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Abstract
Pre-stack seismic inversion of the P- and S-wave velocities and bulk density is important 
in seismic exploration for evaluating lithological units and fluid properties. Generally, this 
inversion is based on ray-tracing modeling, which introduces errors and requires substantial 
pre-processing for stratified models due to its oversimplified single-interface assumption. 
To overcome those problems, we propose a pre-stack inversion method, using wave-equa-
tion-based modeling as a forward engine. Most wave-equation-based pre-stack inversions 
are based on the reflectivity method and adopt nonlinear optimization algorithms, although 
accurate, but computationally expensive. Hence, we use a fast propagator matrix (PM) 
method valid for layered media. To improve the stability and accuracy, the PP data inver-
sion is extended to joint PP and PS PM-based inversion (JPMI). A linear inversion scheme 
is adopted to reduce the computational cost, and the Fréchet derivatives are computed 
accordingly. Moreover, to obtain an optimal model solution, the L-BFGS (Limited-mem-
ory Broyden–Fletcher–Goldfarb–Shanno) optimization algorithm and L-curve criterion, an 
adaptive regularization parameter acquisition method, are implemented. A posterior proba-
bility analysis shows that the method has a higher parameter sensitivity than the joint exact 
Zoeppritz-based inversion and gives better estimations than the single-data inversion. We 
discuss the effects of dataset weight, internal multi-reflections, time window setting, noise 
level and initial model by using model tests. Synthetic and real-data examples demonstrate 
that the algorithm is better than the single PP inversion in terms of stability and accuracy, 
especially for S-wave velocity and density estimations.
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1 Introduction

The seismic attributes of a seismic signal (amplitude and phase) are highly affected by 
the incident angles dictated by the recording system (Ostrander 1984). Amplitude-versus-
offset (AVO) or amplitude-versus-angle (AVA) studies use this fact, and pre-stack seismic 
inversions based on these techniques are widely used to extract information of the elastic 
properties from seismic data, which are particularly valuable for reservoir prediction, litho-
logical identification and structural analysis. In hydrocarbon exploration, this technique is 
playing an increasingly significant role (Chopra and Castagna 2007).

Forward engines of inversion process can be useful to model the observed data. Accord-
ing to Simmons and Backus (1994), the AVO/AVA modeling can be classified into two 
categories, ray-tracing-based and wave-equation-based methods. The first has been used 
in seismic inversion for several decades, including the Zoeppritz equation (Zoeppritz and 
Erdbebnenwellen 1919) and its simplification (Shuey 1985; Fatti 1994) for isotropic media, 
and Graebner equation (Graebner 1992), Rüger approximation (Rüger 1996) and various 
rock-physics-based equations (Pan et  al. 2018b; Pan and Zhang 2018; Pan et  al. 2018a; 
Zong et  al. 2015) for anisotropic media. They specify the reflection–transmission coeffi-
cients in terms of displacements and medium properties (velocity, mass density, stiffness 
and anisotropy coefficients). The ray-tracing-based AVO/AVA modeling has two steps. 
First, rays are traced to compute the two-way travel time and incident angles of the PP or 
PS reflections from each interface, which is generally replaced by a depth-time matching 
in the real inversion process. Second, a suitable equation (Zoeppritz or related approxi-
mations) is selected to compute the corresponding reflection coefficients versus offset or 
angle. For isotropic media, the Zoeppritz equation and its simplified forms are frequently 
used as a forward operator in pre-stack inversion (Zong et al. 2013; Li et al. 2017; Cheng 
et al. 2018; Huang et al. 2017a, b, 2018; Guo et al. 2018; Luo et al. 2018a; Zhang et al. 
2015). The ray-tracing-based pre-stack inversion is quite successful, but has several short-
comings. Besides the approximations of small contrasts and large angle errors, the Zoep-
pritz equation is derived for a single interface, and this limitation leads to pre-processing 
requirements of the input seismic data. For an accurate inversion, these data should consist 
of pure PP reflections, without other unwanted events (transmission losses, surface-related 
multiples, internal multiples and converted wave modes). Mallick (2007) pointed out that 
complex wave-propagation effects from large offsets affect the seismic records and the 
AVO behavior.

Generally, the subsurface consists of many layers, which complex environments, such 
as sand-mudstone thin interbeds, whose events contaminate the primary reflections. Then, 
ray-tracing modeling is no longer applicable and a second class of AVO modeling is 
needed. Derived from an analytical solution to the wave equation, this class improves the 
single-interface assumption and adopts a recursive mode to compute an accurate wavefield, 
including primary reflections, primary converted waves, surface-related multiples, inter-
nal multiples, internal converted modes and transmissions. It is described as wave-equa-
tion-based or recursive matrix-based AVO modeling and has been derived from the clas-
sical matrix method (Thomson 1950; Haskell 1953). The concept of “propagator matrix” 
represents a transfer operator for stress and displacement between two layers in a strati-
fied model (Backus 1962). Using the Thomson–Haskell matrix method, Fuchs and Mül-
ler (1971) proposed the reflectivity method to simulate seismograms of a stratified model. 
This method was developed successively by Kennett and Kerry (1979), Fryer (1980), Ken-
nett (1983a) and extended to the anisotropic media by Booth and Crampin (1983), Fryer 
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and Frazer (1984) and Mallick and Frazer (1990). Kennett simplified the complex expres-
sion of the RM and developed the Kennett recursive matrix (Kennett 1983b; Liu et  al. 
2016). Besides the reflectivity method, the second class AVO modeling also includes the 
propagator matrix (PM) method. Carcione (1988, 1995, 1996, 1997, 2014) obtained the 
reflection coefficients of PP- and PS-converted waves in elastic-anisotropic, viscoelastic-
isotropic and viscoelastic-anisotropic media, for a single interface. Similar to the reflectiv-
ity method, Carcione (2001, 2014) combined a recursive form with his previous equations 
to derive a generalized PM method for wavefield simulation in multi-layer viscoelastic and 
anisotropic media.

Wave-equation-based modeling has been used in pre-stack seismic inversion (Sen 
and Stoffa 1991; Gisolf et al. 2014; Mallick 1999; Padhi and Mallick 2013; Li and Mal-
lick 2013; Padhi and Mallick 2014; Sen and Roy 2003; Liu et  al. 2016). Most of these 
approaches adopted a nonlinear optimization scheme, which can be found in Sen and Stoffa 
(1991), Mallick and Adhikari (2015), and Li and Mallick (2015). Although the nonlinear 
inversion scheme is helpful to obtain an optimum solution and it is derivative-free (Guo 
et  al. 2018, 2020a, b), it is computationally expensive. Therefore, Sen and Roy (2003) 
and Liu et  al. (2016) used the Kennett recursive matrix as forward engine and adopted 
a Gauss–Newton linear optimization. Most commonly used linear methods are gradient-
based algorithms, such as the gradient descent, conjugate gradient, Gauss–Newton and 
Newton methods. The gradient descent is not applicable when using the first-order deriva-
tive as updating direction. The Newton method computes the optimal model solution along 
the second-order derivative, which has the fast convergence rate. However, it is difficult to 
obtain the Hessian matrix. Therefore, quasi-Newton optimization algorithms are preferred 
to approximate the Newton method. The Gauss–Newton method, one of the quasi-Newton 
methods, uses the square of the first derivative to replace the second derivatives, but it 
has slow or no convergence. Speeding up the convergence rates and reducing the com-
putational costs of wave-equation-based inversion is important for 2D/3D multi-parameter 
inversions.

