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Abstract
In this paper, analytical solutions are presented for the gravity vector and gravity gradient 
tensor at any point produced by a 2D body whose cross-section is an arbitrary polygon and 
the density contrast is a 2D arbitrary-order polynomial function varying in both horizon-
tal and vertical directions. In addition, we analyze the singularity of our expressions. For 
the gravity vector, the singularity points only exist at the vertices of the polygon. But for 
the gravity gradient tensor, there are two situations: (1) if every side of the polygon is not 
parallel to z-axis, the singularity points will only exist at the vertices of the polygon; (2) if 
there is any side parallel to z-axis in the polygon, all the points on the line passing through 
the side parallel to z-axis will become singularity points. To avoid this singularity, observa-
tion points can be moved from the singularity points by a minimal distance. Besides, the 
analytic expressions are validated compared with conventional method that sums up the 
gravity effects of a series of units with uniform densities, with the numerical stability also 
being evaluated through numerical tests. What is more, applications with some numeri-
cal examples and effective models show that our analytical solution within the range of 
numerical stability is superior in computational accuracy and efficiency to the conventional 
method that sums up the gravity effects of a series of units with uniform densities. In a 
word, our expressions provide an effective method for computing the gravity vector and 
gravity gradient tensor of an irregular 2D body with complicated density variation.
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1  Introduction

The forward gravity problem is the foundation of gravity exploration (Wu 2018). Since the 
geological bodies in reality generally have complex density contrasts and complex shapes, 
they are often approximated by a collection of simple regular-shaped bodies whose den-
sity contrasts are assumed to be constant (Conway 2015; D’Urso 2015; Jiang et al. 2018; 
Werner 2017). The analytical solutions of gravity effects induced by some regular-shaped 
bodies with uniform densities have been reached, such as a rectangular prism (Nagy 1966; 
Nagy et al. 2000; Okabe 1979), a polyhedron (D’Urso 2013,2014a; Petrović 1996; Tsoulis 
and Petrović 2001), a polygonal prism (Cady 1980; Kwok 1991; Chen et al. 2018) and a 
cylinder (Kwok 1991; Rim and Li 2016).

Although geological bodies in reality all have three dimensions, there are some linear 
geologic structures whose strike extension is far greater than the cross-section dimension 
(Grant and West 1965) (e.g., fault zones, intrusive rock walls, etc.). For reducing the com-
putation of gravity effects, this kind of structures can be often approximated by 2D bodies 
extending infinitely along the strike to replace the actual distribution of original sources, 
and the corresponding inversion algorithm is easier to be established. In fact, the study of 
2D bodies is earlier than that of 3D bodies due to easier computation. In 1948, a line inte-
gral for calculating the gravity anomaly of a 2D mass with uniform density was presented 
(Hubbert 1948). On this basis, a classic computational scheme for rapid computation of 
gravity anomaly resulting from a 2D homogenous body whose cross-section is a polygon 
was proposed (Talwani et  al. 1959) and was applied to sedimentary basins (Bott 1960). 
Until now, the analytical solutions of gravity potential and its first-order, second-order, 
third-order derivatives caused by a 2D homogeneous body with polygonal cross-section 
have already been obtained (Jia and Wu 2011; Okabe 1979; Won and Bevis 1987), and 
some singularities of the formulas have been solved (Jia and Wu 2011).

The above studies only involve constant densities. While most mass sources have a non-
uniform density, the uniform-density assumption is not applicable to most geological struc-
tures in practical applications (Jiang et al. 2018; Sykes 1996). Therefore, different kinds of 
functions were used to simulate the variation of density contrast in bodies for computing 
the gravity effects of the variable-density bodies.

Gravity vector fields caused by 3D regular-shaped variable-density bodies have been 
extensively studied: solutions of some density-depth functions including linear (D’Urso 
2014b; Hamayun and Tenzer 2009; Hansen 1999; Holstein 2003; Pohanka 1998), quad-
ratic (Gallardo et al. 2005; Gallardo-Delgado et al. 2003), cubic (García-Abdeslem 2005), 
parabolic (Chakravarthi et  al. 2002) and arbitrary-order polynomial (Jiang et  al. 2017) 
have been considered. However, there are still more complex density variations not only 
related to depth existing in real geological bodies (e.g., dipping layered intrusions, sedi-
mentary beds, etc.). As a consequence, the general polynomial density contrast which not 
only varies in depth but also varies in the horizontal direction was proposed by Zhang et al. 
(2001). It is a significant for approximating complicated density distributions of geological 
bodies due to its superiority over the depth-dependent density function (Ren et al. 2018), 
which has been clearly proved by Jiang et al. (2017). Zhou (2009a) utilized line-integral 
method to compute the gravity anomaly of a rectangular prism with the density contrast 
varies with horizontal and vertical directions. Then, Zhang and Jiang (2017) obtained the 
closed-form expressions of gravity vector field produced by a 3D rectangular prism whose 
density is a linear combination of arbitrary-order polynomial functions in three directions 
of x, y and z. Ren et  al. (2017a, b) derived singularity-free analytic formulas of gravity 
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potential and gravity vector caused by a polyhedron whose density contrast is described 
by λ = axm + byn + czt, but for the solution of gravity potential, the maxima of m, n, t are 
2; and for the solution of gravity vector, m ≤ 1, n ≤ 1, t ≤ 1. Soon afterward, the maximum 
order of gravity vector’s solution was expanded up to 3 (Ren et al. 2017a, b). At the same 
time, D’Urso and Trotta (2017) deduced singularity-free expressions for calculating gravity 
anomaly of a polyhedral body with cubic polynomial density contrast in both horizontal 
and vertical directions at any point, and indicated that the general approach can be easily 
extended to higher-order polynomial functions.

Similarly, a few achievements have also been made in gravity anomalies of 2D variable-
density bodies: sources with some density-depth or density-distance functions have been 
considered, such as linear (Gendzwill 1970; Murthy and Rao 1979; Pan 1989), quadratic 
(Rao 1985,1986,1990; Ruotoistenmäki 1992), cubic (García Abdeslem 2003), parabolic 
(Visweswara Rao et al. 1994), hyperbolic(Litinsky 1989; Rao et al. 1994; Visweswara Rao 
et al. 1994, 1995), exponential (Chai and Hinze 1988; Chappell and Kusznir 2008; Cordell 
1973; Litinsky 1989), and any types of depth-dependent functions (Zhou 2008). Compared 
with these above functions only varying in one direction, density contrast which changes 
with horizontal and vertical directions offers a more flexible way to approximate arbitrary 
variable-density distributions (Ren et  al. 2018). When the density function of a 2D body 
varies in both horizontal and vertical directions, we can model the gravity anomaly of it 
rapidly by using numerical integration method (Martín Atienza and García Abdeslem 1999; 
Zhou 2009b). Nevertheless, using numerical methods inevitably reduces the accuracy of 
data and leads to numerical errors in forward computing, which can be completely avoided 
by using analytical solutions (Ren et al. 2018). Hence, the derivation of corresponding ana-
lytical solutions is still essential. Zhang et al. (2001) firstly made a contribution of deducing 
an analytical solution of gravity anomaly produced by a 2D polygonal body with an arbi-
trary-order polynomial density function varying in horizontal and vertical directions at Car-
tesian coordinate system. Furthermore, Zhou (2010) extended the solution and solved some 
singularities of it. D’Urso (2015) presented analytical expressions for calculating gravity 
anomaly resulting from a 2D polygonal body whose density contrast is a polynomial in hori-
zontal and vertical directions, but the order of the polynomial is not more than 3.

It is well known that gravity gradient data have better resolution than the gravity meas-
urement data since they contain higher frequency information (Jiang et al. 2018). Therefore, 
the study about gravity gradient tensors of sources with variable-density contrast has aroused 
the attention of geophysicists in recent years. D’Urso (2014b) made an analytical solution of 
gravity gradient tensor induced by a polyhedron whose density contrast varies linearly with 
a position vector. Yet, when the observation point is aligned with an edge of a face of the 
polyhedron, the expressions exhibit a singularity. Wu and Chen (2016) modeled gravity vector 
and gravity gradient anomalies of 2D and 3D prisms with density-depth functions by using a 
Fourier-domain method, bringing about the inevitable truncation errors. Moreover, Wu (2018) 
modeled the gravity potential, gravity vector and gravity gradient tensor of arbitrary 2D and 
3D bodies with arbitrary density contrast varying in horizontal and vertical directions by using 
Fourier-domain solutions, but the unavoidable numerical error is still one of the greatest draw-
backs. Correspondingly, Jiang et al. (2018) obtained closed-form expressions for computing 
gravity gradient of a right rectangular prism with an arbitrary-order polynomial density con-
trast related to depth, dealing with the singularities. Ren et al. (2018) reached an analytic solu-
tion of gradient tensor of a polyhedron whose density contrast varies with horizontal and verti-
cal directions, but the order of density function cannot exceed 3. To the best of our knowledge, 
the analytic expressions about gravity gradient and the horizontal component of gravity vector 
produced by 2D variable-density bodies have not been proposed so far.
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To this end, we derive space-domain analytic solutions of gravity vector and gradient 
tensor of a 2D body whose cross-section is a polygon and the density contrast is a 2D arbi-
trary-order polynomial function varying in horizontal and vertical directions. Actually, it is a 
remarkable fact that polygonal models with arbitrary-order polynomial densities can provide 
a very general solution for 2D bodies. On the one hand, when the order of polynomial func-
tion is high enough, any 2D density distribution can be approximated well. On the other hand, 
when the number of sides of the polygon is large enough, any continuous boundary can also 
be well approximated (Wu 2018). In this paper, we draw on the strategy which was used in the 
derivation of gravity anomaly of 2D variable-density bodies (Zhang et al. 2001; Zhou 2010) 
to derive the spatial analytic expressions of both gravity vector and gravity gradient tensor. We 
also discuss the singularity problem of the derived analytic expressions here. In addition, we 
validate our expressions by comparing with the result of conventional method in which the 
variable-density source is divided into a series of constant-density units. We also evaluated the 
numerical stability, the efficiency and the RMS error of our expressions under different-order 
polynomial density functions.

