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Abstract
Multi-platform remote sensing using space-, airborne and ground-based sensors has 
become essential tools for landslide assessment and disaster-risk prevention. Over the last 
30  years, the multiplicity of Earth Observation satellites mission ensures uninterrupted 
optical and radar imagery archives. With the popularization of Unmanned Aerial Vehicles, 
free optical and radar imagery with high revisiting time, ground and aerial possibilities 
to perform high-resolution 3D point clouds and derived digital elevation models, it can 
make it difficult to choose the appropriate method for risk assessment. The aim of this 
paper is to review the mainstream remote-sensing methods commonly employed for land-
slide assessment, as well as processing. The purpose is to understand how remote-sensing 
techniques can be useful for landslide hazard detection and monitoring taking into consid-
eration several constraints such as field location or costs of surveys. First we focus on the 
suitability of terrestrial, aerial and spaceborne systems that have been widely used for land-
slide assessment to underline their benefits and drawbacks for data acquisition, processing 
and interpretation. Several examples of application are presented such as Interferometry 
Synthetic Aperture Radar (InSAR), lasergrammetry, Terrestrial Optical Photogrammetry. 
Some of these techniques are unsuitable for slow moving landslides, others limited to large 
areas and others to local investigations. It can be complicated to select the most appropri-
ate system. Today, the key for understanding landslides is the complementarity of methods 
and the automation of the data processing. All the mentioned approaches can be coupled 
(from field monitoring to satellite images analysis) to improve risk management, and the 
real challenge is to improve automatic solution for landslide recognition and monitoring for 
the implementation of near real-time emergency systems.
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1 Introduction

Despite several decades of research, landslide detection is still a challenging task due to the 
wide variety of sizes, shapes and morphologies that those events can take and due to the 
variability of the area they trigger. Consequently, a broad array of methods has been tested 
in remote-sensing with lately combinations of those at different-scales using multi-plat-
form methodologies. For decades, Remote-Sensing techniques are thus widely employed 
for landslides studies (e.g., Petley et al. 2002; Delacourt et al. 2007; Jaboyedoff et al. 2012, 
2019; Tofani et al. 2013; Casagli et al. 2017; Huang and Zhao 2018). The appeal of multi-
platform remote-sensing—from space, airborne- to ground-based sensors—originates in 
the possibility to cater for the difficulties of various contexts (coastal landslides, moun-
tain debris flows, rockfalls and mudflows in periglacial environments…). Furthermore, the 
possibility of complementary techniques for data acquisition in various environments is 
a major asset for landslide studies with real-time and near real-time data acquisition for 
virtually any place in the world, especially with the growing demand for detailed and accu-
rate landslide maps and inventories around the globe (Ghorbanzadeh et al. 2019). Among 
all available methods and data, however, it can be difficult to select the most appropriate 
approach for a given study. And the choice of the most appropriate approach can depend 
on the accessibility of study areas, its geographical context, orientation (especially for the 
satellites), the vegetation cover, the landslide velocity, its size, and other morphological 
and geographic parameters.

From those technological and methodological developments, the question of how to 
choose the most effective method then arises. The objective of the present paper is there-
fore to define different ways of studying landslides with two main objectives: hazard inven-
tory/mapping and the quantification of surface deformations using a combination of several 
remote-sensing methods. Inherited from the era of landslide inventories construction, the 
definition of the geometry of landslides and their change over time still dominates one of 
the foci of remote sensing applied for landslides (Jaboyedoff et  al. 2012; Wasowski and 
Bovenga 2014; Telling et al. 2017; Huang and Zhao 2018). As a contribution to this tradi-
tion, this paper is focused on the main spaceborne, aerial and terrestrial remote-sensing 
methods currently used for mass movement surveys in various geographical contexts and 
scales, for landslides that have already occurred. Within this field of research, the authors 
investigated the multiple platforms that come with multiple sensors—optical imagery (3 
bands), multispectral imagery (4–12 bands) or LiDAR and Radar imagery, each providing 
different yet complementary data.

2  The Range of Remote‑Sensing Platforms for Landslide Detection

2.1  Suitable Systems for Numerous Scientific Purposes

The main asset of remote-sensing techniques is the variety of applications, and so in the 
various contexts of landslide observations. Remote sensing is applicable from steep-slopes 
landslides to sub-horizontal deformation; from extremely rapid to slow movements; in 
saturated and unsaturated materials; in confined steep-channel to open-slope landslides 
(Hungr et al. 2014). Another source of variability originates from the environment land-
slides and the related hazards occur. Among the case studies presented in this contribution, 
we can find landslides in periglacial environments, which are characterized by moderate 
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slope terrain in morainal material where landslides are associated to the presence of ground 
ice, permafrost conditioned by freeze/thaw cycling (Lewkowicz 2007; Jorgenson and 
Grosse 2016; Lewkowicz and Way 2019). In such context, unconsolidated sediments cur-
rently frozen can be easily mobilized under exceptionally warm conditions, when the depth 
of the seasonal thaw layer exceeds normal conditions in such years (Bartsch et al. 2019). 
The analysis of such landslides in permafrost notably is of particular importance in the 
Arctic, as landslides are proxies to understand the carbon cycle, as it has been demon-
strated that carbon-rich landslides can even contribute to ocean acidification (Zolkos et al. 
2019). Other examples have been given in subtropical areas where rainstorm disasters, 
cyclone and earthquake, or the combination of triggering factors (Chigira et al. 2004, 2010; 
Ingles et al. 2006; Yin et al. 2009; Xu 2015; Shafique et al. 2016; Marc et al. 2017; Ko 
and Lo 2018) can induce the concomitant reduction of effective shear-strength and trigger 
hundreds or thousands of simultaneous landslide (Chigira et al. 2004; Huang and Li 2009; 
Yin et al. 2009). This kind of event disturbs the sediment budget with transfer of thousands 
of cubic meters of sediment into highly urbanized watersheds. Finally, coastal landslides 
have a particular significance in the light of climate change, rapid source-to-sink concepts 
and related hazards. It is therefore essential to quantify the regressive dynamics of coastal 
cliffs and slopes induced by the sea erosion as a predominant parameter of slope stability 
(Letortu et al. 2015a, b) notably in association with groundwater flows (Lissak et al. 2014).

One of the main drivers of landslide observation is hazard and disaster-risk assessment 
and management, for which it is essential to define the spatial and temporal evolution of 
landslides, especially when instabilities occur close to settlements and infrastructures (e.g., 
roads, bridges…) and disrupting ecosystems. Also, a single remote-sensing approach can 
be effective to answer several scientific questions (e.g., the use of laser scanner in Lissak 
et  al. 2014 or Letortu et  al. 2019 to investigate landslide morphology, hazard mapping, 
deformations measurement or multitemporal satellite images for landslide detection and 
deformation monitoring).

Remote-sensing techniques for landslide assessment can be classified according to the 
scale of observation, ranging from spaceborne platforms—single or swarms of satellites—, 
airborne platforms—airplanes and drones—, to ground-based and close-range platforms—
terrestrial laser-scanners hand-held cameras. The plurality of systems for Earth observation 
(ground, aerial and satellite-based) is now so widely developed that it is possible to assess 
landslide virtually anywhere in the world, at any frequency, to quantify the seasonality of 
the kinematics (Delacourt et al. 2007) as well as the long-term patterns of surface motion 
with image correlation techniques. Researchers and practitioners have thus immediate 
access to imagery after a disaster for instance (Proy et al. 2013).

2.2  Satellite Systems

Over the last 30 years, the multiplicity of Earth Observation (EO) satellites mission ensures 
uninterrupted optical imagery archives (e.g., Landsat 1–8 ~ 1972, SPOT 1–7 ~ 1986, Ikonos 
1999/2015, RapidEye ~ 2008, Sentinel ~ 2014), and radar images acquisition (e.g., ERS 
1991/2001, JERS 1992/1998, Envisat 2002/2012, TerraSAR-X ~ 2008, Sentinel-1 ~ 2014). 
Earth observation satellites (Table 1) are largely used for crisis management (Voigt et al. 
2016; Lang et al. 2018) and especially for landslide investigation and related issues (e.g., 
hazard identification, spatial extension delineation, volume estimation, displacement meas-
urement in Table 1). The interest for satellite imagery can be explained by the availability 
of many open-source data with high-resolution images and regular information updates. 
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Recent programs such as Copernicus Sentinel missions or USGS/NASA Landsat Program 
provide free optical and radar imagery with high revisit time (Table 1). Among all existing 
satellite systems, many are those which propose daily revisit capability. But in a context 
of risk management and emergency response, it is also essential that some systems (such 
as Pleiades systems) allow last-minute request for images acquisition in order to precision 
mapping and intervention.

