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Abstract

In this paper, analytical solutions are presented for the gravity vector and gravity gradient
tensor at any point produced by a 2D body whose cross-section is an arbitrary polygon and
the density contrast is a 2D arbitrary-order polynomial function varying in both horizon-
tal and vertical directions. In addition, we analyze the singularity of our expressions. For
the gravity vector, the singularity points only exist at the vertices of the polygon. But for
the gravity gradient tensor, there are two situations: (1) if every side of the polygon is not
parallel to z-axis, the singularity points will only exist at the vertices of the polygon; (2) if
there is any side parallel to z-axis in the polygon, all the points on the line passing through
the side parallel to z-axis will become singularity points. To avoid this singularity, observa-
tion points can be moved from the singularity points by a minimal distance. Besides, the
analytic expressions are validated compared with conventional method that sums up the
gravity effects of a series of units with uniform densities, with the numerical stability also
being evaluated through numerical tests. What is more, applications with some numeri-
cal examples and effective models show that our analytical solution within the range of
numerical stability is superior in computational accuracy and efficiency to the conventional
method that sums up the gravity effects of a series of units with uniform densities. In a
word, our expressions provide an effective method for computing the gravity vector and
gravity gradient tensor of an irregular 2D body with complicated density variation.
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1 Introduction

The forward gravity problem is the foundation of gravity exploration (Wu 2018). Since the
geological bodies in reality generally have complex density contrasts and complex shapes,
they are often approximated by a collection of simple regular-shaped bodies whose den-
sity contrasts are assumed to be constant (Conway 2015; D’Urso 2015; Jiang et al. 2018;
Werner 2017). The analytical solutions of gravity effects induced by some regular-shaped
bodies with uniform densities have been reached, such as a rectangular prism (Nagy 1966;
Nagy et al. 2000; Okabe 1979), a polyhedron (D’Urso 2013,2014a; Petrovi¢ 1996; Tsoulis
and Petrovi¢ 2001), a polygonal prism (Cady 1980; Kwok 1991; Chen et al. 2018) and a
cylinder (Kwok 1991; Rim and Li 2016).

Although geological bodies in reality all have three dimensions, there are some linear
geologic structures whose strike extension is far greater than the cross-section dimension
(Grant and West 1965) (e.g., fault zones, intrusive rock walls, etc.). For reducing the com-
putation of gravity effects, this kind of structures can be often approximated by 2D bodies
extending infinitely along the strike to replace the actual distribution of original sources,
and the corresponding inversion algorithm is easier to be established. In fact, the study of
2D bodies is earlier than that of 3D bodies due to easier computation. In 1948, a line inte-
gral for calculating the gravity anomaly of a 2D mass with uniform density was presented
(Hubbert 1948). On this basis, a classic computational scheme for rapid computation of
gravity anomaly resulting from a 2D homogenous body whose cross-section is a polygon
was proposed (Talwani et al. 1959) and was applied to sedimentary basins (Bott 1960).
Until now, the analytical solutions of gravity potential and its first-order, second-order,
third-order derivatives caused by a 2D homogeneous body with polygonal cross-section
have already been obtained (Jia and Wu 2011; Okabe 1979; Won and Bevis 1987), and
some singularities of the formulas have been solved (Jia and Wu 2011).

The above studies only involve constant densities. While most mass sources have a non-
uniform density, the uniform-density assumption is not applicable to most geological struc-
tures in practical applications (Jiang et al. 2018; Sykes 1996). Therefore, different kinds of
functions were used to simulate the variation of density contrast in bodies for computing
the gravity effects of the variable-density bodies.

Gravity vector fields caused by 3D regular-shaped variable-density bodies have been
extensively studied: solutions of some density-depth functions including linear (D’Urso
2014b; Hamayun and Tenzer 2009; Hansen 1999; Holstein 2003; Pohanka 1998), quad-
ratic (Gallardo et al. 2005; Gallardo-Delgado et al. 2003), cubic (Garcia-Abdeslem 2005),
parabolic (Chakravarthi et al. 2002) and arbitrary-order polynomial (Jiang et al. 2017)
have been considered. However, there are still more complex density variations not only
related to depth existing in real geological bodies (e.g., dipping layered intrusions, sedi-
mentary beds, etc.). As a consequence, the general polynomial density contrast which not
only varies in depth but also varies in the horizontal direction was proposed by Zhang et al.
(2001). It is a significant for approximating complicated density distributions of geological
bodies due to its superiority over the depth-dependent density function (Ren et al. 2018),
which has been clearly proved by Jiang et al. (2017). Zhou (2009a) utilized line-integral
method to compute the gravity anomaly of a rectangular prism with the density contrast
varies with horizontal and vertical directions. Then, Zhang and Jiang (2017) obtained the
closed-form expressions of gravity vector field produced by a 3D rectangular prism whose
density is a linear combination of arbitrary-order polynomial functions in three directions
of x, y and z. Ren et al. (2017a, b) derived singularity-free analytic formulas of gravity
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potential and gravity vector caused by a polyhedron whose density contrast is described
by A=ax"+by"+c7, but for the solution of gravity potential, the maxima of m, n, t are
2; and for the solution of gravity vector, m<1, n<1, t<1. Soon afterward, the maximum
order of gravity vector’s solution was expanded up to 3 (Ren et al. 2017a, b). At the same
time, D’Urso and Trotta (2017) deduced singularity-free expressions for calculating gravity
anomaly of a polyhedral body with cubic polynomial density contrast in both horizontal
and vertical directions at any point, and indicated that the general approach can be easily
extended to higher-order polynomial functions.