2 � Derivation of the Gravity Vector and Gravity Gradient Tensor

2.1 � Basic Expressions

Figure 1 defines the right-handed Cartesian coordinate system and shows a 2D body whose 
cross-section is approximated by a polygon. The y-axis is parallel to the strike of the body, 
and observations lie along a profile contained within the x–z plane. The z-axis is positive 
downward.

Let U denote the gravitational potential of a 2D body, the gravity vector can be expressed 
as (Jia and Wu 2011)

(1)g =

[
Ux

Uz

]

Fig. 1   A 2D body with a 
polygonal cross-section and a 
density contrast following a 2D 
polynomial function, σ(x, z) is 
the density contrast, (xk, zk) and 
(xk +1, zk+1) represent the coordi-
nates of vertices of the polygon, 
(x0, z0) are the coordinates of any 
observation point P in space, rk 
and rk+1 represent the distances 
between P and vertices
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in which Ux and Uz are the gravity components in x and z directions, respectively. Ux and 
Uz at any observation point (x0, z0) can be minutely described by one generalized equation 
as

where e is either 0 or 1, and so does f. Besides, G is gravitational constant, s denotes cross-
sectional area of the 2D body, and σ(x, z) represents the density contrast. Specifically, 
Ux/z(1, 0) = Ux(x0, z0), and Ux/z(0, 1) = Uz(x0, z0).

The gravity gradient tensor of this 2D body can be expressed as (Jia and Wu 2011)

in which each component at (x0, z0) can be minutely described by

where G is gravitational constant, s denotes the cross-sectional area, and σ(x, z) represents 
the density contrast.

Here, we assume the 2D body has an arbitrary polygonal cross-section and a density varia-
tion following a 2D arbitrary-order polynomial function (Zhang et al. 2001)

where Nx and Nz, respectively, represent the maximum order of x and z, while Di, j represent 
the coefficients of the polynomial.

By substituting Eq. (5) into Eq. (2), the expression of gravity components becomes

By substituting Eq. (5) into Eq. (4), the expressions of gravity gradient components become

(2)Ux∕z(e, f ) =Ux∕z

(
x0, z0

)
= 2G∬

s

�(x, z)

(
x − x0

)e(
z − z0

)f
(
x − x0

)2
+
(
z − z0

)2 dxdz

(3)� =

[
Uxx Uxz

Uzx Uzz

]

(4)

⎧⎪⎪⎨⎪⎪⎩

Uxz

�
x0, z0

�
= Uzx

�
x0, z0

�
= 4G∬

s

�(x, z)
(x−x0)(z−z0)�

(x−x0)
2
+(z−z0)

2
�2 dxdz

Uzz

�
x0, z0

�
= −Uxx

�
x0, z0

�
= 2G∬

s

�(x, z)
(z−z0)

2
−(x−x0)

2

�
(x−x0)

2
+(z−z0)

2
�2 dxdz

(5)�(x, z) =

Nx∑
i=0

Nz∑
j=0

Di,jx
izj

(6)Ux∕z(e, f ) =Ux∕z

(
x0, z0

)
= 2G

Nx∑
i=0

Nz∑
j=0

Di,j ∬
s

xizj
(x − x0)

e(z − z0)
f

(x − x0)
2 + (z − z0)

2
dxdz.

(7)

⎧⎪⎪⎨⎪⎪⎩

Uxz

�
x0, z0

�
= Uzx

�
x0, z0

�
= 4G

Nx∑
i=0

Nz∑
j=0

Di,j ∬
s

xizj
(x−x0)(z−z0)�

(x−x0)
2
+(z−z0)

2
�2 dxdz

Uzz

�
x0, z0

�
= −Uxx

�
x0, z0

�
= 2G

Nx∑
i=0

Nz∑
j=0

Di,j ∬
s

xizj
(z−z0)

2
−(x−x0)

2

�
(x−x0)

2
+(z−z0)

2
�2 dxdz

.
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Among them, the analytical solution of the vertical component of gravity vector has 
already been obtained (Zhang et al. 2001; Zhou 2010), while in the following sections, we 
use a unified method to derive all the analytic expressions of both gravity vector and grav-
ity gradient tensor.

2.2 � Ux and Uz

As shown in Fig. 1, it is assumed that the coordinates of observation point are (x0, z0) and 
those of the two endpoints of kth side of the polygon are (xk, zk) and (xk+1, zk+1).

According to Binomial theorem (Singh 2017), we can easily get

where Ci
n and Cj

m are the binomial expansion coefficients, which means 0 ≤ n ≤ i and 
0 ≤ m ≤ j.

Substituting Eq. (8) into Eq. (6), the integral becomes

According to Eq. (4) in the paper of Zhou (2010), we know that

where e and f are constants, with i + j − m − n + e + f ≠0.
Using Stokes’ theorem for a plane (Riley et al. 2010)

We convert the surface integral in the result of Eq. (9) into a sum of line integrals cal-
culated on the boundary of the polygon in a counterclockwise direction. Since the closed 
boundary of the polygon is connected by its Ne sides end to end, we can sum up integrals on 
each side of the polygon followed by a counterclockwise direction. In this way, we arrive at

(8)xizj = [(x − x0) + x0]
i[(z − z0) + z0]

j =

i∑
n=0

Cn
i

(
x − x0

)i−n
xn
0

j∑
m=0

Cm
j

(
z − z0

)j−m
zm
0

(9)

∬
s

xizj(x − x0)
e(z − z0)

f

(x − x0)
2 + (z − z0)

2
dxdz =

i∑
n=0

j∑
m=0

Cn
i
Cm
j
xn
0
zm
0 ∬

s

(x − x0)
i−n+e(z − z0)

j−m+f

(x − x0)
2 + (z − z0)

2
dxdz.

(10)

(x − x
0
)i−n+e(z − z

0
)j−m+f

(x − x
0
)2 + (z − z

0
)2

=
1

i + j − m − n + e + f

{
�

�x

[(
x − x

0

)i−n+e+1
(z − z

0
)j−m+f

(x − x
0
)2 + (z − z

0
)2

]

+
�

�z

[(
x − x

0

)i−n+e
(z − z

0
)j−m+f+1

(x − x
0
)2 + (z − z

0
)2

]}

(11)∬
s

(
�

�z
Ax −

�

�x
Az

)
dxdz = ∮c

(
Axdx + Azdz

)
,
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where e and f are constants, Ne is the number of polygon’s sides, and k denotes that it is 
kth side being calculated followed by a counterclockwise direction with its two endpoints 
being (xk, zk) and (xk+1, zk+1) as shown in Fig. 1. Obviously, e + f ≡ 1 whether for Ux or Uz. 
So that i + j − m − n + e + f = i + j − m − n + 1 ≥1 with 0 ≤ n ≤ i and 0 ≤ m ≤ j.

We note that

to stand for the integrals calculated on the kth side. Then, taking Eqs.  (9), (12) and (13) 
into Eq. (6), the expression of gravity vector becomes

where Ux/z(1, 0) = Ux(x0, z0), Ux/z(0, 1) = Uz(x0, z0), (x0, z0) are the coordinates of obser-
vation point, G is gravitational constant, Nx and Nz, respectively, represent the maximum 
order of x and z in density function, Di, j represents the coefficient of the polynomial den-
sity function, Ci

n and Cj
m are the binomial expansion coefficients with 0 ≤ n ≤ i and 0 ≤ m ≤ j 

which means i + j − m − n + e + f = i + j − m − n + 1 ≥1, Ne is the number of polygon’s sides, 
and k denotes that it is the kth side being calculated followed by a counterclockwise 
direction.