Spatial and spectral resolutions of satellite systems are various (e.g., Sentinel 2 provides 
13 spectral bands including 3 bands for atmospheric correction, and a spatial resolution 
from 10 to 60  m, Table  1). Consequently, the selection of the most suitable system for 
landslide assessment will highly depend on the scientific purpose and the required scale 
analysis. For example, for inventory and landslide detection it is more suitable to use Very 
High-Resolution (VHR, 0–5 m) and High-resolution (5–20 m) optical data (Table 1) with 
the possibility of Pan-sharpening (Nichol and Wong 2005b) or to improve historical and 
recent satellite images with the use of super-resolution algorithms (Lanaras et al. 2018) and 
VHR orthoimages. But, for an exhaustive inventory, it is sometimes necessary to combine 
sources of images because of the incomplete spatial coverage (Shafique et al. 2016), multi-
temporal images (Fan et al. 2018) and historical inventories (Catani et al. 2005; Ardizzone 
et al. 2007; Arabameri et al. 2019; Pánek et al. 2019). The interest of satellite images time 
series is to detect examples of past landslides which may be remodelled by anthropogenic 
action or progressively hidden by vegetation. Numerous archives are available, and sev-
eral computing online platforms such as Google Earth Engine (https ://earth engin e.googl 
e.com/), Google Earth, EOS platform for Earth Observation imagery (https ://eos.com/
platf orm/) or Sentinel Hub (https ://www.senti nel-hub.com) are free to use for the visuali-
zation and running simple radiometric analyses of various remote-sensing data (Sato and 
Harp 2009; Yang and Chen 2010; Pham et  al. 2019; Fang et  al. 2020; Hu et  al. 2020). 
Radar images are also viewable on these platforms and widely used for landslide monitor-
ing. Indeed, to detect and quantify surface deformation, Synthetic Aperture Radar (SAR) 
with an interferometric approach (i.e., spaceborne InSAR and Ground-Based InSAR, GB-
InSAR), or a non-interferometric approach with image matching (GBSAR), are more use-
ful than an analysis of optical images with 3 bands, or multispectral images from 4 to 12 
bands. But the feasibility of this depends highly on the orientation and size of the landslide. 
In complement, offsets by correlation of both panchromatic and radar-amplitude images 
are also commonly used technique for the measurement of surface deformation (Crippen 
1992; Michel et al. 1999; Van Puymbroeck et al. 2000) complementary to InSAR (Klinger 
et al. 2006; de Michele and Briole 2007; de Michele et al. 2010).

2.3  Airborne Systems

Airborne systems can complement spaceborne techniques. They can be based on a range 
of platforms and sensors (Red–Green–Blue, multispectral sensors, radar, thermal…). The 
most affordable and flexible ones are balloons, blimps balloon and small Unmanned Aerial 
Vehicles (UAVs). UAVs are widely used for landslide studies (Rau et al. 2011, Nietham-
mer et  al. 2012). If we combine the two key words (‘UAV’ and ‘landslide’) in Google 
Scholar, more than 5000 items are identified since 2016. Less expensive than manned air-
craft (ultralight trikes, helicopters, planes), these techniques provide high-resolution meas-
urements of landslides. Two types of data from airborne surveys are frequently used for 
landslide assessment:

https://earthengine.google.com/
https://earthengine.google.com/
https://eos.com/platform/
https://eos.com/platform/
https://www.sentinel-hub.com
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(1) Aerial photographs and orthoimages in the visible domain (RGB). These are essential 
for landslide detection especially for a historical reconstruction of the slope deforma-
tion using aerial images time series. The detection of landslides is based on the poten-
tial visibility of specific morphological features where the vegetation cover is sparse 
(e.g., major and minor scarps, hummocks…),

(2) 3D models with point clouds, 3D meshes, Digital Elevation Models (DEM)/Digital Ter-
rain Model (DTM) and Digital Surface Model (DSM). DEMs (the generic term DEM 
will be retained for the paper) are exploited quasi-systematically for morphological 
and topographical analysis. DEMs are essential for morphological analyses, landslides 
detection (van Westen et al. 2008) and deformation quantification (Casson et al. 2005). 
Especially if we consider that landslide distribution varies considerably with the slope 
aspect and value (Chen et al. 2014).

Airborne-based LiDAR (Light Detection And Ranging), also mentioned Airborne 
Laser Scanning (ALS), provides very high-resolution data with several million georefer-
enced 3D point clouds and high-resolution DEM reconstruction (centimetric/decimetric). 
For almost 20 years, airborne LiDAR technology offers several application possibilities for 
landslide investigation presented in Jaboyedoff et al. (2012). Today, there are more than 10 
000 references in Google Scholar since 2016. This technology provides major information 
on topography, especially with the full-waveform laser scanning systems that are able to 
record the entire emitted and backscattered signal of each laser pulse even for vegetated 
areas with a high-point density possibility throughout vegetation. The theoretical principles 
of full-waveform LiDAR are presented in Mallet and Bretar (2009). This technology has 
highly advanced the accuracy of landslide inventory maps (Schulz 2004; Ardizzone et al. 
2007), the monitoring of surface displacement, and provides essential data for landslide 
susceptibility (i.e., DEM derivatives with slope, surface roughness, curvature calculation in 
Van Den Eeckhaut et al. 2012). The gain of information by LiDAR also concerns detailed 
morphological features investigation at the sub-meter scale (Lissak et al. 2014; Bunn et al. 
2019). But exploration of this kind of Very High-Resolution (VHR) data can be limited by 
the cost of surveys. Consequently, UAVs can be an alternative to acquire high-resolution 
data (3D point cloud, DEM and orthophotos). But once again, it depends on the parameter 
studied that can be too large to be overflown by UAV and by boat-based mobile laser scan-
ning (Michoud et al. 2014).

2.4  Ground Systems

Ground techniques can be complementary to other techniques (Stumpf et al. 2015; Wilkin-
son et  al. 2016) mentioned above. Because airborne data acquisition depends on flying 
conditions, and/or can be expensive, spaceborne data availability depends on slope orienta-
tion and on the temporal/spatial resolution. Three main categories of ground-based remote-
sensing techniques are used in landslide monitoring: 1) Terrestrial Optical Photogram-
metry (TOP), 2) Terrestrial Laser Scanning (TLS), 3) Ground-Based Synthetic Aperture 
Radar Interferometry (GB-InSAR).

2.4.1  Terrestrial Optical Photogrammetry (TOP) Technique

This technique is reputed in geoscience for the 3D-textured restitution, but also for the con-
struction of high-resolution DEMs at high spatial and temporal resolution (centimeter to 
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sub-decimetric accuracy). Due to the fact this technique is simple to use and can be easily 
repeated close in time, TOP with SfM (Structure from Motion) technique has been increas-
ingly used in recent years (Abellan et al. 2016; James et al. 2019). SfM photogrammetry is 
based on an improved principle of stereoscopy, i.e., the reproduction of a relief perception 
from two flat images in the same way as human vision. The objective is to model a real 
object or environment in 3D from a multitude of 2D images using algorithms that have 
ability to detect and identify similar elements between two pictures (i.e., “Scale Invariant 
Feature Transform” in Lowe 1999, 2004). Through a number of photographs, algorithms 
will use common pixels of each picture to reconstruct the geometry of the object which 
must be modelled.

Several publications highlight the application of this technique to study the soil erosion 
(Gudino-Elizondo et al. 2018; Heindel et al. 2018; Di Stefano et al. 2019), volcano hazard 
(Carr et al. 2018; Gomez and Kennedy 2018; Biass et al. 2019), glacier or ice sheet evolu-
tion (Brun et al. 2016; Rossini et al. 2018; Groos et al. 2019), rivers geometry and their 
dynamics (Marteau et al. 2016; Jugie et al. 2018; Rusnák et al. 2018). Although analogue 
photogrammetry has existed since the second part of the 19th century (Aimé Laussedat in 
1849, Albrecht Meydenbauer who first defined the concept in 1867), the progress in the 
field of computing and the democratization of computers over time have allowed the digital 
development of this technique. It is a fast, inexpensive and universally accessible mod-
elling technique that is currently used in a wide range of scientific fields (Westoby et al. 
2012; Jaud et al. 2019; Valkaniotis et al. 2018). For landslide studies, TOP can be applied 
for permanent monitoring with a fixed digital automatic camera in front of the landslide to 
assess displacement rates (in pixels.day−1 in Travelletti et al. 2012; Gance et al. 2014) or by 
multitemporal data acquisition for the 3D geometry reconstruction (Rossi et al. 2018; Ma 
et al. 2019), characterization of the kinematics (Chanut et al. 2017; Warrick et al. 2019).

2.4.2  Multitemporal Terrestrial Laser Scanning (TLS)

TLS is the second ground-based remote-sensing technique widely used for landslide assess-
ment (Bitelli et al. 2004) with more than 4000 references in Google Scholar since 2016. The 
measurement principles are presented in Petrie and Toth (2008), Shan and Toth (2018) and 
Jaboyedoff et al. (2012) prepared a review of laser scanner (airborne and terrestrial) applica-
tions for landslide studies. The TLS is a measuring instrument based on laser technology that 
can measure distance to a high degree of accuracy between the instrument and an object to be 
measured. It is based on a point cloud using distance measurement by the delay between the 
sending of an infrared laser pulse and the return of the reflected pulse (Slob and Hack 2004; 
Teza et al. 2007). The laser instrument is able to measure the precise time interval between 
the pulse emitted by the laser beam located at point A and its return after reflection from the 
object to be measured (e.g., slope, river bank…) located at point B (Petrie and Toth 2008). 
Compared to terrestrial photogrammetry, this instrument provides a high density point cloud 
(per  m2) measuring all elements of the landscape. Consequently, the reflected pulse can be 
processed to distinguish the vegetation from the soil to extract it. However, TLS is more 
expensive from a financial point of view than TOP. It also requires more operators on the field. 
Campaign measurement can be laborious for difficult to access locations such as mountains 
or coastal areas with high tides (Medjkane et al. 2018). Because TLS has been developed for 
precision surveying applications, combined with field measurement, this instrument is now 
commonly employed to produce highly detailed 3D point clouds in geoscience (Telling et al. 
2017; Piégay et al. 2020). Over the last two decades, TLS has proven to be an increasingly 
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practical option for landslide assessment (Delacourt et al. 2007; Jaboyedoff et al. 2012). This 
technique is employed at various scales ranging from a fixed sector (i.e., a specific part of 
the landslide such as landslide toe), to large scale (i.e., entire landslide area, Tyszkowski and 
Cebulski 2019) and for largest areas, TLS with mobile platforms can be used for coverage of 
several kilometres (Michoud et al. 2014). Application of TLS for the characterization of the 
landslide kinematics or for the reconstruction of 3D geometric models is significant.

