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Abstract
Electrical anisotropy is a property of the Earth materials that can be studied through elec-
tromagnetic geophysical methods, such as magnetotellurics. It consists of the electrical 
conductivity changing with the orientation and being mathematically characterized by the 
conductivity tensor. In order to better understand the conductivity tensor and provide more 
effective tools for quantitatively analyzing the conductivity tensor of anisotropic structures, 
three graphical representations for symmetric tensors using ellipsoids, Mohr circles and 
geometric forms are presented. The ellipsoid representation can be applied to indicate the 
strength of the anisotropy in different directions. The Mohr circle provides a graphic rep-
resentation of a tensor as a function of the rotation of the coordinate system. For the geo-
metric forms, one-dimensional (1-D), two-dimensional (2-D) and three-dimensional (3-D) 
sheet models with given parameters (sizes and resistivities of the constituent prisms), the 
macroscopic anisotropic conductivity may be calculated using the closed-form mathemati-
cal formulas. These three graphical representations have different abilities for revealing 
information on the conductivity tensor. Four synthetic examples involving uniaxial or biax-
ial anisotropic conductivity structures are examined in the principal axis coordinate system 
to investigate the advantages and disadvantages of the graphical displays.
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1 Introduction

It is an indisputable fact that the conductivity structure of the crust and the upper mantle 
in the Earth is electrically anisotropic to some extent. Electrical anisotropy has attracted 
widespread attention from the scientists in geophysical electromagnetics. Many magneto-
telluric (MT) experiments related to electrical anisotropy have been carried out to map the 
conductivity structures in the lithospheric and upper mantle on land (Regis and Rijo 1997; 
Eisel and Haak 1999; Bahr and Duba 2000; Regis and Rijo 2000; Miensopust and Jones 
2011; Adetunji et al. 2015) and in marine environments (Everett and Constable 1999; Baba 
et al. 2006; Meju et al. 2018). Much progress has been made in development of forward 
algorithms for anisotropic structures (Pek and Verner 1997; Yang 1997; Li 2002; Løseth 
2007; Qin et al. 2013; Qin and Yang 2016), in development of inversion techniques (Regis 
and Rijo 2000; Yin 2000, 2003; Pek and Santos 2006; Mandolesi and Jones 2012) and 
in examination of the effect of anisotropy on MT transfer functions (Weidelt et al. 1999; 
Heise et al. 2006) as well as the dimensionality analysis (Santos and Mendes-Victor 2000; 
Martí et al. 2010; Martí 2014; Okazaki et al. 2016; Löwer and Junge 2017). There are also 
many studies involving resistivity anisotropy in the fields of the DC resistivity (Maillet 
1947; Montgomery 1971; Sasaki 1994; Yin and Weidelt 1999; Pain et al. 2003; Herwanger 
et al. 2004; Greenhalgh et al. 2009; Wiese et al. 2015; Falae et al. 2019) and in geophysi-
cal well logging (Moran and Gianzero 1979; Wang and Fang 2001; Weiss and Newman 
2002) as well as in the rock physics studies (Du Frane et al. 2005; Pommier 2014; Börner 
et al. 2018). Additionally, it is worth mentioning that the anisotropic conductivity has an 
important role in medical imaging. For example, it has been shown that the electrical con-
ductivity of the white mater in the brain and the skeletal muscle exhibits strong anisot-
ropy (Holder 2004; Jeong et al. 2017), and many researchers proposed different methods 
to reconstruct anisotropic conductivity tensor images (Sen and Torquato 1989; Seo et al. 
2004; Kwon et al. 2014; Jeong et al. 2017).

The conductivity tensor, which can be used to characterize the anisotropic electrical 
properties of the rocks in the Earth, is an essential physical parameter to be considered in 
the electromagnetic induction in Earth. Hence, it is crucial to understand the conductivity 
tensor.

In space physics, the influence of the geomagnetic field B on the charged particles in the 
atmosphere will cause the Hall effect, which may lead to the existence of the Hall conduc-
tivity (Onwumechilli 1967; Rokityansky 1982; Takeda and Masahiko 1991; Kittel 2005; 
Rastogi and Chandra 2006; Chapagain 2016). In addition, there are still the Cowling con-
ductivity (Cowling 1945; Atkinson 1967) and Pedersen conductivity (Le et  al. 2010) in 
Earth’s ionosphere. In this environment, the conductivity tensor is antisymmetric rather 
than symmetric as would be in the case of crystals (Baker and Martyn 1953). In some 
special cases, the Hall current in the Earth cannot be ignored. For example, the host rocks 
above the deposits of oil and gas can be considered a semiconductor medium in which the 
Hall effect may occur (Gololobov and Malevich 2005; Plotkin 2017).

In general, the Hall conductivity, the Cowling conductivity and the Pedersen conduc-
tivity are all ignored in studies of the Earth’s crust and mantle, and the dispersion effect 
(the variation in the conductivity with the frequency of the electromagnetic signal) is also 
ignored, i.e., it is also necessary to neglect the imaginary component of conductivity asso-
ciated with electrical polarization in order to treat the conductivity as a purely real quantity. 
Under these circumstances, the anisotropic conductivity tensor in the rock of the Earth is 
symmetric (a proof of that can be found in Dekker and Hastie 1980, Appendix C). Then, 
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the anisotropic conductivity tensor is symmetric positive and definite, which is similar to 
the case of crystal (Feynman et al. 1965). Therefore, the properties of the crystal conduc-
tivity tensor can be extended to the anisotropic medium in Earth, so some properties and 
illustrations of the crystal symmetry tensor (Nye 1985) can also be analogized or extended 
to the tensor in Earth medium.

Graphical representation for symmetric tensors is a quite intuitive and effective way to 
help people correctly understand anisotropy. In physics, the graphical representation for 
symmetric tensors is usually carried out by three ways, i.e., by ellipsoids and Mohr circles 
as well as equivalent geometric forms. The graphical representations of the conductivity 
tensor using ellipsoids are discussed in some textbooks in which the physical properties of 
the crystal are described with tensors (Nye 1985; Kittel 2005). The second graphical rep-
resentation of conductivity tensors—Mohr circle which was first introduced by Culmann 
(1866) and further by Mohr (1882) and then was used to represent the stress tensor by Jae-
ger (1969) in elastic mechanics—will be introduced in this work. In geo-electromagnetics, 
relatively less attention is paid on the graphical representation of the conductivity tensor 
in anisotropic media by ellipsoids and Mohr circles. Mohr circle is introduced by Lilley 
(1976) and other authors (Makris et al. 1999; Weaver and Lilley 2004) to represent the MT 
impedance tensor rather than conductivity tensor. However, no publications have reported 
the use of Mohr circle representation of the conductivity tensor.

More attention has been paid to the relationship of geometric forms representing aniso-
tropic media and the corresponding conductivity tensor. For example, physical realizations 
of several media characterized by a uniaxial electrical conductivity tensor in which one 
of the three components of the conductivity tensor in the principal axis coordinate sys-
tem is different from the other two were presented by Everett and Constable (1999), who 
also illustrated several simple conductivity tensor models by geometric forms. Many other 
authors have carried out similar work (e.g., Maillet 1947; Grant and West 1965; Mollison 
et  al. 1999; Schön et  al. 1999; Wannamaker 2005). For biaxial anisotropic conductivity 
(e.g., Mogilatov and Bespalov 2009), also known as triaxial anisotropic conductivity in 
some literature (e.g., Nekut 1994), which has different conductivity values along all three 
principal axes, the anisotropic conductivity tensor has been represented in terms of 2-D or 
3-D random networks and corresponding formulas by some authors (e.g., Madden 1976; 
Schmeling 1986; Bahr 1997; Pervukhina et al. 2005; Kirkby and Heinson 2017). However, 
the geometric representation of anisotropic models that these authors have given is rela-
tively complicated and inconvenient to be applied to test modeling and inversion programs. 
Therefore, we will provide some simpler geometric forms and straightforward formula to 
calculate the macroscopic conductivity tensor for several simple anisotropic models.

It is beneficial to understand the properties of the electrical anisotropy in the Earth when 
a more general conductivity tensor is represented with a simple geometric model. There-
fore, a link between the 2-D or 3-D isotropic and macroscopic anisotropic conductivity 
models may be established, and the diagonal elements of the general macroscopic conduc-
tivity tensor in the principal coordinate system can be represented in terms of parameters 
of isotropic model (sizes and conductivities of the constituent elements) through the math-
ematical expression, which provides a more convenient tool for quantitatively studying the 
anisotropic properties of the Earth medium.

The structure of this paper is as follows: The definition of the conductivity ten-
sor of anisotropic media in geo-electromagnetism is summarized in Sect. 2. Section 3 
describes the representation of the conductivity tensor under the rotation of the coordi-
nate system. Subsequently, three graphical representations of the anisotropic conductiv-
ity tensor, i.e., the 3-D ellipsoid, the Mohr circle diagrams and geometric forms, are 



252 Surveys in Geophysics (2020) 41:249–281

1 3

illustrated in Sects. 4, 5 and 6, respectively. Then, in Sect. 7, for the geometric model 
with given parameters, the macroscopic anisotropic conductivity is calculated using the 
closed-form mathematical formulas in Sect.  6; then, three graphical presentations of 
these calculated anisotropic conductivity tensors are presented as synthetic examples. 
Finally, the work is closed with some discussions in Sect. 8 and conclusions in Sect. 9.

2  The Definition of the Conductivity Tensor

In an anisotropic medium, the relationship between the conductivity, current density 
and electric field strength can be expressed by Ohm’s law:

where J is the current density vector and � represents the conductivity tensor, and � = (Ex , 
Ey , Ez) is the electric field vector, and T represents the transpose of the vector. In the fol-
lowing text, the vector or tensor is represented by bold symbol.

In an arbitrary coordinate system o-xyz (Fig.  1a), the conductivity tensor can be 
expressed, in terms of components, as follows:

where σij represents the components of the conductivity tenor, which can be written as:

(1)� = ��T

(2)Ji =

x,y,z∑
j

�ijEj, i = x, y, z,

Fig. 1  Components of current density when a field is applied. The relation between the electric current 
density J and the electric field E in b isotropic media and c anisotropic media. The thin black arrows are 
original coordinate system o-xyz while the thin purple arrows are new coordinate system o-x′y′z′. See text in 
Sect. 2 for the meaning of symbols



253Surveys in Geophysics (2020) 41:249–281 

1 3

In an isotropic medium, the direction of the electric field is parallel to that of the current 
density, and thus, σ becomes a scalar � (Fig. 1b). In such case, we have

where jx, jy and jz are the components of current density in x, y, z directions, respectively, 
and correspondingly, the Ex , Ey and Ez are the components of electric field.

In an anisotropic medium, the direction of the electric field is different than that of the 
current density (Fig. 1c). In this case, from Eqs. (1)–(3), we obtain the following expres-
sions which relate the current density components and the electric field components by the 
conductivity tensor components (Fig. 1a):

In the geo-electromagnetics, the Hall conductivity, the Cowling conductivity and the 
Pedersen conductivity as well as the dispersion effect are generally not considered; hence, 
the anisotropic conductivity tensor may be regarded to be symmetric positive definite.

3  The Conductivity Tensor Under the Rotation of the Coordinate 
System

Discussions of the rotation of the conductivity (or resistivity) tensor are given in many MT 
studies (Pek and Verner 1997; Heise et  al. 2006; Pek and Santos 2006; Miensopust and 
Jones 2011; Mandolesi 2013; Martí 2014), in which the rotation of the conductivity tensor 
is carried out by applying three successive Euler rotations. Here is another more general 
description about the conductivity tensor under the rotation of the coordinate system.