Since we have to get the value of function Ex/z (e, f), which becomes a problem about 
calculating line integrals on straight lines, we should unify the variables of the integrals 
first. Two cases must be considered, respectively: one is the kth side in not parallel to z-axis, 
and the other is the kth side in parallel to z-axis. If the kth side is not parallel to z-axis, 
which means xk ≠ xk+1, the slope of the line this side located exists and the equation of this 
line can be described by z = px + q where p =(zk+1− zk)/(xk +1− xk) and q =(zkxk +1− zk +1xk)/
(xk +1− xk). Then, we can substitute this equation into Eq. (13) and replace variable z with 
variable x, making Eq.  (13) an integral only related to the coordinates of x. In the other 
case, that means xk = xk+1, the slope of the line doesn’t exist, so does the equation of the 
line, while the integral of x in Eq. (13) is 0 in this time, just leaving the latter integral about 
z which is easy to be calculated.

Then, we show the details in the two cases, respectively:

1.	 When xk ≠ xk +1,substituting the linear equation z = px + q into Eq. (13) and combining 
similar terms, we have

(12)

∬
s

(x − x0)
i−n+e(z − z0)

j−m+f

(x − x0)
2 + (z − z0)

2
dxdz

=
1

i + j − m − n + e + f ∮c

[(
x − x0

)i−n+e
(z − z0)

j−m+f+1

(x − x0)
2 + (z − z0)

2
dx −

(
x − x0

)i−n+e+1
(z − z0)

j−m+f

(x − x0)
2 + (z − z0)

2
dz

]

=
1

i + j − m − n + e + f

Ne∑
k=1

[
∫

xk+1

xk

(
x − x0

)i−n+e
(z − z0)

j−m+f+1

(x − x0)
2 + (z − z0)

2
dx − ∫

zk+1

zk

(
x − x0

)i−n+e+1
(z − z0)

j−m+f

(x − x0)
2 + (z − z0)

2
dz

]

(13)

Ex∕z(e, f ) = ∫
xk+1

xk

(
x − x0

)i−n+e
(z − z0)

j−m+f+1

(x − x0)
2 + (z − z0)

2
dx − ∫

zk+1

zk

(
x − x0

)i−n+e+1
(z − z0)

j−m+f

(x − x0)
2 + (z − z0)

2
dz

(14)
Ux∕z(e, f ) = Ux∕z

�
x0, z0

�
= 2G

Nx∑
i=0

Nz∑
j=0

Di,j

i∑
n=0

j∑
m=0

Cn
i
Cm
j
xn
0
zm
0

i + j − m − n + e + f

Ne�
k=1

Ex∕z(e, f )
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with p =(zk+1− zk)/(xk+1− xk) and q =(zkxk+1− zk+1xk)/(xk+1− xk). After noting 
Q = px0 + q − z0, a =(q − z0)2 + x0

2, b = p(q − z0)− x0, c =1 + p2, and using Binomial theo-
rem (Singh 2017) on the terms (x − x0)i−n+e and (px + q − z0)j−m+f, Eq. (15) becomes

where Cl1
i−n+e

 and Cl2
j−m+f

 are the binomial expansion coefficients, and

with l = i + j − m − n − l1− l2 + e + f.
	   Obviously, once we want to get the value of integral Il, we need to consider another 

two cases according to the discriminant

of the quadratic polynomial cx2+2bx + a, which include Δ = 0 and Δ > 0.

1)	 When Δ = 0,we have Q = 0. By setting Q = 0 in Eq. (16), we reach

2)	 When Δ > 0,the result of integral Il has already been calculated by Zhou (2010) as

where rk+1=[(xk+1− x0)2 + (zk+1− z0)2]1/2 and rk=[(xk− x0)2 + (zk− z0)2]1/2.
2.	 When xk = xk+1,the integral of x in Eq. (13) is 0, just leaving the integral with respect to 

z to be calculated. Hence, Eq. (13) can be expressed as

(15)Ex∕z(e, f ) = ∫
xk+1

xk

(px0 + q − z0)
(
x − x0

)i−n+e
(px + q − z0)

j−m+f

(1 + p2)x2 + 2[p(q − z0) − x0]x + [(q − z0)
2 + x2

0
]
dx

(16)Ex∕z(e, f ) = Q

i−n+e∑
l1=0

j−m+f∑
l2=0

C
l1
i−n+e

C
l2
j−m+f

(−x0)
l1pj−m+f−l2 (q − z0)

l2
⋅ Il

(17)Il = ∫
xk+1

xk

xl

cx2 + 2bx + a
dx

(18)

Δ = 4ac − 4b2

= 4
(
1 + p2

)[(
q − z0

)2
+ x2

0

]
− 4

[
p
(
q − z0

)
− x0

]2

=
(
4 + 4p2

)(
q − z0

)2
+ 4x2

0
+ 4p2x2

0
− 4p2

(
q − z0

)2
+ 8px0

(
q − z0

)
− 4x2

0

= 4

[(
q − z0

)2
+ 2px0

(
q − z0

)
+ p2x2

0

]

= 4
(
px0 + q − z0

)2
= 4Q2

(19)Ex∕z(e, f ) = 0.

(20)

⎧⎪⎪⎨⎪⎪⎩

I0 =
1

�Q�
�
tan−1

c⋅xk+1+b

�Q� − tan−1
c⋅xk+b

�Q�
�

I1 =
1

c
ln

rk+1

rk
−

b

c
I0

Il =
xl−1
k+1

−xl−1
k

c(l−1)
−

2b

c
Il−1 −

a

c
Il−2 (l ≥ 2)

(21)Ex∕z(e, f ) = −
(
xk − x0

)i−n+e+1
⋅ Kl
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where

with l = j − m + f. When using the Binomial theorem, we have 0 ≤ m ≤ j, so that 
f ≤ j − m + f ≤ j + f. In accordance, there is l ≥ 0 for Ex (1, 0) and l ≥ 1 for Ez (0, 1).

Referring to Eq. (57), we can obtain the result of K0, while those of K1, K2 and Kl (l > 2) 
have already been calculated by Zhou (2010). So the result of integral Kl is

where rk+1=[(xk+1− x0)2 + (zk+1− z0)2]1/2 and rk=[(xk− x0)2 + (zk− z0)2]1/2.
However, it should be noted that the value of recursive integral Kl cannot be calculated 

according to Eq. (23) when x0 = xk = xk+1 with z0 ≠ zk and z0 ≠ zk+1, because the first term K0 
cannot be calculated. While taking actual meanings of those functions into account, we can 
find that the value of K0 under this condition is 0. Since tan −1[(zk+1− z0)/(xk+1− x0)] and 
tan −1[(zk− z0)/(xk− x0)], respectively, represent the angle between horizontal direction and 
a line through observation point and endpoint of the side parallel to z-axis, they are all π/2, 
and hence the difference between them is 0. Moreover, the factor 1/(xk− x0) can be reduced 
actually. Considering that calculating Kl is aiming to obtain the value of function Ex/z (e, f) 
shown in Eq. (21), and there is a factor (xk− x0)i − n+e+1 in Eq. (21) with i − n + e + 1 ≥ 1, the 
factor 1/(xk− x0) can always be canceled. So we can assign K0 directly to 0 under this condi-
tion, and the value of other terms of recursive integral Kl can also be obtained.

Until now, the calculation of function Ex/z (e, f) shown in Eq. (13) has been completed, 
which means the analytical solutions of gravity vector have also been achieved. To sum 
up, Eqs. (16)–(23) comprise the result of Ex/z (e, f), which works for Ux(x0, z0) with Ex (1, 
0) and works for Uz(x0, z0) with Ez (0, 1). Moreover, Eqs. (14) and (16)–(23) constitute the 
complete analytical expression system of the gravity vector (Ux and Uz).