In isotropic media, we have to invert for three properties, namely, P- and S-wave veloci-
ties and density of each layer. It is a multi-parameter inversion problem, leading to insta-
bilities, in part due to the insufficient input data. To improve the stability and accuracy, one 
way is to reduce the inversion dimension. Another approach is the joint PP and PS wave 
inversion, whose effectiveness was verified in seismic pre-stack inversion (Lu et al. 2015b, 
2018; Padhi and Mallick 2014; Li and Mallick 2015). Density is an important parame-
ter for identifying lithology and detecting hydrocarbon. According to Luo et al. (2018b), 
the S-wave velocity and density cannot be obtained accurately by using P-wave inversion. 
Even in the case of long-offset data, the inaccuracy in determining density is still a problem 
due to its insensitivity to the primary (PP) reflection amplitudes (Debski and Tarantola 
1995; Luo et al. 2018b). The converted wave mode (PS data) contains more information on 
S-wave velocity and density than PP reflections. Therefore, a joint PP and PS inversion can 
provide better results. However, a problem occurs in ray-tracing-based modeling for joint 
inversion, i.e., the PS time should be aligned with the PP time, increasing the calculations 
and introducing processing errors due to the manual picking process and PS waveform dis-
tortion by stretching and compressing. Unlike the ray-tracing-based inversion, the wave-
equation-based inversion method uses a depth-domain initial model directly, which means 
that the algorithm does not require the PS-to-PP time alignment.

All previous work based on wave-equation-based inversion uses the reflectivity method 
(Kennett 1983b; Fryer and Frazer 1984) as forward operator (Sen and Stoffa 1991; Sen and 
Roy 2003; Mallick 1999; Li and Mallick 2015; Pafeng, Mallick, and Sharma 2016; Liu et al. 
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2016). Here, we implement the PM (Carcione 2001, 2014) simplified for the isotropic case. 
Moreover, use of joint PP and PS data completes the approach, the joint PM-based inver-
sion (JPMI). To reduce computational cost, a linear inversion scheme is adopted to obtain the 
model solution. The Fréchet derivatives, the first derivatives of the PM modeling with respect 
to target parameters, are derived. Speeding up the convergence of the optimization algorithm 
is crucial, so that the limited-memory Broyden–Fletcher–Goldfard–Shanno (L-BFGS) algo-
rithm, adopting an iterative method to approximate the Newton method, is used to solve the 
objective function and compute an optimal solution. The effectiveness of the L-BFGS optimi-
zation was verified with full-waveform inversion of real data (Yang and Engquist 2018; Yang 
et al. 2018) and using the Zoeppritz-based inversion (Huang et al. 2018). By introducing the 
L-curve algorithm into the linear inversion scheme, we adaptively acquire an optimal regu-
larization weight of the JPMI. The effects of dataset weight, internal multi-reflections, time 
window setting, noise level and initial model on the JPMI are discussed by using model tests. 
Synthetic and real-data examples are given, and the method is compared to the PP inversion.

2  Methodology

2.1  Propagator Matrix Forward Modeling

The PM method (Carcione 2001, 2014) is used as the forward modeling engine for the 
inversion. Although it assumes a locally 1D subsurface model, it uses an exact solution to 
the full-wave equation.

In seismology, a layered system can be a good representation of the stratified earth 
model. We consider the stratified model consisting of three parts: a half-space top layer, 
an intermediate layered system (including N horizontal layers) and a half-space bottom 
layer. According to Carcione (2014), the particle-velocity/stress array, inside the jth layer at 
depth z, can be written as:

where v1 and v3 are the particle-velocity components along the x- and z-axis, �33 and �13 
are the normal and tangential stresses, and U− and U+ are upgoing- and downgoing-wave 
amplitudes, respectively. The subscripts P and S denote the compressional and shear waves. 
�(z) has the form as

with

where α, β and ρ are the P- and S-wave velocities, and bulk density, respectively. More-
over, � is the angular frequency, t is the time variable. The plane-wave eigenvectors 
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(polarization) belonging to a particular eigenvalue can be obtained from the Kelvin–Christ-
offel equation. Then, we get the horizontal and vertical polarization � and � (Carcione 
1997a)

where p and s are the horizontal and vertical slownesses, and the slowness relation (Car-
cione 1997a) is solved for s , given the horizontal slowness p . It yields

where

The signs in s correspond to: (+, −) downward propagating P-wave, (+, +) downward 
propagating S-wave, (−, −) upward propagating P-wave and (−, +) upward propagating 
S-wave. By assuming that the thickness of the jth layer is hj , the fields at z = 0 (the top inter-
face of the jth layer) and z = hj (the bottom interface of the jth layer) are related by

From Eq. (1), we have

The particle-velocity/stress vectors � have the convenient property that they are continuous 
across any horizontal plane. By matching boundary conditions at the interfaces between lay-
ers, the vectors at z = 0 and z = h have the following relationship as

where h =
∑N
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hj is the total thickness of the intermediate N-layers layered system. There 
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z = 0 can be expressed as
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The bottom half-space, containing only outgoing or evanescent waves below z = h , has the 
particle-velocity/stress field

where

By using Eqs.  (7), (8) and (10), the total reflection and transmission coefficients of the 
whole layered system in the frequency-slowness domain can be calculated as

with

From Eq. (12), we obtain the total reflection coefficients of the PP and PS waves in the fre-
quency-slowness domain, R(s,�) . Using the PM to obtain synthetics needs to integrate twice, 
slowness and frequency. To reduce the computation time and improve the stability, the PM 
modeling is implemented in the frequency-angle domain to synthesize the angle gathers by 
integrating over frequency only.

A time–space domain seismogram can be generated by integrating first over slowness and 
then over frequency (Mallick and Frazer 1987; Liu et al. 2016). Integrating over frequency, we 
get

By introducing the relation between the horizontal slowness p and the incident angle � , 
p = sin�∕� into Eq. (14), one can transform the reflection coefficients from the frequency-
slowness domain to the frequency-angle domain:

2.2  Objective function of joint inversion

Let � be the observed-data vector, and F the synthetic-data vector for the unknown model � . 
Here, F represents a nonlinear forward operator, such as the PM described in detail above,
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where � is the matrix of the model parameters, � is the physical realization, and F , a non-
linear function of the model parameters. The subscripts PP and PS refer to the nonlinear 
forward engines based on the PM for the PP and PS records. According to the perturbation 
theory and a Taylor series expansion, the nonlinear modeling in Eq. (16) can be linearized 
as

The model perturbation, Δ� , is linear with the physical realization perturbation (data 
residual vector, difference between observed and computed data), Δ� . The quantities Δ�PP 
and Δ�PS represent the perturbations as

where �obs
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 and �obs
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and also key intermediate computations of the linear inversion problem. Based on the con-
volution theory, the Fréchet derivative can be solved by using the derivative of the time-
domain scattering coefficients �(including the reflection and transmission coefficients) with 
respect to the target model parameters � as

Let us assume that in the usual three-parameter pre-stack inversion, � is a 3N-sample-
length vector consisting of P-wave velocity, S-wave velocity and density sample points. 
Then,
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parameters, respectively. Based on Eq. (15), the partial derivatives of the reflectivity with 
respect to the model parameters can be calculated analytically by using the partial deriva-
tion of the frequency-angle-domain reflection coefficients,
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where N, M and K denote the sample length of the model, the number of frequency sam-
ples and the number of incidence angles. By differentiating Eqs. (12) and (13) with respect 
to the model parameter m∗=�,�,�

j
 , the Fréchet derivation can be calculated as

where

with

The partial derivatives ��j(0)
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j
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�m∗

j

 are given in Appendix. Based on the Fréchet deriva-

tives in the frequency domain, according to Eq.  (21), the derivatives in the time domain 
can be obtained by a frequency integration, which is commonly replaced by a fast Fourier 
transform to reduce computer time.