Similarly, a few achievements have also been made in gravity anomalies of 2D variable-
density bodies: sources with some density-depth or density-distance functions have been
considered, such as linear (Gendzwill 1970; Murthy and Rao 1979; Pan 1989), quadratic
(Rao 1985,1986,1990; Ruotoistenmiki 1992), cubic (Garcia Abdeslem 2003), parabolic
(Visweswara Rao et al. 1994), hyperbolic(Litinsky 1989; Rao et al. 1994; Visweswara Rao
et al. 1994, 1995), exponential (Chai and Hinze 1988; Chappell and Kusznir 2008; Cordell
1973; Litinsky 1989), and any types of depth-dependent functions (Zhou 2008). Compared
with these above functions only varying in one direction, density contrast which changes
with horizontal and vertical directions offers a more flexible way to approximate arbitrary
variable-density distributions (Ren et al. 2018). When the density function of a 2D body
varies in both horizontal and vertical directions, we can model the gravity anomaly of it
rapidly by using numerical integration method (Martin Atienza and Garcia Abdeslem 1999;
Zhou 2009b). Nevertheless, using numerical methods inevitably reduces the accuracy of
data and leads to numerical errors in forward computing, which can be completely avoided
by using analytical solutions (Ren et al. 2018). Hence, the derivation of corresponding ana-
lytical solutions is still essential. Zhang et al. (2001) firstly made a contribution of deducing
an analytical solution of gravity anomaly produced by a 2D polygonal body with an arbi-
trary-order polynomial density function varying in horizontal and vertical directions at Car-
tesian coordinate system. Furthermore, Zhou (2010) extended the solution and solved some
singularities of it. D’Urso (2015) presented analytical expressions for calculating gravity
anomaly resulting from a 2D polygonal body whose density contrast is a polynomial in hori-
zontal and vertical directions, but the order of the polynomial is not more than 3.

It is well known that gravity gradient data have better resolution than the gravity meas-
urement data since they contain higher frequency information (Jiang et al. 2018). Therefore,
the study about gravity gradient tensors of sources with variable-density contrast has aroused
the attention of geophysicists in recent years. D’Urso (2014b) made an analytical solution of
gravity gradient tensor induced by a polyhedron whose density contrast varies linearly with
a position vector. Yet, when the observation point is aligned with an edge of a face of the
polyhedron, the expressions exhibit a singularity. Wu and Chen (2016) modeled gravity vector
and gravity gradient anomalies of 2D and 3D prisms with density-depth functions by using a
Fourier-domain method, bringing about the inevitable truncation errors. Moreover, Wu (2018)
modeled the gravity potential, gravity vector and gravity gradient tensor of arbitrary 2D and
3D bodies with arbitrary density contrast varying in horizontal and vertical directions by using
Fourier-domain solutions, but the unavoidable numerical error is still one of the greatest draw-
backs. Correspondingly, Jiang et al. (2018) obtained closed-form expressions for computing
gravity gradient of a right rectangular prism with an arbitrary-order polynomial density con-
trast related to depth, dealing with the singularities. Ren et al. (2018) reached an analytic solu-
tion of gradient tensor of a polyhedron whose density contrast varies with horizontal and verti-
cal directions, but the order of density function cannot exceed 3. To the best of our knowledge,
the analytic expressions about gravity gradient and the horizontal component of gravity vector
produced by 2D variable-density bodies have not been proposed so far.
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To this end, we derive space-domain analytic solutions of gravity vector and gradient
tensor of a 2D body whose cross-section is a polygon and the density contrast is a 2D arbi-
trary-order polynomial function varying in horizontal and vertical directions. Actually, it is a
remarkable fact that polygonal models with arbitrary-order polynomial densities can provide
a very general solution for 2D bodies. On the one hand, when the order of polynomial func-
tion is high enough, any 2D density distribution can be approximated well. On the other hand,
when the number of sides of the polygon is large enough, any continuous boundary can also
be well approximated (Wu 2018). In this paper, we draw on the strategy which was used in the
derivation of gravity anomaly of 2D variable-density bodies (Zhang et al. 2001; Zhou 2010)
to derive the spatial analytic expressions of both gravity vector and gravity gradient tensor. We
also discuss the singularity problem of the derived analytic expressions here. In addition, we
validate our expressions by comparing with the result of conventional method in which the
variable-density source is divided into a series of constant-density units. We also evaluated the
numerical stability, the efficiency and the RMS error of our expressions under different-order
polynomial density functions.

2 Derivation of the Gravity Vector and Gravity Gradient Tensor
2.1 Basic Expressions

Figure 1 defines the right-handed Cartesian coordinate system and shows a 2D body whose
cross-section is approximated by a polygon. The y-axis is parallel to the strike of the body,
and observations lie along a profile contained within the x—z plane. The z-axis is positive
downward.