2.3 � Uxz, Uzx, Uxx and Uzz

Because Uxz = Uzx and Uzz = − Uxx, we just take Uxz and Uzz for example.
Using the Binomial theorem, (Singh 2017), we put the expanded Eq. (8) into Eq. (7) and 

do some sorting, and then we can get the analytic expressions of Uxz and Uzz as

(22)Kl = ∫
zk+1

zk

(z − z0)
l

(x − x0)
2 + (z − z0)

2
dz

(23)

⎧⎪⎨⎪⎩

K0 =
1

xk−x0

�
tan−1

zk+1−z0

xk+1−x0
− tan−1

zk−z0

xk−x0

�

K1 = ln
rk+1

rk

Kl =
(zk+1−z0)

l−1−(zk−z0)
l−1

l−1
− (xk − x0)

2Kl−2 (l ≥ 2)

(24)

⎧⎪⎪⎨⎪⎪⎩

Uxz(x0, z0) = 4G
Nx∑
i=0

Nz∑
j=0

Di,j

i∑
n=0

j∑
m=0

Cn
i
Cm
j
xn
0
zm
0
Exz

Uzz(x0, z0) = 2G
Nx∑
i=0

Nz∑
j=0

Di,j

i∑
n=0

j∑
m=0

Cn
i
Cm
j
xn
0
zm
0
Ezz
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with

where (x0, z0) are the coordinates of observation point, G is gravitational constant, Nx and 
Nz, respectively, represent the maximum order of x and z in density function, Di, j repre-
sents the coefficient of the polynomial density function, and Ci

n and Cj
m are the binomial 

expansion coefficients with 0 ≤ n ≤ i and 0 ≤ m ≤ j.
Thanks to the law shown in Eq. (10), we can further infer that

where e and f are constants, and i + j − m − n + e + f − 2 ≠ 0.
According to Eq.  (26) and Stokes’ theorem for a plane (Riley et  al. 2010) mentioned 

in Eq. (11), we convert the surface integrals in Eq. (25) into a sum of line integrals calcu-
lated on the boundary of the polygon in a counterclockwise direction. Considering that the 
closed boundary is connected by Ne sides end to end, we reach

with

where i + j − m − n + e + f − 2 ≠ 0, Ne is the number of polygon’s sides, and k denotes that it 
is the kth side being calculated followed by a counterclockwise direction with its two end-
points being (xk, zk) and (xk+1, zk+1) as shown in Fig. 1.

In terms of Eqs.  (27) and (28), one premise must be met above all, that is 
i + j − m − n + e + f − 2 ≠ 0. However, as we can see in Eq. (25), e + f ≡2. Since 0 ≤ n ≤ i and 
0 ≤ m ≤ j, it is obvious that i + j − m − n + e + f − 2 = 0 if and only if n = i with m = j. Under 
this condition, Eqs. (27) and (28) are meaningless, making this situation needed to be dis-
cussed separately.

Nevertheless, let’s begin with the general situation.

1.	 When i + j ≠ m + n, the conclusions in Eqs. (27) and (28) are tenable. Taking them into 
Eq. (25), we have

(25)

⎧
⎪⎨⎪⎩

Exz = ∬
s

(x−x0)
i−n+1(z−z0)

j−m+1

[(x−x0)2+(z−z0)2]
2 dxdz

Ezz = ∬
s

(x−x0)
i−n(z−z0)

j−m+2

[(x−x0)2+(z−z0)2]
2 dxdz − ∬

s

(x−x0)
i−n+2(z−z0)

j−m

[(x−x0)2+(z−z0)2]
2 dxdz

(26)

(x − x
0
)i−n+e(z − z

0
)j−m+f

[
(x − x

0
)2 + (z − z

0
)2
]2

=
1

i + j − m − n + e + f − 2

⟨
�

�x

{
(x − x

0
)i−n+e+1(z − z

0
)j−m+f

[
(x − x

0
)2 + (z − z

0
)2
]2

}
+

�

�z

{
(x − x

0
)i−n+e(z − z

0
)j−m+f+1

[
(x − x

0
)2 + (z − z

0
)2
]2

}⟩

(27)∬
s

(x − x0)
i−n+e(z − z0)

j−m+f

[
(x − x0)

2 + (z − z0)
2
]2 dxdz =

1

i + j − m − n + e + f − 2

Ne∑
k=1

Txz∕zz(e, f )

(28)

Txz∕zz(e, f ) = ∫
xk+1

xk

(
x − x0

)i−n+e
(z − z0)

j−m+f+1

[
(x − x0)

2 + (z − z0)
2
]2 dx − ∫

zk+1

zk

(
x − x0

)i−n+e+1
(z − z0)

j−m+f

[
(x − x0)

2 + (z − z0)
2
]2 dz
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where Ne is the number of polygon’s sides and k denotes that it is the kth side being 
calculated followed by a counterclockwise direction.

	   The problem about calculating function Txz/zz (e, f) is also a problem about calculating 
linear integrals on straight lines. When we unify the integral variables, two cases must be 
considered, respectively: one is that the kth side is not parallel to z-axis, and the other is 
that the kth side is parallel to z-axis. If the kth side is not parallel to z-axis, which means 
xk ≠ xk+1, the equation of the line this side located can be described by z = px + q where 
p =(zk+1− zk)/(xk+1− xk) and q =(zkxk+1− zk+1xk)/(xk+1− xk). Then, we can substitute this 
equation into Eq. (28) and replace variable z with variable x, making Eq. (28) an integral 
only depend on the coordinates of x. In the other case, that means xk = xk+1, the slope 
of this line doesn’t exist, while the integral of x in Eq. (28) is 0 in this case, just leaving 
the latter integral about z to be calculated.

	   Here are the details:

1)	 When xk≠ xk +1,substitute the linear equation z = px + q into Eq. (28) and merge 
similar terms, then we have

After noting Q = px0 + q − z0, a =(q − z0)2 + x0
2, b = p(q − z0)− x0, c =1 + p2, 

and using the Binomial theorem (Singh 2017) on the terms (x − x0)i − n+e and 
(px + q − z0)j − m+f, Eq. (30) becomes

where Cl1
i−n+e

 and Cl2
j−m+f

 are the binomial expansion coefficients, and

with l = i + j − m − n − l1− l2 + e + f.
	   Similarly, in order to get the value of integral Jl, we consider two cases according 

to the discriminant Δ =4ac − 4b2=4Q2 [which is proved in Eq. (18)] of the quadratic 
polynomial cx2+2bx + a, which include Δ = 0 and Δ > 0.

①	 When Δ = 0, we have Q = 0. By setting Q = 0 in Eq. (31), we reach

(29)

⎧
⎪⎪⎨⎪⎪⎩

Exz =
1

i+j−m−n

Ne∑
k=1

Txz(1, 1)

Ezz =
1

i+j−m−n

Ne∑
k=1

�
Tzz(0, 2) − Tzz(2, 0)

�

(30)

Txz∕zz(e, f ) = ∫
xk+1

xk

(px0 + q − z0)
(
x − x0

)i−n+e
(px + q − z0)

j−m+f

{
(1 + p2)x2 + 2[p(q − z0) − x0]x + [(q − z0)

2 + x2
0
]
}2

dx.

(31)Txz∕zz(e, f ) = Q

i−n+e∑
l1=0

j−m+f∑
l2=0

C
l1
i−n+e

C
l2
j−m+f

(−x0)
l1pj−m+f−l2 (q − z0)

l2
⋅ Jl

(32)Jl = ∫
xk+1

xk

xl(
cx2 + 2bx + a

)2 dx

(33)Txz∕zz(e, f ) = 0



1162	 Surveys in Geophysics (2019) 40:1151–1183

1 3

②	 When Δ > 0,we can refer to some mathematical formulas to get the value of 
integral Jl. Specifically, we can obtain J0 according to Eq. (58), J1 according 
to Eq. (59), J2 according to Eq. (60), J3 according to Eq. (61) and Jl (l ≥ 4) 
according to Eq. (60). The final results can be easily reached without further 
description as

with

where rk+1=[(xk+1− x0)2 + (zk+1− z0)2]1/2 and rk=[(xk− x0)2 + (zk− z0)2]1/2. 
Besides, Q = px0 + q − z0, a =(q − z0)2 + x0

2, b = p(q − z0)− x0, c =1 + p2, 
p =(zk+1− zk)/(xk+1− xk) and q =(zkxk+1− zk+1xk)/(xk+1− xk).Until now, the calcu-
lation about function Txz/zz (e, f) shown in Eq. (28) for the time xk ≠ xk+1 has 
been completed.

2)	 When xk= xk+1,the integral of x in Eq. (28) is 0, just leaving the latter integral of z 
to be calculated. Hence, Eq. (28) can be expressed as

where

with l = j − m + f.
	   Likewise, we can also refer to some mathematical formulas to get the value of 

integral Hl. Specifically, we can obtain H0 according to Eq. (62), H1 according to 
Eq. (63) and Hl (l ≥ 2) according to Eq. (64). The final results can be easily reached 
without further description as

	    

(34)

⎧
⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

J0 =
1

2Q2

�
cxk+1+b

r2
k+1

−
cxk+b

r2
k

�
+

c

2Q2
I0

J1 = −
1

2Q2

�
bxk+1+a

r2
k+1

−
bxk+a

r2
k

�
−

b

2Q2
I0

J2 = −
1

c

�
xk+1

r2
k+1

−
xk

r2
k

�
+

a

c
J0

J3 =
1

2c2
ln

r2
k+1

r2
k

+
(3bQ2−b3)xk+1+aQ2−ab2

2c2Q2r2
k+1

−
(3bQ2−b3)xk+aQ2−ab2

2c2Q2r2
k

−
3bQ2+b3

2c2Q2
⋅ I0

Jl =
1

c(l−3)

�
xl−1
k+1

r2
k+1

−
xl−1
k

r2
k

�
−

l−2

l−3
⋅

2b

c
Jl−1 −

l−1

l−3
⋅

a

c
Jl−2 (l ≥ 4)