To solve the model vector, an objective function is defined. Solving the inverse problem 
means to seek the minimum of this objective function. Focusing on Bayesian inversion, we 
give the posterior distribution for model perturbation Δ� , and the physical realization pertur-
bation (data residual vector, the difference between observed and computed data), Δ� , as
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as an example. Maximizing the above posterior probability gives a model solution, which 
is equivalent to minimizing the following objective function

where � is the dataset weight which is introduced to balance the contributions of the PP 
and PS data, which varies from 0 to 1. � is the regularization weight which determines the 
relative importance between the data and model residuals. The nonlinear forward engines, 
such as the Zoeppritz equation and the PM used in this paper, are more complex than the 
linear methods, where a local linearization is employed to obtain model updates for each 
iteration, and therefore a constant regularization weight may not seem appropriate (Sen and 
Roy 2003). The PM-based inversion, which employs more computational time, needs an 
adaptive-acquisition method for the regularization parameter, more than the widely used 
Zoeppritz-based inversion. Detailed explanations are given below.

2.3  Optimization Algorithm

A linear inversion scheme is used to reduce calculation costs. Based on an initial value, one 
can update the model results by several iterations. Gradient-based optimization algorithms fol-
low the iteration

where Δ�k is the updated model and ak denotes the step size of the kth iteration, obtained 
by the strong Wolfe line search algorithm (Zhi et al. 2016). −�k is the updating direction of 
the model parameters. The L-BFGS optimization method makes use of an iterative process 
to approximate the Hessian matrix by using the Jacobian matrix. It has a good convergence 
rate and acceptable storage requirement. The iteration equation of the L-BFGS method is

where � is the Jacobian matrix, the first-order derivative of objective function Eq. (30) and 
a function of the model perturbations Δ�,
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and � is the quasi-Hessian matrix, computed as

where

For the first iteration, we use the updating format of the Gauss–Newton method and

2.4  Determination of the Regularization Weight

The regularization parameter adaptive-acquisition methods can be classified into two cat-
egories: (1) priori selection methods that require knowledge of the level of the data error or 
noise; and (2) posteriori selection methods that do not require knowledge of this information 
(Sen and Roy 2003; Huang et al. 2017a, b). Since the level of noise is usually unknown, the 
posteriori selection (L-curve) (Hansen and O’Leary 1993; Hansen 2000; Sen and Roy 2003) 
and generalized cross-validation (GCV) (Craven and Wahba 1978; Golub and Von Matt 1997; 
Wahba 1990; Huang et al. 2017a) are often used to select the weight.

Huang et al. (2017b) compared the L-curve with the GCV criterion and concluded that first 
shows better stability and noise immunity. In this work, the L-curve method is considered to 
obtain the optimal weight adaptively.

The L-curve is a graphical representation of model misfit and data misfit by using a suit-
able plotting scale definition for the varying values of regularization weight. The typical 
L-curve method is derived from Tikhonov regularization (Sen and Roy 2003) and improved 
to the regularization with arbitrary norm constraints (Huang et al. 2017a). When using a norm 
constraint q(�) in a diagonal matrix form, objective function (30) becomes
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where q(Δ�) is an arbitrary norm constraint in a diagonal matrix form. Then Δ�� can be 
obtained at a minimum of the objective function,

where � =
1

Δ�
⋅

�q

�Δ�
 . Using the singular-value decomposition of ��

��
 , Δ�� can be expressed 

as

Substituting Δ�� into the two parts (misfit and regularization terms) of objective function 
(36) gives

Different regularization weights lead to different results of the misfit and regularization 
terms, which can be used to plot the L-curve. The corner of the curve (point of minimum 
curvature) corresponds to the optimal value of the weight.

3  Forward Modeling Analysis

3.1  Full‑Wavefield Responses

Ray-tracing methods (exact Zoeppritz equation and its approximations) are often used as 
the forward operator of pre-stack inversion. A main difference between ray-tracing and 
wave-equation-based methods is that not all wave modes are accounted for by the first 
method. A three-layer model (model 1) is considered to test the wave modes modeled by 
PM and the exact Zoeppritz method. To compute the two-way travel time easily and iden-
tify the different wave modes clearly, the velocities are set at the same value, as shown 
in Table 1. Figure 1 displays the PP and PS synthetic seismograms modeled by the PM 
(Fig. 1a–d) and the Zoeppritz (Fig. 1e–f) method. Some multi-reflection modes have the 
same travel time in a homogeneous medium and overlapping events in the seismograms, 
for example, the PPSP and PSPP (triple-leg P- and single-leg S-waves), the PPPSPP and 
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PPSPPP (five-leg P- and single-leg S-waves), etc. We use the symbols P(i) and S(j) for the 
multi-reflections with i-leg P-wave and j-leg S-waves, respectively. The zero offset travel 
times of different wave modes of the full wavefield are computed and shown in Tables 2 
and 3, and the corresponding events are marked in Fig. 1a, b. The PM synthetics without 
normal moveout (NMO) correction (Fig. 1a, b) show the full wavefield with multi-reflec-
tions (multiples and conversion waves), and the reflections of PP and PS seismograms 
from the second interface are P(4)S(0) and P(2)S(2), respectively. However, the Zoeppritz 
results contain two-leg primary reflections P(2)S(0) and P(1)S(1) only, see Fig. 1e, f. We 
extract the peak amplitude of events 1 and 2 from PP (Fig. 1c, e) and PS (Fig. 1d, f) syn-
thetics calculated by the Zoeppritz method (Fig. 1e, f) and the PM (Fig. 1c, d), as shown 
in Fig. 2. The peak amplitudes of the first event show no difference (see Fig. 2a, b). How-
ever, the peak amplitudes of the second event calculated with the PM decrease compared 
to those of the Zoeppritz method (see Fig. 2c, d). Therefore, the PM algorithm effectively 
simulates the transmission losses and the Zoeppritz modeling only contains two-leg pri-
mary reflections.