Assuming that the original coordinate system o-xyz is rotated into the new coordinate 
system o-xyz (Fig. 1a), the electric field in the new coordinate system can be expressed as 
(Nye 1985):

where

is the rotation matrix and αij ( i = x�, y�, z�; j = x, y, z ) represents the cosine of the angle 
between the i- and j-axis.

(3)� =
�
�ij
�
=

⎡
⎢⎢⎣

�xx �xy �xz
�yx �yy �yz
�zx �zy �zz

⎤
⎥⎥⎦
.

(4)jx = �Ex, jy = �Ey, jz = �Ez,

(5)jx = �xxEx + �xyEy + �xzEz,

(6)jy = �yxEx + �yyEy + �yzEz,

(7)jz = �zxEx + �zyEy + �zzEz.

(8)�� = ��,

(9)� =

⎡⎢⎢⎣

�x�x �x�y �x�z
�y�x �y�y �y�z
�z�x �z�y �z�z

⎤⎥⎥⎦
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The electric field in the original coordinate system can be expressed in terms of the one 
in the new coordinate system via the following expression:

where �T is the transpose matrix of R.
The conductivity tensor in the new coordinate system can be written as:

where �̄ is the representation of � in the new coordinate system o-xyz.

4  Ellipsoid Representation of the Conductivity Tensor

Generally, � = [�ij] is a symmetric second-rank tensor for crystals; the proof is referred to 
Feynman et al. (1965). This conclusion also holds for the general Earth medium. There-
fore, for a general Earth medium, according to Eqs.  (1)–(3), the dissipated energy flow 
density per unit volume can be written as:

For a given power flow U0∕2 , Eq. (12) can be expanded as:

Equation (13) represents an ellipsoid which is the trajectory of a vector � =
(
Ex,Ey,Ez

)
 

with a constant energy, and is called as an energy ellipsoid. The normal direction at any 
point q on the tangent plane Q of the energy ellipsoid is �q =

(
Exq,Eyq,Ezq

)
 (the vector 

shown by the dashed blue arrow in Fig. 2).
According to the mathematical representation of the quadratic function, there always exists 

such a coordinate system in which only the diagonal elements of the conductivity tensor 

(10)� = �−1�� = ����,

(11)�̄ = ����

(12)Up =
1

2
� ⋅ � =

1

2
� ⋅ ��T =

1

2

∑
i

∑
j

�ijEiEj, i, j = x, y, z.

(13)�xxE
2
x
+ �yyE

2
y
+ �zzE

2
z
+ 2�xyExEy + 2�yzEyEz + 2�zxEzEx = U0

Fig. 2  Energy ellipsoid–the 
trajectory of the vector 
E = (Ex, Ey, Ez) with constant 
energy. The coordinate axes 1, 
2 and 3 are taken to be the ani-
sotropic principal axes and rep-
resented in brown dashed lines. 
The orange solid arrows marked 
as E1, E2 and E3 are equivalent 
to the principal axes 1, 2, 3. The 
three semi-axes of the ellipsoid 
are represented by green solid 
arrows with lengths 1∕

√
�11 , 

1∕
√
�22 and 1∕

√
�33 . The thick 

dashed arrow in blue is the con-
ductivity vector at the point q at 
the surface of the ellipsoid



255Surveys in Geophysics (2020) 41:249–281 

1 3

exist while off-diagonal elements vanish. The three coordinate axes in such coordinate sys-
tem are called as the principal axes, denoted by 1-, 2- and 3-axis (as indicated by the axis in 
brown dashed line in Figs. 2 and 3). In this coordinate system, σij attains extreme values (i.e., 
the three principal values of the conductivity tensor σ11, σ22 and σ33), and then on the cor-
responding tangent planes, off-diagonal elements of the conductivity tensor vanish, that is, 
σxy = σyz = σzx = 0. And hence, we obtain a normalized equation for the ellipsoid as follows:

where E1, E2 and E3 are the new principal axes which are equivalent to the principal axes 
1, 2 and 3, respectively. For the sake of consistency, these principal axes are uniformly 
represented by axes 1, 2 and 3 (as indicated by the axis in brown dashed line in Figs. 2 
and 3), respectively. Therefore, for these three axes, there are only three nonzero compo-
nents in the conductivity tensor. The lengths of the three semi-axes of the ellipsoid are 
1∕

√
�11 , 1∕

√
�22 and 1∕

√
�33 , respectively. When a unit electric field vector is considered 

in Eq. (12), Eq. (13) can be rewritten as:

where � =
(
lx, ly, lz

)
 represents the unit vector in the direction of the electric field and σq is 

the conductivity in the normal direction of the point q on the tangent plane Q, or in the 
direction of the electric field �q (as shown in the blue arrow in Fig. 2). lx = Ex/E,ly = Ey/E 
and lz = Ez/E indicate the direction cosine of the electric field E. If the conductivity at the 
point q in space is regarded as the vector, then the amplitude of the conductivity vector at 
this point is �q =

√
�2
qx
+ �2

qy
+ �2

qz
 and �q =

(
lqx, lqy, lqz

)
 , respectively. Hence, we can 

obtain that lqx = �qx∕
√
�q , lqy = �qy∕

√
�q and lqz = �qz∕

√
�q �qx, �qy and �qz are the com-

ponents of the conductivity vector at the point q in axes x, y, z, respectively. Substituting 
lqx , lqy and lqz into Eq. (15), one can obtain

(14)�11E
2
1
+ �22E

2
2
+ �33E

2
3
= 1

(15)�xxl
2
x
+ �yyl

2
y
+ +�zzl

2
z
+ 2�xylxly + 2�yzlylz + 2�zxlzlx = �q,

Fig. 3  Conductivity ellipsoid in the principal coordinate system 123. The coordinate axes 1, 2 and 3 are 
taken to be the anisotropic principal axes and represented in brown dashed lines. The orange solid arrows 
marked as σx, σy and σz are equivalent to the principal axes 1, 2, 3. The three semi-axes of the ellipsoid are 
indicated by solid arrow in green, purple and blue, respectively, and their lengths are 1∕

√
�11 , 1∕

√
�22 and 

1∕
√
�33 . The thick solid arrow in gray is the conductivity vector at the point q at the surface of the ellip-

soid. The thin solid arrows labeled with σqx,σqy and σqz are the components of the conductivity vector at the 
point q in any arbitrary coordinate system with axes x, y, z represented by black solid arrows. See the texts 
following Eq. (15-17) in Sect. 4 for details
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Obviously, Eq. (16) represents the equation of the ellipsoid. Therefore, if the coordi-
nate axes are taken to be parallel to the directions of �qx , �qy and �qz , then the ellipsoid 
represented by Eqs. (15) or (16) is also called conductivity tensor ellipsoid (as shown in 
Fig. 3). If the coordinate axes are taken to be the principal axes 1, 2 and 3, then Eq. (16) 
can be rewritten as:

Similar to Eq. (14), it can be seen from Eq. (17) that σx, σy and σz can be considered 
as the new principal axes. And they are equivalent to the principal axes 1, 2 and 3. 
Hence, the lengths of the three semi-axes of the ellipsoid are also 1∕

√
�11 , 1∕

√
�22 and 

1∕
√
�33 , as shown in Fig. 3.

The problem of finding the principal conductivities is equivalent to finding the eigen-
values and eigenvectors of the following equation (Nye 1985):

where I is unit matrix.
The three eigenvalues of Eq. (18) are the roots of the following characteristic polyno-

mial equation:

where

The coefficients C1, C2 and C3 in Eq. (19) are invariants when the axes are rotated, 
which can be shown by solving Eq. (19) for three roots σ11, �22 and σ33:

Substituting σ11,�22 and σ33 into Eq.  (18), the corresponding principal axes �1 , �2 
and �3 , which represent the unit vector along the directions of the principal axes,can be 
found.

Obviously, the difference ( �11 − �33 ) between the maximum and minimum principal 
conductivities reflects the strength of anisotropy. The flatness ( � =

�√
�11 −

√
�33

�
∕
√
�11 ) 

or ellipticity ( � =
√
�11∕�33 ) of the conductivity tensor ellipsoid can be used to indicate 

the strength of the anisotropy.

(16)�xx�
2
qx
+ �yy�

2
qy
+ +�zz�

2
qz
+ 2�xy�qx�qy + 2�yz�qy�qz + 2�zx�qz�qx = 1.

(17)�11�
2
x
+ �22�

2
y
+ �33�

2
z
= 1.

(18)(� − ��)� = 0,

(19)det(� − ��) = �3 + C1�
2 + C2� + C3 = 0,

(20)C1 = −
(
�xx + �yy + �zz

)
,

(21)C2 = �xx�yy + �yy�zz + �zz�xx − �2
xy
− �2

yz
− �2

zx
,

(22)C3 = �xx�
2
yz
+ �yy�

2
zx
+ �zz�

2
xy
− �xx�yy�zz − 2�xy�yz�zx

(23)C1 = −
(
�11 + �22 + �33

)
,

(24)C2 = �11�22 + �22�33 + �33�11,

(25)C3 = �11�22�33.
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5  The Representation of the Conductivity Tensor with Mohr Circle

Mohr circle was first proposed to represent stress by German civil engineer Culmann (1866) 
and extended in detail by German civil engineer Mohr (1882). Mohr circle is one of the few 
graphical techniques still used in stresses tensor analysis. It provides a simple and clear picture 
of an otherwise complicated analysis (Ferdinand and Johnson 1992).

Mohr circles were introduced in geophysics to relate shear stress and normal stress (Jae-
ger 1969) and used to represent tensor information as an general application (Nye 1985); 
Mohr circles were first introduced by Lilley (1976) into magnetotellurics to represent mag-
netotelluric impedance tensors. Hereafter, Lilley (1993a) further explored the application 
of Mohr circle in the display of magnetotelluric data and used the Mohr circles in magne-
totelluric data interpretation when static shift occurs (Lilley 1993b). In addition, the Mohr 
circle is also used to perform MT tensor decomposition and galvanic distortion analysis 
(Lilley 1998b, 1998a, 2012). Moreover, Mohr circles were used to identify regional dimen-
sionality and strike angle from distorted magnetotelluric data (Weaver 2004; Weaver and 
Lilley 2004; Lilley 2016, 2018). However, reports of the use of Mohr circles for conductiv-
ity tensors have not yet appeared. Therefore, a graphical representation of the Mohr circle 
of the conductivity tensor is presented here.

We first consider the Mohr circle for the 2-D case defined by x and y coordinates; in this 
case the conductivity tensor can be written as

in the arbitrary coordinate systems. In the anisotropic principal coordinate system defined 
by axes 1 and 2, it can be expresses as

The corresponding Mohr circle is shown in Fig. 4. Similar to the stresses tensor analysis 
(Ugural and Fenster 2011), in 2-D space, the coordinate of the center of the Mohr circle on 
the horizontal axis is

and its radius is

where 𝜎11 > 𝜎22.

The abscissa of a point on the Mohr circle

indicates the diagonal components of the conductivity tensor, where 2θ is the rotation 
angle of the coordinate axis with respect to the principal axis. σn(θ) takes the maximum 
value σ11 when θ = 0°, while it takes the minimum value σ22 when θ = 90°.