(35)I0 =
1

|Q|
(
tan−1

c ⋅ xk+1 + b

|Q| − tan−1
c ⋅ xk + b

|Q|
)

(36)Txz∕zz(e, f ) = −
(
xk − x0

)i−n+e+1
⋅ Hl

(37)Hl = ∫
zk+1

zk

(z − z0)
l

[
(x − x0)

2 + (z − z0)
2
]2 dz

(38)

⎧⎪⎪⎨⎪⎪⎩

H0 =
1

2(xk−x0)
3

�
(xk+1−x0)(zk+1−z0)

r2
k+1

−
(xk−x0)(zk−z0)

r2
k

+ tan−1
zk+1−z0

xk+1−x0
− tan−1

zk−z0

xk−x0

�

H1 = −
1

2

�
1

r2
k+1

−
1

r2
k

�

Hl = −
1

2

�
(zk+1−z0)

l−1

r2
k+1

−
(zk−z0)

l−1

r2
k

�
+

l−1

2
Kl−2 (l ≥ 2)
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where

whose result is shown in Eq. (23).
	   Until now, the calculation about function Txz/zz (e, f) shown in Eq. (28) for the time 

xk = xk+1 has been completed, which means the calculation about functions Exz and 
Ezz shown in Eq. (25) for the time i + j ≠ m + n has been completed too. The entire 
result of Txz/zz (e, f) is comprised of Eqs. (31)–(39).

2.	 When i + j = m + n, the conclusions in Eqs. (27) and (28) are meaningless. Thus, we put 
n = i and m = j into Eq. (25) directly, making

where s denotes the cross-sectional area and (x0, z0) are the coordinates of observation 
point.

	   Considering the strategy above, we transform the integrands of Eq. (40) into

Then, applying Stokes’ theorem for a plane (Riley et al. 2010) mentioned in Eq. (11), 
we convert the surface integral into a sum of line integrals calculated on the sides of 
the polygon in a counterclockwise direction. Thus, Eq. (40) becomes

with

where Ne is the number of polygon’s sides and k denotes that it is the kth side being 
calculated followed by a counterclockwise direction with its two endpoints being (xk, 
zk) and (xk+1, zk+1) as shown in Fig. 1.

(39)Kl = ∫
zk+1

zk

(z − z0)
l

(x − x0)
2 + (z − z0)

2
dz

(40)

⎧⎪⎨⎪⎩

Exz = ∬
s

(x−x0)(z−z0)

[(x−x0)2+(z−z0)2]
2 dxdz

Ezz = ∬
s

(z−z0)
2−(x−x0)

2

[(x−x0)2+(z−z0)2]
2 dxdz

(41)

⎧⎪⎨⎪⎩

(x−x0)(z−z0)

[(x−x0)2+(z−z0)2]
2 = −

1

2

�
�

�x

�
(z−z0)

(x−x0)
2+(z−z0)

2

�
+

�

�z
0

�

(z−z0)
2−(x−x0)

2

[(x−x0)2+(z−z0)2]
2 =

�

�x

�
(x−x0)

(x−x0)
2+(z−z0)

2

�
+

�

�z
0

.

(42)

⎧⎪⎪⎨⎪⎪⎩

Exz =
1

2

Ne∑
k=1

Fxz

Ezz = −
Ne∑
k=1

Fzz

(43)

⎧⎪⎪⎨⎪⎪⎩

Fxz = ∫
zk+1

zk

(z − z0)

(x − x0)
2 + (z − z0)

2
dz

Fzz = ∫
zk+1

zk

(x − x0)

(x − x0)
2 + (z − z0)

2
dz
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	   Two cases must be considered when calculating Eq. (43): one is the kth side is not 
parallel to z-axis, and the other is the kth side is parallel to z-axis. When the kth side is not 
parallel to z-axis, xk ≠ xk+1. The equation of the line this side located is z = px + q where 
p =(zk+1− zk)/(xk+1− xk) and q =(zkxk+1− zk+1xk)/(xk+1− xk). So we need to unify variables 
in integrals before calculating. In the other case, that means xk = xk+1, the slope of this 
line doesn’t exist. So we can directly get the result with the variation range of variable z.

1)	 When xk ≠ xk+1, substituting the linear equation z = px + q into Eq. (43) for sorting, 
�we have

where a =(q − z0)2 + x0
2,  p(q − z0)− x0\,=\, p(q − z0)− x0 and c =1 + p2.

	   Another two cases needed to be considered according to the discriminant 
Δ =4ac − 4b2=4Q2 [which is proved in Eq. (18)] with Q = px0 + q − z0 of the quad-
ratic polynomial cx2+2bx + a, which include Δ = 0 and Δ > 0.

①	 When Δ = 0,the factor cx2+2bx + a can be expressed as c(x + b/c)2 due to the 
method of completing the square. After noting a′ = b/c = [p(q − z0)− x0]/(1 + p2) 
and X′ = c(x + a′)2 = cx2+2bx + a, we define a new integral Ml as

with the value of M0 and M1 that can be obtained according to Eq. (65) and 
Eq. (66), respectively, as

	   Thanks to integral Ml, Eq. (44) can be briefly expressed as

②	 When Δ > 0,the factor cx2+2bx + a doesn’t need to be changed, and the integrals 
in Eq. (44) are the same as I0 and I1 mentioned in Eq. (20). Hence, Eq. (44) can 
be expressed as

with

and

(44)

{
Fxz = p2 ∫ xk+1

xk

x

cx2+2bx+a
dx + p(q − z0) ∫ xk+1

xk

1

cx2+2bx+a
dx

Fzz = p ∫ xk+1
xk

x

cx2+2bx+a
dx − px0 ∫ xk+1

xk

1

cx2+2bx+a
dx

(45)Ml = ∫
xk+1

xk

xl

X�
dx =

1

c ∫
xk+1

xk

xl

(x + a�)2
dx

(46)

⎧⎪⎨⎪⎩

M0 = ∫ xk+1
xk

1

X�
dx = −

1

c

�
1

xk+1+a
�
−

1

xk+a
�

�

M1 = ∫ xk+1
xk

x

X�
dx =

1

c
ln

xk+1+a
�

xk+a
�
+

a�

c

�
1

xk+1+a
�
−

1

xk+a
�

�

(47)
{

Fxz = p2M1 + p(q − z0)M0

Fzz = pM1 − px0M0

(48)
{

Fxz = p2I1 + p
(
q − z0

)
I0

Fzz = pI1 − px0I0

(49)I0 =
1

|Q|
(
tan−1

c ⋅ xk+1 + b

|Q| − tan−1
c ⋅ xk + b

|Q|
)
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where Q = px0 + q −z0, b =  p(q − z0)− x0, c = 1 + p2, rk+1=[(xk+1 − x0)2 + (zk+1− 
z0)2]1/2 and rk = [(xk− x0)2 + (zk − z0)2]1/2.

	   Until now, the calculation of functions Fxz and Fzz shown in Eq. (43) for the 
time xk ≠ xk+1 has been completed.

2)	 When xk= xk+1, the integrated line is parallel to z-axis without a slope, so we don’t 
have to unify variable z into variable x. On the contrary, we can directly get the 
value of Eq. (43) with the variation range of variable z.

	   Under this condition, the integrals in Eq. (43) are the same as K0 and K1 men-
tioned in Eq. (23). Hence, Eq. (43) becomes

with

and

where rk+1 = [(xk+1 − x0)2 + (zk+1 − z0)2]1/2 and rk = [(xk − x0)2 + (zk − z0)2]1/2.
	   Until now, the calculation about Fxz and Fzz shown in Eq. (43) for the time 

xk = xk+1 has been completed, which means the calculation about Exz and Ezz 
shown in Eq. (25) for the time i + j = m + n has been completed. With the results 
we got for the time i + j ≠ m + n, we have finished all the derivation of analytic 
expressions of Uxz and Uzz so far.

	   In summary, Eqs. (24), (29), (31)–(39), (42) and (46)–(53) constitute a com-
plete analytical expression system for Uxz and Uzz.

3 � Singularity and Numerical Error

Because of the domain limits of elementary functions, our expressions are meaningless at 
some points in the plane. These points are called singularity points. And due to the limited 
floating-point precision in numerical calculations, numerical stability has always been a 
desirable attribute for every algorithm.

In this section, we analyze the singularity of our expressions in different situations 
and propose corresponding solutions. We also use another conventional method whose 
result is taken as a standard to get the relative error and the range of numerical stability 
of our expressions, in which the model with different-order polynomial density function 
is divided into a collection of constant-density units. Finally, we test the numerical stabil-
ity of our expressions with practical density variation, and prove its validity for high-order 
polynomial density cases.