2.4.3  Ground‑Based Radar for SAR Interferometry

Ground-based SAR (GBSAR, Tarchi et  al. 2003; Corsini et  al. 2006, 2013; Herrera et  al. 
2009; Barla et al. 2010; Monserrat et al. 2014) uses a Radar sensor (in most cases working in 
Ku band) in a moving configuration for enabling Synthetic Aperture processing in a similar 
way as for spaceborne imagery. Currently, two concepts are most used to control the motion of 
such a sensor. The first, known as linear SAR, is to install the radar on a rail (typically 2–3 m 
long) allowing a translation motion (e.g., Tarchi et al. 2003). On the second, the radar is on 
a tripod with a mechanism allowing a rotation motion of the tool (e.g., Werner et al. 2008). 
The choice between both configurations depends on the context of the motion to be observed. 
In particular, for given sensor’s characteristics, the configurations are not equivalent in terms 
of range and swath—use of rail is generally better for longer ranges but has a reduced swath 
compared to the tripod—and ease of installation—installed on a tripod is generally a more 
portable device.

For slope instabilities (notably landslides, but such GBSAR systems are also widely used 
for monitoring active open pit mines) monitoring, GBSAR is used in an interferometric con-
figuration. The tool can be installed in front of the slope to be monitored and acquires data 
with a repeat cycle up to about one minute. Typically, the tool is adapted to monitor slopes 
in a range between about 100 m and few kilometers with a resolution of the order of 0.1 m—
depending on the distance to the sensor. It therefore allows to monitor a wide spectrum of 
landslides, in terms of size and kinematics, to be monitored. With respect to spaceborne inter-
ferometric techniques, GBSAR is suitable to monitor slopes with previously known motion 
or high estimated susceptibility and having a specific interest in terms of risk management 
(e.g., that could represent a threat for identified assets/persons). If spaceborne interferometric 
techniques cover wider areas and give information on past motions they cannot—with the cur-
rent missions—provide a high temporal resolution comparable with GBSAR. Both techniques 
having different domains of application can therefore be used in a complementary way. In 
addition, due to their characteristics, GBSAR tools with adapted communications systems can 
be used in early warning systems.

Finally, noteworthy is the fact that—in a similar way as for spaceborne SAR imagery—
offset tracking techniques on the amplitude measurements can be applied to GBSAR data as 
a complement to interferometric processing (Crosetto et al. 2014). This non-interferometric 
approach to estimate slope deformation can be useful for monitoring very fast motions (sev-
eral m  day−1) where GB-InSAR is not reliable.



1403Surveys in Geophysics (2020) 41:1391–1435 

1 3

3  Earth Observation Data and Methods for Landslide Detection 
and Inventory

In risk assessment, there are two main issues: (1) hazard identification and (2) mapping. 
Both are essential to avoid the exposure of goods and people to hazard. In a context of 
crisis management, it is often time pressure to detect landslides in specific areas in order 
to assist people and lead rescue operations. Inventory maps are useful tools for authorities 
for risk management and to gain knowledge on hazard extension. But most of the time they 
are only available for limited areas (Guzzetti et al. 2012). Moreover, inventories should be 
regularly updated, complemented by historical databases to consider the geographical dis-
tribution of past (Svennevig 2019) and recent landslides in different time periods (location 
of the hazard initiation and extension, age…). The regular updating of inventories is also 
complicated and requires large effort (Bell et al. 2012; Burns and Madin 2009; Burns et al. 
2012; Galli et al. 2008; Guzzetti et al. 2012) especially for inaccessible high altitude areas 
(Du et  al. 2020). But they are essential for Landslide Susceptibility Mapping (LSM) for 
risk mitigation and planning; the accurate detection of landslide locations highly influence 
the landslide susceptibility analysis (Galli et al. 2008, Song et al. 2012).

Traditionally, for event-based inventories, field reconnaissance approaches by scien-
tists can be conducted (Brunsden 1993). The aim is to identify and delineate landslides, 
but field-based approaches are time-consuming and can be laborious and tedious for large 
areas (Yu and Chen 2017) and especially when the area is inaccessible or covered by dense 
vegetation (Ardizzone et al. 2007). Furthermore, for regularly updating inventories, field 
reconnaissance approaches are almost impossible, especially after high intensity hazard 
occurrence, when multiple instabilities trigger simultaneously (Xu et al. 2019). Thus, aerial 
and space borne data analysis are good alternatives for landslide investigation, especially 
over large areas (> 200 km2). With remotely sensed data, temporal sequences of images 
can accurately indicate spectral changes based on surface physical condition variations 
and induced by landslide triggering. In this way, the use of airborne and spaceborne data 
has gradually complemented field surveys with a simplified acquisition of multi-resolution 
images (multispectral or panchromatic, radar), and models (Digital Terrain Model DTM, 
Digital Elevation Model DEM, Digital Surface Model DSM) with increasing resolution 
degrees. In this way, various types of remotely sensed data exist and their choice in their 
use depends on the study site properties and funding.

3.1  Data Preprocessing

Data preparation consists of extraction of metrics from satellite and aerial images and from 
DEMs. The preprocessing data will be useful for (1) landslide identification, inventory 
based on visual interpretation of images or based on image classification, (2) for landslide 
susceptibility mapping (LSM) with the production of geospatial data to define the condi-
tioning factors of landslide triggering, (3) for image comparison for the characterization 
of the landslide kinematics. Two different types of preprocessing are highlighted. One, 
focused on radiometric information to create additional geospatial raster layers, is mainly 
based on optical satellite images. The other considers the spatial relationship of pixels and 
is focused on the radiometric information to create additional geospatial raster layers. This 
analysis is mainly based on optical satellite images. The second type of preprocessing con-
siders the spatial relationship of pixels and is mainly based on DEM analysis.
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3.1.1  Radiometric Analysis

In the selected papers for this review, the radiometric analysis of optical images mainly 
consists of index calculations to discriminate areas covered by vegetation from exposed 
bare soils (Du et al. 2020) and to detect anomalies in vegetation cover (Fig. 1). To facilitate 
the distinction between vegetation and bare soil several spectral indices can be calculated 
using Red Green Blue (RGB) bands of orthophotos (Comert et  al. 2019) in Eq.  (1)–(5). 
But for landslide modelling or detection, most studies considering radiometric analysis rely 
on satellite images to calculate the Normalized Difference Vegetation Index (NDVI) with 
near-infrared (NIR) and Red bands in Eq.  (6) (Yang and Chen 2010; Song et  al. 2012; 
Yang et al. 2013; Behling et al. 2014; Moosavi et al. 2014; Achour and Pourghasemi 2019; 
Arabameri et al. 2019; Ghorbanzadeh et al. 2019; Wang et al. 2019; Bui et al. 2020; Du 
et al. 2020; Fang et al. 2020; Hong et al. 2015; Hu et al. 2020; Huang et al. 2020).

But other metrics can be calculated to distinguish specific features related to landslides 
(e.g., Normalized Difference Blue–Red Band Index (NDBRBI) in Eq. (8) in Comert et al. 
2019 was considered as effective for extracting the shadow areas on orthophotos). Bright-
ness for RGB images is also significant to distinguish landslides (Rau et al. 2011) because 
landslide areas have higher intensity than the other image objects.

3.1.2  Spatial Analysis

The spatial analysis of images (Fig.  1) consists here to study the spatial relationship of 
pixels in the image to gain knowledge on (1) topographic and morphometric features, (2) 

(1)Normalized Green Blue Difference Band Index (NGBDI) ∶ (G − B)∕(G + B)

(2)Red Band Ratio (RBR) ∶ R∕(R + G + B)

(3)Green Band Ratio (GBR) ∶ G∕(R + G + B)

(4)Excess Greenness Index (EGI) ∶ 2 ∗ G − R − B

(5)Green-RedVegetation Index (GRVI) (Rau et al. 2011) ∶ (G − R)∕(G + R)

(6)Normalized Difference Vegetation Index (NDVI) ∶ (NIR − R)∕(NIR + R)

(7)Soil-adjusted vegetation index (SAVI) ∶ (1 + L)(NIR − R)∕(NIR + R + L)

(8)Normalized Difference Blue-Red Band Index (NDBRBI) ∶ (B − R)∕(B + R)

Fig. 1  Examples of radiometric, spatial and textural indicators calculated with R libraries for landslide 
analysis from UAV derived-DSM (flight on 31 July 2017, images provided by Kobe University) and mul-
tispectral image (Pléiades image, 30 September 2017) above Kyushu island (Japan). a RGB drone image, 
b true colour Pleiades image (2 m), c true colour Pan-sharpened Pleiades image (0.5 m), d NDVI index, 
e ATSAVI index, f SAVI index, g local relief model by low-pass filter in LRM toolbox ArcGIS ® (Novák 
2014), h curvature, i openness

▸
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hydrological environment, and (3) texture and roughness of the terrain. Several metrics 
and derivatives based on statistical methods and filtering are usually calculated to gain 
knowledge on geographical context of the study area. Among all existing DEM derivatives 
some conventional ones are almost systematically calculated such as slope, altitude, curva-
ture. Pawluszek and Borkowski (2016), and Van den Eeckhaut et al. (2012) summarize the 
main DEM derivatives information used for landslide detection with topographic metrics 
(e.g., openness, roughness, morphological gradient, curvature..), and hydromorphological 
metrics (e.g., Stream Power Index SPI to measure the erosion power of the stream, Topo-
graphic Wetness Index—TWI to measure the degree of accumulation of water at a site and 
thus influences the occurrence of landslides in Catani et al. (2013). The Sky View Factor 
(SVF) is another relief visualization technique that represents the ratio between the visible 
sky and a hemisphere centred over the study area in a given point. This technique is based 
on the direct illumination of relief to intuitively recognize features (Kokalj et al. 2016).