Let U denote the gravitational potential of a 2D body, the gravity vector can be expressed

as (Jia and Wu 2011)
—_ U.X' l
g - UZ ( )

Fig.1 A 2D body w.ith a P (Xo’lo)
polygonal cross-section and a
density contrast following a 2D
polynomial function, 6(x, z) is
the density contrast, (x;, z;) and | S

(X 41 Zxy1) represent the coordi- 0 (0’0) X
nates of vertices of the polygon,
(xo Zo) are the coordinates of any
observation point P in space, r; (Xk+1 ’ Zk+1) £ \
and r;, | represent the distances
between P and vertices

v

W, N 9 5
o(x,z) = z Z D, x'z’
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in which U, and U, are the gravity components in x and z directions, respectively. U, and
U, at any observation point (x,, zy) can be minutely described by one generalized equation
as

Y
x/z(e f) /z xO’ZO 2G//O-(x 2) x xoz) (Z ZO) zdde (2)

(x=x0)" + (z—2)

where e is either O or 1, and so does f. Besides, G is gravitational constant, s denotes cross-
sectional area of the 2D body, and o(x, z) represents the density contrast. Specifically,
U,.(1,0)=U (x, z9), and U, (0, 1) = U (xg, z¢)-

The gravity gradient tensor of this 2D body can be expressed as (Jia and Wu 2011)

U, U
T = XX Xz 3
o] @
in which each component at (x,, z,) can be minutely described by

Ur(i-0) = Unr(t ) =46 [ ot 9= dads
[(x—xo)'+(z ZU)_]

UZZ(XO’ZO) Uxx(XO’ZO) = ZG// o(x, z)dedz
[(x—xo) +(7—¢0) ]

)

where G is gravitational constant, s denotes the cross-sectional area, and o(x, z) represents
the density contrast.

Here, we assume the 2D body has an arbitrary polygonal cross-section and a density varia-
tion following a 2D arbitrary-order polynomial function (Zhang et al. 2001)

ox,2) = Z Z 5)

where N, and N, respectively, represent the maximum order of x and z, while D, ; represent
the coefficients of the polynomial.
By substituting Eq. (5) into Eq. (2), the expression of gravity components becomes

N,

N,
- - (x=x)(z—zo)

i=0 j=

By substituting Eq. (5) into Eq. (4), the expressions of gravity gradient components become
— 4 i (r=x0)(z=20)
UXZ()C(),Z()) = UZ}C('xO’ZO) GZ ZDlJﬂX 5 2 zdde
i=l 0] 0 s [ x—xg) +("—zo) ]

Uz:(%0:20) = =Use(%0:20) —ZGZ ZD [ xiz j_Gmz0) =) g
i=0,/=0 s [(x—x“) +(z-29) ]

)
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Among them, the analytical solution of the vertical component of gravity vector has
already been obtained (Zhang et al. 2001; Zhou 2010), while in the following sections, we
use a unified method to derive all the analytic expressions of both gravity vector and grav-
ity gradient tensor.

2.2 U,and U,

As shown in Fig. 1, it is assumed that the coordinates of observation point are (x;, z,) and
those of the two endpoints of kth side of the polygon are (x;, z;) and (X1, Zgpp)-
According to Binomial theorem (Singh 2017), we can easily get

i ) J )
2 = [0 =x0) +xl e = 20) + 20V = X C(x =) "5 Y e —20) "5 ®)
n=0 m=0

where C! and C]’” are the binomial expansion coefficients, which means 0<n<i and
0<m<j.
Substituting Eq. (8) into Eq. (6), the integral becomes

Zf(x xo)c = ZO) i // (x = x, )i—n+e(Z — 2 )j—m+f
. i G Xz dxdz.
// xRt G-gr 22 G (x — xp)2 + (2 — 2)? z

n=0 m=0
©))

According to Eq. (4) in the paper of Zhou (2010), we know that

()C _ xo)i—n+e(z _ Zo)i—m-}—f

(x— xo)z +(z - Zo)z
~ | i ()C _ xo)i—n+e+1 (Z _ Zo)i_m*'f
T i4j-—m—n+e+f ) ox (x —xp)* + (z — zp)? (10)
o [ ez
0z (x —xp)* + (z— z9)?

where e and f are constants, with i+j—m—n+e+f7#0.
Using Stokes’ theorem for a plane (Riley et al. 2010)

d 0
// <a—zAx - aAZ>dXdZ = fi(Ade+Ade)9 (11)

We convert the surface integral in the result of Eq. (9) into a sum of line integrals cal-
culated on the boundary of the polygon in a counterclockwise direction. Since the closed
boundary of the polygon is connected by its N, sides end to end, we can sum up integrals on
each side of the polygon followed by a counterclockwise direction. In this way, we arrive at
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_ i—n+e(, _ j—m+f
/ (x Xo) (z Zo) dxdz
(x = x)? + (2 — z9)?
~ 1 X xo H(Z -2z )j—m+f+1 W (x _ xO)i—n+e+1 (Z _ Zo)i_m"'f
Tidj-m—n+e+f ], (x—xp)? + (2 — 7o) x—xp)? + (2 — )2

1 i /Ak+1 (x — xo) i (Z — zn)f*"’*f“ /Z;M (x — xﬂ)i_nHH(Z - ZO)}’*’"*f d
S S— dx— 2z
i+tj—m-—n+e+f & |/, (= xp)? + (z—z)? % (x = x9)? + (2 — 29)?