The ordinate of a point on the Mohr circle

�=

[
�xx �xy
�yx �yy

]

�=

[
�11 0

0 �22

]
.

(26)oO1 =
(
�11 + �22

)
∕2,

(27)r =
(
�11 − �22

)
∕2,

(28)�n(�) = �ii(�) = oO1 + rcos2�, i = 1, 2,

(29)�ij(�) = rsin2�, (i ≠ j; i, j = 1, 2)
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indicates the off-diagonal components of the conductivity tensor. Obviously it relates to the 
difference in conductivities along different principal directions,which is due to the conduc-
tivity anisotropy. σij takes the maximum value (σ11 − σ22)/2 when θ = 45°.

It can be seen from Fig. 4 and equation

that the magnitude of off-diagonal elements is a measure of electrical anisotropy. The 
magnitude of the off-diagonal elements varies with the coordinate rotation and is equal 
to the ordinate of the point on the Mohr circle. The abscissa of some point on the Mohr 
circle takes the maximum value σ11 and the minimum value σ22, respectively, on the prin-
cipal axis θ = 0. When the conductivities along the two principal directions are equal to 
each other (i.e., σ11 = σ22), the Mohr circle degenerates into a point. Therefore, the size of 
Mohr circle is the measure of the strength of the electrical anisotropy, and the Mohr circle 
provides a visual description of the variation in the elements of the conductivity tensor 
along the axes. It should be noted that the Mohr circle was drawn in the coordinate system 
defined by the σn and σij rather than in the o-xyz coordinate system.

In the 3-D case defined by the x, y and z coordinates, when drawing a Mohr circle, only 
two of the three coordinates x, y and z are considered at a time, and the 3-D case can be 
considered as three 2-D situations (i.e., xy, yz and zx). It is also noted that the Mohr circle 
will be not drawn in the o-xyz coordinate system but in the coordinate system defined by 
the σn and σij as in 2-D case. The drawing of the Mohr circle in each situation is completely 
similar to the 2-D case. If �ij =

(
�ii − �jj

)
∕2 (i ≠ j; i, j = 1, 2, 3.) is taken as the ordinate 

axis and �n = �ij (i = j = 1, 2, 3.) is taken as the abscissa axis, one can draw the 2-D Mohr 
circles in these three combinations on the same plane. If the problem is considered in the 
principal coordinate system and conductivities along the three principal axes (1, 2 and 3) 

(29ʹ)�ij(�) = rsin2� =
(
�11 − �22

)
sin2�∕2 (i ≠ j; i, j = 1, 2)

Fig. 4  Graphical representation for the 2-D tensor identical conductivity state by using Mohr circle of con-
ductivity tensor in rotated principal axis coordinate system. The abscissa axis is related to the diagonal ele-
ments of the conductivity tensor �n = �ij (i = j = 1, 2.) , while the ordinate axis is taken as the off-diagonal 
elements of the conductivity tensor �ij =

(
�ii − �jj

)
∕2 (i ≠ j; i, j = 1, 2.) . The abscissa at the center (O1) of 

the circle is equal to the average principal conductivities 
(
�11 + �22

)
∕2 . The maximum σ11 and minimum 

σ22 conductivities define the diameter in the principal frame (θ = 0). Any other point on the circle gives the 
conductivity tensor in a coordinate system rotated by 2θ from the principal axis. The red points marked 
with σ11 and σ22 are the point of intersection of the Mohr circle and the abscissa axis. The red point labeled 
by σii(θ) represents the abscissa of the point corresponding to angle θ on the Mohr circle. σij(θ) represents 
the ordinate the point corresponding to angle θ on the Mohr circle
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are sorted from large to small (i.e., �11 ≥ �22 ≥ �33 ), then the differences in conductivities 
along two of the three principal axes can be defined as the radii of the Mohr circle:

where σ12, σ13 and σ23 are half of the differences in conductivities between the principal 
axes 1 and 2, 1 and 3, as well as 2 and 3, respectively.

The coordinates of the centers of the Mohr circle on the horizontal axis are:

According to Eqs. (30)–(35),three Mohr circles for 3-D case can be drawn (Fig. 5).
It is clear from Eqs.  (30)–(32) that the relationship between the maximum principal 

conductivities satisfies

which means that the conductivity σ11 in the principal direction 1 can be represented into 
the combination of the conductivity σ33 in the principal direction 3 with σ12 and σ13.

Similarly, from Eqs. (31) and (36), one obtains

(30)�23 =
(
�22 − �33

)
∕2,

(31)�13 =
(
�11 − �33

)
∕2,

(32)�12 =
(
�11 − �22

)
∕2,

(33)oO3 =
(
�22 + �33

)
∕2,

(34)oO2 =
(
�22 + �11

)
∕2,

(35)oO1 =
(
�11 + �33

)
∕2.

(36)�11 = �33 + 2�12 + 2�23,

Fig. 5  Mohr circles for 3-D tensor with identical conductivity state. The abscissa axis is related to the 
diagonal elements of the conductivity tensor �n = �ij (i = j = 1, 2, 3.) , while the ordinate axis is taken as 
the off-diagonal elements of the conductivity tensor �ij =

(
�ii − �jj

)
∕2 (i ≠ j;i, j = 1, 2, 3.) . σ11, �22 and 

�33
(
�11 ≥ �22 ≥ �33

)
 are the conductivities along the three principal axes. σ12, �13 and σ23 are half of the 

differences between the principal conductivities. The purple points R, S and T represent the intersections of 
three Mohr circles and the abscissa axis
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by which �13 can be expressed as the sum of σ12 and σ23. Equations (36) and (37) establish 
some connections between quantities such as σ11, σ12, σ13, �23 and σ33, which facilitates 
checking whether they are correctly obtained, as shown in Fig. 5.

The axis of ordinates is taken as

and the axis of abscissas is taken as

Then, the Mohr circle representation of the conductivity tensor in 3-D case can be 
drawn as shown in Fig. 5.

The pattern distribution of Mohr circle can visually indicate the conductivity along 
each principal direction. The radius of each Mohr circle reflects the difference in con-
ductivities along the anisotropy principal axes. The relative position distribution of 
Mohr circle can graphically display the difference in conductivities along each principal 
direction.

The Mohr circle representation of the stress tensor has been widely used in the fields of 
seismology and engineering. In particular, the Mohr circle can be used to easily find the 
maximum and minimum stresses and their ratios, to study stress and strain changes in the 
Earth (Sarma 1975), fluid pressure in rock jointing (Secor 1965; McKeagney et al. 2004) 
and in rock rupture (Griffiths 1990; Jolly and Sanderson 1997; Labuz and Zang 2012), thus 
playing an important role in these applications. Compared to anisotropic seismic wave (P 
or S wave) velocity tensors in the Earth, the difference between the magnitudes of the three 
principal elements in the anisotropic conductivity tensor may be several orders of magni-
tude greater. In seismology, the seismic wave velocity can be linked to the stress and strain 
by Hooke’s law, so as to achieve the purpose of studying the geo-stress. This suggests that 
there are some advantages in studying the anisotropy of the Earth’s medium using conduc-
tivity tensors compared with seismic wave velocity tensors. This advantage can be mani-
fested by the Mohr circle representation of the conductivity tensor, a similar representation 
of the Mohr circle of the geo-stress tensor.

Unlike the ellipsoid representation of the conductivity tensor, the Mohr circle repre-
sentation of the conductivity tensor can conveniently show the values of the elements of 
the conductivity tensor in arbitrary directions. As the maximum and minimum stresses 
and their ratios can be calculated by Mohr circle from the stress in arbitrary direction, the 
maximum and minimum conductivity and their ratio can be determined more conveniently 
using the Mohr circle from the conductivity tensor in arbitrary direction, which is also 
more convenient than the ellipsoid representation of the conductivity tensor. The Mohr cir-
cle representation also provides a more convenient tool for mutual reference and compari-
son so as to carry out a joint study of conductivity tensor and stress tensor.

A possible reason that there has been no previous practical application of Mohr circles 
in geo-electromagnetics is that it is difficult to completely reconstruct all components of 
the conductivity tensor for anisotropic media in arbitrary coordinate system, although it 
is possible to reconstruct a conductivity tensor in a specified coordinate system based on 
particular physical models for a very long time. This fact could be also a possible reason 
why the representations of the conductivity tensor by Mohr circles have not received much 
attention so far. However, the authors believe that with the development of the forward and 

(37)�13 = �12 + �23

(38)�ij = �ii − �jj, i ≠ j; i, j = 1, 2, 3,

(39)�n = �ij, i = j = 1, 2, 3.
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inversion techniques for generally anisotropic conductivity tensor, Mohr circles of the con-
ductivity tensor should also have some favorable application prospects.

From the above text, one can get some general information about how Mohr circles are 
constructed and what they represent, e.g., that:

1. They provide a graphic representation of a tensor as a function of the rotation of the 
coordinate system. The circle is the locus of points representing the form of the tensor 
on individual planes at all their orientations, where the axes represent the principal axes 
of the tensor.

2. For a 2-D system, the single Mohr circle plots σij versus �n as the coordinate system 
rotates through 180°. The plot is based on the principal components of the tensor: The 
limits on the horizontal axis relate to the principal values of the tensor, and the limits 
on vertical axis relate to the difference between principal values.

3. For a 3-D system, the three possible Mohr circles corresponding to pairs of principal 
values and the abscissa and ordinate of each point on the circle are again the magni-
tudes of the diagonal component and off-diagonal components, respectively, as axes are 
rotated in each of the planes σ12σn, �23�n , �31�n.

6  Geometric form Representation of the Conductivity Tensor Model 
and Its Explanation

The actual electrical anisotropic Earth may correspond to various conductivity models 
which can be expressed in different forms of tensors. There are many publications describ-
ing how various geometric forms to contribute to anisotropic conductivity including for 
films, rods, resistor networks, embedded ellipsoids (Grant and West 1965; Madden 1976; 
Schmeling 1986; Bigalke 1999, 2000a, b; Kozlovskaya and Hjelt 2000; Bahr et al. 2002; 
Pervukhina et  al. 2005; Wannamaker 2005; Pommier 2014; Kirkby and Heinson 2015; 
Schön 2015; Kirkby et al. 2016a, b; Kirkby and Heinson 2017).

Many substances consist of anisotropic conductive crystal unit cells, which are formed 
by oriented small particles of different compositions and/or small blocks with aligned frac-
tures. The electrical anisotropy characteristic usually exhibited by these crystal unit cells is 
called electrical microscopic anisotropy. On the other hand, the repeated recurrence of the 
alignment of the cells of these anisotropic crystal units results in so-called electrical mac-
roscopic anisotropy (Maillet 1947; Eisel and Haak 1999).

The anisotropic conductivity tensor can be considered as representing some geometric 
combination of homogeneous isotropic prisms with different conductivities. These conduc-
tivity geometric models are mainly divided into four categories in the principal coordinate 
system, which will be discussed in detail below.

