paszke A, Chaurasia A, Kim S, Culurciello E (2016) ENet: a deep neural network architecture for real-time 
semantic segmentation. arXiv :1606.02147  [cs.CV]. http://arxiv .org/abs/1606.02147 

Perol T, Gharbi M, Denolle M (2018) Convolutional neural network for earthquake detection and location. 
Sci Adv 4(2):e1700578

Pilz M, Parolai S, Bindi D (2013) Three-dimensional passive imaging of complex seismic fault systems: 
evidence of surface traces of the Issyk-Ata fault (Kyrgyzstan). Geophys J Int 194:1955–1965

Ren M, Zemel RS (2017) End-to-end instance segmentation with recurrent attention. arXiv :1605.09410  [cs.
CV]. http://arxiv .org/abs/1605.09410 

Romera-Paredes B, Torr PHS (2016) Recurrent instance segmentation. arXiv :1511.08250  [cs.CV]. http://
arxiv .org/abs/1511.08250 

Ruder S (2017) An overview of multi-task learning in deep neural networks. arXiv :1706.05098  [cs.CV]. 
http://arxiv .org/abs/1706.05098 

Ryden N, Park CB (2006) Fast simulated annealing inversion of surface waves on pavement using phase-
velocity spectra. Geophysics 71(4):R49–R58

Schwab FA, Knopoff L (1972) Fast surface wave and free mode computations. In: Bolt BA (ed) Methods in 
computational physics. Academic Press, New York, pp 87–180

Shen C (2014) Automatically picking dispersion curves in high-frequency surface-wave method. Master 
Thesis, China University of Geosciences (Wuhan), Wuhan, Hubei, China

Shen C, Wang A, Wang L, Xu Z, Cheng F (2015) Resolution equivalence of dispersion-imaging methods 
for noise-free high-frequency surface-wave data. J Appl Geophys 122:167–171

Simonyan K, Zisserman A (2014) Very deep convolutional networks for large-scale image recognition. 
arXiv :1409.1556 [Cs]. http://arxiv .org/abs/1409.1556

Socco LV, Boiero D (2008) Improved Monte Carlo inversion of surface wave data. Geophys Prospect 
56(3):357–371

Socco LV, Foti S, Boiero D (2010) Surface-wave analysis for building near-surface velocity models—estab-
lished approaches and new perspectives. Geophysics 75(5):A83–A102

Song X, Zeng X, Thurber C, Wang HF (2019) Imaging shallow structure with active-source surface wave 
signal recorded by distributed acoustic sensing arrays. Earthq Sci 31:208–214

https://doi.org/10.1007/s10712-019-09582-4
http://arxiv.org/abs/1802.05591
https://arxiv.org/abs/1802.05591
http://arxiv.org/abs/1606.02147
http://arxiv.org/abs/1606.02147
http://arxiv.org/abs/1605.09410
http://arxiv.org/abs/1605.09410
http://arxiv.org/abs/1511.08250
http://arxiv.org/abs/1511.08250
http://arxiv.org/abs/1511.08250
http://arxiv.org/abs/1706.05098
http://arxiv.org/abs/1706.05098
http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1409.1556


95Surveys in Geophysics (2021) 42:69–95 

1 3

Taipodia J, Dey A, Gaj S, Baglari D (2020) Quantification of the resolution of dispersion image in active 
MASW survey and automated extraction of dispersion curve. Comput Geosci 135:104360. https ://doi.
org/10.1016/j.cageo .2019.10436 0

Wang F, Chen S (2019) Residual learning of deep convolutional neural network for seismic random noise 
attenuation. IEEE Geosci Remote Sens Lett 16(8):1314–1318

Wang J, Xiao Z, Liu C, Zhao D, Yao Z (2019) Deep learning for picking seismic arrival times. J Geophys 
Res Solid Earth. https ://doi.org/10.1029/2019J B0175 36

Wu X, Liang L, Shi Y, Geng Z, Fomel S (2019) Multitask learning for local seismic image processing: fault 
detection, structure-oriented smoothing with edge-preserving, and seismic normal estimation by using 
a single convolutional neural network. Geophys J Int 219:2097–2109

Xia J (2014) Estimation of near-surface shear-wave velocities and quality factors using multichannel analy-
sis of surface-wave methods. J Appl Geophys 103:140–151

Xia J, Miller RD, Park CB (1999) Estimation of near-surface shear-wave velocity by inversion of Rayleigh 
wave. Geophysics 64(3):691–700

Xia J, Miller RD, Park CB, Hunter JA, Harris JB, Ivanov J (2002) Comparing shear-wave velocity pro-
files from multichannel analysis of surface wave with borehole measurements. Soil Dyn Earthq Eng 
22(3):181–190

Xia J, Miller RD, Park CB, Tian G (2003) Inversion of high frequency surface waves with fundamental and 
higher modes. J Appl Geophys 52(1):45–57

Xia J, Xu Y, Miller RD (2007) Generating image of dispersive energy by frequency decomposition and slant 
stacking. Pure Apply Geophys 164(5):941–956

Xia J, Xu Y, Luo Y, Miller RD, Cakir R, Zeng C (2012) Advantages of using Multichannel Analysis of Love 
Waves (MALW) to estimate near-surface shear-wave velocity. Surv Geophys 33:841–860

Yang F, Ma J (2019) Deep-learning inversion: a next-generation seismic velocity model building method. 
Geophysics 84(4):R583–R599

Yilmaz Ö (1987) Seismic data processing. Society of Exploration Geophysicists, Tulsa, p 526
Yin X, Xu H, Wang L, Hu Y, Shen C, Sun S (2016) Improving horizontal resolution of high-frequency 

surface-wave methods using travel-time tomography. J Appl Geophys 126:42–51
Zachary ER, Men-Andrin M, Egill H, Thomas HH (2018) Generalized seismic phase detection with deep 

learning. Bull Seismol Soc Am 108(5A):2894–2901
Zeng C, Xia J, Miller RD, Tsoflias GP (2011) Application of the multiaxial perfectly matched layer to near-

surface seismic modeling with Rayleigh waves. Geophysics 76(3):T43–T52
Zhang Z, Alkhalifah T (2019a) Wave-equation Rayleigh-wave dispersion inversion using fundamental and 

higher modes. Geophysics 84(4):EN57–EN65
Zhang Z, Alkhalifah T (2019b) Regularized elastic full waveform inversion using deep learning. Geophysics 

84(5):R741–R751
Zhang G, Wang Z, Chen Y (2018) Deep learning for seismic lithology prediction. Geophys J Int 

215:1368–1387
Zhang Z, Alajami M, Alkhalifah T (2020) Wave-equation dispersion spectrum inversion for near-surface 

characterization using fiber-optics acquisition. Geophys J Int 222:907–918
Zhou C, Xi C, Pang J, Liu Y (2018) Ambient noise data selection based on the asymmetry of cross-correla-

tion functions for near surface applications. J Appl Geophys 159:803–813

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

https://doi.org/10.1016/j.cageo.2019.104360
https://doi.org/10.1016/j.cageo.2019.104360
https://doi.org/10.1029/2019JB017536

	Deep Learning for Extracting Dispersion Curves
	Abstract
	1 Introduction
	2 Method and Experiments
	2.1 Network Architecture
	2.2 Datasets and Training
	2.3 Theoretical Data Tests
	2.4 Method Comparison

	3 Field Data Application
	3.1 Fieldwork
	3.2 Extracting Dispersion Curves
	3.3 3D S-wave Velocity Model

	4 Discussion and Conclusions
	Acknowledgements 
	References