(12)

where e and f are constants, N, is the number of polygon’s sides, and k denotes that it is
kth side being calculated followed by a counterclockwise direction with its two endpoints
being (x;, z;) and (x;, 7z4;) as shown in Fig. 1. Obviously, e +f=1 whether for U, or U..
Sothati+j—m—n+e+f=i+j—m—n+1>1 withO<n<iand 0<m<j.

We note that

Vel (x - xo)i_n+e(z - ZO)/"""’./"‘H Zirl (x - X (z— Zo)i_m+f
EX/Z(e,f)=/ dx—/
X Z

(x = x0)? + (2 — 20)? . G =1 + (2 — 25

) i—n+e+l

13)
to stand for the integrals calculated on the kth side. Then, taking Egs. (9), (12) and (13)
into Eq. (6), the expression of gravity vector becomes

Z ZDW Z Z C”C’”)c”z0 N,

i=0j=0 n=0 m=0 (14)
Uy(e:f) = x/”(xo’zo) =26 i+j—m—-n+e+f Z i)

where U,.(1, 0)=U (xy, z9), Uy.(0, 1)=U_(x, z¢), (x Z) are the coordinates of obser-
vation point, G is gravitational constant, N, and N_, respectively, represent the maximum
order of x and z in density function, D, ; represents the coefficient of the polynomial den-
sity function, C} and C}" are the b1nom1a1 expansion coefficients with 0<n<iand 0<m<j
which means i+j—m—n+e+f=i+j—m—n+121, N, is the number of polygon’s sides,
and k denotes that it is the kth side being calculated followed by a counterclockwise
direction.

Since we have to get the value of function E,;, (e, f), which becomes a problem about
calculating line integrals on straight lines, we should unify the variables of the integrals
first. Two cases must be considered, respectively: one is the kth side in not parallel to z-axis,
and the other is the kth side in parallel to z-axis. If the kth side is not parallel to z-axis,
which means x; #x,, the slope of the line this side located exists and the equation of this
line can be described by z=px+q where p=(z;,—2)/(x; 1 —x) and g=(z,x; ;1 — 2 11X/
(x; 41— x). Then, we can substitute this equation into Eq. (13) and replace variable z with
variable x, making Eq. (13) an integral only related to the coordinates of x. In the other
case, that means x; =x;,, the slope of the line doesn’t exist, so does the equation of the
line, while the integral of x in Eq. (13) is O in this time, just leaving the latter integral about
z which is easy to be calculated.

Then, we show the details in the two cases, respectively:

1. When x, #x, ,,substituting the linear equation z=px+ ¢ into Eq. (13) and combining
similar terms, we have
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Xt — - i—nte _ j—m+f
E, ) = / Pxy+4q Zo)(x xo) px+q—2z)) dx
w  (L+phx2 +2[plg — z9) — xo)x + [(q — 2)* + x3]

with  p=(z;,1— 2/ 1—Xp)

s)

and  ¢=( X411~ LX)/ (X —x).  After  noting
Q=pxy+q—2y a=(q—20)*+x3, b =p(q—z9)—xp c=1 +p27 and using Binomial theo-
rem (Singh 2017) on the terms (x—x,)""*¢ and (px+¢q —z,/ """, Eq. (15) becomes

i—n+e j—m+f
/ ! e f—
Ey(e)=0 ) Y CL L Cl (=) P (g = z)= - ], (16)
=0 1L,=0
where Cl ! e and C L 2y AT€ the binomial expansion coefficients, and
X1 xl
I, = ———dx
! /xk cx?+2bx+a a7)

with [=i+j—m—n—-I]—L+e+f.

Obviously, once we want to get the value of integral /;, we need to consider another
two cases according to the discriminant

A = 4ac — 4b?

=4(1+p [ q-2) xz]—4[p(q—zO)—xO]2
= (4+4p° )(q—zo) +4x7 + 4pPx, —4p2(q—z0)2+8pxo(q—z0)—4x(2)
=4[ (a-20)" + 20 (4 = ) + 1]

=4(Pxo+q—zo)

=407

(18)
of the quadratic polynomial cx*+2bx +a, which include A=0 and A >0

1) When A =0,we have Q=0. By setting Q=0 in Eq. (16), we reach
Ex/z(e’f) =0 (19)
2) When A > 0,the result of integral 7, has already been calculated by Zhou (2010) as

1 _1 CXpyy b —1 cx+b
I, = —(t —t )
T ran 0] s T
- - ktl O
=t =Ch (20)
X, —X, 2b
I, = —kZ&_]i - =l - %Il_z ()

where 7y, 1 =[(x, 1= X0)* + (21— 20)° 172 and r=[(x,— x0)* + (23— 20)*1"

o .
2. When x, =x, ;.the integral of x in Eq. (13) is 0, just leaving the integral with respect to
z to be calculated. Hence, Eq. (13) can be expressed as

E, . (e.f) = — (e —

i—n+e+1
x) T K, Q1)
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where

Zher1 — !
&=/ e 22)
L

(x —xp)% + (z — z9)?

with [=j—m+f. When using the Binomial theorem, we have 0<m<j, so that
f<j—m+f<j+f. In accordance, there is />0 for E, (1, 0) and /> 1 for E_ (0, 1).