(50)I1 =
1

c
ln

rk+1

rk
−

b

c
I0

(51)
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2
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)
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3.1 � Singularity Analysis

Singularity is essentially caused by the domain limitations of some elementary functions 
in our expressions. As an example, the denominator cannot be 0 for fractional functions; N 
needs to be greater than 0 for a logarithmic function lnN. In other words, these functions 
may have meaningless conditions such as 0/0, 1/0, or ln0 at certain points in the plane, 
making the anomalies at these singularity points unable to be calculated.

According to the derivation above, two cases need to be considered before analysis: one 
is that all sides of the model are not parallel to z-axis, and the other is that the model con-
tains any side parallel to z-axis. The reason of this consideration is the recursive integrals 
used in the two cases are not the same. Besides, as long as one of the previous terms of a 
recursive integral cannot be calculated, the latter terms of it cannot be calculated.

On the one hand, when all sides of the model are not parallel to z-axis, the calculation of 
Ux and Uz only involves the recursive integral Il. As can be seen in Eq. (20), I1 as a second 
term of Il contains function ln(rk+1/rk), making the anomalies of Ux and Uz at vertices of 
the model unable to be calculated, while the calculation of Uxz and Uzz involves recursive 
integrals Il, Jl and Ml. As can be seen in Eq. (34), J0 as a first term of Jl, contains functions 
(cxk+1 + b)/r2

k+1 and (cxk + b)/rk
2, which also makes the anomalies of Uxz and Uzz at vertices 

unable to be calculated. To sum up, the singularity points only locate at vertices of the 
polygon in this situation.

On the other hand, once one of the sides of the model is parallel to z-axis, the calcula-
tion of Ux and Uz not only involves integral Il (which means the anomalies of Ux and Uz 
at vertices of the model cannot be calculated), but also needs the recursive integral Kl. As 
can be seen in Eq. (23), there are two factors in the first term K0, those are 1/(xk− x0) and 
{tan −1[(zk+1− z0)/|xk+1− x0|]− tan −1[(zk− z0)/|xk− x0|]}. Their denominators require that the 
horizontal coordinate of observation point couldn’t be equal to that of vertex. However, as 
we explained earlier, if the observation point locates on the line through the parallel side 
but is not coincide with two endpoints, we can assign K0 directly to 0, so that other terms 
of integral Kl could be calculated continually. To sum up, the singularity points of Ux and 
Uz still locate at vertices of the polygon under this condition.

But for Uxz and Uzz, the situation is different. Under this circumstance, the calculation 
about Uxz and Uzz not only involves integral Jl (which means the anomalies of Uxz and Uzz 
at vertices cannot be calculated), but also involves integral Hl. As can be seen in Eq. (38), 
the first term H0 is quite similar to K0. Yet unlike K0, the factor 1/(xk− x0)3 of H0 cannot be 
reduced. The reason is that, in order to calculate function Txz/zz (e, f) shown in Eq. (36), H0 
needs to be multiplied by factor (xk− x0)i − n+e+1, while i − n + e + 1 ≥ 1 with the value of e 
becoming 0, 1, 2, which cannot make 1/(xk− x0)3 reduced completely. For recursive integral 
Hl, once the first term H0 cannot be calculated, the latter terms of it cannot be calculated, 
so does the anomalies of Uxz and Uzz. As a result, the domain of observation points is lim-
ited into {(x0, z0)|x0 ≠ xk}. To sum up, all points on the line through the side parallel to 
z-axis are singularity points of Uxz and Uzz under this condition.

Comparing the analysis of these two cases above, it is obvious that the latter one is 
much more complicated. Therefore, if we can make all the sides of the polygon not parallel 
to z-axis when modeling, we can control the singularity points of our expressions to just 
locate at the vertices of the polygon whether for the gravity vector or for the gravity gradi-
ent tensor. Furthermore, two methods can be used to remove the singularity in numerical 
calculation. One is to move the computation points away from the singularity points by an 
infinitesimal distance (Jiang et al. 2017) which is used in later model testing, and the other 
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is to exclude an extremely small sphere around the singularity points (Tsoulis and Petrovic 
2001; Zhou 2009a, 2010). Generally, the radius of the exclusive infinitesimal sphere can be 
specified as ε = μRm, where μ is a dimensionless, infinitely smaller number and Rm is the 
maximum size of the mass body (Zhou 2010).

3.2 � Numerical Error

Another problem is the analytical numerical error of the expression. The rounding error in 
calculations may be magnified, even if your algorithm is derived correctly. Holstein and 
Ketteridge (1996) claimed that numerical calculation of analytic expressions was plagued 
by limited floating-point precision. Certainly, the gravitational field decreases as the dis-
tance between the target and observation increases, while the numerical error increases.

In order to evaluate the stability of our expressions, consider a square object  
{[x, z]:− 1 ≤ x ≤ 1, 0 ≤ z ≤ 2} shown in Fig. 2, whose density contrast is �(x, z) =

∑3

i=0
xizi 

where σ(x, z) is in g/cm3 and where x and z are in meters. The observation points are along 
line z = − x + 1 at a length interval of √2 from point (2, − 1) to point (300, − 299). Accord-
ing to Holstein and Ketteridge (1996), we define the dimensionless target distance as the 
ratio of a distance between observation point and target body to a typical linear size of the 
target.

In the meantime, we also take another conventional method called constant-density 
method to compare, in which the model is divided into a collection of constant-density 
units. And the gravity effects of these constant-density units are calculated according to 
the analytic expressions presented by Jia and Wu (2011). It is said the conventional method 
has better stability when calculating. In this model, we set the constant-density unit into a 
small square whose side length is 0.02 m, and replace the density of it with an average of 

Fig. 2   A square object {[x, z]:− 1 ≤ x ≤ 1, 0 ≤ z ≤ 2} with density contrast �(x, z) =
∑3

i=0
xizi where σ(x, z) is 

in g/cm3 and where x and z are in meters. The observation points are along line z = − x + 1 at a length inter-
val of √2 from point (2, − 1) to point (300, − 299)
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those at vertices and center point, and then sum up the contributions of all units calculated 
by analytic Eqs. (20a)–(20f) in the paper presented by Jia and Wu (2011). Figure 3 shows 
the various differences between the anomalies of gravity vector and gravity gradient ten-
sor calculated by the two methods versus dimensionless target distance, using MATLAB 
software on a computer with Intel (R) Core(TM) i5-2400, frequency 3.10 GHz, and RAM 
of 4.00 GB.

As can be seen in Fig.  3, when observation point is close to target body, the results 
of two methods match well. But beyond a certain distance, the result of present approach 
is destroyed by the calculation of closure difference. Since the result of constant-density 
method is always stable in this range, it can be taken as a standard to evaluate the relative 
error of present approach. Figure 4 reflects how a base-10 logarithm of the relative error of 
present approach compared with constant-density method changes with the dimensionless 
target distance along observation line.

(a) (b)

(c) (d)

Fig. 3   The anomalies of Ux (a), Uz (b), Uxz and Uzx (c), Uxx and Uzz (d) for the model shown in Fig. 2 calcu-
lated by constant-density method and present approach versus the dimensionless target distance of observa-
tion point
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In Fig.  4, the horizontal dashed line indicates a relative error of 100%, which means 
the calculated floating-point error is the same order as the solution of gravity effects. Cor-
respondingly, the dimensionless target distance at this time is called critical target distance, 
which reflects the range of numerical stability of present approach. Beyond the critical tar-
get distance, the fluctuation of our curve becomes more and more severe with the increase 
of distance. What’s more, according to those anomalies shown in Fig.  3, if we take the 
absolute value less than 0.001 mgal as the criterion for the disappearance of Ux and Uz, 
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Fig. 4   A base-10 logarithm of the relative error of present approach compared with constant-density 
method for the gravity vector and gravity gradient tensor produced by the model shown in Fig. 2 versus the 
dimensionless target distance of observation point. Besides, the horizontal dashed line indicates the 100% 
relative error

Fig. 5   Critical target distances of present approach for gravity vector and gravity gradient tensor produced 
by the model shown in Fig. 2 with the density contrast being �(x, z) =

∑n

i=0
xizi, (n = 1, 2, 3,… , 7) . The 

horizontal axis is the maximum order of density function
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and the absolute value less than 1 E as the criterion for the disappearance of Uxz and Uzz, 
the corresponding dimensionless target distances of their disappearance (also called the 
maximum target distances of anomalies) become: Ux, 18.46 times; Uz, 18.46 times; Uxz, 
10 times; Uzz, 3.34 times. And according to Fig.  4, we can know that their critical tar-
get distances, respectively, becomes: Ux, 65 times; Uz, 63 times; Uxz, 48.3 times; Uzz, 27.2 
times. It is quite obvious that the critical target distances of present approach are much 
greater than the maximum target distances of anomalies, proving the practicability of our 
expressions.