Statistical methods focused on texture analysis can be also exploited to consider the spa-
tial relationship of pixels and emphase the relief features. In Mezaal et al. (2018) the Grey-
Level Co-occurrence Matrix (GLCM) texture features were calculated on airborne laser 
scanning data with eCognition software, and in Comert et al. (2019) on the red band image 
to highlight specific patterns features for detecting and differentiating landslides. The 
GLCM function (Package ‘glcm’ in R software) is used to characterize the texture images 
by calculating how often pairs of pixels with specific values and in a specified spatial rela-
tionship occur in an image, to create a matrix. DEM filtering combined with conventional 
derivatives is also a useful technique to detect features associated with landslide, such as 
convolution filtering, low-pass filtering in Chen et al. (2014).

3.2  Data Interpretation

Interpretation of aerial photos or satellite images are approaches commonly used to identify 
past and recent mass movements (Chigira et al. 2004; Catani et al. 2005; Ardizzone et al. 
2007; Galli et al. 2008; Yang and Chen 2010; Song et al. 2012; Chen et al. 2014; Xu et al. 
2014; Zhang et al. 2014; Ciampalini et al. 2015; Fressard et al. 2016; Fan et al. 2017, 2018; 
Roulland et al. 2019; Bui et al. 2019; Görüm 2019; Lewkowicz and Way 2019; Pánek et al. 
2019; Pham et al. 2019; Wang et al. 2019; Du et al. 2020). Based on morphological fea-
tures of the landscape and visible ‘anomalies’, visual interpretation of images can be faster 
than the ground survey approach to identify mass movement. Nevertheless, ground inves-
tigation is meaningful in a second step of the inventory process to validate interpretations. 
Nevertheless, the quality of the visual interpretation highly depends on the complexity of 
the terrain, the vegetation cover, and on the acquisition procedures. For areas of dense veg-
etation, the use of a LiDAR-derived elevation model (3D models: pointcloud, 3D meshes, 
DEMs) helps to identify undercovered features (Chigira et  al. 2004; Mckean and Roer-
ing 2004; Ardizzone et al. 2007; Van Den Eeckhaut et al. 2012; Razak et al. 2013; Lissak 
et al. 2014; Pawluszek and Borkowski 2016; Bunn et al. 2019; Görüm 2019). DEM deriva-
tives such as slope values, aspect, roughness, orientation, openness, and Sky View Factor 
indicators can be calculated to highlight morphological features induced by landslides and 
extract hazard boundaries. Thus, statistical differences between field-based inventory and 
image/models interpretation can exist. For example, the size of landslide mapped by field 
recognition can be larger than landslide mapped using LiDAR-derived DEM (Ardizzone 
et al. 2007). It can easily be explained by the accessibility and visibility of the study area.
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3.3  Normalized Difference Vegetation Index (NDVI)

In some specific contexts, morphological changes induced by landslide triggering can 
be linked to land cover changes. According to the postulate that a region is character-
ized by a relatively consistent vegetation cover between 2 years, a multitemporal optical 
remote-sensing approach based on radiometric analysis with NDVI values can be a solu-
tion to detect landslide occurrence (Lin et al. 2004). For large areas inventories, most 
studies are based on post-failure images because major changes in the reflectance char-
acteristics are linked to landslide surface (Yang et al. 2013). For systematic spatiotem-
poral mapping of landslides, an approach based on NDVI trajectory over time seems 
to be efficient (Behling et al. 2014). NDVI index can be generated at various temporal 
intervals (several days, during one year, or bitemporal) to identify post-event landslides 
or to define evolution patterns of reactivated one. NDVI times series are analysed in 
Yang et al. 2013, considering the potential disturbance induced by cloud or atmosphere 
to compare NDVI value before co-seismic landslide event and after 2008 Wenchuan 
earthquake. But variation in phenology states due to seasonal vegetation cover evolution 
should also be considered before associating NDVI values and landsliding.

NDVI values can be a useful indicator to detect landslides in various environments. 
For example, tundra is in most parts of the Arctic characterized by vegetation cover-
age. Any environmental disturbance results in removal of vegetation and soils are then 
exposed. Mass movements are abundant in these areas, more common than in other 
regions around the world (several tens of thousand have been documented). Their occur-
rence is conditioned by permafrost and thus they are sensitive to temperature changes. 
Progressive rise in mean summer air temperature due to climate change is therefore 
expected to trigger specifically retrogressive thaw slumps according to Lewkowicz and 
Way (2019). Approximately 22% of the Northern Hemisphere are underlain by perma-
frost based on a recent account (Obu et al. 2019). Such mass movements are a promi-
nent example for the need of automatic mapping procedures. A major role is played by 
deposits of former glaciations and marine terraces specifically the presence of ground 
ice (Lewkowicz and Way 2019; Leibman et al. 2015). Ice melt causes thermokarst (top-
ographic depression generated by thawing ground ice) which results in various specific 
surface features including landslides. Unconsolidated sediments are currently frozen but 
can be mobilized under exceptionally warm conditions. The depth of the seasonal thaw 
layer (active layer thickness—ALT) exceeds normal conditions in exceptionally warm 
years (Bartsch et al. 2019). Ice lenses at the base of the active layer melt leading to high 
porewater pressures, a reduction in effective shear strength, and eventually slope failure. 
Retrogressive Thaw Slumps (RTS) are a common type of cryogenic landslides which 
are caused by this mechanism (Lantz et al. 2009). They are therefore more likely to be 
initiated under unusually warm conditions. This has been described for sites in Canada 
(Lewkowicz and Way 2019; Jones et al. 2019) and in Russia (Babkina et al. 2019). As 
an example, more than 4000 thaw slumps have been initiated since 1984 over an area of 
70,000 km2 (Lewkowicz and Way 2019), covering an area of 64 km2. Clusters of RTS 
have been reported for different regions representing a range of climate conditions span-
ning from − 19.7 °C to − 7° Mean Annual Air Temperature (Jones et al. 2019; Babkina 
et  al. 2019). Headwall retreat after initiation is depending more on local conditions, 
especially terrain factors (Jones et  al. 2019) but reactivation is also triggered by high 
temperatures (Babkina et  al. 2019). Retrogressive thaw slumps continue to grow over 
several years until they stabilize. The lifespan of a RTS is determined by the ratio of the 
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slope of the slump floor compared to (and running parallel to) the slope of undisturbed 
terrain (Jones et al. 2019). It can be up to 50 years in extreme cases (French and Wil-
liams 2017). RTS enlarge by retrogression at typical rates of 5–27 m yr−1 (Lewkowicz 
and Way 2019; Jones et al. 2019). Extension is limited to temperatures above 0 °C, so 
growth is taking place within a few months per year only. They are on average smaller 
than 2 ha, but can be larger. Mega slumps are defined as features larger than 20 ha.

Further features in this context are active layer detachment slides (Lewkowicz 2007; 
Rudy et  al. 2016). They are in general smaller than thaw slumps. They can occur on 
slopes as low as 3° (French and Williams 2017). Active layer detachment slides result in 
the formation of bare mineral scar (to of frozen ground) and depositional areas, where 
an earth mass shifts with vegetation.

To detect the occurrence of thaw slumps and detachment slides and their changes 
automatically, multispectral images such as available from Landsat are usually applied 
for analyses of trends (Nitze 2018; Lewkowicz and Way 2019; Jones et al. 2019), espe-
cially to quantify changes of vegetation indices such as NDVI in areas which have been 
mapped as thaw slumps leading to thermocirques (amphitheatrical hollows in Fig.  2). 
Nevertheless, a major constraint in this case is spatial resolution, as features are com-
parably small and multispectral regular acquisitions which go back to the 1990s are of 
comparably coarse spatial resolution. Landsat resolution (30 m) prevents the identifica-
tion of thaw slump areas in many cases as they have a width of few pixels only (exam-
ple of two-pixel width in Fig. 2). Lewkowicz and Way (2019) therefore could not fully 
apply automatic detection and eventually relied on large scale manual post-processing 
utilizing crowdsourcing. In this context, Sentinel-2 with its 10  m resolution provides 
an important step forward in monitoring of retrogressive thaw slumps. Consequently, 
recent features can be mapped with Sentinel-2, also revealing changes within the season 
and the re-establishment of vegetation starting in the lower part.