6.1  Case 1: Uniaxial Anisotropy with Infinitely Repeated HTI/VTI Unit

In all possible electrical conductivity tensors in the principal coordinate system, the uni-
axial anisotropic tensor (that is, the electrical conductivity tensor with a principal com-
ponent different from the other two) is the simplest case. In this case, the conductivity 
structures can be represented by geometric forms as shown in Fig.  6, which can also 
be considered as horizontal transverse isotropy (HTI) (Fig.  6a) or vertical transverse 
isotropy (VTI) (Fig. 6b and c). If the problem is considered in the principal coordinate 
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system in which the principal axes are denoted by 1, 2 and 3 axes, and σ11 = σ22 ≠ σ33, 
then the conductivity tensor can be written as:

which correspond to the subfigures as shown in Fig. 6a–c, respectively. The model shown 
in Fig. 6a can be considered to be a stack of thin layers composited of two different media, 
in which two adjacent layers have different compositions and same thickness, and all the 
layers are parallel to the xoy plane. The thickness and conductivity of the first medium (the 
layer in red in Fig. 6a–c) are d1 and σ1, respectively. The thickness and conductivity of the 
second medium (the layer in yellow in Fig. 5a–c) are d2 and σ2, respectively. Therefore, 
according to Ohm’s law, the macroscopic equivalent conductivity in the 1 (parallel and 
series association of resistances) and 3 directions (series association of resistances) can be 
derived as:

(40a)�� =

⎡⎢⎢⎣

�11 0 0

0 �11 0

0 0 �33

⎤⎥⎥⎦
,

(40b)��� =

⎡
⎢⎢⎣

�11 0 0

0 �33 0

0 0 �11

⎤⎥⎥⎦
,

(40c)���� =

⎡⎢⎢⎣

�33 0 0

0 �11 0

0 0 �11

⎤⎥⎥⎦
,

Fig. 6  Geometric graph representation of the uniaxial anisotropic conductivity tensor (case 1) given by 
Eqs. (40a–c) and (41–42) in the principal axis coordinate system. The model a can be considered as HTI, 
and models b and c are VTI structures. The corresponding conductivity tensors are given in the panel below 
each graph. The graphs in b and c can be considered as the ones obtained when the graph a is rotated 90° 
around the x- and y-axis, respectively
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The models (b) and (c) in Fig. 5 can be considered as the ones obtained when the model 
(a) is rotated 90° around the 1- and 2-axis, respectively. Therefore, the macroscopic equiva-
lent conductivity can also be calculated using Eqs. (41) and (42).

Many others authors (Maillet 1947; Eisel and Haak 1999; Mollison et al. 1999; Schön 
et al. 1999; Schön et al. 2000; Schön 2015; Wiese et al. 2015) also gave the same, or simi-
lar equation as Eqs. (41) and (42).

Obviously, if σ1 = σ2, Eqs. (41) and (42) reduce to the isotropic case (i.e., σ11 = σ33 = σ1).

6.2  Case 2: Simply Biaxial Anisotropy with Infinitely Repeated HTI/VTI Unit

Another form of anisotropic electrical conductivity is biaxial anisotropic conductiv-
ity (Mogilatov and Bespalov 2009; Yuan et  al. 2010; Davydycheva and Wang 2011), 
also known as triaxial anisotropic conductivity in some literature (Nekut 1994; Yu et al. 
1997; Hoversten et  al. 2015). It is  characterized  by  three  different  conductivity val-
ues along each of  the three different principal axes.  In this section, we consider a model 
consists of an array of infinitely long rectangular prisms with alternating conductivity 
resulting in a conductivity structure that varies along axes perpendicular to the rods but is 
invariant in the direction parallel to the prisms. This graphical representation of the biaxial 
anisotropic conductivity tensor can be illustrated in a form of the geometric models with 
infinitely repeated HTI (Fig. 7a) or VTI unit (Fig. 7b and c) unit.

When �11 ≠ �22 ≠ �33 , the conductivity tensor in the principal axis coordinates system 
can be expressed as:

which can be represented by the models shown in Fig. 7a, c, d, respectively.
Similar to case 1, the models shown in Fig. 7 are formed by two sets of rectangular 

prisms with different conductivities and dimensions, which are arranged alternately side 

(41)�11 =

(
d1�1 + d2�2

)
d1 + d2

, (parallel)

(42)�33 =
d1 + d2

d1∕�1 + d2∕�2
. (series)

(43a)�� =

⎡⎢⎢⎣

�11 0 0

0 �22 0

0 0 �33

⎤⎥⎥⎦
,

(43b)��� =

⎡⎢⎢⎣

�11 0 0

0 �33 0

0 0 �22

⎤⎥⎥⎦
,

(43c)���� =

⎡⎢⎢⎣

�33 0 0

0 �22 0

0 0 �11

⎤⎥⎥⎦
,
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by side. Each set of prisms infinitely extends along the 1-, 2-, 3-axis. Take the model 
shown in Fig. 7a as an example; the blue rectangular prism has the dimension of dx1 and 
dy1 in the direction of the 1- and 2-axis, respectively. The yellow rectangular prism has 
the dimension of dx2 and dy2 in the direction of the 1- and 2-axis, respectively. The con-
ductivities of the blue rectangular prism and the yellow one are σ1 and σ2, respectively. 
This model (Fig.  7a) can be regarded as cyclic repetition of the  combination  of  four 
adjacent prisms shown in Fig. 7b. Therefore, the equivalent conductivity of this model 
can be obtained by calculating the total conductivity of the combined prisms shown in 

Fig. 7  Geometric graph representation of the simply biaxial anisotropic conductivity tensor (case 2) given 
by Eqs. (43a–c) and (44a–c) in the principal axis coordinate system. The model a can be considered as infi-
nitely repeated VTI, and models c and d are infinitely repeated HTI. The graph in panel a is constructed by 
alternately arranging many sets of rectangular prisms with different conductivities and dimensions side by 
side. Each set of prisms consists of four cubes shown in panel (b). The geometric graphs shown in subfigure 
c and d can be regarded as the ones obtained when the geometric graph a is rotated 90° around the x- and 
y-axis, respectively
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Fig. 7b. From Ohm’s law, the macroscopic equivalent conductivities along three princi-
pal directions can be derived as:

The models shown in Fig. 7c, d can be considered as the ones obtained when the model 
in Fig. 7a is rotated 90° around the 1- and 2-axis, respectively. Therefore, the macroscopic 
equivalent conductivity for these models can be calculated by substituting Eqs.  (44a–c) 
into Eqs. (43a–c).

6.3  Case 3: More General Biaxial Anisotropy with Infinitely Repeated HTI/VTI Unit

Similar to the last case, in this section we consider a biaxial anisotropic conductivity tensor 
with more general infinitely repeated horizontal (Fig. 8a) or vertical (Fig. 8b, c) transverse 
isotropy. In this model, the values of the conductivity of the alternating prisms differ along 
the two axes perpendicular to the prisms.

Similar to case 3, four adjacent prisms shown in Fig. 8b have different dimensions and 
conductivity. The red rectangular prism has the dimension of dx1 and dy1 in the direction 
of the 1- and 2-axis, respectively, and its conductivity is σ1. The yellow rectangular prism 
has the dimension of dx1 and dy2 in the direction of the 1- and 2-axis, respectively, and its 
conductivity is σ2. The blue rectangular prism has the dimension of dx2 and dy2 in the direc-
tion of the 1- and 2-axis, respectively, and its conductivity is σ3. The green rectangular 
prism has the dimension of dx2 and dy1 in the direction of the 1- and 2-axis, respectively, 
and its conductivity is σ4. If numbers of the combined unit shown in Fig. 8b are placed side 
by side, then the model shown in Fig. 8a can be constructed. Similar to case 2, the macro-
scopic equivalent conductivities along three principal directions can be derived as:

(44a)�11 =
�1�2

(
dx1 + dx2

)
(
dy1 + dy2

)
[

dy1(
�2dx1 + �1dx2

) +
dy2(

�1dx1 + �2dx2
)
]

(44b)�22 =
�1�2

(
dy1 + dy2

)
(
dx1 + dx2

)
[

dx1(
�2dy1 + �1dy2

) +
dx2(

�1dy1 + �2dy2
)
]

(44c)�̄�33 =
dy1

(
𝜎1dx1 + 𝜎2dx2

)
+ dy2

(
𝜎1dx2 + 𝜎2dx1

)
(
dx1 + dx2

)(
dy1 + dy2

) .

(45a)�11 =

(
dx1 + dx2

)
(
dy1 + dy2

)
[

�4�1dy1

�4dx1 + �1dx2
+

�2�3dy2

�3dx1 + �2dx2

]
,

(45b)�22 =

(
dy1 + dy2

)
(
dx1 + dx2

)
[

�1�2dx1

�2dy1 + �1dy2
+

�3�4dx2

�3dy1 + �4dy2

]
,

(45c)�33 =
dy1

(
�1dx1 + �4dx2

)
+ dy2

(
�3dx2 + �2dx1

)
(
dx1 + dx2

)(
dy1 + dy2

) .
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The models shown in Fig. 8c, d can be considered as the ones obtained when the model 
in Fig. 8a is rotated 90° around the 1- and 2-axis, respectively. Therefore, the macroscopic 
equivalent conductivity for these models can be calculated by substituting Eqs.  (45a–c) 
into Eqs. (43a–c).

It should be noted that the result in this case will reduce to the previous result in case 2 
when σ1 = σ3.

6.4  Case 4: Biaxial Anisotropy with Periodically Varied HTI/VTI

Now we consider a more general biaxial anisotropy which is constructed by periodically 
varied HTI/VTI rectangular prisms. In this situation, the conductivity varies in the 1, 2, 3 
directions, as shown in Fig. 9a. In order to construct this model, two sets of the combina-
tion of four blocks with different dimensions and conductivities shown in Fig. 9b and c, 

Fig. 8  Geometric graph representation of the more general biaxial anisotropic conductivity tensor (case 3) 
given by Eqs. (43a–c) and (45a–c) in the principal axis coordinate system. The model a can be considered 
as infinitely repeated VTI, and models c and d are infinitely repeated HTI. The graph in panel a is com-
posed of many sets of rectangular prisms with different conductivities. Each set of prisms consists of four 
cubes in different colors shown in subfigure (b). The geometric graphs shown in subfigure c and d can be 
obtained from the geometric graph a being rotated 90° around the x- and y-axis, respectively
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respectively, are superposed to form a basic unit model, which are then placed side by side 
to construct the final anisotropic model.

In Fig. 9b, the red rectangular prism has the dimension of dx1 and dy1 in the direction of 
the 1- and 2-axis, respectively, and its conductivity is σ1. The yellow rectangular prism has 
the dimension of dx1 and dy2 in the direction of the 1- and 2-axis, respectively, and its con-
ductivity is σ2. The blue rectangular prism has the dimension of dx2 and dy2 in the direction 
of the 1- and 2-axis, respectively, and its conductivity is σ3. The green rectangular prism 
has the dimension of dx2 and dy1 in the direction of the 1- and 2-axis, respectively, and its 
conductivity is σ1. The thicknesses of these four rectangular prisms are dz1.

In Fig.  9c, the thicknesses of all the blocks are dz2. The light blue rectangular prism 
has the dimension of dx1 and dy1 in the direction of the 1- and 2-axis, respectively, and its 
conductivity is σ5. The dark pink rectangular prism has the dimension of dx1 and dy2 in 
the direction of the 1 - and 2-axis, respectively, and its conductivity is σ6. The light yellow 

Fig. 9  Geometric graph representation of the generally biaxial anisotropic conductivity tensor (case 4) 
given by Eqs. (43a–c) and (46a–c) in the principal axis coordinate system. The graph in panel a consists of 
many sets of rectangular prisms with different conductivities, arranged alternately side by side. Each set of 
prisms is composed of eight cubes in different colors shown in subfigure (b). The geometric graphs shown 
in subfigure c and d can be considered as the ones obtained when the geometric graph a is rotated 90° 
around the x- and y-axis, respectively
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rectangular prism has the dimension of dx2 and dy2 in the direction of the 1- and 2-axis, 
respectively, and its conductivity is σ7. The light gray rectangular prism has the dimension 
of dx2 and dy1 in the direction of the 1- and 2-axis, respectively, and its conductivity is σ8.