Referring to Eq. (57), we can obtain the result of K|,, while those of K;, K, and K (I>2)
have already been calculated by Zhou (2010). So the result of integral K is

KO_,
K, =Inl2 (23)

N e B N |
Kl — (1 —%0) l_l(zk ) (xk _ x0)2K1—2 (l > 2)

—1 Zt1—% —1 &%
1 %t — tan 1 %%
Xie+1 X0 X —Xo

|
=
7l
&
/
—
&
=

where ry 1 =[(x, — xo) + (21— 20)2]12and r=[0g— xO) +(g—z )2]“2

However, it should be noted that the value of recursive integral K; cannot be calculated
according to Eq. (23) when x,=x;,=x,,, with z5# z; and z,#z;, |, because the first term K,
cannot be calculated. While taking actual meanings of those functions into account, we can
find that the value of K, under this condition is 0. Since tan ~'[(z;,;— 2o)/(Xz4;—Xo)] and
tan ~'[(z,— zo)/(x,— X,)], respectively, represent the angle between horizontal direction and
a line through observation point and endpoint of the side parallel to z-axis, they are all n/2,
and hence the difference between them is 0. Moreover, the factor 1/(x,—x,) can be reduced
actually. Considering that calculating K; is aiming to obtain the value of function E,,, (e, f)
shown in Eq. (21), and there is a factor (x;—x,)' ~""*! in Eq. (21) with i—n+e+1>1, the
factor 1/(x;—x,) can always be canceled. So we can assign K, directly to O under this condi-
tion, and the value of other terms of recursive integral K, can also be obtained.

Until now, the calculation of function E,,, (e, f) shown in Eq. (13) has been completed,
which means the analytical solutions of gravity vector have also been achieved. To sum
up, Eqgs. (16)-(23) comprise the result of E,,. (e, f), which works for U (x,, zo) with E, (1,
0) and works for U (x,, zy) with E_ (0, 1). Moreover, Egs. (14) and (16)—(23) constitute the
complete analytical expression system of the gravity vector (U, and U).

23 U,U,,U,and U,
Because U,,=U,, and U,,=-U,,, we just take U, and U_, for example.

Using the Binomial theorem, (Singh 2017), we put the expanded Eq. (8) into Eq. (7) and
do some sorting, and then we can get the analytic expressions of U,, and U, as

Uy (X9, 20) = 4GZ ZDM Z Z GOz B,
i=0 j =0 n=0 m=0

(24)
UZZ(-X()aZ()) ZGZ ZDU 2 Z CnCm 0% g féd

i=0j=0 n=0 m=0
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with

(X—x )F”“(Z—Z )ffm+l
E = 0 0 dxdz
@ / [(X_xn)z"'(z—zn)z]z

(x—x )F”(Z—z )ffm+2 (x—x )F"*Z(Z—Z )jfm
E, = [| S gy ff S T gy,
“ {] [(X_X())Z‘F(Z—Zo)z]z / [(X—X())2+(Z—Z())2]2

(25)

s

where (x;, z;) are the coordinates of observation point, G is gravitational constant, N, and
N, respectively, represent the maximum order of x and z in density function, D; ; repre-
sents the coefficient of the polynomial density function, and C; and C}" are the binomial
expansion coefficients with 0<n<iand 0<m<j.

Thanks to the law shown in Eq. (10), we can further infer that

(x _ xo)i—rH—E(Z _ Z0)}'—m+f

[ =x0)2+ (- zo)z]2
3 1 <i { (X _XO)[—n+e+l(Z _ ZO)/—mt[ } . i { (X _ Xo)[—n+e(z _ Zo)j—m+f+l }>
i+j—m—n+e+f—-2\ ox [(x—x0)2+(z—zo)2]2 0z [(X—X0)2+(Z—ZO)2]2

(26)

where e and f are constants, and i+j—m—n+e+f—2#0.

According to Eq. (26) and Stokes’ theorem for a plane (Riley et al. 2010) mentioned
in Eq. (11), we convert the surface integrals in Eq. (25) into a sum of line integrals calcu-
lated on the boundary of the polygon in a counterclockwise direction. Considering that the
closed boundary is connected by N, sides end to end, we reach

) ) .
(x = x0)™¥e(z — zpy 1 .
dXdZ = - N sz (e’f) 27

[ [(x_xo)2+(z—z0)2]2 l+J—m—n+e+f—21§f [z 27

with
X _ i—nte, j—m+f+1 2 _ immtetl mif
k1 (X — X, Z—Z W (x — x =7
sz/zz(e’f) = / ( 0) ( 0)] 5 dx_/ ( 0) ( 0)] ~ dz
X [ —x0)2 + (2 — 20)?] % [0 = x0)2 + (2 = 2)7]

(28)
where i+j—m—n+e+f—2#0, N, is the number of polygon’s sides, and k denotes that it
is the kth side being calculated followed by a counterclockwise direction with its two end-
points being (x;, z;) and (X1, Zx,1) as shown in Fig. 1.