Furthermore, we evaluate the numerical stability ranges of present approach with 
different-order polynomial density function �(x, z) =

∑n

i=0
xizi, (n = 1, 2, 3,… , 7) plot-

ting the variety of critical target distances of gravity vector and gravity gradient tensor 
versus the maximum order of density function in Fig. 5. Besides, the units of density 
are g/cm3, and those of x and z are meters. There are several facts in Fig. 5: first, as the 
order increases, the critical target distances are always decreasing; second, the critical 
target distances of gravity gradient tensor are smaller than those of gravity vector, for 
the increasing errors due to higher order in differentiation; third, the critical target dis-
tance of Uzz is smaller than Uxz, because the repeated calculations of function Txz/zz (e, f) 
shown in Eq. (29) inevitably increase the numerical error of Uzz.

Finally, in order to test numerical stability of present approach with actual density con-
trast, we take a density function σ (x, z) = − 700 + 254.8z − 27.3z2 shown in Eq.  (54) for 
example, which represents the density contrast of Sebastián Vizcaíno basin in Mexico. 
Besides, the units of density are kg/m3, and those of x and z are kilometers. We calculate 
the critical target distances of gravity vector and gravity gradient tensor produced by the 
model shown in Fig. 2 with this actual density contrast, in which the critical target distance 
of Uzz is 2650 times, and those of Ux, Uz, Uxz are larger than 200,000 times. These values 
are much larger than those of same order calculated before, because smaller coefficients in 
actual density function can suppress the amplified closure differences. To this end, for the 
cases of higher-order polynomial densities in practical applications, the range of numerical 
stability of our expressions is sufficient.

4 � Model Test

In this section, our expressions are coded in MATLAB programs for different models to 
check the correctness and stabilities. We chiefly consider about three cases of density con-
trast: first, the density only varies in vertical direction; second, the density only varies in 
horizontal direction; third, the density varies in both horizontal and vertical directions. 
And all observation points in these three examples are set near the targets, within the range 
of numerical stability. Necessarily, we also use constant-density method to make a com-
parison with present approach.

In these examples, the universal gravitational constant G = 6.67408 × 10−11 m3/(kg·s2). 
Besides, all codes are run in MATLAB R2012b software on a computer with an Intel(R) 
Core(TM) i5-2400, a frequency of 3.10 GHz, and a RAM of 4.00 GB.
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4.1 � Density only Varies in Vertical Direction

This model is quoted from the paper of D’Urso (2015), representing the Sebastián Viz-
caíno basin in Mexico. It was first considered by García-Abdeslem et al. (2005) and later 
discussed by Zhou (2008). As shown in Fig. 6, the cross-section of this 2D model is a hep-
tagon with coordinates of vertices being (0, 0), (0.22, 0.1), (0.68, 0.19), (0.9, 0.22), (1.1, 
0.23), (1.5, 0.18) and (1.8, 0). And the density contrast is a quadratic polynomial function 
only varies in vertical direction as

where the units of density are kg/m3 and those of x and z are kilometers. We set the obser-
vation line on z = 0, and put an observation point every 0.043  km from x = − 0.5  km to 
x = 2.5  km. To validate the result of present approach, we adopt the constant-density 
method for a comparison, in which this model is evenly divided into 230 long strips 
along z-axis. And the gravitational contribution of every unit whose density is replaced 
by the average of those at vertices and center point is calculated according to analytic 
Eqs. (20a)–(20f) in the paper of Jia and Wu (2011).

Figure 7(a) shows the results of gravity vector along the observation line obtained by 
two methods, while (b) shows those of gravity gradient tensor. Since the results of two 
methods are well matched, the correctness of present approach is proved completely. Fur-
thermore, Fig.  8 shows root mean square (RMS) error of the result of constant-density 
method compared with present approach versus the number of divided units, where gravity 
vector is in black and gravity gradient tensor is in pink. Besides, the absolute values of Uxx 
and Uzz are equal, so does their RMS errors. There are several facts in Fig. 8: first, if there 
is only 1 unit, the RMS errors reach maximum with 0.0406 mgal of Ux, 0.0474 mgal of Uz, 
1.2378 E of Uxz and 1.1511 E of Uxx/Uzz; second, the RMS error is getting smaller with the 
increasing number of divided units, which means the result of constant-density method is 
getting closer to that of present approach; third, dividing 200 units can make the RMS error 

(54)�(x, z) = −700 + 254.8z − 27.3z2

Fig. 6   A 2D model quoted from the paper of D’Urso (2015) whose cross-section is a heptagon with vertices 
being (0, 0), (0.22, 0.1), (0.68, 0.19), (0.9, 0.22), (1.1, 0.23), (1.5, 0.18), (1.8, 0) and the density contrast is 
σ (x, z) = − 700 + 254.8z − 27.3z2, representing the Sebastián Vizcaíno basin in Mexico. The units of density 
are kg/m3 and those of x and z are kilometers. Besides, the observation points are set every 0.043 km from 
x = − 0.5 km to x = 2.5 km along z = 0
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of Ux and Uz below 10−6 mgal; fourth, dividing 140 units can make the RMS error of Uxz 
and Uzz below 10−4 E. These data definitely exhibit the advantage of present approach in 
terms of accuracy. 

4.2 � Density only Varies in Horizontal Direction

This model was used by D’Urso (2015). It was first considered by Martín Atienza and 
García Abdeslem (1999) and later studied by Zhou (2009b, 2010). As shown in Fig. 9, the 
cross-section of this 2D model is a trapezoid with vertices being (− 2, 0.1), (− 3.8, 3.1), 
(4.6, 3.1) and (1, 0.1). Its density contrast is a quadratic polynomial function only varies in 
horizontal direction as

where the units of density are kg/m3 and those of x and z are kilometers. We set the observa-
tion line on z = 0 and put an observation point every 0.223 km from x = − 5 km to x = 5 km. 
To validate the result of present approach, we also adopt constant-density method for a 

(55)�(x, z) = 500 + 20x − 20x2

(a)

(b)

Fig. 7   The anomalies of gravity vector (a) and gravity gradient tensor (b) along observation line due to the 
model shown in Fig. 6, obtained by constant-density method and present approach



1173Surveys in Geophysics (2019) 40:1151–1183	

1 3

comparison, in which this model is evenly divided into 250 vertical strips along x-axis. 
And the gravitational contributions of every unit whose density is replaced by the average 
of those at vertices and center point are calculated according to analytic Eqs. (20a)–(20f) 
in the paper of Jia and Wu (2011). Since these equations have singularities at vertices of 
the model (Jia and Wu 2011), we make the depth of this model 0.1 km deeper than that of 
D’Urso (2015), so that observation points are not coincide with vertices of units.

Fig. 8   The RMS error of constant-density method compared with present approach versus the number of 
divided units, for gravity vector (in black) and gravity gradient tensor (in pink) along the observation line 
produced by the model shown in Fig. 6

Fig. 9   A 2D model whose cross-section is a trapezoid with vertices being (− 2, 0.1), (− 3.8, 3.1), (4.6, 3.1), 
(1, 0.1) and the density contrast is σ (x, z) = 500 + 20x − 20x2. The units of density are kg/m3 and those of 
x and z are kilometers. Besides, the observation points are set every 0.223 km from x = − 5 km to x = 5 km 
along z = 0
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In Fig.  10, picture (a) shows the results of gravity vector along the observation line 
obtained by two methods, while picture (b) shows those of gravity gradient tensor. Since 
the results of two methods are well matched, the correctness of present approach is proved 
again. In Fig.  11, picture (a) shows RMS error of the result of constant-density method 
compared with the present approach versus the number of divided units, where gravity vec-
tor is in black and gravity gradient tensor is in pink, and picture (b) shows the CPU time 
consumed by the two methods accordingly. Besides, the absolute values of Uxx and Uzz are 
equal, so does their RMS errors. From picture (a) in Fig. 11, we know some facts: first, if 
there is only 1 unit, the RMS errors reach maximum with 4.9938 mgal of Ux, 6.4777 mgal 
of Uz, 23.6375 E of Uxz and 23.3345 E of Uxx/Uzz; second, the RMS error is getting smaller 
with the increasing number of divided units, which means the result of constant-density 
method is getting closer to that of present approach. Although the result of constant-den-
sity method is becoming more and more accurate, the CPU time it consumed is becoming 

(a)

(b)

Fig. 10   The anomalies of gravity vector (a) and gravity gradient tensor (b) along observation line due to the 
model shown in Fig. 9, obtained by constant-density method and present approach
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longer and longer, which can be seen in picture (b) of Fig. 11. Specifically, 140 and 150 
units are needed, respectively, to make the RMS error of Ux and Uz below 0.001mgal, 
while the CPU time consumed by constant-density method accordingly is 1.33 times and 
1.22 times of that of present approach; and 250 units are needed to make the RMS error of 
Uxz and Uxx/Uzz below 0.001E, while the CPU time consumed by constant-density method 
accordingly is 2.16 times and 1.4 times of that of present approach. These data illustrate 
the advantages of present approach in both accuracy and efficiency.