Therefore, the conductivity of the basic unit model composed of the eight blocks can be 
regarded as the macroscopic conductivity of the model. Using a calculation method similar 
to the previous cases, the equivalent macroscopic conductivity of this model can be calcu-
lated by

As in cases 2, 3 and 4, a number of studies (Madden 1976; Schmeling 1986; Bahr 1997; 
Bigalke 1999, 2000b; Kozlovskaya and Hjelt 2000; Pervukhina et al. 2005; Wannamaker 
2005; Semeriyanov et al. 2009; Pommier 2014; Kirkby and Heinson 2017) have consid-
ered the macroscopic anisotropy of the Earth’s medium with the form of 2-D or 3-D ran-
dom networks and to give the corresponding formulas. However, their geometric forms 
and formulas are relatively complicated and thus inconvenient to extensively be applied to 
test modeling and inversion programs. Therefore, we have presented some simpler theo-
retical models and formulas in order to conveniently calculate the macroscopic anisotropic 
conductivity tensor. Although no practical application examples are given in this work, it 
is foreseeable that these concise formulas can be used in conductivity. These expressions 
would play an important role in greatly reducing the inverted parameters in the inversion of 
the anisotropic conductivities.

One may find that the case 4 should reduce to the case 3 if �1 = �5 , �2 = �6 , �3 = �7 and 
�4 = �8.

7  Synthetic Examples

In previous three sections, we have presented three types of graphical representations of 
the conductivity tensor (i.e., ellipsoid, Mohr circle and geometric form). The use of the 
representation in terms of sheet and prism models is a little bit philosophically different 
from the representation in terms of ellipsoids and Mohr circles.

Typically, the geometrical models will be used to represent a physical situation or to 
provide an example of an anisotropic medium, whereas the ellipsoidal and Mohr circles 
are simple graphical representations of the anisotropic conductivity tensor. The ellipsoidal 
and Mohr circle representations provide a unique representation of an arbitrary anisotropic 
conductivity, and it can be easily constructed for a specified conductivity tensor. In con-
trast, the geometric models do not provide a unique representation and it may be more dif-
ficult (or impossible) to construct a model corresponding to an arbitrary tensor.

(46a)

�11 =

(
dx1 + dx2

)
(
dy1 + dy2

)(
dz1 + dz2

)
[

�1�4dy1dz1

�4dx1 + �1dx2
+

�2�3dy2dz1

�3dx1 + �2dx2
+

�5�8dy1dz2

�8dx1 + �5dx2
+

�6�7dy1dz2

�7dx1 + �6dx2

]
,

(46b)

�22 =

(
dy1 + dy2

)
(
dx1 + dx2

)(
dz1 + dz2

)
[

�1�2dx1dz1

�2dy1 + �1dy2
+

�3�4dx2dz1

�3dy1 + �4dy2
+

�5�6dx1dz2

�6dy1 + �5dy2
+

�7�8dx2dz2

�7dy1 + �8dy2

]
,

(46c)

�33 =

(
dz1 + dz2

)
(
dx1 + dx2

)(
dy1 + dy2

)
[

�1�5dx1dy1

�5dz1 + �1dz2
+

�2�6dx1dy2

�6dz1 + �2dz2
+

�3�7dx2dy2

�7dz1 + �3dz2
+

�4�8dx2dy1

�8dy1 + �4dy2

]
.
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In this section, we will provide synthetic examples to illustrate them so as to help one to 
understand these graphical representations of the conductivity tensor. Since the arbitrary con-
ductivity tensor in measurement coordinate system can be diagonalized through appropriately 
rotating the coordinate system (c.f., section 4), our synthetic examples will concentrate mainly 
on the diagonal conductivity tensor in the principal axis coordinate system. However, results 
in an arbitrary coordinate can be obtained using an appropriate rotation matrix. For a given 
conductivity tensor in arbitrary coordinate (or measuring coordinate) system, the tensor can be 
diagonized by using Eq. (11) or by Eqs. (20)–(22). The graphical representations of the tensor 
with Mohr circle and ellipsoid are completely equivalent to the case of the diagonal conduc-
tivity tensor. However, the third representation (i.e., geometric form representation) does not 
exist for a given arbitrary tensor, since its geometric model parameters cannot be uniquely 
determined in advance, and there may be an infinite number of possible geometrical forms. 
Four synthetic examples will be shown based on the cases described in Sect. 6, with some 
possible numerical values assigned in order to make the graphical representations of the con-
ductivity tensor better understood. The values of the conductivity tensor will be firstly derived 
according to the closed-form expressions, and then, the conductivity tensor will be graphically 
represented with both the ellipsoid and Mohr circles in different coordinate systems.

7.1  Case 1

In this case, we will examine the macroscopic anisotropic conductivity of the model shown in 
Fig. 10c consisting of two thin layers with different thicknesses and resistivities, which is just 
the basic set construct the model shown in Fig. 6a. For the sake of convenience, the units will 
be omitted in the following formulas and figures. Hence, according to Eqs. (41) and (42), the 
anisotropic conductivity tensor given in (40a) is

Therefore, the figure shown in Fig. 10c is an equivalent geometric form representation of 
the anisotropic conductivity tensor given in Eq. (47). As stated in the previous sections, this 
anisotropic conductivity tensor can also be represented with Mohr circle and 3-D ellipsoid; the 
corresponding representations are shown in Fig. 10a, b, respectively.

It can be seen from Fig. 10a that the value of �13 equal to that of �23 [according to Eqs. (30) 
and (31)] and the centers O1 and O3 coincide with each other (according to Eqs. (33) and (35)); 
hence, the first two circles (which should be shown in blue and green, respectively) coincide 
with each other and only the blue circle appears. It is also clear that σ12 equals to zero accord-
ing to Eq. (32), and thus, the third circle (which should be shown in cyan) reduces to a point 
(i.e., the center O2).

The discussion above is conducted in the principal axis coordinate system; now we exam-
ine the situation in an arbitrary coordinate system (say, o-xyz coordinate system) to check what 
will happen when the tensor is rotated. For a given rotation matrix

(47)� =

⎡⎢⎢⎣

�xx 0 0

0 �yy 0

0 0 �zz

⎤⎥⎥⎦
=

⎡⎢⎢⎣

0.07 0 0

0 0.07 0

0 0 0.025

⎤⎥⎥⎦
.

� =

⎡⎢⎢⎣

0.5000 −0.8660 0

0.6124 0.3536 −0.7071

0.6124 0.3536 0.7071

⎤⎥⎥⎦
=
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the intersection angles between the 1- and x-axis, 2- and y-axis, 3- and z-axis are 60°, 69.3° 
and 45°, respectively. The arbitrary coordinate system (say, o-xyz coordinate system) is 
shown by the purple arrows in Figs. 10b, c. Then, one may obtain the conductivity tensor 
�̄ in a given arbitrary coordinate system using Eq. (11); the resulting tensor is as follows:

For the given conductivity tensor, the differences between the principal axes (o-1, 2, 
3) and arbitrary coordinate systems (o-xyz) are self-explanatory in Fig. 10b, c when the 
tensor is graphically represented with the 3-D ellipsoid and the geometric form.

�̄ =

⎡⎢⎢⎣

0.07 0 0

0 0.0475 0.0225

0 0.0225 0.0475

⎤⎥⎥⎦
.

Fig. 10  Graphical representation with the Mohr circle (a), the 3-D ellipsoid (b) and the geometric graph 
(c) of the conductivity tensor given in panel (d). The conductivities of these two different thin layers shown 
in c are assigned as 0.01 and 0.1 S/m ( i.e., �1 = 0.01S∕m , �2 = 0.1S∕m ), respectively, and their thickness 
is 2 and 4 m (i.e., d1 = 2m and d2 = 4m ), respectively. These parameters are listed at the top of the panel 
(d). The calculated microscopic anisotropic conductivity tensor based on the Ohm’s law from the geometric 
model c is given at the bottom of the panel (d). The arbitrary coordinate system (say, o-xyz coordinate sys-
tem) is shown by the purple arrows in panels (b) and (c), while the anisotropic principal coordinate system 
is marked by o-123. It should be noted the different dimension scale between the 1- and 2-axis in panel (b)



271Surveys in Geophysics (2020) 41:249–281 

1 3

7.2  Case 2

Here, the macroscopic anisotropic conductivity of the model described in Fig. 11c will be 
treated. This model is composed of four rectangular prisms involving two different media 
of different resistivities. The four prisms may have different dimensions and infinitely 
extend along the 1-, 2-, 3-axis. This model can be regarded as a basic set of infinitely rec-
tangular prisms to be repeatedly arranged to construct the model shown in Fig. 7a.

Then, based on Eqs. (44a–c), the anisotropic conductivity tensor listed in Eq. (43a) can 
be derived as

(48)� =

⎡⎢⎢⎣

�11 0 0

0 �22 0

0 0 �33

⎤⎥⎥⎦
=

⎡⎢⎢⎣

0.0267 0 0

0 0.0242 0

0 0 0.0650

⎤⎥⎥⎦
.

Fig. 11  Graphical representation with the Mohr circle (a), the 3-D ellipsoid (b) and the geometric model (c) 
of the conductivity tensor given in panel (d). The conductivity tensor is calculated according to the Ohm’s 
law from the geometric graph (c) with the conductivities and thicknesses of the values listed at the top of 
the panel (d). See the text in section for details. The conductivity values of two different media shown in 
blue and yellow prisms are assigned as 0.01 and 0.1 S∕m (i.e., �1 = 0.01S∕m , �2 = 0.1S∕m ), respectively. 
Their thicknesses are 10 and 3 m (i.e., dx1 = 10m and dx2 = 3m ) while their widths are 5 and 12 m (i.e., 
dy1 = 5m and dy2 = 12m ). The arbitrary coordinate system (say, o-xyz coordinate system) is shown by the 
purple arrows in panels (b) and (c), while the anisotropic principal coordinate system is marked by o-123. It 
should be noted the different dimension scale between the 1 - and 2-axis in panel (b)
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This anisotropic conductivity tensor is also listed in the panel (d) in Fig. 11. Correspond-
ingly, the three graphical representations with the Mohr circle, the 3-D ellipsoid and the geo-
metric form of the anisotropic conductivity tensor given in Eq. (48) are shown in Fig. 11a–c, 
respectively.

We have discussed the case in the principal axis coordinate system; now the situation in 
an arbitrary coordinate system (say, o-xyz coordinate system) will be conducted to examine 
what will happen when the tensor is rotated. For a given rotation matrix

the intersection angles between the 1- and x-axis, 2- and y-axis, 3- and z-axis are 141.9°, 
149.6° and 45°, respectively. The arbitrary coordinate system (say, o-xyz coordinate sys-
tem) is indicated by the purple arrows in Figs.  11b and 11c. Then, using Eq.  (11), the 
conductivity tensor �̄ in a given arbitrary coordinate system may be calculated as follows:

For the given conductivity tensor, when it is graphically represented with the 3-D ellip-
soid and the geometric form, one may easily find the differences between the principal axes 
(o-1, 2, 3) and arbitrary coordinate systems (o-xyz) in Fig. 11b and 11c.