3.2  Parameter Sensitivity

The amplitude variation with offset (AVO) effect in seismic data contains information of 
the elastic parameters of the geological layers. One can extract this information by using 
inversion methods. As the general solution of an inverse problem consists of a probability 
over all possible models, we calculate the probabilities by using PP, PS and PP-PS (joint 
PP and PS waves) data to test the parameter sensitivity. A test-stratified model with nine 
layers is assumed. We vary the properties of two layers to obtain several possible mod-
els, so that α, β and ρ are in the ranges −480 to 480 m/s, − 415 to 415 m/s and − 0.11 
to 0.1 g/cm3, respectively. The corresponding perturbation percentages are − 19% ~ 19%, 
− 23.75% ~ 23.75% and − 6% ~ 5.5%. The “observed data” Ai

OBS is the “true model” and the 
synthetic data Ai(m) from possible models m. The details of posterior probability density 
are given in the paper of Debski and Tarantola (1995). Figure 3 shows the 2D marginal 
probability density by using the PP (a, d, g, j), PS (b, e, h, k) and PP-PS (c, f, i, l) angle 
gathers ranging from 0° to 35°. Figure 3a–f shows the 2D probability of α and β with the 
true ρ, and Fig. 3g–l shows the results of β and ρ with the true α.

The 2D posterior information of PP-wave data shows that the probabilities of α and 
β of the PM are more focused than those of the Zoeppritz method (Fig. 3a, d). It means 
that the PP-wave data modeled by the PM is more sensitive to α and β than the ray-
tracing method. There are obvious differences between the probabilities of the PS-wave 
data by the two algorithms. The interpretation of such differences is important, because 
it represents the sensitivity information we have on the target parameters. Due to the PS 
insensitivity to α variations, as shown in Fig. 3e, the 2D probabilities of the Zoeppritz 

Table 1  Model parameters of 
the sand and shale rock layers of 
model 1

P-wave velocity α S-wave velocity β Density ρ
(m/s) (m/s) (g/cm3)

Shale rock 2000 816 3.5
Sand rock 2000 816 2.0
Shale rock 2000 816 3.5
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(a) (b)

(c) (d)

(e) (f)

Fig. 1  PP wave (a, c, e) and PS wave (b, d, f) seismograms computed with the PM (a–d) and Zoeppritz’s 
equation (e, f). a, b The synthetic slant stack and c, d NMO-corrected angle gathers

Table 2  Wave modes of the PP 
seismogram of model 1 and 
estimated two-way travel time at 
zero offset

Wave mode Two-way 
time (ms)

P(2)S(0) 100
P(4)S(0) 200
P(6)S(0) 300
P(3)S(1) 272
P(5)S(1) 372
P(4)S(2) 444
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method present a monotonic function along the α axis [the prior function is monotonic 
within the range, while the likelihood function, affected by the parameter variation, is 
an ellipsoid-shaped function]. Similarly, the PS data modeled by the Zoeppritz method 
is less sensitive to ρ, which is evidenced by the monotonic function along the ρ direc-
tion in Fig. 3k. The 2D posterior probabilities by using the PM (see Fig. 3b, h) are ellip-
soid-shaped functions. It is shown that the PS-wave data modeled by the PM are more 

Table 3  Wave modes of the PS 
seismogram of model 1 and the 
estimated two-way travel time at 
zero offset

Wave mode Two-way 
time (ms)

P(1)S(1) 172
P(2)S(2) 344
P(3)S(1) 272
P(1)S(3) 416
P(4)S(2) 444
P(3)S(3) 516
P(2)S(4) 588

(a) (b)  

(c) (d)  

Fig. 2  Absolute peak amplitudes as a function of the incidence angle corresponding to the events marked 
by arrows in Fig. 1. Events 1 of the PP (1c, 1e) (a) and PS (1d, 1f) (b) data. Events 2 of the PP (1c, 1e) (c) 
and PS (1d, 1f) (d) data
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sensitive to β and ρ than that of the Zoeppritz modeling. Compared to the inversion 
with pure PP- or PS-wave data, joint inversion with PP and PS data provides better esti-
mates of the parameters, which is shown in the 2D probability of PP-PS data (Fig. 3c, 
f, i, l), with a more focused function than that of PP- (Fig. 3a, d, g, j) and PS-wave data 
(Fig. 3b, e, h, k). The probabilities of the joint data also indicate that the PM has a more 
convex function along the α and β directions than the Zoeppritz method.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Fig. 3  2D posterior probability density of PP- (a, d, g, j), PS- (b, e, h, k) and joint PP- and PS-wave data 
(c, f, i, l) by the PM (a–c and g–i) and the Zoeppritz (d–f and j–l). a–f Probability density of α and β, with a 
fixed ρ (true value). g–l Probability density of β and ρ, with a fixed α (true value)
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Figure 4 represents the 1D marginal probability densities of the PP (Fig. 4a, d, g), PS 
(Fig. 4b, e, h) and PP-PS data (Fig. 4c, f, i), obtained from 1D integrations of the 2D prob-
abilities of Fig.  3. The two algorithms use the same a priori distribution; therefore, the 
higher sensitivity to parameter leads to the more convex function of the 1D probability. 
The probability of the PP-wave data in Fig. 4 shows that the PP reflections of the PM are 
more sensitive to the three parameters (slightly more sensitive to ρ) than that the Zoeppritz 
method. Compared to PP-wave data, the PS wave of the PM has higher parameter sensitiv-
ity than that the Zoeppritz method, especially α and ρ (Fig. 4b, h). The results of PP-PS 
show that the probabilities of the three parameters computed with the PM are more convex, 

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 4  1D posterior probability density of PP (a, d, g), PS (b, e, h) and joint PP and PS data (c, f, i) by the 
PM (red lines) and the Zoeppritz (blue lines). a–c 1D probabilities of α obtained by β integration of the 
2D probabilities of Fig. 3a–f. d–f 1D probabilities of β obtained by ρ integration of the 2D probabilities of 
Fig. 3g–l. g–i 1D probabilities of ρ obtained by β integration of the 2D probabilities of Fig. 3g–l
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i.e., more sensitive. The joint PP and PS inversion combined with the PM provides a better 
estimation.

Mallick (2007) showed that mode-converted reflections induce significant differences 
between the full-wave-mode and the Zoeppritz P-wave primary responses. The multi-
reflections contain information on the elastic parameters, resulting in a big difference 
between the two algorithms for the multi-layer case.

3.3  Dataset Weight Factor

The weight factor � is an important parameter to be used in dealing with PP- and PS-wave 
datasets. For noise-free or the same noise-level conditions, the weight � is commonly set 
as 0.5 (Zhi et  al. 2016; Lu et  al. 2015a). However, PP- and PS-wave data have different 
sensitivities to α, β and ρ, as discussed in the last section. Then, it is necessary to determine 
suitable weight factors for a high-quality inversion. Posterior probability density is com-
puted by using the model in Sect. 3.2 to test the weight factor. The variations of α, β and 
ρ are the same as those of the last section. Both “observed data” Ai

OBS and synthetic data 
Ai(m) are obtained with the PM. Figure 5 shows the 1D probability densities with different 
weight factors by using 0°–35° angle PP-PS data. When the weight factor ranges from 0 
to 1, a clear difference of 1D probability density is observed. A more focused probability 
density curve means that it is easier to obtain a better inversion result with the same opti-
mization method.