In terms of Egs. (27) and (28), one premise must be met above all, that is
i+j—m—n+e+f—2+#0. However, as we can see in Eq. (25), e+/f=2. Since 0<n<i and
0<m<j, it is obvious that i+j—m—n+e+f—2=0 if and only if n=i with m=j. Under
this condition, Egs. (27) and (28) are meaningless, making this situation needed to be dis-
cussed separately.

Nevertheless, let’s begin with the general situation.

1. When i+j#m+n, the conclusions in Egs. (27) and (28) are tenable. Taking them into
Eq. (25), we have
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NL’
E.=—— YT
k=1

i+j—m—n

29

NF
E,=— kgl [7..0,2) - T..(2,0)]

i+j—m-n

where N, is the number of polygon’s sides and k denotes that it is the kth side being
calculated followed by a counterclockwise direction.

The problem about calculating function T, (e, f) is also a problem about calculating
linear integrals on straight lines. When we unify the integral variables, two cases must be
considered, respectively: one is that the kth side is not parallel to z-axis, and the other is
that the kth side is parallel to z-axis. If the kth side is not parallel to z-axis, which means
Xy # X1, the equation of the line this side located can be described by z=px + g where
D =(Zpq1— 2/ g1 — Xp) and § =(24%4 41— 2y 1 X/ (X1 — X). Then, we can substitute this
equation into Eq. (28) and replace variable z with variable x, making Eq. (28) an integral
only depend on the coordinates of x. In the other case, that means x;,=x,,, the slope
of this line doesn’t exist, while the integral of x in Eq. (28) is 0 in this case, just leaving
the latter integral about z to be calculated.

Here are the details:

1) When x;#x; ,,substitute the linear equation z=px+ g into Eq. (28) and merge
similar terms, then we have

W (pXg 4 q = 2o)(x — X (px+q—zp) ™"
sz/zz(e’f) = / 2
wo {1+ px? +2[p(g — 29) — Xolx + [(q — 20)* + 21}

)i—n+e

dx.

(30)
After noting Q=px,+g—z, a=(q—z0)2+x5, b=p(g—2zp)—x c=1+p2,

and using the Binomial theorem (Singh 2017) on the terms (x—xo)i T "+ and
(px+qg—z,y ~™", Eq. (30) becomes
i—n+e j—m+f
! 1, e
Toel@N =0 %, X, Ol oGl 30 P g = ) -, 31)
L,=0 1,=0
where C{‘ and Cl.2 are the binomial expansion coefficients, and
i—n+e Jj—m+f
X1 xl
Py L. :
X (cx2 +2bx + a)2 (32)

with I=i+j—m—-n—[—l,+e+f.

Similarly, in order to get the value of integral J;,, we consider two cases according
to the discriminant A =4ac — 4b*=4Q? [which is proved in Eq. (18)] of the quadratic
polynomial cx?42bx + a, which include A =0 and A > 0.

® When A=0, we have Q=0. By setting Q=0 in Eq. (31), we reach
Tieyzlef)=0 (33)
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® When A >0,we can refer to some mathematical formulas to get the value of
integral J,. Specifically, we can obtain J,, according to Eq. (58), J, according
to Eq. (5§9), J, according to Eq. (60), J5 according to Eq. (61) and J; (I>4)
according to Eq. (60). The final results can be easily reached without further
description as

D O e <
JO - 2Q2[ ’f.+1 ’f ] + 2Q210
J, = _ 1 bxk+1+a_ bx;+a _ b
ETCS A R 20270
=1 G X% a
12= c<rf+1 rg) +2lo
Jo=Lm T " (30> -0y +aQ>~ab®  (3bQ°-b)+aQ —ab’  3p024b} I
37222 2 220217 | 2620272 2202 0
-1 x]—l
=l (f & ) _ 2.2 _=l e >
JI - c(l-3) ( rf+] rZ ) - c Jl_l - ch_2 (l - 4)
(34)
with
1 L, Co Xy +D L, cx+b
10=—<tan kLT T (35)
10l 10l 10l

12 12
] .

where 1 =[( =) + (Z1— 20)° and 1 =[0g—x) +(5—29)]
Besides, Q=pxo+q—z, a=(q—z)°+x5 b=plg—z9)—x, c=1+p’
P =(Zpp1— )/ (X1 — X)) and g =(z;x;, 1 — 2y 1%/ (X1 — X3)- Until now, the calcu-
lation about function T, (e, f) shown in Eq. (28) for the time x, #x,, has
been completed.
2) When x;=x;,the integral of x in Eq. (28) is 0, just leaving the latter integral of z
to be calculated. Hence, Eq. (28) can be expressed as

sz/zz(e’f) = _(xk - xO)i_n-'—H1 : Hl (36)
where
Zpt1 (z— Zo)l
H, = / dz 37
: % [(x —x0)?+(z— 20)2]2 (37

with [=j—m+f.