Fig. 2  Thaw slump vegetation properties from Landsat and Sentinel-2 for two sites located on the Yamal 
peninsula, Russia. a From left to right: NDVI trends from Landsat (Nitze et  al. 2018), NDVI from two 
Sentinel-2 acquisitions in 2016 for feature #1 (top) and #2 (bottom). Lines and dots represent outlines based 
on GPS surveys. b photograph of feature #2 (thermocirque, viewing direction from NE to SW) (Picture: 
Bartsch 26 August 2015)
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3.4  Landslide Identification Using Machine Learning Approaches

The identification of landslides for risk assessment and management is possible through a 
visual interpretation of multi-source data. Although effective, this technique is time-con-
suming (especially for large areas) and very difficult to apply for diachronic studies. Con-
sequently, many studies aim to automate or semi-automate detection methods. For this pur-
pose, Machine Learning (ML) and Deep Learning (DL) approaches can be useful. Whereas 
these approaches were few employed for landslide assessment until the early 2000s (Bui 
et al. 2019), today they are developed for various applications: landslide triggering predic-
tion (Farahmand and AghaKouchak 2013), landslide displacement prediction (Lian et al. 
2013; Zhao and Du 2016), landslide detection (Stumpf and Kerle 2011a, b; Chen et  al. 
2014; Moosavi et al. 2014; Bunn et al. 2019; Ghorbanzadeh et al. 2019).

3.4.1  Pixel/Object‑Based Techniques

For landslide detection, two groups of techniques can be suggested. The first technique, 
and the most frequent, is the Pixel-Based Image Analysis (PBIA). This technique consid-
ers image pixels as fundamental units of analysis. The second is the Object-Based Image 
Analysis (OBIA). This technique is based on the creation of image objects, or segments 
used for image analysis.

In pixel-based approaches, each pixel is classified without considering neighbouring 
pixels and all pixels are considered as spatially independent from each other. Consequently, 
pixel-based approaches can be sensitive to noise (Van den Eeckhaut et al. 2012), especially 
with Very High-Resolution (VHR) images that provide numerous information with high 
spatial resolution but low spectral domain (Lv et al. 2020).

Object-based approach is a good alternative to detect landslides (Stumpf and Kerle 
2011a, b; Kurtz et al. 2014; Moosavi et al. 2014; Li et al. 2015; Casagli et al. 2016, 2017; 
Bunn et al. 2019) from various data sources (as well as Very High-Resolution optical data 
than LiDAR-derived DEM). This technique is based on 2 steps: the image segmentation 
and the image classification. The image segmentation relies on various pixels in groups 
into homogeneous objects or regions, considering their similarities between neighbours 
(Fig. 3). Several algorithms of segmentation exist. In  eCognition® software, the most com-
monly used algorithm is “Multi-Resolution Segmentation” (MRS). This method is based 
on the pairwise region-merging technique and provides good results for landslide invento-
ries (Moosavi et al. 2014; Mezaal et al. 2018). But for an optimal segmentation, the struc-
ture of the segmentation into several levels of segmentation must be a possibility to cluster 
image pixels according to their homogeneity in spectral, spatial and textural characteristics 
(Anders et al. 2011). Objects are merged or distinguished according to three parameters: 
colour, scale, and shape (Fig. 3).

For better segmentation, an a priori topographic information can be integrated in the 
process (e.g., landslide morphology from DEM analysis with location of main scarp, 
deposits, secondary scarps…). It can considerably influence the result of segmentation 
(Van Den Eeckhaut et  al. 2012; Li et  al. 2015). Spectral bands of orthophotos or multi-
spectral images can be used as input layers to create image objects. But various studies 
employed other layers for segmentation (Rau et al. 2011; Stumpf and Kerle 2011a; Chen 
et al. 2014). Van Den Eeckhaut et al. (2012) use 45 segmentation layers of LiDAR deriva-
tive maps (e.g., altitude, slope, aspect, curvature, Sky View Factor).
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3.4.2  From Conventional Classification Algorithms to Artificial Neural Network

Machine Learning (ML) methods are effective for image classification and landslide detec-
tion based on various ML methods and classifiers using supervised and unsupervised 
algorithms. Automatic landslide detection by ML depends on the algorithm used, train-
ing samples (for the supervised classification) and validation data. While in pixel-based 
approaches a class is attributed for each pixel according to spectral information; in object-
based approaches each segment or object is classified according to spectral, geometric, 
contextual, and textural information of the image object. All mentioned classification 
presented below can be applied for supervised pixel-based or object-based classification. 
But regarding several references, landslide detection and inventory using object-based 
approach seems to provide better results than a pixel-based approach (Comert et al. 2019). 
For example, in Bunn et al. (2019) the recognition of landslide features is 70% accurate. 
But with OBIA, the result of the classification highly depends on the segmentation qual-
ity which one also depends on (1) the image resolution (Stumpf and Kerle 2011a; Kurtz 
et al. 2014), (2) the number of available bands, (3) the segmentation scale (under or over 
segment images in Moosavi et al. 2014), and/or the training sample quality for supervised 
methods. Training samples can be expert-based (Van Den Eeckhaut et  al. 2012) or ran-
dom-based (Chen et al. 2014; Pawluszek and Borkowski 2016). Despite the good results 
with object-based approaches, pixel-based approaches are still the predominant methods 
(Casagli et al. 2016). Pixel-based approaches can provide results with several misclassified 
pixels, especially with high spectral variance data in High-Resolution images, and if clas-
sification is only focused on spectral characteristics (Moosavi et al. 2014) with threshold-
based approaches and classification (Li et al. 2016).

Regardless of the technique (pixel/object-based), several classification algorithms 
exist and can be applied separately or jointly (e.g., Support Vector Machine algorithm—
SVM in Van Den Eeckhaut et al. 2012; Random Forest—RF algorithm in Stumpf and 
Kerle 2011a, both in Li et al. 2015). Both techniques have been used in a wide range 
of remote-sensing applications including landslide detection and susceptibility mapping 
(Ballabio and Sterlacchini 2012; Catani et  al. 2013; Achour and Pourghasemi 2019; 
Arabameri et al. 2019; Bui et al. 2020; Fang et al. 2020). For a good integration of the 

Fig. 3  RGB drone image segmentation using eCognition software ®. At this step, the segmentation param-
eters are focused on the shape of objects. Several parameters are tested here for a better pixel merging: com-
pactness value (0.5) and shape value A)0.1, B)0.3, D) 0.5, C) 0.9
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spectral and spatial information several classification algorithms (Chunhui et al. 2018) 
and processes (Fig. 4) can be useful to detect landslides (Comert et al. 2019).

Concerning the support data, classification processes to detect landslides are mainly 
based on spectral information from orthophotos or multispectral images (Ghorbanzadeh 
et al. 2019). But additional information from DEM (Kurtz et al. 2014), DEM derivatives 
(Van den Eeckhaut et al. 2012), or radiometric analysis (NDVI) can be used to improve 
the classification accuracy (Comert et al. 2019; Fang et al. 2020).

Random Forest (RF) and Support Vector Machine (SVM) algorithms are popular 
powerful supervised learning techniques (Cortes and Vapnik 1995; Pal 2005) based on a 
set of training samples for image classification and regression analysis. Huang and Zhao 
2018 underline the interest of these modelling techniques, especially the SVM method 
which seems to be more effective than other methods (Moosavi et al. 2014).

The RF technique is based on multiple decision trees to train and predict samples 
(Breiman 2001). RF is considered as less sensitive to the over-fitting problem caused 
by complex datasets than other decision trees. This technique can be considered as the 
most effective non-parametric ensemble learning methods (Ghorbanzadeh et al. 2019). 
But both methods (SVM and RF) are generally used simultaneously (Table 2, Fig. 5). 
The advantage of the SVM method is the possibility to classify each pixel according 
to a hyperplane and separate classes that cannot be split with a linear classifier. Thus, 
different Kernel functions can be specified (Hong et al. 2016) to perform the SVM clas-
sification (e.g., polynomial, sigmoid, and Radial Basis Function—RBF). Some authors 
have proposed to merge classifications to improve results using fusion techniques (i.e., 
Dempster–Shafer theory—DST and variants) on results issued from various classifiers 
such as SVM, K-nearest neighbour (KNN) and RF in Mezaal et al. (2018). The optimi-
zation of the both methods is also possible. To illustrate, in Bui et al. (2019) the Least 
Squares Support Vector Machine (LSSVM) technique has been employed to label pixels 
to be either “non landslide” (negative class) or “landslide” (positive class) for landslide 
prediction modelling. The optimization of classifiers can be performed by using boost-
ing algorithms like AdaBoost (Li et  al. 2008; Kadavi et  al. 2018), LogitBoost, Multi-
class Classifier, Bagging models (Bui et al. 2019), and multi-boost models (Pham et al. 
2019). Adaboost (Freund and Schapire 1995) is one of the most used machine learn-
ing ensemble algorithms to create a series of individual classifiers to classify training 
data. The interest of the method is that Adaboost is based on an adaptive resampling 

Fig. 4  Flowchart of the various methods and data used for landslide detection
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technique for which classifiers can be progressively adjusted according to misclassified 
dataset.