The steepness is introduced to represent the degree of focus of the probability density 
curves. It is defined as the ratio of the half-height of curve ε and the corresponding hori-
zontal distance δ (Fig. 5c). A more focused curve leads to a higher steepness. The steep-
ness of the target parameter varying with � is shown in Fig. 6. When � is 0, only PS-wave 
data are used in the estimation; when � is 1, only PP-wave data are used. The weight fac-
tors � = 0.35 and � = 0.6 correspond to the highest steepness of α, β and ρ and then can be 
used as optimal factors for noise-free conditions. The PP-wave data have higher sensitivi-
ties to P-wave velocity and slightly higher sensitivity to density; therefore, α and ρ estima-
tions require weight factors larger than 0.5. The appropriate factor for the S-wave velocity 
is less than 0.5, because the PS wave is more sensitive to β than the PP wave.

(a) (b) (c)

Fig. 5  1D posterior probability with different dataset weight by using the PM. a 1D probabilities of α. b 1D 
probabilities of β. c 1D probabilities of ρ 
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Since the model test demonstrates the three elastic parameters have different sensitivi-
ties to the seismic dataset, a parallel strategy is proposed to improve the inversion accu-
racy and mitigate the effect of the coupling. We setup three objective functions with three 
dataset weights and three regularization parameters which correspond to the three target 
parameters. For noise-free conditions, the optimal dataset weights are set as 0.75, 0.35 and 
0.6 (selected in Sect. 3.3) which are fixed through all the iterations, and the functions are 
solved separately to obtain three solution vectors. In each iteration, the adaptive-acquisition 
method (L-curve) is adopted to estimate three regularization parameters, each of which 
plays an important role to obtain a relatively “optimal solution” of one of the parameters. 
Then, the three optimal solutions are extracted from the model solution vectors and rebuilt 
into a new one, which is set as the initial model vector of the next iteration.

4  Inversion Analysis

4.1  Regularization Weight Test

The model illustrated in Fig. 7b (blue lines) is used to test the L-curve, a regularization 
weight adaptive-acquisition method. The reflectivity series obtained with the PM method 
is convolved with a Ricker wavelet of 30 Hz dominant frequency to generate the seismo-
grams. Noiseless synthetic gathers and noisy gathers with signal-to-noise ratio of 3 (SNR; 
the ratio of root-mean-square amplitude of the signal to that of the noise) (Gaussian ran-
dom noises are added to the gathers) are used to test inversion results. We use different 
regularization weights for the noise-free and the SNR = 3 cases and calculate the total RMS 
relative errors of the three parameters, as shown in Fig. 7a, c.

Different regularization weights parameters lead to different errors. It is shown that 
there is an optimal weight leading to a minimum error, and the L-curve criterion can be 
used to obtain this weight for both noise-free and high-noise cases. Figure 7b, d shows the 
results for the noise-free and SNR = 3 cases, respectively. When the noise level is increased 
(SNR = 3), the match between the inverted and true curves is still acceptable.

(a) (b) (c)

Fig. 6  Steepness as a function of the dataset weight factor ϕ. The steepness values are computed by using 
the 1D probability densities shown in Fig. 5. a P-wave velocity α. b S-wave velocity β. c Density ρ 
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4.2  Effect of Internal Multi‑reflections

Actual seismic records are inevitably affected by transmission loss and contaminated by 
P-wave multiples and conversion modes, referred to as multi-reflections. Since the PM 
is an exact simulation method for obtaining full-wave responses of stratified models, the 
corresponding inversion can directly utilize the effects of transmission loss and multiple 
reflections. However, current processing flow of pre-stack seismic data is based mainly 
on ray-tracing-based inversion methods, such as exact Zoeppritz-based inversion (EZI). It 
means that, in pre-stack data currently available, transmission loss has been compensated 
and the multiple reflections have been suppressed to some extent. Therefore, we set up 
models 2 and 3 and perform the inversion test by using the angle gathers with transmis-
sion loss compensation and surface multiple removal. Model 2 is a simple block model 
used to simulate thick sedimentary reservoirs, whose properties are shown in Fig. 8a. Fig-
ure 9a, b displays the PP and PS slant angle gathers of model 2 by PM with surface multi-
ples removal (synthetics of PM do not include surface multiples due to the assumption of 
a half-space top layer), but without transmission compensation, normal moveout (NMO) 

(a) (b)

(c) (d)

Fig. 7  Regularization weight test for the noise-free (a, b) and noisy case (SNR = 3) (c, d). a, c RMS relative 
error of the inversion as a function of the regularization weight. b, d Inversion curves by using the weight 
computed with the L-curve criterion
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correction and internal multi-reflection suppression. After NMO correction and transmis-
sion compensation, we obtain the processed PP and PS gathers in Fig.  9c, d. Relatively 
strong energy, periodic features and apparently residual moveout make surface multiples 
easy to be identified and removed. However, compared with surface multiples, in practi-
cal processing, internal multiple reflections are difficult to distinguish from primary ones 
because of their weak energy, aperiodic features and small residual moveout after NMO 
correction, as marked by arrows in Fig. 9c, d. Moreover, they are often aliased with primary 
reflections and sometimes change their AVO responses (Mallick 2007). Therefore, the final 
gathers used for inversion undergo surface multiple removal, NMO correction and trans-
mission loss compensation and contain primary and internal multi-reflections, as shown 
in Fig. 9c, d. We compute the P- α and S-wave velocity β and density ρ by joint PP and PS 
exact Zoeppritz-based inversion (JEZI) and JPMI. The inversion result in the time domain 
by JEZI and the results in the depth domain by JPMI are shown in Fig.  16a, b, respec-
tively. The JEZI obtains good inverted parameters for layer 1, 2 and 4, which match the 
actual parameters well. However, multiples of input data being regarded as primary reflec-
tions cause the wrong parameter estimations in JEZI (marked by arrows in Fig. 10a). The 
correlation coefficients (CCs) of P- and S-wave velocities and density from time-domain 
JEZI are 0.8891, 0.8843 and 0.8689, respectively, shown in Table 4. JPMI can make use of 
the various internal multiple reflections. The inversion results in the depth domain are dis-
played in Fig. 16b. Eliminating the influence of multi-reflections brings higher consistency 
with actual properties. Although affected by transmission loss compensation, the estima-
tions in highlighted areas are slightly higher than the true values, the results by JPMI are 
still acceptable with CCs of 0.9818 (P-wave velocity), 0.9806 (S-wave velocity) and 0.9786 
(density), shown in Table 4.

Replacing the second layer of model 2 with a set of interbeds, model 3 is obtained, 
to test effects of these interbeds (Fig.  8b). Figure  11a, b is the synthetic PP and PS 
slant gathers containing no surface multiples, and Fig. 11c, d is the processed gathers 
including primary and internal multiple reflections after NMO correction and trans-
mission loss compensation. Compared with model 2, the interbeds in model 3 generate 
more complex multi-reflection responses which pollute to some extent the effective 

(a) (b)

Fig. 8  P- (red) and S-wave velocities (green) and bulk density (blue) of model 2 (a) and 3 (b)
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primary reflections from the underlying interfaces (see the marked areas in Fig. 11c, 
d). Using the input data in Fig. 11c, d, two inversion methods are adopted and the cor-
responding results are displayed in Fig. 12a, b. The inversion result in the time domain 
by JEZI (Fig.  12a) shows more estimation bias for lower layers induced by multi-
reflections than that of model 2 (Fig.  10a) and has lower CCs: 0.8347, 0.8306 and 
0.8211 shown in Table 5. The parameters inverted by JPMI, shown in Fig. 10b, match 
better with actual properties, as the CCs are 0.9731, 0.9701 and 0.9665 (Table 5).