7.3  Case 3

In this section, we investigate the macroscopic anisotropic conductivity of the model 
described in Fig. 12b consisting of four rectangular prisms with different dimensions and 
conductivities extending infinitely along the 1-, 2-, 3-axis. This model is just the basic set 
of the prisms to be used to construct the model shown in Fig. 8a.

And then for the model shown in Fig. 12b, the macroscopic conductivity in Eq. (43a) 
can be easily obtained from Eqs. (45aa–c); the result is listed as

This anisotropic conductivity tensor is also shown in the panel (c) in Fig. 12. Accord-
ingly, the three graphical representations with the Mohr circle, the 3-D ellipsoid and the 
geometric form of the anisotropic conductivity tensor given in Eq.  (49) are shown in 
Fig. 12a, b, d, respectively.

After investigating the situation in the principal axis coordinate system, we further treat 
the case in an arbitrary coordinate system (say, o-xyz coordinate system) to examine the 
variation in the rotated tensor. For a given rotation matrix

� =

⎡⎢⎢⎣
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0.3624 −0.8624 0.3536
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,
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⎡⎢⎢⎣
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0.0167 0.0107 0.0452
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.
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0.00018 0 0

0 0.0055 0
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.

� =
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0.0795 0.8624 0.5000

−0.6124 −0.3536 0.7071

⎤⎥⎥⎦
=

⎡⎢⎢⎣

cos
�
38.1

◦
�

cos (111.2◦) cos (60◦)
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the angles between the 1- and x-axis, 2- and y-axis, 3- and z-axis are 38.1°, 30.4° and 45°, 
respectively. The arbitrary coordinate system (say, o-xyz coordinate system) is represented 
by the purple arrows in Fig. 12b, d. Then, through Eq. (11), one can obtain the conductiv-
ity tensor �̄ in a given arbitrary coordinate system. The conductivity tensor can be written 
as follows:

For the above conductivity tensor, the differences between the 3-D ellipsoid (the 
geometric form) representations in the principal axes (o-1, 2, 3) and that in an arbitrary 
coordinate system (o-xyz) in Fig. 12b (Fig. 12d) are very obvious.

�̄ =

⎡⎢⎢⎣

0.0037 0.0012 0.0047

0.0012 0.0070 0.0024

0.0047 0.0024 0.0066

⎤⎥⎥⎦
.

Fig. 12  Graphical representation with the Mohr circle (a), the geometric graph (b) and the 3-D ellipsoid 
(d) of the conductivity tensor given in panel (c). The conductivity tensor is calculated according to the 
Ohm’s law from the geometric model (b) with the conductivities and thicknesses of the values listed at the 
top of the panel (c). The corresponding conductivities and sizes of the four adjacent prisms in panel (b) are 
given in panel (d) and also listed as follows: �1 = 0.001S∕m , �2 = 0.01S∕m , �3 = 0.1S∕m , �4 = 1S∕m ; 
dx1 = 5m , dx2 = 4m , dy1 = 2m , dy2 = 10m . The arbitrary coordinate system (say, o-xyz coordinate system) 
is shown by the purple arrows in panels (b) and (d), while the anisotropic principal coordinate system is 
marked by o-123. It should be noted the different dimension scale between the 1 - and 2-axis in panel (b)
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7.4  Case 4

In this case, we will consider the macroscopic anisotropic conductivity of the model 
described in Fig. 13b, which is composed of eight cubes in different colors as shown in the 
panel (c). This model is just the basic set of cubes to construct the model shown in Fig. 9a. 
The conductivities and sizes of the eight cubes may have different values with each other.

Then, we can easily calculate the macroscopic conductivity of the model shown in 
Fig. 13b from Eqs. 43(a) and (46a–c); the resulting conductivity tensor is

(50)� =

⎡⎢⎢⎣

�11 0 0

0 �22 0

0 0 �33

⎤⎥⎥⎦
=

⎡⎢⎢⎣

0.0014 0 0

0 0.0081 0

0 0 0.0023

⎤⎥⎥⎦

Fig. 13  Graphical representation with the Mohr circle (a), the geometric graph (b) and the 3-D ellipsoid 
(d) of the conductivity tensor given in panel (e). The geometric model (b) consists of eight cubes shown 
in panel (c). The conductivity tensor is calculated according to the Ohm’s law from the geometric graph 
(b) with the conductivities and thicknesses of the values listed at the top of the panel (e). The conduc-
tivities and sizes of the eight cubes are listed as follows: �1 = 0.0001S∕m , �2 = 0.001S∕m , �3 = 0.01S∕m , 
�4 = 0.1S∕m;�5 = 0.2S∕m , �6 = 0.02S∕m , �7 = 0.002S∕m , �8 = 0.0002S∕m ; dx1 = 5m , dx2 = 4m , 
dy1 = 2m , dy2 = 10m , dz1 = 6m , dz2 = 3m . The arbitrary coordinate system (say, o-xyz coordinate system) 
is shown by the purple arrows in panels (b) and (d), while the anisotropic principal coordinate system is 
marked by o-123. It should be noted the different dimension scale between the 1- and 2-axis in panel (d)
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This conductivity tensor in Eq.  (50) (also shown in the panel (e) in Fig.  13) is then 
graphically represented with Mohr circle, the 3-D ellipsoid and the geometric form, which 
are shown in Figs. 13a, b, d, respectively.

The situation in the principal axis coordinate system (o-1, 2, 3) has been investigated; 
now we further examine the case of the rotated conductivity tensor in an arbitrary coordi-
nate system (say, o-xyz coordinate system) to see what will happen. For a given rotation 
matrix

the intersection angles between the 1- and x-axis, 2- and y-axis, 3- and z-axis are 31.4°, 
31.4° and 45°, respectively. The arbitrary coordinate system (say, o-xyz coordinate system) 
is shown by the purple arrows in Fig. 13b, d. Then, the conductivity tensor �̄ in a given 
arbitrary coordinate system may be calculated by Eq. (11) as follows:

For this conductivity tensor, the difference between the graphical representation with 
the geometric form (or the 3-D ellipsoid) in the principal axes (o-1, 2, 3) and that in an 
arbitrary coordinate system (o-xyz) in Fig. 13b (or Fig. 13d) are very clear.

8  Discussion

From the previous descriptions and synthetic examples about graphical representations of 
symmetric conductivity tensor in anisotropic media, we can get the following remarks:

1. In 2-D case, Mohr circle provides a graphic representation of a tensor as a function of the 
rotation of the coordinate system. The elements of the conductivity tensor can be directly 
determined by the position of the circle. In 3-D case, Mohr circle representation of the 
conductivity tensor is conducted through three 2-D Mohr circles in the same plane. As 
mentioned in Sect. 5, the drawing of the Mohr circle is performed in the principal coor-
dinate system. Therefore, for an arbitrary symmetric conductivity tensor, it is diagonal-
ized as the measurement coordinate system is rotated to the principal coordinate system, 
the drawing of its 3-D Mohr circle representation is the same as that of the diagonal 
tensor, but it is very difficult to show the elements of the arbitrary tensor in the Mohr 
circle, except that one of the measuring axes is the same as one of the principal axes. 
However, these elements can be easily calculated from Eqs. (9) and (11) based on the 
3-D Mohr circle. For the ellipsoid representation of a given conductivity tensor, it can 
be uniquely determined by all elements of a given conductivity tensor and can visually 
represent the spatial variation in conductivity anisotropy in the principal axis coordinate 
system. However, the coordinates of a point on the ellipsoidal surface do not directly 
represent all the elements of the conductivity tensor. The elements of the conductivity 
tensor in any coordinate system can be determined by the coordinates of this point based 
on the other conditions. Therefore, the determination of the conductivity tensor elements 

� =

⎡⎢⎢⎣

0.8536 0.1464 0.5000

0.1464 0.8536 −0.5000

−0.5000 0.5000 0.7071
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=

⎡⎢⎢⎣
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in any coordinate system by the ellipsoid representation is not as convenient as by the 
Mohr circle. This may be the main reason why the Mohr circle representations obtain a 
wider application than the ellipsoid representation in stress tensor analysis. In the stress 
tensor analysis, the Mohr circle indicates that the maximum and minimum stresses and 
shear stress can be calculated very conveniently. Also in the Mohr circle representation 
of the conductivity tensor, the maximum and minimum resistivities and the other ten-
sor elements in any coordinate system can be obtained simply and conveniently. In this 
respect, the Mohr circle representation is superior to the ellipsoid representation.

2. When two elements of the conductivity tensor are equal, their corresponding Mohr 
circles coincide with each other (for example, Fig. 10a indicates the Mohr circle of the 
HTI medium). The ellipsoidal surface represents the conductivity anisotropy in a 3-D 
space, which can more intuitively indicate the principal directions of the anisotropy (for 
example, Fig. 10b clearly indicates the anisotropy in the vertical direction). When indi-
cating the anisotropy principal directions, the ellipsoid representation is more intuitive 
and direct than the Mohr circle (as the case shown in Fig. 11a, b, for example). There-
fore, Mohr circle representation of the conductivity tensor is superior to the ellipsoid 
for showing the relative size of the three principle conductivities more clearly for the 
case when two of the values are very similar and therefore for distinguishing uniaxial 
and biaxial anisotropy.

3. The Mohr circle representation of the stress tensor has been widely used in practice. 
Although the Mohr circle of the conductivity tensor has not been paid much attention by 
now, it is possible to establish some related links between the Mohr circle of the stress 
tensor and that of the conductivity tensor to promote researches on electrical anisotropy. 
In this point, it seems that the ellipsoid representation is not as convenient as the Mohr 
circle representation.

4. The geometrical form representation of the conductivity tensor (Figs. 10c, 11c, 12b 
and 13b) directly represents the microscopic anisotropic structure using an equivalent 
homogeneous isotropic rectangular prism combination, which links the macroscopic ani-
sotropy with the microscopic anisotropy. At the same time, the macroscopic anisotropy 
structures can be equivalently expressed by various combinations of isotropic rectangu-
lar prism, which makes the anisotropic conductivity tensor be analytically expressed by 
simple formula. This in turn allows the anisotropic conductivity structure to be replaced 
by an isotropic model, so that the isotropic numerical simulation program can be used 
to simulate the responses of the anisotropic model, and thus, it provides another way 
to quantitatively simulate (with regard the simulation of the anisotropic response with 
an isotropic model, we will discuss separately in another paper). However, for a given 
conductivity tensor, the Mohr circle representation and the ellipsoid representation are 
unique, while the geometric form representation is not unique. And the conductivity 
tensor and its geometric form representations are not one-to-one correspondence. This 
representation can only be conducted for a specific anisotropic structure, and its draw-
ing is more complicated and cumbersome than the other two graphical representations. 
In addition, the four geometric form representations listed in this work are just some of 
the simplest geometric form representations of given conductivity tensors. Obviously 
there may be many other more complicated geometric form representations.
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9  Conclusions

Three graphical representations (i.e., ellipsoid and Mohr circle as well as equivalent geo-
metric form) for symmetric conductivity tensor of the anisotropic medium in the principal 
axis coordinate system are presented.