Likewise, we can also refer to some mathematical formulas to get the value of
integral H,. Specifically, we can obtain H, according to Eq. (62), H, according to
Eq. (63) and H, (I>2) according to Eq. (64). The final results can be easily reached
without further description as

Hy = 1 . [(xkﬂ—xoz(lkﬂ—zo) _ (=x0)(z=2) + tan~! #17% _ ap—1 &%
2(x, =) Tt r X1 =X X—Xo
=_1(_L_1
S
Hy=-1( Gl G )y g2 (38)
2 Ter1 Ty 2
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where

Zhet1 — !
K = / Co2f g (39)
2k

(x —xp)* + (z— z9)?

whose result is shown in Eq. (23).
Until now, the calculation about function T',.. (e, f) shown in Eq. (28) for the time
xk—xk +1 has been completed, which means the calculation about functions E,, and
. shown in Eq. (25) for the time i +j# m+n has been completed too. The entire
result of T,.. (e, f) is comprised of Egs. (31)—(39).

2. When i+j=m+n, the conclusions in Egs. (27) and (28) are meaningless. Thus, we put
n=iand m=j into Eq. (25) directly, making

— // (x—xp)(z—2, ~dxdz

[e=xp)2+(z—7 )2]
// (2—29)>—(x—x))* dx dz (40)

(x—xo 2 +(z-2 )2]

where s denotes the cross-sectional area and (x, z,) are the coordinates of observation
point.
Considering the strategy above, we transform the integrands of Eq. (40) into

Gx)e=z) 1 { 9 [ 2—29) ] L2 0}
[—xP2+G-22] 2 L ox [ (=xp)*+z—z0) | 9z 41
(Z—Z())z—(x—xo)z _ 0 [ (x—xp) i 0 : ( )

[(X_x())z+(z_z())z]2 T oo

ox | (x=x¢)2+(z—2)?

Then, applying Stokes’ theorem for a plane (Riley et al. 2010) mentioned in Eq. (11),
we convert the surface integral into a sum of line integrals calculated on the sides of
the polygon in a counterclockwise direction. Thus, Eq. (40) becomes

1 X
B = 24 Fe
N, 42)
Ezz == F 2

with

Lherl 7—2
sz=/ (2 o) 2dZ
2 (=x)?+ (-2

Lherl X — X
Fzz = / ( 2 0) ZdZ
o =x)? 4+ (2= 2z)

where N, is the number of polygon’s sides and k denotes that it is the kth side being
calculated followed by a counterclockwise direction with its two endpoints being (x;,
zp) and (X, Z341) as shown in Fig. 1.

(43)
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Two cases must be considered when calculating Eq. (43): one is the kth side is not
parallel to z-axis, and the other is the kth side is parallel to z-axis. When the kth side is not
parallel to z-axis, x; #x;,,. The equation of the line this side located is z=px+ g where
D =(Zpp1— 2/ O — xp) and g =(2px; 4 — 21 X/ (X — Xp)- So we need to unify variables
in integrals before calculating. In the other case, that means x;,=x,, , the slope of this
line doesn’t exist. So we can directly get the result with the variation range of variable z.

1)  When x, #x,,, substituting the linear equation z=px+ g into Eq. (43) for sorting,
we have

cx2+2bx+a ¢ cx2+2bx+a
‘ X _ 1 (44)

F_=p /[ —= —dx—px
==P X ex?4+2bx+a p OfXA ox?+2bx+a

{ F, :pz x):m X dy 4 plg — 20) /XJ:HI 1

where a=(q — Zo)2 +x(2), (g —20)—x\,=\, p(g — zp)—x, and c=1 +p2.

Another two cases needed to be considered according to the discriminant
A=dac —4b*=4Q? [which is proved in Eq. (18)] with Q = px,+ g — z, of the quad-
ratic polynomial cx’*+2bx +a, which include A=0 and 4 > 0.

® When A =0,the factor cx’+2bx+a can be expressed as c(x+ blc)? due to the
method of completing the square. After noting a' = b/c = [p(q — z5)— x,1/(1 +p?)
and X' = c(x +a')? = cx’+2bx + a, we define a new integral M, as

RS X1 !
v X 4 1 by I
1= / X E/ 2% 43)
X X (x+ad)

with the value of M, and M, that can be obtained according to Eq. (65) and
Eq. (66), respectively, as

X 1 1 1 1
My= [ —dx=—- -—
0 ‘/’;k X ¢ \ X +d x+a'

. , 46)
— [ X g L Xy ta a 1 _ 1 (
Ml - -/Xk X’dx T In xXp+a + c <xk+1+a’ xk+a’>
Thanks to integral M, Eq. (44) can be briefly expressed as
{ F,, = p*M, + p(q — z)M, “n
Fzz = pM; — pxoM,

® When A > 0,the factor cx’+2bx+a doesn’t need to be changed, and the integrals
in Eq. (44) are the same as / and /; mentioned in Eq. (20). Hence, Eq. (44) can
be expressed as

{F)cz:pzll +p(q_ZO)IO (48)
Fzz :pll —Pxolo
with

1 L C Xy +b _lc-xk+b>
I, = —| tan — tan 49
0 |QI< 0l 0] “49)
and
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I, "1 b
I,=-In— — =]
1=7 n " pal) (50)
where Q=px;+q—zy, b= p(qg—z0)—xp c=1+p> 1 =[x —x0) + (g1~
Z0)2]1/2 and = [(xk_x())z + (Zk_ ZO)Z] 1/2.
Until now, the calculation of functions F_ and F_, shown in Eq. (43) for the
time x; #x;,, has been completed.