(a) (b)

(c) (d)

Fig. 9  Synthetic seismograms obtained with the PM for the model 2 of Fig. 8. (a, c) PP seismograms in PP 
time domain a without and c with normal moveout (NMO) correction and transmission loss compensation. 
b, d PS seismograms in PS time domain b without and d with NMO correction and transmission loss com-
pensation
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4.3  Inversion of the PP, PS and PP‑PS Data

A well-log dataset is used to test the PMI method by using PP wave, PS wave and joint 
PP-PS data. When using a well-log model for the inversion, the log curves should be pro-
cessed first by a Backus averaging (Backus 1962), since there is an apparent difference 

Fig. 10  Inversion results of 
model 2 in Fig. 8a using the 
input gathers shown in Fig. 9. 
a The inversion results in time 
domain by JEZI. b The inversion 
results in depth domain by JPMI. 
The blue solid, black dotted and 
red solid lines are the actual 
parameters, initial models and 
inverted results, respectively

(a)

(b)

Table 4  Correlation coefficients 
(CCs) between the inversion 
results and the true properties of 
model 2 by using JEZI and JPMI

Method P-wave velocity α S-wave velocity β Density ρ

JEZI 0.8891 0.8843 0.8689
JPMI 0.9818 0.9806 0.9786
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between the logging and seismic scales. The original well-log curves and the Backus-
averaged parameters are shown in Fig. 13. The input data are the full wave-field response 
obtained with the PM, including PP (Fig. 14a) and PS wave (Fig. 14b) angle gathers rang-
ing from 1° to 40°. The PMI can obtain the depth-domain inversion results directly, and 
correspondingly, the joint PP and PS inversion (JPMI) can be implemented without PS-to-
PP time alignment. Figure 15a, b shows the inversion results of the PMI using PP and PS 
data, respectively, whereas Fig. 15c shows the results of the joint PP-PS inversion (JPMI). 
The optimal weight factors ϕ in Sect. 3.3 are used.

The correlation coefficients (CCs) between the inversion curves and the true values 
are given in Table 6. The PMI by using the PP wave gives better α and ρ estimations 
(higher CCs), but poorer β than those obtained with the PS wave. The estimation of 

(a) (b)

(c) (d)

Fig. 11  Synthetic seismograms obtained with the PM for model 3 of Fig. 8b. a, c PP seismograms in PP 
time domain a without and c with normal moveout (NMO) correction and transmission loss compensation. 
b, d PS seismograms in PS time domain b without and d with NMO correction and transmission loss com-
pensation
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the three parameters obtained from the PP or the PS waves is generally worse than 
that obtained from the joint PP-PS inversion, with values of 0.9749 (P-wave veloc-
ity), 0.9701 (S-wave velocity) and 0.9537 (density). Note that the same initial mod-
els, which are obtained by smoothing the Backus-averaged model of Fig. 13 (the span 
of the moving average filter is 120), are used for the three inversions. In Fig. 16, the 

Fig. 12  Inversion results of 
model 3 in Fig. 8b using the 
input gathers shown in Fig. 11. 
a The inversion results in time 
domain by JEZI. b The inversion 
results in depth domain by JPMI. 
The blue solid, black dotted and 
red solid lines are the actual 
parameters, initial models and 
inverted results, respectively

Table 5  Correlation coefficients 
(CCs) between the inversion 
results and the true properties of 
model 3 by using JEZI and JPMI

Method P-wave velocity α S-wave velocity β Density ρ

JEZI 0.8347 0.8306 0.8211
JPMI 0.9731 0.9701 0.9665
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residual profiles of the PP and PS waves between the input data and the prediction data 
show the degree of data fitting. Only minor errors can be observed in both residuals, 
validating the JPMI.

Fig. 13  Backus-averaged and 
original curves of the test well. 
The green curves correspond to 
the original well logs and the 
blue ones to Backus averaging

Fig. 14  Synthetic seismograms obtained with the PM for the well-log properties of Fig. 13. a PP seismo-
gram in the PP time domain and b PS seismogram in the PS time domain, without noise
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(a) (b)

(c)

Fig. 15  Depth-domain estimations of the PM-based inversion, including the inversion results, using PP data 
a, PS data b and joint PP and PS data c. The black dotted, blue and red solid lines correspond to the initial 
model, actual input properties and inversion results, respectively

Table 6  Correlation coefficients 
(CCs) between the inversion 
results and the true properties of 
the test well by using different 
input gathers

Input data P-wave velocity α S-wave velocity β Density ρ

Single PP wave 0.9552 0.9285 0.9158
Single PS wave 0.9107 0.9412 0.9097
Joint PP and PS 0.9749 0.9701 0.9537
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4.4  Time Window Impact of Input Data

In a multi-component inversion, when using wave-equation-based algorithms, choosing 
suitable time windows (the input time ranges of the prestack data) for PP and PS data 

(a) 

(b) 

Fig. 16  Residual profiles between the input and the predicted gathers calculated by the joint inversion 
results of Fig. 15c. a PP-wave gather and b PS-wave gather. The left panels are the input angle gathers, the 
middle panels are the predicted gathers by using the joint PP and PS data inversion results of Fig. 15c, and 
the right panels are the residual profiles
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is essential for accuracy. Based on the previous well model (Fig. 13) and the full-wave-
response input gathers (Fig. 14), we set up three kinds of time windows of input gathers 
to test the effect of the time window settings on the inversion results. The three time 
windows are set to 0–600 ms for PP and 0–750 ms for PS (window 1), 0–400 ms for 
PP and 0–600 ms for PS (window 2), and 100–1000 ms for PP and 150–1000 ms for PS 
(window 3). The windows 1 and 2 have the same accurate start time. Window 1 contains 
all effective primary reflections, but some of the multi-reflections from deep interfaces 
are cut off. Window 2 includes most of the effective reflections, but the primary and 
multiple reflections from deep layers are both removed. Compared with the first two, 
window 3 is given a wrong start time. We perform the inversion by JPMI and the results 

(a) (b)

(c)

Fig. 17  Depth-domain estimations of the PM-based inversion, including the inversion results, by using the 
input gathers within time window 1 (a), time window 2 (b) and time window 3 (c). The black dotted, blue 
and red solid lines correspond to the initial model, actual input properties and inversion results, respectively
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using the input gathers with different time windows are shown in Fig. 17, and the cor-
responding CCs between results and true curves are displayed in Table 7. The results of 
window 1 match well with well models with CCs of 0.9464 (P-wave velocity), 0.9347 
(S-wave velocity) and 0.9083 (density). However, compared to the results of the full 
time window in Fig. 15c, there is a slight decrease in consistency at the deep section 
(about 1100–1300 m) of window 1. Due to missing part of the primary waves, window 
2 cannot obtain valid estimations at the deep section (about 1000–1300 m) and causes 
lower CCs of 0.9189, 0.9091 and 0.8918. For window 3 with a wrong start time, the 
results of JPMI are unacceptable, which can be better seen from the poor CCs: 0.8139 
(P-wave velocity), 0.8004 (S-wave velocity) and 0.7582 (density). Comparing the three 
inversion results, we can draw the following conclusions: the time window setting of 
input data can significantly affect the results. To ensure the accuracy of the inverted 
results, an accurate start time is needed. One should consider the sufficient length of the 
windows to include all the primary reflections and as much multi-reflection information 
as possible, which is helpful in improve the estimation accuracy.