To illustrate, several classifiers have been performed (Fig.  5) with two supervised 
(RF, SVM) and one unsupervised method (K-means) for pixel-based and object-based 
approaches (Fig.  5b). The OBIA approach has been tested in eCognition  software® for 
UAV images because of their low spectral resolution (with slope, Local Relief Model, 
R-G-B bands, vegetation index GRVI (Eq. 4) and EGI (Eq. 5)). The pixel-based approach 
was performed on Pléiades image with ‘Caret’ library in R software (with NDVI, ATSAVI, 
Slope, curvature, Sky View Factor, R-G-B-NIR bands). Several datasets have been 
tested (Fig.  1) to define the most relevant layers. Evidently, an important preprocessing 
work is necessary with radiometric analysis [several indexes tested potentially redundant 
(Eq. (1)–(8))], DEM derivatives calculation (see below: LRM, SVF, various slope classifi-
cations…). Some layers are a priori considered as essential for landslide assessment (e.g., 
the topographic layer, Soil-Adjusted Vegetation Index (SAVI) values to consider the soil 
on brightness influence, openness…). Regarding the results in Ghorbanzadeh et al. 2019, 
despite the removal of the topographic layers in their datasets no difference has been seen 
in the classification (RF and SVM). The pixel approach with Very High-Resolution data 
seems to be sensitive to noise and consequently post-processing operations are necessary to 
improve the results (data filtering). In our study, OBIA approach has provided good results 
with 70% of landslide detection and less influenced by image noise. The performance of 
RF is better than SVM in several studies mentioned in Huang and Zhao (2018).

4  Artificial Neural Network (ANN) and Deep Learning (DL) Algorithms 
for Landslide Identification

Another family of classification algorithms exploits Artificial Neural Networks (ANN). 
Over the past 10 years, performances of related approaches generally systematically out-
perform conventional classification methods (Pakhale and Gupta 2010). The interest lies in 
the possibility of ANN with deep layers to automatically compute efficient spatial features 
and classify them in a single framework. Artificial Neural Networks can consist of deep 
structure and refer to ‘Deep Learning’ technique (Table 2). Among ANNs, deep learning 

Fig. 5  Extract of landslide inventory map on Kyushu island after 2017 landslide event. Multi-algorithms 
were tested with a K-means classification, b Object-based classification, c support vector machine classifi-
cation (SVM), d random forest (RF) classification
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architecture provides an opportunity to jointly optimize several related tasks together con-
siders multi-layers processing in the model (to get more information on deep neural net-
works refer to LeCun et  al. 2015; Schmidhuber 2015). Deep neural network approaches 
using Earth Observation have been particularly used over the early years, mainly thanks 
to the power of Convolutional Neural Networks—CNNs (Zhu et al. 2017; Ma et al. 2019). 
Zhao et  al. (2019) present a review of deep learning-based object detection frameworks 
with a specific presentation of CNNs and their applications in landslide studies. CNN is a 
biologically-inspired DL technique that has shown powerful capabilities in feature extrac-
tion (Girshick 2015). This type of network is considered as the most popular model of DL, 
even in the field of landslide researches (Table 2). The main idea is to apply, in each layer 
of a deep neural network, spatial convolutions where the weights are learned by the model 
during the training stage. In each layer only a subset of the information embedded in it is 
kept (pooling). It results in images of decreasing sizes but with more and more features 
since many convolutions are applied. This enables to automatically compute many spatial 
features adapted to the observed data (see, for example, Zhao et al. (2019)). DL with CNN 
already have been applied for landslide detection with multispectral, aerial or SAR images 
(Gong et al. 2015; Lei et al. 2019a, b; Lv et al. 2020) and can be employed for features 
extraction and then combined with another classifier (i.e., CNN + SVM, CNN + RF, … in 
Fang et al. 2020).

As a matter of fact, the deep architecture of CNN provides an exponentially increased 
expressive capability for object detection such as landslides (Table 2). Regarding the bib-
liography, the results of the image classification, and consequently the landslide detection, 
will depend on image accuracy, input data selected, chosen algorithm and CNN architec-
ture. Initially the CNN approaches aimed to compute features and then to classify entire 
images (i.e., one label per image). Based on the idea of CNN, several extensions have been 
proposed with deconvolution layers able to spatially relocalize the extracted features. For 
example, objects can be detected with bounding boxes (R-CNN) or each pixel of the image 
can be classified (semantic segmentation, FCN and variants) based on numerous input 
datasets (multispectral images, various radiometrics indice layers, DEM derivatives lay-
ers… and also training samples for supervised methods). Deep learning techniques with 
CNN, R-CNN or FCN provide great potential in the feature extraction process (Chen et al. 
2017; Zhao and Du 2016; Lei et  al. 2019a, b; Fang et  al. 2020) for landslide detection. 
These approaches are briefly described below.

(1) Region-based Convolutional Network (R-CNN) and fast R-CNN (Girshick 2015) are 
region-based methods able to extract several bounding boxes in images. These tech-
niques do not seem to be the most adequate for risk assessment, because one of the 
main challenges in risk assessment is to define with accuracy the limits of landslides 
in landscape. A region-based approach is consequently not sufficient for hazard assess-
ment.

(2) Fully Convolutional Networks (FCN) techniques and their extensions predict a class for 
each pixel of the input image instead of classify region (Long et al. 2015). Numerous 
recent work has shown the effectiveness of FCN principles for semantic segmentation 
(FCN-Fast-FCN, U-Net, Res-Net, etc.). Although considered to be a robust approach, 
Ghorbanzadeh et al. 2019 consider CNN methods to be as effective (if not less) as 
conventional learning algorithms (e.g., RF, SVM, ANN). Particularly when modelling 
is based on spectral information only and training samples for supervised methods ran-
domly selected. However, other studies (Lei et al. 2019a, b; Liu et al. 2020) highlight 
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the performance of FCN to learn better image features to improve landslide inventory 
and Landslide Susceptibility Mapping (Zhao and Du 2016; Fang et al. 2020).

5  Mass Movement and Change Detection by Remote Sensing

To characterize and quantify accurately surface and depth deformation several monitor-
ing techniques are possible (GNSS receiver, benchmark, extensometers, inclinometers…, 
López-Davalillo et  al. 2014; Jiang et  al. 2016; Carlà et  al. 2019). Numerous field moni-
toring techniques can provide admittedly high accuracy 3D data of slope dynamics but 
with a limited spatial coverage. Field investigation over large landslides is highly depend-
ent on field accessibility and costs. Consequently, a dense multi-sensors coverage is hardly 
conceivable. In this context, remote-sensed techniques can be employed as additional 
support to field monitoring based on sensors to increase the size of investigated areas 
and the spatial resolution of data. The choice of the appropriate method mainly depends 
on (1) landslide velocity, (2) size, (3) location orientation, or its morphostructural con-
text (high coastal mountain north–south orientation…), (4) and vegetation cover. Thus, 
three approaches frequently emerge. While for large landslides undercovered by vegeta-
tion, radar imaging (Crosetto et al. 2016) will be favoured, lasergrammetry or photogram-
metry, image correlation (Casson et  al. 2003; Ayoub et  al. 2009; Travelletti et  al. 2012) 
will be privileged in poorly vegetated and accessible areas. For large landslide detection 
and displacement measurement (Berardino et  al. 2002; Colesanti and Wasowski 2006) 
the most widely used method is Synthetic Aperture Radar Interferometry (InSAR) based 
on scattering properties of Earth surface (Bamler and Hartl 1998). This technique meas-
ures the phase and the amplitudes of the backscattered microwaves signals, comparing the 
phase information between signals acquired at different epochs, phase differences being 
proportional to ground motion. Persistent Scatterer Interferometry (PS-InSAR, Crosetto 
et al. 2016), Differential SAR Interferometry (DInSAR, Rudy et al. 2018), and Small Base-
line interferometry (SBAS) are some examples of how the use of SAR has evolved with 
improved precision. These methods make it possible to detect and quantify surface defor-
mations (landslides including thaw slumps and active layer detachment slides, rock gla-
cier, solifluction detection (Barboux et al. 2013, 2014; Echelard et al. 2013; Zwieback et al. 
2018; Rouyet et al. 2019, Paquette et al. 2020) with repeat pass InSAR, by measuring, field 
for example, the phase difference between two radar images acquired in a satellite, airborne 
or terrestrial context.

5.1  SAR and Optical Cross‑Correlation for Measuring Landslide Kinematics

To quantify surface deformation, radar-amplitude images are frequently combined with 
optical images (Crippen 1992; Michel et  al. 1999; Van Puymbroeck et  al. 2000). It has 
been proven complementary to InSAR in a number of geophysical studies (Klinger et al. 
2006; de Michele and Briole 2007; de Michele et al. 2010). The use of cross-correlation of 
optical spaceborne imagery to measure displacement fields of the Earth surface was first 
conceptualized by Robert Crippen (1992) and applied to landslide motion measurement 
from SPOT data. The method relies on the fact that spaceborne images, acquired at dif-
ferent times, can be resampled to the same geometry with the use of a DEM and a robust 
camera model. Residual offsets that remain within the resampled images might then be 
due to terrain motion within the footprint of the images. Surely, other (non-geophysical) 
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residual distortions can exist within the offset field. These can be due to CCD misalign-
ment, the jitter of the satellite, roll, pitch and yaw motion of the sensor. In theory, these lat-
ter distortions can be modelled and removed. Offsets are commonly calculated by differen-
tiating the phase of the Fourier transform calculated on a subset of the images, by means of 
a moving window. The correlation peak is then interpolated to achieve sub-pixel precision. 
It is generally proven that this methodology can be as precise as 1/10th of the pixel size. 
The method has been applied to aerial photos and to satellite optical data (Delacourt et al. 
2004, 2009; Stumpf et al. 2014; Le Bivic et al. 2017; Lacroix et al. 2019). In the optical 
domain the offset fields measured by cross-correlation is in two directions: lines and col-
umns of the image matrix. These fields are commonly regarded as horizontal displacement 
fields. Sometimes this approximation is incorrect; the measured offset field is the apparent 
horizontal offset, which is the projection of the downslope motion induced by the gravita-
tional movements, on the image plane.