In the principal axis coordinate system, three principal components of the conductivity 
tensor can be represented by lengths of three semi-axes of the ellipsoid. The flatness or 
ellipticity of the ellipsoid reflects the anisotropic behaviors of the conductivity tensor. The 
higher the ellipticity of the conductivity tensor ellipsoid, the more obvious the electrical 
anisotropy features. When the ellipsoid degenerates into a circle, the conductivity of the 
medium becomes completely isotropic. The conductivity tensor can also be represented 
by the Mohr circle. The radius of the Mohr circle reflects the differences in conductivi-
ties along the anisotropic principal axes. The Mohr circle can also graphically indicate 
the variation in the elements of the conductivity tensor with the coordinate system. For 
the third graphical representation, i.e., an equivalent geometric form representation of the 
conductivity tensor, several conductivity tensor models of anisotropic media are illustrated 
and explained. In addition, the formulas used to calculate the macroscopic conductivity for 
those media are also given. The present work provides convenient tools to quantitatively 
study the features of the electrical anisotropy in Earth.

Acknowledgements The research was supported by the National Natural Science Foundation of China 
(Grant Nos. 41474054, 40774035 and 41776079). The authors thank Dr. Pilar Queralt (Editor) and two 
reviewers Dr. Ian Ferguson and Dr. Anna Martí for their thorough reading of the manuscript and for their 
insightful comments and constructive suggestions which certainly improved the quality of this paper.

References

Adetunji AQ, Ferguson IJ, Jones AG (2015) Reexamination of magnetotelluric responses and electrical 
anisotropy of the lithospheric mantle in the Grenville Province, Canada. J Geophys Res Solid Earth 
120(3):1890–1908

Atkinson G (1967) An approximate flow equation for geomagnetic flux tubes and its application to polar 
substorms. J Geophys Res 72(21):5373–5382

Baba K, Chave AD, Evans RL, Hirth G, Mackie RL (2006) Mantle dynamics beneath the East Pacific Rise 
at 17 degrees S: Insights from the mantle electromagnetic and tomography (MELT) experiment. J 
Geophys Res-Solid Earth. https ://doi.org/10.1029/2004j b0035 98

Bahr K (1997) Electrical anisotropy and conductivity distribution functions of fractal random networks and 
of the crust: the scale effect of connectivity. Geophys J Int 130(3):649–660. https ://doi.org/10.1111/
j.1365-246X.1997.tb018 59.x

Bahr K, Duba A (2000) Is the asthenosphere electrically anisotropic? Earth Planet Sci Lett 178(1):87–95. 
https ://doi.org/10.1016/S0012 -821X(00)00070 -4

Bahr K, Smirnov M, Steveling E (2002) A gelation analogy of crustal formation derived from fractal con-
ductive structures. J Geophys Res: Solid Earth 107(B11):ECV-18

Baker WG, Martyn D (1953) The electric current in the ionosphere, part 1, the conductivity. Phil.trans.r.soc.
lond.a, 246

Bigalke J (1999) Investigation of the conductivity of random networks. Phys A 272(3–4):281–293
Bigalke J (2000a) Derivation of an equation to calculate the average conductivity of random networks. Phys 

A 285(3–4):295–305
Bigalke J (2000b) A study concerning the conductivity of porous rock. Phys Chem Earth Part A 

25(2):189–194
Börner JH, Girault F, Bhattarai M, Adhikari LB, Deldicque D, Perrier F et al (2018) Anomalous complex 

electrical conductivity of a graphitic black schist from the Himalayas of central Nepal. Geophys Res 
Lett 45(9):3984–3993

https://doi.org/10.1029/2004jb003598
https://doi.org/10.1111/j.1365-246X.1997.tb01859.x
https://doi.org/10.1111/j.1365-246X.1997.tb01859.x
https://doi.org/10.1016/S0012-821X(00)00070-4


278 Surveys in Geophysics (2020) 41:249–281

1 3

Chapagain NP (2016) Ionospheric plasma drift and neutral winds modeling. Res J Phys Sci 4(7):5–10
Cowling TG (1945) The electrical conductivity of an ionized gas in a magnetic field, with applications 

to the solar atmosphere and the ionosphere. Proc R Soc A Math Phys Eng Sci 183(183):453–479
Culmann C (1866) Die graphische statik (vol 1). Meyer & Zeller
Davydycheva S, Wang T (2011) Modeling of electromagnetic logs in a layered, biaxially anisotropic 

medium. In SEG technical program expanded abstracts 2011. Society of Exploration Geophysi-
cists, pp 494–498

Dekker DL, Hastie LM (1980) Magneto-telluric impedances of an anisotropic layered Earth model. Geo-
phys J R Astron Soc 61(1):11–20

Du Frane WL, Roberts JJ, Toffelmier DA, Tyburczy JA (2005) Anisotropy of electrical conductivity in 
dry olivine. Geophys Res Lett 32(24)

Eisel M, Haak V (1999) Macro-anisotropy of the electrical conductivity of the crust: a magnetotelluric 
study of the German Continental Deep Drilling site (KTB). Geophys J Int 136(1):109–122. https ://
doi.org/10.1046/j.1365-246X.1999.00707 .x

Everett ME, Constable S (1999) Electric dipole fields over an anisotropic seafloor: theory and applica-
tion to the structure of 40 Ma Pacific Ocean lithosphere. Geophys J Int 136(1):41–56. https ://doi.
org/10.1046/j.1365-246X.1999.00725 .x

Falae PO, Kanungo D, Chauhan P, Dash RK (2019) Recent trends in Application of electrical resistivity 
tomography for landslide study. In: Renewable energy and its innovative technologies. Springer, 
Berlin, pp 195–204

Ferdinand PB, Johnson ER (1992) Mechanics of materials. McGraw-Hill, New York
Feynman RP, Leighton RB, Sands M, Hafner EM (1965) The Feynman lectures on physics, vol II. Addi-

son-Wesley Publishing, Reading
Gololobov DV, Malevich IY (2005). Physical and electrochemical processes in the medium above the 

hydrocarbon deposit, Reports of the Belarusian State University of Informatics and Radioelectron-
ics, (1 (9), (In Russian). (Vol. 1(9))

Grant FS, West GF (1965) Interpretation theory in applied geophysics. McGraw-Hill, New York
Greenhalgh S, Zhou B, Greenhalgh M, Marescot L, Wiese T (2009) Explicit expressions for the Fréchet 

derivatives in 3D anisotropic resistivity inversion. Geophysics 74(3):F31–F43
Griffiths D (1990) Failure criteria interpretation based on Mohr-Coulomb friction. J Geotech Eng 

116(6):986–999
Heise W, Caldwell T, Bibby H, Brown C (2006) Anisotropy and phase splits in magnetotellurics. Phys 

Earth Planet Int 158(2–4):107–121
Herwanger J, Pain C, Binley A, De Oliveira C, Worthington M (2004) Anisotropic resistivity tomogra-

phy. Geophys J Int 158(2):409–425
Holder DS (2004) Electrical impedance tomography: methods, history and applications. CRC Press, 

Boca Raton
Hoversten GM, Myer D, Key K, Alumbaugh D, Hermann O, Hobbet R (2015) Field test of sub-basalt 

hydrocarbon exploration with marine controlled source electromagnetic and magnetotelluric data. 
Geophys Prospect 63(5):1284–1310

Jaeger J (1969) Elasticity, fracture and flow (3rd ed.). Methuen
Jeong WC, Sajib SZ, Katoch N, Kim HJ, Kwon OI, Woo EJ (2017) Anisotropic conductivity tensor 

imaging of in vivo canine brain using DT-MREIT. IEEE Trans Med Imaging 36(1):124–131
Jolly R, Sanderson D (1997) A Mohr circle construction for the opening of a pre-existing fracture. J 

Struct Geol 19(6):887–892
Kirkby A, Heinson G (2015) Linking electrical and hydraulic conductivity through models of random 

resistor networks. ASEG Ext Abstr 2015(1):1–5
Kirkby A, Heinson G (2017) Three-dimensional resistor network modeling of the resistivity and perme-

ability of fractured rocks. J Geophys Res: Solid Earth 122(4):2653–2669
Kirkby A, Heinson G, Krieger L (2016a) Relating electrical resistivity to permeability using resistor 

networks. ASEG Ext Abstr 2016(1):1–7
Kirkby A, Heinson G, Krieger L (2016b) Relating permeability and electrical resistivity in fractures 

using random resistor network models. J Geophys Res: Solid Earth 121(3):1546–1564
Kittel C (2005) Introduction to solid state physics, 8th edn. Wiley, New York
Kozlovskaya E, Hjelt S-E (2000) Modeling of elastic and electrical properties of solid-liquid rock sys-

tem with fractal microstructure. Phys Chem Earth Part A 25(2):195–200
Kwon OI, Jeong WC, Sajib SZ, Kim HJ, Woo EJ (2014) Anisotropic conductivity tensor imaging in 

MREIT using directional diffusion rate of water molecules. Phys Med Biol 59(12):2955
Labuz JF, Zang A (2012) Mohr-Coulomb failure criterion. Rock Mech Rock Eng 45(6):975–979

https://doi.org/10.1046/j.1365-246X.1999.00707.x
https://doi.org/10.1046/j.1365-246X.1999.00707.x
https://doi.org/10.1046/j.1365-246X.1999.00725.x
https://doi.org/10.1046/j.1365-246X.1999.00725.x


279Surveys in Geophysics (2020) 41:249–281 

1 3

Le G, Slavin J, Strangeway R (2010) Space technology 5 observations of the imbalance of regions 1 and 
2 field‐aligned currents and its implication to the cross‐polar cap Pedersen currents. J Geophys Res: 
Space Phys 115(A07202)

Li YG (2002) A finite-element algorithm for electromagnetic induction in two-dimensional anisotropic con-
ductivity structures. Geophys J Int 148(3):389–401. https ://doi.org/10.1046/j.1365-246x.2002.01570 
.x

Lilley FEM (1976) Short note: diagrams for magnetotelluric data. Geophysics 41(4):766–770
Lilley FEM (1993a) Magnetotelluric analysis using Mohr circles. Geophysics 58(10):1498–1506
Lilley FEM (1993b) Mohr circles in magnetotelluric interpretation (i) simple static shift; (ii) Bahr’s analy-

sis. J Geomagn Geoelectr 45(9):833–839
Lilley FEM (1998a) Magnetotelluric tensor decomposition: Part II. Examples of a basic procedure. Geo-

physics 63(6):1898–1907
Lilley FEM (1998b) Magnetotelluric tensor decomposition: Part I, Theory for a basic procedure. Geophys-

ics 63(6):1885–1897
Lilley FEM (2012) Magnetotelluric tensor decomposition: insights from linear algebra and Mohr diagrams. 

In: Lim H-S (ed) New achievements in geoscience. InTech, London
Lilley FE (2016) The distortion tensor of magnetotellurics: a tutorial on some properties. Explor Geophys 

47(2):85–99
Lilley FE (2018) The magnetotelluric tensor: improved invariants for its decomposition, especially ‘the 7th’. 