4.5  Analysis of Noise Effects

Gaussian random noise is added to the synthetic gathers to obtain new input gathers, 
which are noisy angle gathers corresponding to SNR of 50, 10, 5 and 2, respectively. 
Figure 18a–d shows the inversion results of JPMI by using input gathers with SNR = 50, 
10, 5 and 2, respectively. The initial models for the four inversions are all obtained by 
smoothing the Backus-averaged curves of Fig. 13, as above.

The CCs for the inverted and actual parameters are given in Table 8, and the RMS 
relative errors are given in Fig. 19. Figure 18a, b indicates that the inverted parameters 
corresponding to the gathers with SNR 50 and 10 match well with the true ones (blue 
lines). The CCs of the P-wave velocity are 0.9657 (SNR = 50) and 0.9577 (SNR = 10), 
those of the S-wave velocity are 0.9603 (SNR = 50) and 0.9519 (SNR = 10), and those 
of the density are 0.9336 (SNR = 50) and 0.9211 (SNR = 10). Figure  18c shows the 
inversion results for the gather with SNR = 5. The inverted P- and S-wave velocities for 
the gathers with SNR = 2 (Fig. 18d) are still acceptable, since the corresponding CCs 
are 0.9317 (P-wave velocity) and 0.9235 (S-wave velocity), but the CC for the density is 
0.8847. Figure 19 shows the RMS errors, where S-wave velocity has the highest error. It 
shows that the joint inversion improves the estimation of the S-wave velocity. The RMS 
error of the density is the lowest, probably because density has the smallest variation 
among the three parameters. This analysis shows that JPMI is stable and reliable under 
high-noise levels. The comparison of the results also shows that decreasing the noise 
level leads to more accurate estimations. The CCs in Table 8 show that density is more 
sensitive to noise than the P- and S-wave velocities.

Table 7  Correlation coefficients 
(CCs) between the inversion 
results using the input data with 
different time windows and the 
true properties of the test well

Time window P-wave velocity α S-wave velocity β Density ρ

Time window 1 0.9464 0.9347 0.9083
Time window 2 0.9189 0.9091 0.8918
Time window 3 0.8139 0.8004 0.7582
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(a) (b)

(c) (d)

Fig. 18  The inversion results by using the noisy angle gathers. a SNR = 50, b SNR = 10, c SNR = 5, d 
SNR = 2. The initial, true and inverted curves are given by the black dotted, blue solid and red solid lines, 
respectively

Table 8  Correlation coefficients 
(CCs) between the joint inversion 
results with different noise levels 
and true properties of the test 
well

SNR P-wave velocity α S-wave velocity β Density ρ

∞ 0.9749 0.9701 0.9537
50 0.9657 0.9603 0.9336
10 0.9577 0.9519 0.9211
5 0.9475 0.9401 0.9086
2 0.9317 0.9235 0.8847
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4.6  Dependence on the Initial Model

Two types of models are used to test the dependence of the joint inversion on the initial 
models. One type is obtained by smoothing the original curves (the Backus-averaged 
curves). We obtain four smoothing initial models by changing the smoothing param-
eter (SP, the span of the moving average filter) to 50, 100, 150 and 200. Smaller SP 
describes better the true model. The other type is a linear model obtained by interpola-
tion using the first and last sample points.

The inversion results for the five initial models are shown in Fig. 20, and the CCs are 
given in Table 9. The input noiseless gathers contain full-wave responses without PS-to-
PP time alignment process in Fig. 14. If SP = 50, there is a good estimation of the three 
parameters (see Fig.  20a). The results match the actual curves well, and the CCs are 
0.9844 (P-wave velocity), 0.9816 (S-wave velocity) and 0.9682 (density). Figure  20b 
(SP = 100) and Fig.  20c (SP = 200) show that the CCs decrease as SP increases. The 
estimation by using a linear initial model has the lowest quality, as shown in Fig. 20d. 
The RMS relative errors corresponding to the different models are shown in Fig.  21. 
The JPMI has the smaller dependence on the initial model, since the results with large 
SP agree well with the true models.

When linearizing the forward operator in Eq. (17), we assume that the terms contain-
ing high-order derivatives are negligible that it is valid when the initial model is close 
to the correct one. However, it is important to consider that how close the given initial 
guess of the model should be to the real one to guarantee the validation. A two-layer 
model is considered to show the effect of the initial model to the data perturbation Δ� . 
Changing the parameters of the lower layer, we obtain the data perturbations by using 
the PM modeling. Figure 22a shows the comparison between the true data perturbation 
and the approximated one obtained by Eq. (17). The difference between the two curves 
(Fig. 22b) shows that the errors of the data perturbation can be caused by an inaccurate 
initial model and increase with the increasing deviations of the models. Therefore, a 
suitable initial model is important in providing effective low-frequency components to 
reduce the number of local extrema, reducing the errors of the computed data perturba-
tions and thereby improving the accuracy of the solutions, since the update directions of 
the gradient-based methods depend on those perturbations.

Fig. 19  RMS relative errors 
of the inverted P- and S-wave 
velocities and density by using 
the JPMI for different noise 
levels
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(a) (b)

(c) (d)

Fig. 20  The inversion results by using different initial models. a SP = 50, b SP = 100, c SP = 200, d The 
linear initial model. The initial, true and inverted curves are represented by the black dotted, blue solid and 
red solid lines, respectively

Table 9  Correlation coefficients 
(CCs) between the joint inversion 
results by using different initial 
models and true properties of the 
test well

Initial model P-wave velocity α S-wave velocity β Density ρ

SP = 50 0.9844 0.9816 0.9682
SP = 100 0.9779 0.9721 0.9590
SP = 150 0.9664 0.9605 0.9473
SP = 200 0.9513 0.9465 0.9276
Linear 0.9162 0.8801 0.7898
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5  Real‑Data Application

A joint inversion is performed on a set of seismic data from the oilfield of Eastern China. The 
target section ranges from about 800 to 900 ms with an relatively stable geological structure. 
The top and bottom interfaces of target formation are highlighted by blue and black lines in 
Fig. 23a. Dominated by fluvial facies, the reservoir is a set of interbedded sand-mudstone lay-
ers of multi-stage river channels and mainly develops sand bodies with thicknesses of 2–10 m. 
The data consist of 86 angle gathers (CDP from 430 to 515) with NMO correction, and the 
angles range from 1° to 39° for PP and 3°–30° for PS. The input PP and PS datasets have been 
compensated the transmission loss and suppressed the surface multiples and contain the pri-
mary reflections and most of internal multi-reflections. Figure 23 displays the stacked profiles 
and angle gathers at well position. Figure 23a, c shows the PP data in the PP time domain, and 
Fig. 23b, d is the PS data in the PS time domain. Figure 24 shows the logs of a well drilled 
at the Common-Depth Point (CDP) 468, including the actual (blue lines) and the Backus-
averaged (black lines) P-wave velocity, S-wave velocity and density, as a function of depth. 
Using well logs and pre-stack gathers, we estimate the angle-dependent wavelets for the inver-
sion. The previous analysis in Sect. 4.4 indicates that the time window setting of the input data 