2) When x;=x,,,, the integrated line is parallel to z-axis without a slope, so we don’t
have to unify variable z into variable x. On the contrary, we can directly get the
value of Eq. (43) with the variation range of variable z.

Under this condition, the integrals in Eq. (43) are the same as K, and K| men-
tioned in Eq. (23). Hence, Eq. (43) becomes

_ Zpt1 (Z—Zo) —
F T g ()24 (z—2p)? le— K (5D
Lt
Fzz =(xk_x0)/;k 1 dz = (xk _XO)KO

e (=xp)?+(z—z)?

with
Zpr1 — % Z — %
Ky = <tan‘1 ML 0 tant 20 ) (52)
X —Xo Xk+1 — Xo X —Xo
and
Tyl
K, =In—
r=In-* (53)

where 7,1 =[Oty —X0)? + (Zeps — 20)°1" and 1 = [ —x0)* + (2, —20)*1"%

Until now, the calculation about F, and F,, shown in Eq. (43) for the time
X, =Xy, has been completed, which means the calculation about E,, and E,,
shown in Eq. (25) for the time i+ j=m+n has been completed. With the results
we got for the time i+j#m+n, we have finished all the derivation of analytic
expressions of U, and U_, so far.

In summary, Egs. (24), (29), (31)-(39), (42) and (46)—(53) constitute a com-
plete analytical expression system for U, and U._..

3 Singularity and Numerical Error

Because of the domain limits of elementary functions, our expressions are meaningless at
some points in the plane. These points are called singularity points. And due to the limited
floating-point precision in numerical calculations, numerical stability has always been a
desirable attribute for every algorithm.

In this section, we analyze the singularity of our expressions in different situations
and propose corresponding solutions. We also use another conventional method whose
result is taken as a standard to get the relative error and the range of numerical stability
of our expressions, in which the model with different-order polynomial density function
is divided into a collection of constant-density units. Finally, we test the numerical stabil-
ity of our expressions with practical density variation, and prove its validity for high-order
polynomial density cases.
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3.1 Singularity Analysis

Singularity is essentially caused by the domain limitations of some elementary functions
in our expressions. As an example, the denominator cannot be 0 for fractional functions; N
needs to be greater than O for a logarithmic function InN. In other words, these functions
may have meaningless conditions such as 0/0, 1/0, or In0 at certain points in the plane,
making the anomalies at these singularity points unable to be calculated.

According to the derivation above, two cases need to be considered before analysis: one
is that all sides of the model are not parallel to z-axis, and the other is that the model con-
tains any side parallel to z-axis. The reason of this consideration is the recursive integrals
used in the two cases are not the same. Besides, as long as one of the previous terms of a
recursive integral cannot be calculated, the latter terms of it cannot be calculated.

On the one hand, when all sides of the model are not parallel to z-axis, the calculation of
U, and U, only involves the recursive integral I,. As can be seen in Eq. (20), /; as a second
term of /; contains function In(r,,/r;), making the anomalies of U, and U, at vertices of
the model unable to be calculated, while the calculation of U, and U_, involves recursive
integrals I, J, and M,. As can be seen in Eq. (34), J as a first term of J;, contains functions
(¢Xpyq +b)ri,; and (cx,+b)/ri, which also makes the anomalies of U,, and U, at vertices
unable to be calculated. To sum up, the singularity points only locate at vertices of the
polygon in this situation.

On the other hand, once one of the sides of the model is parallel to z-axis, the calcula-
tion of U, and U, not only involves integral I; (which means the anomalies of U, and U,
at vertices of the model cannot be calculated), but also needs the recursive integral K. As
can be seen in Eq. (23), there are two factors in the first term K|, those are 1/(x,—x,) and
{tan ~'[(z4 1= 20)/1x1— Xol1—tan ~'[(z— zo)/1x;— x,l1}. Their denominators require that the
horizontal coordinate of observation point couldn’t be equal to that of vertex. However, as
we explained earlier, if the observation point locates on the line through the parallel side
but is not coincide with two endpoints, we can assign K|, directly to 0, so that other terms
of integral K could be calculated continually. To sum up, the singularity points of U, and
U, still locate at vertices of the polygon under this condition.

But for U, and U_, the situation is different. Under this circumstance, the calculation
about U,, and U_, not only involves integral J; (which means the anomalies of U,, and U_,
at vertices cannot be calculated), but also involves integral H,. As can be seen in Eq. (38),
the first term H,, is quite similar to K,,. Yet unlike K,, the factor 1/(x,—x,)* of H, cannot be
reduced. The reason is that, in order to calculate function T, . (e, f) shown in Eq. (36), H,
needs to be multiplied by factor (x;—xo)' ~"***!, while i —n+e+1>1 with the value of e
becoming 0, 1, 2, which cannot make 1/(x,— x,)* reduced completely. For recursive integral
H,, once the first term H,, cannot be calculated, the latter terms of it cannot be calculated,
so does the anomalies of U,, and U_,. As a result, the domain of observation points is lim-
ited into {(x,, zy)lxo#x;}. To sum up, all points on the line through the side parallel to
z-axis are singularity points of U,, and U_, under this condition.

Comparing the analysis of these two cases above, it is obvious that the latter one is
much more complicated. Therefore, if we can make all the s