In the radar domain, Synthetic Aperture Radar (SAR) data can be used, along with the 
sub-pixel offset method (Fig. 6), to measure displacements fields of the Earth surface due 
to gravitational movements. The SAR sub-pixel correlation method, today called “offset 
tracking”, has been developed for earthquake studies by Michel et  al. (1999). It demon-
strated useful for landslides motion detection in a number of studies (Debella-Gilo and 
Kääb 2011; Li et al. 2011; Raucoules et al. 2013; Singleton et al. 2014; Wang et al. 2016). 
This technique exploits the amplitude channel of the SAR system. It can be applied in 
the observation of fast landslides movements—as opposed to InSAR, since InSAR signal 
decorrelates if the ground motion gradient is higher than half an interferometric fringe per 
pixel—even in scarcely temporally coherent areas. The SAR instrument records the SAR 
echoes in two directions, the Line of Sight (LOS) and the Azimuth directions (i.e., the 
orbit direction). The LOS direction has an angle with respect to the vertical. Therefore, by 
combining ascending and descending correlograms, one can retrieve the 3D vectors of the 
landslide displacement field over time, yielding a spatiotemporal distribution of landslides 
kinematics as described in Raucoules et al. 2013. Today, new generations of optical and 
radar satellites, with improved repeat frequency, can be used along with the sub-pixel offset 

Fig. 6  3D surface displacement 
field of La Valette landslide 
(France) from sub-pixel offset of 
TERRA-SAR X data
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method to extract landslide velocity fields from space and create time series. For instance, 
Li et al. (2011) and Sun and Muller (2016) used multitemporal Terra-SARX data to derive 
landslide motion rate at a sub-pixel level. Valkaniotis et al. (2018) used multiple sensors, 
SAR and optical, to study a co-seismic landslide in Iran; Lacroix et al. (2019) estimated the 
ground displacement from time series analysis of Landsat 8 images, spanning a 5.7-year 
period. They show systematic patterns that correlate with topography and seasonal varia-
tions. They finally show complex nonlinear interannual displacement patterns.

A special case in this context are Arctic coasts, which are highly affected by erosion, up 
to 10 m per year (Lantuit et al. 2012). Coastal retrogressive thaw slumps will for example 
cause the loss of about 50% of cultural sites for 2100 along the Beaufort Sea coast (Canada; 
Irrgang et al. 2019). Many sites have been lost every year since the 1950s. Usually, aerial 
photos, sporadic high-resolution satellite data and, in some extreme cases, Landsat data 
can be used to manually digitize coastlines and quantify their change over time. In general, 
this technique allows only the detection of year to year changes or over several decades and 
the monitoring of seasonal behaviour is impeded by frequent cloud cover across the Arctic. 
In this context, SAR data could be a solution to overcome these constraints but the spatial 
resolution of SAR data is insufficient in case of most available sensors. However, Stettner 
et al. (2018) demonstrated the utility of X-band SAR (2.35 m nominal resolution) for retro-
gressive thaw slumps in association with river bank erosion (Lena Delta, Russia). The rate 
of about 2.5 m over three weeks barely matches the resolution of the sensors and can only 
be retrieved by analysing the progression over the whole season. Stettner et al. (2018) pro-
posed a method which is, however, only applicable for slopes facing directly towards the 
sensor as the detection principle relies on the foreshortening effect of radar data. In such 
cases slopes appear brighter and can be therefore easily distinguished from surrounding 
tundra and river banks. The usually wet (and vegetation free) surfaces add to the magni-
tude of backscatter as the response is conditioned by dielectric properties. A further dis-
advantage is, however, that actual positioning of the cliff-top requires the existence of an 
elevation model valid for the time of acquisition. Rates are therefore relative but can give 
nevertheless valuable insight into seasonality and enable to identify the driving factors in 
these environments. Further developments are needed to extend the use of high-resolution 
SAR data to further coastlines, also not facing the sensor.

5.2  Terrestrial Laser Scanner (Repeated Surveys)

Common landslide monitoring techniques with inclinometers, GNSS receivers, or InSAR 
can be difficult to apply with adequate spatial or temporal resolution; specifically, in for-
ested and steep slope environments. In various geographical contexts, such as coastal 
(Conner and Olsen 2014; Costa et al. 2019), volcanic (Pesci et al. 2011), or mountainous 
areas (Travelletti et al. 2012, 2014; Kenner et al. 2014), repeated campaigns of terrestrial 
laser scanner (TLS) have proven to be an effective way to analyse patterns of mass move-
ment displacements (Jaboyedoff et  al. 2012; Telling et  al. 2017). Indeed, application of 
TLS for displacements measurement can be advantaged for very fast and very slow moving 
landslides. These techniques provide high-resolution 3D points clouds and infra-centimet-
ric resolution models. In some cases, multitemporal point clouds from TLS can be com-
bined with ALS surveys to assess vertical/horizontal displacement fields at various scales, 
to maximize spatial coverage and point density (Fig. 7). But according to the study area 
application of TLS can be spatially limited because of the field accessibility, vegetation 
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cover and laser range (Niethammer et al. 2012). In this context, the characterization of the 
landslide kinematics is challenging and requires the combination of tools.

Normandy (France) coastal landslides (Costa et  al. 2019) can easily illustrate the 
necessity and the difficulties to combine different sources of data to reduce measurement 
uncertainties inherent to the geographical context of the study area. Villerville landslide 
is affected by slow and complex kinematics for which monitoring has been performed by 
conventional techniques (inclinometers) and GNSS surveys since the 1980s. Villerville 
landslide is affected by complex movement patterns with deformations ranging from a few 
millimetres, to several centimetres per year. These displacement values are often close to 

Fig. 7  TLS combined with ALS survey and ground control points (GCPs) for velocity measurement in 
coastal landslide in France
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the detection limit of conventional monitoring equipment. Due to the complex nature of 
its dynamics, and for early warning strategies, various techniques of investigation have 
been implemented with discrete measurements and continuous monitoring. A network 
of two permanent GNSS stations and 17 GNSS stations for campaign measurements was 
deployed on the landslide. Because of a dense vegetation cover and the landslide dimen-
sion, surveys are limited (mainly because of accessibility, logistical and economic con-
straints). In 2011, to detect failures under vegetation cover a first airborne full-waveform 
LiDAR was performed (Fig. 7). Another LiDAR survey was performed by IGN in 2015 
 (Litto3D®) and used to study the deformation pattern of the landslide between 2010 and 
2015. Although Airborne LiDAR modelling accuracy can reach few decimetres, the result 
of LiDAR-derived DEM differencing (DoD) between 2010 and 2015 was not sufficient 
(i.e., the displacement field was below the laser model accuracy. To address this issue, TLS 
was deployed since 2018 for yearly campaigns at the foot of the landslide to generate very 
high-resolution model of this part of the landslide. Data were taken by a RIEGL VZ-400 
instrument equipped with 1550 nm laser wavelength and unique echo digitization (RIEGL 
Laser Measurement Systems 2014). For the best reconstruction of the surface geometry 
and avoiding occlusion the TLS station must be located in the most appropriate positions 
(especially in complex geometry areas) involving multi-scan approach. But a multi-scan, 
a multi-station approach can induce several sources of error affecting the 3D modelling 
and as a result the estimation of displacement values (Barbarella et al. 2017). The surveys 
of the landslide toe were carried out where the vegetation cover is sparse. But the study 
area is located in a coastal environment, consequently the field of view is limited by the 
sea. The generation of accurate multitemporal models of the landslide deformation is now 
carried out with both airborne laser scanning for the largest and undercovered area and 
terrestrial laser scanning modelling with very high resolution (< cm) for the landslide toe. 
Besides, the protocol to be implemented with TLS can be difficult, especially for irregu-
lar terrain and coastal areas, Terrestrial Optical Photogrammetry (TOP) with Structure of 
Motion (SfM) has recently emerged as an alternative and competing technology to provide 
high-resolution 3D point clouds and HR models for landslide studies.