Fig. 21  RMS relative errors 
for the inverted P- and S-wave 
velocities and density using the 
JPMI in the case of different 
initial models

(a) (b)

Fig. 22  a The comparison between the true data perturbation (blue line) and the approximated one (red 
dash); b the difference between the two perturbations
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is important to the inversion results. Therefore, in actual data applications, a feasible way is 
required to set the correct windows of the PP and PS input gathers. Here, like the pre-process-
ing for ray-tracing-based inversion, we firstly adopt a depth-time matching at well position to 
determine the time window of PP gathers. Secondly, the dynamic time warping (DTW) algo-
rithm (Hale 2009) is utilized to match the PP and PS waves at well position. Different from 
the conventional PP and PS registration, without compressing the PS data, the time matching 
is only used to determine the time window of PS waves. This process can provide relatively 
accurate windows of input data, which is helpful in reducing the errors. PMI and JPMI are 
used in three-parameter inversion. The L-BFGS linear optimization scheme is used to obtain 
the solutions. In this work, we test different dataset weights by carrying out the joint inversion 
at the well location to determine relatively optimal dataset factors for the three parameters. 
Then, these factors are adopted for all the CDPs. Since the SNR of the PS data is lower than 
that of PP data, to mitigate the effect of noise, the final dataset weights are set as 0.8 (P-wave 
velocity), 0.5 (S-wave velocity) and 0.7 (density) which are higher than those used in noise-
free inversion tests. The optimal regularization parameter � of Eq. (30) is computed adaptively. 

(a) (b)

(c) (d)

Fig. 23  a, b The stacked profiles and c, d the angle gathers. a, c The PP data in PP time domain. b, d The 
PS data in PS time domain. A well is drilled at CDP 468. The top and bottom interfaces of the target forma-
tion have been marked by the blue and black curves in a 
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The trivariate Gaussian is used as the prior distribution, and the covariance matrices are cal-
culated based on the initial models in every iteration for each CDP. Unlike the conventional 
ray-tracing-based inversion, the PM-based inversion requires the initial models in the depth 
domain. These models are obtained by interpolating the depth-domain Backus-averaged logs 
along the picked horizons.

Figure 25 shows the 2D inversion profiles for all CDPs by using the PMI (Fig. 25a, c, e) 
and JPMI (Fig. 25b, d, f). The corresponding well logs are included in the profiles. The JPMI 
estimations show a better matching and higher horizontal continuity, especially in the deeper 
formations from 950 to 1100 m. The improvements of the horizontal continuity can be well 
observed in the areas highlighted by arrows. According to the local conditions, the results 
obtained with the JPMI are more in agreement with the geological structures.

Figure 26a, b shows the inversion results at the well location by the PMI and JPMI, respec-
tively, by using the seismic traces near the borehole. The PMI using PP data, the P-wave veloc-
ity has the best estimation, while the result of the density is not satisfactory. The three parame-
ters have CCs of 0.8897, 0.8012 and 0.7336, and the computed RMS errors are 3.0467, 4.5828 
and 1.9050, respectively. Figure 26b shows that the JPMI gives the estimations in better agree-
ment with the well logs. Compared to the PMI, the JPMI improves the inversion accuracy, 
especially for the S-wave velocity and density. The CCs are 0.9280 (P-wave velocity), 0.9186 
(S-wave velocity) and 0.8827 (density), and the RMS errors are 2.6398 m/s (P-wave velocity), 
2.9710 m/s (S-wave velocity) and 0.9191 g/cm3 (density). The JPMI shows a better perfor-
mance, especially for the S-wave velocity and density. The 2D profiles validate the horizontal 
continuity and the stability of the JPMI.

6  Conclusions

We have developed a joint PP and PS pre-stack seismic inversion algorithm, using a propa-
gator matrix as forward engine, which can be implemented with PP and PS gathers without 
time alignment and compression. Using the L-BFGS optimization and L-curve adaptive 

Fig. 24  Well logs at CDP 468. 
The blue lines are the real well 
logs, and the black ones are the 
Backus-averaged logs
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regularization acquisition criterion, the algorithm can reliably invert the P- and S-wave 
velocities and density.

Forward modeling shows that seismograms obtained with ray tracing contain only 
primary events, being a rough approximation of the response of stratified media. On the 
contrary, the novel propagator matrix proposed in this work takes into account the full 
wavefield response and provides accurate reflection coefficients of multi-layer media. 
From posterior probability analysis, it is shown that considering the full wavefield 
improves the sensitivity of the model parameters, compared to the ray-tracing-Zoeppritz 
approach. Moreover, the joint PP-PS data improve the inversion of the S-wave velocity 

(a) (b)

(c) (d)

(e) (f)

Fig. 25  Depth-domain estimation results, namely, the P-wave velocity α (a, b), S-wave velocity (c, d) and 
density (e, f), obtained with the PMI (a, c, e) and JPMI (b, d, f). The corresponding real well logs are given
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and density, compared to the inversion based on single PP and PS data. Because of the 
different parameter sensitivities, the weight factor of the objective function should be 
set separately for the different parameters. The tests show that the proposed method is 
stable and reliable even at low signal-to-noise rations, and has a relatively low depend-
ence on the initial models.

Since ray-tracing-based modeling has concise formulas and is easy to implement, the 
corresponding inversion is suggested for thick-layer models, whose seismograms are 
slightly contaminated with multiple reflections. On the other hand, wave-equation-based 
inversion is more suitable in the presence of interbed layers and uses those complex inter-
nal responses and simplifies the pre-processing. However, one should note that the PM for-
ward modeling assumes a 1D model and therefore should be used for horizontal or nearly 
horizontal layers.

Fig. 26  Inversion results at the 
well location obtained with the 
PM-based inversions. a Direct-
depth-domain inversion results of 
the PMI. b Direct-depth-domain 
inversion results of the JPMI. 
The blue lines are the real logs, 
and the black dotted and red 
curves are the initial logs and the 
inversion results, respectively

(a)

(b)
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Appendix

From Eq. (2), the partial derivatives of �(0) and �(h) with respect to the parameters m∗=�,�,� 
are

and

Differentiating Eq. (4) with respect to model parameter m∗=�,�,� , we obtain
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Using Eq. (3), the derivatives of the intermediate variables X and Z are

and

The vertical slowness s is a function of the model parameters m∗ , and the corresponding 
derivatives are derived according to Eq. (5):

where

The partial derivatives of P-wave velocity α, S-wave velocity β and density ρ, with respect 
to the parameters m∗=�,�,� are
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Based on the derivatives above, one can obtain the partial derivatives of the reflection coef-
ficients and then the Fréchet derivatives.
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