Explor Geophys 49(5):622–636
Løseth LO (2007) Modelling of controlled source electromagnetic data. Norwegian University of Science 

and Technology, Trondheim
Löwer A, Junge A (2017) Magnetotelluric transfer functions: phase tensor and tipper vector above a simple 

anisotropic three-dimensional conductivity anomaly and implications for 3D isotropic inversion. Pure 
Appl Geophys 174(5):2089–2101

Madden TR (1976) Random networks and mixing laws. Geophysics 41(6):1104–1125
Maillet R (1947) The fundamental equations of electrical prospecting. Geophysics 12(4):529–556
Makris J, Bogris N, Eftaxias K (1999) A new approach in the determination of characteristic directions of 

the geoelectric structure using Mohr circles. Earth Planets Space 51(10):1059–1065
Mandolesi E (2013) Inversion of magnetotelluric data in an anisotropic domain. National University of Ire-

land, Galway
Mandolesi E, Jones AG (2012) Magnetotelluric inversion in a 2D anisotropic environment. In: EGU general 

assembly conference abstracts, 2012 (vol 14, p 13561)
Martí A (2014) The role of electrical anisotropy in magnetotelluric responses: from modelling and dimen-

sionality analysis to inversion and interpretation. Surv Geophys 35(1):179–218
Martí A, Queralt P, Ledo J, Farquharson C (2010) Dimensionality imprint of electrical anisotropy in 

magnetotelluric responses. Phys Earth Planet Int 182(3–4):139–151. https ://doi.org/10.1016/j.
pepi.2010.07.007

Masahiko Takeda (1991) Role of Hall conductivity in the ionospheric dynamo. J Geophys Res Space Phys 
96(A6):9755–9759

McKeagney C, Boulter C, Jolly R, Foster R (2004) 3-D Mohr circle analysis of vein opening, Indarama 
lode-gold deposit, Zimbabwe: implications for exploration. J Struct Geol 26(6–7):1275–1291

Meju, M. A., Saleh, A. S., Mackie, R. L., Miorelli, F., Miller, R. V., & Mansor, N. K. S. (2018). Workflow 
for improvement of 3D anisotropic CSEM resistivity inversion and integration with seismic using 
cross-gradient constraint to reduce exploration risk in a complex fold-thrust belt in offshore northwest 
Borneo. Interpretation, 6(3), SG49–SG57. doi:10.1190/int-2017-0233.1

Miensopust MP, Jones AG (2011) Artefacts of isotropic inversion applied to magnetotelluric data from an 
anisotropic Earth. Geophys J Int 187(2):677–689

Mogilatov V, Bespalov A (2009) Biaxial anisotropy in geoelectric prospecting. Izvestiya Phys Solid Earth 
45(9):822–828

Mohr O (1882) Ueber die Darstellung des Spannungszustandes und des Deformationszustandes eines Kor-
perelementes und uber die Anwendung derselben in der Festigkeitslehre. Civilengenieur 28:113–156

Mollison, R., Schon, J., Fanini, O., Kreigshauser, B., Meyer, W., & Gupta, P. (1999) A model for hydrocar-
bon saturation determination from an orthogonal tensor relationship in thinly laminated anisotropic 
reservoirs. In: SPWLA 40th Annual Logging Symposium, 1999: Society of Petrophysicists and Well-
Log Analysts

Montgomery H (1971) Method for measuring electrical resistivity of anisotropic materials. J Appl Phys 
42(7):2971–2975

Moran J, Gianzero S (1979) Effects of formation anisotropy on resistivity-logging measurements. Geophys-
ics 44(7):1266–1286

https://doi.org/10.1046/j.1365-246x.2002.01570.x
https://doi.org/10.1046/j.1365-246x.2002.01570.x
https://doi.org/10.1016/j.pepi.2010.07.007
https://doi.org/10.1016/j.pepi.2010.07.007


280 Surveys in Geophysics (2020) 41:249–281

1 3

Nekut AG (1994) Anisotropy induction logging. Geophysics 59(3):345–350
Nye JF (1985) Physical properties of crystals: their representation by tensors and matrices. Oxford Uni-

versity Press, Oxford
Okazaki T, Oshiman N, Yoshimura R (2016) Analytical investigations of the magnetotelluric direction-

ality estimation in 1-D anisotropic layered media. Phys Earth Planet Inter 260:25–31
Onwumechilli A (1967) Geomagnetic variations in the equatorial zone. In: International geophysics, vol 

11. Elsevier, Amsterdam, pp 425–507
Pain CC, Herwanger JV, Saunders JH, Worthington MH, de Oliveira CR (2003) Anisotropic resistivity 

inversion. Inverse Prob 19(5):1081
Pek J, Santos FAM (2006) Magnetotelluric inversion for anisotropic conductivities in layered media. 

Phys Earth Planet Inter 158:139–158
Pek J, Verner T (1997) Finite-difference modelling of magnetotelluric fields in two-dimensional ani-

sotropic media. Geophys J Int 128:505–521. https ://doi.org/10.1111/j.1365-246X.1997.tb053 14.x
Pervukhina M, Kuwahara Y, Ito H (2005) Fractal network and mixture models for elastic and electrical 

properties of porous rock. In: Fractal behaviour of the earth system. Springer, Berlin, pp 97-118
Plotkin VV (2017) Method for determining the contribution of the Hall effect in magnetotelluric sound-

ing. In: Interexpo GEO-Siberia-2017. XIII Intern. scientific Kongr (In Russian)
Pommier A (2014) Interpretation of magnetotelluric results using laboratory measurements. Surv Geo-

phys 35(1):41–84
Qin L, Yang C (2016) Analytic magnetotelluric responses to a two-segment model with axially aniso-

tropic conductivity structures overlying a perfect conductor. Geophys J Int 205(3):1729–1739
Qin L, Yang C, Chen K (2013) Quasi-analytic solution of 2-D magnetotelluric fields on an axially aniso-

tropic infinite fault. Geophys J Int 192(1):67–74
Rastogi RG, Chandra H (2006) Conductivity, electric field and electron drift velocity within the equato-

rial electrojet. Earth, Planets and Space 58(8):1071–1077
Regis C, Rijo L (1997) 1-D inversion of anisotropic magnetotelluric data. In: Extended abstracts book 

from the 50th congresso internacional da sociedade Brasileira de Geofisica, Brasil, vol 2, pp 
673–674

Regis C, Rijo L (2000) Approximate equality constraints in the inversion of anisotropic MT data. In: 
Abstracts book, 15th workshop on electromagnetic induction in the earth, Cabo Frio, Brazil, p 47

Rokityansky II (1982) Geoelectromagnetic fields. In: Geoelectromagnetic investigation of the Earth’s 
crust and mantle. Springer, Berlin, pp 1–26

Santos FAM, Mendes-Victor LA (2000) ID Anisotropic Versus 2D Isotropic Media In Magnetotellurics. 
Acta Geodaetica et Geophysica Hungarica 35(1):49–61

Sarma S (1975) Seismic stability of earth dams and embankments. Geotechnique 25(4):743–761
Sasaki Y (1994) 3-D resistivity inversion using the finite-element method. Geophysics 59(12):1839–1848
Schmeling H (1986) Numerical models on the influence of partial melt on elastic, anelastic and electri-

cal properties of rocks. Part II: electrical conductivity. Phys Earth Planet Interiors 43(2):123–136
Schön JH (2015) Physical properties of rocks: fundamentals and principles of petrophysics (vol 65). 

Elsevier, Amsterdam
Schön JH, Mollison R, Georgi D (1999) Macroscopic electrical anisotropy of laminated reservoirs: a 

tensor resistivity saturation model. In: SPE annual technical conference and exhibition. Society of 
Petroleum Engineers

Schön JH, Georgi D, Fanini O (2000) Anisotropic reservoir characterization (laminated sands) using 
orthogonal resistivity, NMR, and formation test data. In: EAGE conference on exploring the syn-
ergies between surface and borehole geoscience-petrophysics meets geophysics

Secor DT (1965) Role of fluid pressure in jointing. Am J Sci 263(8):633–646
Semeriyanov F, Saphiannikova M, Heinrich G (2009) Anisotropic generalization of Stinchcombe’s solu-

tion for the conductivity of random resistor networks on a Bethe lattice. J Phys A: Math Theor 
42(46):465001

Sen AK, Torquato S (1989) Effective conductivity of anisotropic two-phase composite media. Phys Rev 
B 39(7):4504

Seo JK, Pyo HC, Park C, Kwon O, Woo EJ (2004) Image reconstruction of anisotropic conductivity ten-
sor distribution in MREIT: computer simulation study. Phys Med Biol 49(18):4371

Ugural AC, Fenster SK (2011) Advanced mechanics of materials and applied elasticity. Pearson Education
Wang T, Fang S (2001) 3-D electromagnetic anisotropy modeling using finite differences. Geophysics 

66(5):1386–1398
Wannamaker PE (2005) Anisotropy versus heterogeneity in continental solid earth electromagnetic stud-

ies: fundamental response characteristics and implications for physicochemical state. Surv Geo-
phys 26(6):733–765

https://doi.org/10.1111/j.1365-246X.1997.tb05314.x


281Surveys in Geophysics (2020) 41:249–281 

1 3

Weaver JT (2004) The use of Mohr circles in the interpretation of magnetotelluric data. ASEG Extended 
Abstracts 2004(1):1–4

Weaver JT, Lilley F (2004) Using Mohr circles to identify regional dimensionality and strike angle from 
distorted magnetotelluric data. Explor Geophys 35(4):251–254

Weidelt P, Oristaglio M, Spies B (1999) 3-D conductivity models: implications of electrical anisotropy. In: 
Oristaglio M, Spies B, Cooper MR (eds) Three-dimensional electromagnetics. Society of Exploration 
Geophysicists,  Tulsa,  pp 119–137

Weiss CJ, Newman GA (2002) Electromagnetic induction in a fully 3-D anisotropic earth. Geophysics 
67(4):1104–1114

Wiese T, Greenhalgh S, Zhou B, Greenhalgh M, Marescot L (2015) Resistivity inversion in 2-D anisotropic 
media: numerical experiments. Geophys J Int 201(1):247–266

Yang C (1997) MT numerical simulation of symmetrically 2D Anisotropic media based on the finite ele-
ment method (in Chinese). Northwest Seismol J 19(2):27–33

Yin C (2000) Geoelectrical inversion for 1D anisotropic models and inherent non-uniqueness. Geophys J Int 
140:11–23

Yin C (2003) Inherent nonuniqueness in magnetotelluric inversion for 1D anisotropic models. Geophysics 
68(1):138–146

Yin C, Weidelt P (1999) Geoelectrical fields in a layered earth with arbitrary anisotropy. Geophysics 
64(2):426–434

Yu L, Evans R, Edwards R (1997) Transient electromagnetic responses in seafloor with triaxial anisotropy. 
Geophys J Int 129(2):292–304

Yuan N, Nie XC, Liu R, Qiu CW (2010) Simulation of full responses of a triaxial induction tool in a homo-
geneous biaxial anisotropic formation. Geophysics 75(2):E101–E114

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.


	Graphical Representation and Explanation of the Conductivity Tensor of Anisotropic Media
	Abstract
	1 Introduction
	2 The Definition of the Conductivity Tensor
	3 The Conductivity Tensor Under the Rotation of the Coordinate System
	4 Ellipsoid Representation of the Conductivity Tensor
	5 The Representation of the Conductivity Tensor with Mohr Circle
	6 Geometric form Representation of the Conductivity Tensor Model and Its Explanation
	6.1 Case 1: Uniaxial Anisotropy with Infinitely Repeated HTIVTI Unit
	6.2 Case 2: Simply Biaxial Anisotropy with Infinitely Repeated HTIVTI Unit
	6.3 Case 3: More General Biaxial Anisotropy with Infinitely Repeated HTIVTI Unit
	6.4 Case 4: Biaxial Anisotropy with Periodically Varied HTIVTI

	7 Synthetic Examples
	7.1 Case 1
	7.2 Case 2
	7.3 Case 3
	7.4 Case 4

	8 Discussion
	9 Conclusions
	Acknowledgements 
	References