(a)

(b)

Fig. 11   a The RMS error of constant-density method compared with present approach versus the number 
of divided units, for gravity vector (in black) and gravity gradient tensor (in pink) along the observation 
line produced by the model shown in Fig. 9; b The corresponding CPU time consumed by the two methods, 
respectively, versus the number of divided units
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4.3 � Density Varies in both Horizontal and Vertical Directions

This model is a long valley model which was first considered by Murthy and Rao (1979) 
and later analyzed by Zhang et al. (2001). As shown in Fig. 12, the cross-section of this 2D 
model is a hexagon with vertices being (5, 0.1), (8, 1.6), (10, 1.8), (12, 1.6), (13.5, 0.6) and 
(15, 0.1). Its density contrast is a polynomial function varying in both horizontal and verti-
cal direction as 

where the units of density are kg/m3 and those of x and z are kilometers. We set the 
observation line on z = 0 and put an observation point every 0.433 km from x = 0 km to 
x = 20 km. To validate the result of present approach, we adopt constant-density method for 
a comparison, in which this model needed to be divided along both x-axis and z-axis. Here, 
we design a grid with a step size of 0.1 km in x-axis and 0.01 km in z-axis to cut apart the 
model into 10,747 polygonal units with constant densities. And then, the gravitational con-
tributions of every unit whose density is replaced by the average of those at vertices and 
center point are calculated according to analytic Eqs. (20a)–(20f) in the paper of Jia and 
Wu (2011). Since these equations unavoidably have singularities at vertices of the model 
Jia and Wu (2011), we make the depth of this model 0.1 km deeper than original, so that 
observation points are not coincide with vertices of units.

In Fig.  13, picture (a) shows the results of gravity vector along the observation line 
obtained by two methods, while picture (b) shows those of gravity gradient tensor. The 
results of two methods are well matched continuously, proving the correctness of present 
approach. In Fig. 14, picture (a) shows RMS error of the result of constant-density method 
compared with present approach versus the number of divided units, where gravity vec-
tor is in black and gravity gradient tensor is in pink, and picture (b) shows the CPU time 

(56)

�(x, z) = − 602.4 − 18.22z + 7.16 z2 + 44.55z3 + 21.25z4 + 0.027 xz + 0.0049xz2

− 0.0091 xz3 −0.06 x2 + 0.11 x2z + 0.097x2z2 + 0.017 x3 − 0.0028 x3z

Fig. 12   A 2D model whose cross-section is a hexagon with vertices being (5, 0.1), (8, 1.6), (10, 1.8), 
(12, 1.6), (13.5, 0.6), (15, 0.1) and the density contrast is a polynomial varies with both x and z shown in 
Eq. (56). The units of density are kg/m3 and those of x and z are kilometers. Besides, the observation points 
are set every 0.433 km from x = 0 km to x = 20 km along z = 0
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consumed by the two methods accordingly. Besides, the absolute values of Uxx and Uzz are 
equal, so does their RMS errors. From picture (a) in Fig. 14, we conclude some facts: first, 
if there is only 1 unit, the RMS errors reach maximum with 3.0232 mgal of Ux, 3.4227 
mgal of Uz, 10.0244 E of Uxz and 9.8536 E of Uxx/Uzz; second, the RMS error is getting 
smaller with the increasing number of divided units, which means the result of constant-
density method is getting closer to that of present approach. However, with the improve-
ment in the accuracy of constant-density method, the efficiency of it is gradually decreas-
ing on the contrast, which can be seen in picture (b) of Fig. 14. Specifically, 2743 units 
are needed to make the RMS error of Ux and Uz below 0.001mgal, while the CPU time 
consumed by constant-density method is almost 1.2 times of that of present approach; and 
7739 units are needed to make the RMS error of Uxz and Uxx/Uzz below 0.001E, while the 
CPU time consumed by constant-density method accordingly is 2.71 times and 1.56 times 
of that of present approach, respectively. With no doubt, present approach is superior in 
accuracy and efficiency.

In order to make further test on the efficiency of present approach, we change the den-
sity contrast function into σ (x, z) = xnzn (n = 0, 1,…,7) and record corresponding CPU time 
consumed by the present approach on the observation line which includes 47 observation 

(a)

(b)

Fig. 13   The anomalies of gravity vector (a) and gravity gradient tensor (b) along observation line due to the 
model shown in Fig. 12, obtained by constant-density method and present approach
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points under different orders of density function. Figure  15 shows the variation of cor-
responding CPU time versus the order n of density function. It can be seen that CPU time 
increases as the order n increases. Besides, Uzz increases sharply while Ux and Uz increas-
ing at the same speed. Taking the model in Fig. 2 into consideration, we also find that the 
efficiency of present approach is also related to the number of vertices of model. In one 
case where the density contrast is �(x, z) =

∑3

i=0
xizi with the same number of observation 

points, the CPU times consumed by the model shown in Fig. 13 on the observation line 
are 3.3156 s of Ux, 3.3267 s of Uz, 4.3707 s of Uxz and 7.7145 s of Uzz, while those of the 
model shown in Fig. 2 are 1.3018 s of Ux, 1.2994 s of Uz, 1.6634 s of Uxz, and 2.7823 s of 
Uzz.

Obviously, when the density contrasts are the same, the fewer the number of vertices of 
the model is, the less the corresponding CPU time is. In summary, the time complexity of 
the present approach is affected by two factors: one is the order of density function, and the 
other is the number of vertices of polygon.

(a)

(b)

Fig. 14   a The RMS error of constant-density method compared with present approach versus the number of 
divided units, for gravity vector (in black) and gravity gradient tensor (in pink) along the observation line 
produced by the model shown in Fig. 12; b The corresponding CPU time consumed by the two methods, 
respectively, versus the number of divided units
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5 � Conclusions

We derive the analytical solutions of gravity vector and gravity gradient tensor at any point 
produced by a 2D body whose cross-section is an arbitrary polygon and the density con-
trast is a 2D arbitrary-order polynomial function varying in horizontal and vertical direc-
tions. The analytical solutions are just related to the coordinates of vertices of the polygon 
and the polynomial density function. When the polygonal model doesn’t contain a side 
parallel to z-axis, the singularity points of gravity vector and gravity gradient tensor only 
exist at vertices of the polygon. While if there is any side parallel to z-axis in the model, 
the singularity points of gravity gradient tensor correspondingly extend to the straight line 
passing through this side. Two methods can be used to remove the singularity in numerical 
calculation: one is to move the computation points away from the singularity points by an 
infinitesimal distance; the other is to exclude an extremely small sphere around the singu-
larity points. Due to limited floating-point precision of computer, our analytical solution 
inevitably has numerical errors. Accordingly, the numerical stability range decreases as the 
order of density contrast function increases. While under a same order, the numerical sta-
bility range of gravity gradient tensor is smaller than that of gravity vector. Even so, all the 
ranges of numerical stability are always sufficient in practical applications. The result of 
model test shows that, within the range of numerical stability, our expressions have higher 
accuracy than the conventional constant-density method of stacking the gravity effects of 
units with uniform densities. On the one hand, when the order of polynomial function is 
high enough, any 2D density distribution can be approximated well. On the other hand, 
when the number of sides of the polygon is large enough, any continuous boundary can 
also be well approximated. As a consequence, the analytical solutions we derived of grav-
ity vector and gravity gradient tensor produced by a polygonal model with arbitrary-order 
polynomial densities provide a very general and accurate solution for the gravity effects of 
2D bodies.

Fig. 15   The corresponding CPU time consumed by present approach on the observation line, for gravity 
vector and gravity gradient tensor produced by a 2D model whose cross-section is shown in Fig. 12 and the 
density contrast is σ (x, z) = xnzn (n = 0, 1,…,7) where the units of density are kg/m3 and those of x and z are 
kilometers. Besides, the observation points are set every 0.433 km from x = 0 km to x = 20 km along z = 0. 
The horizontal axis is the order n of density function
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Appendix

We provide the solutions of some indefinite integrals, which are necessary for the deriva-
tion of the analytic expressions referred to above. In the solutions below, a, b, c, m are con-
stants, x is the integral variable, X = cx2+ bx + a and Q = 4ac − b2.

(57)∫
dx

c2 + x2
=

1

c
tan−1

x

c

(58)∫
dx

X2
=

2cx + b

QX
+

2c

Q ∫
dx

X

(59)∫
x

X2
dx = −

2a + bx

QX
−

b

Q ∫
dx

X

(60)
�

xm

X2
dx =

xm−1

(m − 3)cX
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m − 2

m − 3
⋅

b

c
⋅ �

xm−1

X2
dx −

m − 1

m − 3
⋅

a

c �
xm−2

X2
dx (m ≥ 2)

(61)∫
x3

X2
dx =

1

2c2
ln |x| + a

(
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)
+ bx

(
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)
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−
b
(
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)
2c2Q ∫

dx
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)2 dx =

1

2c3

(
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+ tan−1

x

c

)
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1
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