5.3  Terrestrial Optical Photogrammetry (Repeated Survey)

For landslide assessment, Terrestrial Optical Photogrammetry (TOP) provides a low-
cost system for high-resolution monitoring in various environment: continental areas 
(Gance et  al. 2014; Stumpf et  al. 2015; Fernández et  al. 2016; Kromer et  al. 2019) 
and coastal areas (Francioni et al. 2018; Westoby et al. 2018; Gilham et al. 2019; Jaud 
et al. 2019; Warrick et al. 2019). As example, the monitoring network of the Vaches 
Noires cliffs (Normandy, France) can be presented to illustrate the monitoring of land-
slides using photogrammetric techniques (Medjkane et al. 2018; Roulland et al. 2019). 
These cliffs form a 4.5 km coastal line. Composed of marls, limestones and chalks lay-
ers, they have a badland morphology that evolve under combined action of subaerial, 
continental and marine processes. Hydrogravity processes on these cliffs are multiple 
and interlock (landslides, rockfalls, mudflows, toe cliff erosion…). While the upper 
part can only be removed by ablation, the lower part (i.e., toe cliff) alternates between 
periods of progradation (by feeding materials from upstream) and periods of erosion 
(by sea erosion). The nonlinear functioning in time and space of these coastal slopes 
is the result of hydrogravity processes relays that are defined and quantified on a test 
site of the Vaches Noires cliffs with the help of SfM photogrammetry. Six or seven 
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models are carried out each year on these cliffs to determine their seasonal activity. 
The data acquisition is as follows: using a reflex camera (Nikon D810, 35 mm Sigma 
lens), 450–700 shots are taken along four photographic lines located at the bottom and 
top of the beach, on the top of basal scarp and at the foot of the gullies. Photographs 
must have a recovery rate of 60% between them. In order to set all models on the same 
geographical reference (RGF93—Lambert 93), fifteen targets are distributed over the 
cliff studied portion, then surveyed using a Trimble differential GPS that has a centi-
metric accuracy in longitude, latitude and altitude. Once the acquisition in the field is 
completed, pictures are inserted into the Agisoft Photoscan ® software, then the three-
dimension models are built according to the different steps.

On each 3D model produced, a DTM is extracted and then integrated into a GIS soft-
ware. Each DTM is compared with the one acquired previously, by subtracting the altitude 
values between both. This allows mapping eroded areas (represent a loss between − 0.05 
and − 3 m in red) and accumulation areas (represent a deposit between + 0.05 and + 3 m 
in blue) (Fig. 8). Each mass movement is then identified, digitized and integrated into a 
database where is integrated the type of movement, its surface area and also the volume 
of materials mobilized. The repeated use over time of photogrammetry SfM, as well as 
its centimetric accuracy, allow to improve the understanding of mass movements of the 
Vaches Noires cliffs, but also to determine the rates and rhythms of evolution in relation to 
marine, hydrological, and meteorological conditions.

It is necessary to keep in mind that SfM photogrammetry is one of the many spatial 
remote-sensing tools available for mass movement analysis. It must be always supported 
by observations and field measurements or monitoring. It has several advantages such as 
the 3D processing speed (from the field to the laboratory step) and also the possibility of 
quickly mobilizing the equipment on the field during major morphogenetic events (storms, 
floods, …). The centimetric accuracy obtained with quality measuring instruments (dif-
ferential GPS, total station) or the textured 3D model obtained that facilitates the reading 
and analysis of the modelled geographic objects for geomorphologists. However, there are 
limits due to photographic protocol (Fig. 8). For example, a uniform light is essential on 
each picture, and the camera configurations should not be changed during the photographic 
acquisition. Nowadays, it is also difficult to remove totally vegetation from 3D models. 
Hence, others 3D modelling tools such as LiDAR are used to counter these difficulties. 
Several papers try a comparative analysis of the performance of these two methods (TLS 
and SfM in Salvini et al. 2013; Ouédraogo et al. 2014). Various studies underline that these 
two techniques provide very high-resolution topographic data with heterogeneous point 
spacing and density. The resolution of the data will mainly depend on the protocol of sur-
vey and on the specificities of the study area. The steeper and more vegetated the study 
area is, the less accurate the point cloud will be.

6  Discussion

Landslides detection is still a challenging task due to many forms and sizes landslides 
can take and the context of their occurrence. Remotely sensed data and associated tools 
have become essential for landslide detection and monitoring. In recent decades, sev-
eral systems have been developed with the possibility of free of charge satellite solu-
tions with high-resolution images such as Copernicus Sentinel-1 and Sentinel-2, and 
low-cost airborne solutions such as UAVs equipped with different types of sensors (i.e., 
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multi- hyperspectral, LiDAR sensors). Several applications use remote sensing for land-
slide mapping and monitoring (Tofani et al. 2013) and these approaches can be consid-
ered today as important as field surveys. For risk assessment, the amount of data used is 

Fig. 8  Presentation of the photogrammetric SfM technique uses on the Vaches Noires cliffs (Normandy, 
France). a Data acquisition strategy on the field, b difference elevation model with pictures of actives areas
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always important. The challenge is to define the most appropriate spatial and temporal 
scale of analysis and the most appropriate support (spatial, airborne, ground-based).

With the increase of the number of remotely sensed data and their increase in reso-
lution, automatic processing techniques have become more and more widespread. The 
landscape change detection is usually performed automatically using algorithms devel-
oped to compare 3D point clouds, DEMs or multispectral images. But the manual inter-
pretation of data (spaceborne, airborne, terrestrial images) is still effective.

For example, in permafrost regions, monitoring of retrogressive thaw slumps 
has been so far mostly based on manual interpretation, especially with Landsat data. 
Machine learning has been rarely used to date for land cover classification tasks in 
high latitudes (see also Bartsch et al. 2016). This is attributed to the size of the features 
(mixed pixel effect) and ambiguities in reflectance patterns in tundra landscapes. Many 
further bare tundra surface types are existing. Many thousands of landslides are initi-
ated and reactivated related to air temperature fluctuations and subsequent permafrost 
thaw across the entire Arctic. Visual interpretation is therefore insufficient to obtain a 
complete picture for the Arctic. Moreover, it is time-consuming and labour-intensive. 
Sentinel-2 with its 10  m resolution and high revisit time provides an important step 
forward in monitoring of these retrogressive thaw slumps and in general landslides. 
Consequently, inventories can be frequently updated with recent features and seasonal 
changes. Obviously, automatic detection of these features based on high-resolution data 
will be of high value for climate change impact assessment in such regions.

The application of machine learning and especially deep learning approaches with 
VHR images is expected to ameliorate both landslides detection and their evolution in 
various environments in the near future. Automation approach with convolutional neural 
networks (CNNs), has made a series of improvement in image classification and object 
detection. Although conventional deep learning architectures are frequently applied 
(Table  2) for Landslide Susceptibility Mapping, with application of CNN or derived 
methods (object detection, semantic segmentation) for landslide detection are still lim-
ited. Conventional machine learning techniques (e.g., SVM, RF) are suitable for land-
slide assessment with small dataset (Huang and Zhao 2018), but the distinction of land-
slide type remains difficult and results highly depend on the chosen algorithm, network 
architecture and dataset (Ghorbanzadeh et al. 2019). Most of the studies today are based 
on supervised approaches that require training samples for training the network. These 
methods are robust but labelling training samples is time-consuming. Today, the open 
challenges are:

• VHR satellite images can be acquired timely after a major landslide event and/or 
with daily temporal resolution at nearly global coverage. In combination with the 
potentiality of deep learning algorithms, one of the major challenges is to provide 
robust solutions for near real-time hazard detection along the lines of what is being 
done for flood management (e.g., European Flood Awareness System from Coperni-
cus in https ://emerg ency.coper nicus .eu/).

• Reduce costs in terms of data handling and processing and the technical skills for 
near real-time hazard detection.

• Combine SAR offset tracking and InSAR analysis to improve landslides inventories 
on a national scale level.

• Foster knowledge transfer from scientific community to stakeholders and popula-
tions at risk.

https://emergency.copernicus.eu/
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7  Conclusions

Numerous fatalities and thousands of deaths result from landslides each year. In a context 
of global changes, numerous uncertainties concern landslide occurrence. Consequently, it 
is necessary to identify areas affected by landslides. On the one hand, they caused struc-
tural, physical and economic damages when they occur. On the other hand, these processes 
may cause major environmental damages, as is the case in the Arctic. The Arctic is one of 
the areas which has recently gained more and more attention in the context of mass move-
ments due to their abundance and relationship to climate change. They are not only a haz-
ard for people and infrastructure in the Arctic but are also relevant on global scale. As soils 
are carbon-rich in the Arctic, they also play a role for the carbon cycle. Mass movements 
play an important role for carbon transport into streams and the ocean, leading to acidifica-
tion. It has been estimated that  CO2 efflux in rill runoff thaw streams (runoff) within retro-
gressive thaw slumps (RTSs) is four times greater than in adjacent streams. The quantifica-
tion of overall transport into the oceans, by streams and coastal erosion still remains to be 
quantified. Satellite data are expected to support such analyses by combination of marine 
(ocean colour) and terrestrial observations (land surface features as proxy for soil proper-
ties). A combination of multispectral, Lidar and radar information together with advanced 
analyses techniques are needed to fully capture their occurrence and impact. The presented 
examples illustrate the applicability as well as gaps of the various types of remote-sensing 
techniques (InSAR, sub-pixel correlation, photogrammetry…) and highlight the necessity 
of automatization of the processing especially for landslide detection, mapping and sur-
face deformation assessment. This paper presents numerous remote-sensing techniques and 
highlights the difficulties related to these methods, both in terms of spatial and temporal 
resolution and sometimes their difficulty to implement because of the specificity of the ter-
rain (accessibility, vegetation cover, landslide velocity and size). Consequently, it may be 
necessary to integrate data from different sources of investigations (TLS associated to SfM 
or TLS associated to ALS) to overcome the limitations of each remote-sensed technique 
and to cross-validate the result with conventional techniques. Remotely sensed data can be 
considered as powerful and well-established information sources for landslide mapping, 
monitoring and hazard analysis and a wide range of available techniques and supports can 
be useful depending on the size and velocity of the hazard.
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