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Abstract
In the recent decades, passive surface wave methods have gained much attention in the 
near-surface community due to their ability to retrieve low-frequency surface wave infor-
mation. Temporal averaging over a sufficiently long period of time is a crucial step in the 
workflow to fulfill the randomization requirement of the stationary source distribution. 
Because of logistical constraints, passive seismic acquisition in urban areas is mostly lim-
ited to short recording periods. Due to insufficient temporal averaging, contributions from 
non-stationary sources can smear the stacked dispersion measurements, especially for the 
low-frequency band. We formulate a criterion in the tau–p domain for selective stacking 
of dispersion measurements from passive surface waves and apply it to high-frequency 
(> 1 Hz) traffic noise. The criterion is based on the automated detection of input data with a 
high signal-to-noise ratio in a desired velocity range. Modeling tests demonstrate the abil-
ity of the proposed criterion to capture the contributions from the non-stationary sources 
and classify the passive surface wave data. A real-world application shows that the pro-
posed data selection approach improves the dispersion measurements by extending the fre-
quency band below 5 Hz and attenuating the distortion between 6 and 13 Hz. Our results 
indicate that significant improvements can be obtained by considering tau–p-based data 
selection in the workflow of passive surface wave processing and interpretation.
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1 Introduction

Vertical variation of shear (S)-wave velocity structure can be derived by inverting the dis-
persive phase velocity of both Rayleigh and Love waves (Dorman and Ewing 1962) since 
surface wave dispersion is more sensitive to S-wave velocity than P-wave velocity or den-
sity for layered earth models (Xia et al. 1999). For geotechnical applications that require 
small-strain dynamic properties of geomaterials, surface wave methods provide an impor-
tant tool due to their simplicity in the field, non-destructiveness, low cost, and relatively 
high vertical resolution (Xia et al. 2009). Several methods exist for estimating near-surface 
S-wave velocity utilizing the dispersive character of surface waves, and they can be classi-
fied in two groups related to the energy source type: active surface wave methods and pas-
sive surface wave methods.

Active surface wave methods use hammers, weight drops, electromechanical shakers, 
and vibrators as seismic sources. Stokoe and Nazarian (1983) and Nazarian et al. (1983) 
present the SASW method (spectral analysis of surface waves), which analyzes the disper-
sion curve of Rayleigh waves to produce near-surface S-wave velocity profiles. To improve 
inherent difficulties in evaluating and distinguishing signal from noise with only a pair of 
receivers in SASW measurements, the multichannel analysis of surface wave (MASW) 
method, typically using multiple geophones (i.e., 12–24), was developed (Song et al. 1989; 
Miller et al. 1999; Park et al. 1999; Xia et al. 1999). A growing trend in near-surface sur-
vey is toward the application of MASW for spatially 2D S-wave velocity imaging over the 
past two decades (e.g., Xia et al. 2003, 2009; Socco et al. 2010; Mi et al. 2017, 2018).

Passive surface wave methods use ambient seismic energy from natural or anthropogenic 
sources (e.g., earthquakes, ocean–seafloor interaction, traffic noise, industrial activities). The 
main difference from active methods is that the location and origin timing of the sources do 
not need to be known. Compared to the active sources, the passive sources extend the source 
spectrum to lower frequencies which provide the potential for deeper imaging. Aki (1957) 
introduces a passive surface wave method to derive the S-wave velocity structure by the inver-
sion of spatial autocorrelation (SPAC) curves using microtremors which are composed of 
mainly Rayleigh wave energy. Okada (2003) presents an overview of the SPAC method and 
further develops a microtremor array measurement (MAM) in order to improve the flexibility 
of the receiver configuration and explore deeper S-wave velocity structure. Nakamura (1989) 
shows that the site response can be estimated from the horizontal to vertical spectral ratio 
(HVSR) of noise observed at the same site. Louie (2001) proposes the refraction microtremor 
(ReMi) method, in which passive surface waves are recorded using a linear array. The con-
tinuously recorded passive data are transformed to the frequency domain using a tau–p trans-
form. In addition, some dispersion measurement schemes for active surface waves can also 
be applied on passive surface waves, e.g., phase-shift method (Park et al. 2004). The meth-
ods described above directly derive subsurface structure from passive surface waves. Seismic 
interferometry refers to a group of methods where the Green’s function between two receivers 
is estimated from the correlation of their recordings (Lobkis and Weaver 2001; Campillo and 
Paul 2003; Shapiro and Campillo 2004). These methods have been successful in retrieving 
surface waves traveling between receivers based on ambient seismic energy (Sabra et al. 2005; 
Yao et al. 2006; Ma et al. 2008; Picozzi et al. 2009; Nakata et al. 2011; Draganov et al. 2013; 
Behm et al. 2014; Nakata 2016). The surface waves can be extracted using interferometric 
techniques such as cross-correlation (Shapiro and Campillo 2004; Stehly et al. 2006), cross-
coherence (Aki1957; Claerbout 1968; Schuster et al. 2004; Nakata et al. 2011), deconvolution 
(Vasconcelos and Snieder 2008a, b; Snieder et al. 2009), and multi-dimensional deconvolution 
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(Wapenaar et al. 2008, 2011; Van Dalen et al. 2015; Weemstra et al. 2017; Cheng et al. 2017). 
Interferometry techniques can enhance coherent signals from ambient energy and minimize 
incoherent phase-shift during dispersion measurements because cross-correlation does not 
reconstruct for unrelated signals (e.g., O’Connell and Turner 2011; Boschi et al. 2013; Le Feu-
vre et al. 2015). Cheng et al. (2016) proposed a hybrid method, that combines cross-correla-
tion and MASW method, called multichannel analysis of passive surface waves (MAPS).

During the past few decades, considerable progress has been made toward the development 
of surface wave methods utilizing ambient noise, especially traffic noise (e.g., Okada 2003; 
Nakata et al. 2011; Behm and Snieder 2013; Chang et al. 2016). Compared to active surface 
wave methods, passive surface wave methods have the advantages: (1) to explore greater depth 
due to an extending of the source spectrum with lower frequencies; (2) to save costs associ-
ated with active sources in field operations; (3) to monitor the long-term mechanical evolution 
of structures and grounds for civil engineering purposes. These advantages offer significant 
complements to active survey methods. In that context, passive surface wave methods are also 
applied for data acquired with the fiber-optic distributed acoustic sensing (DAS) technique for 
subsurface seismic monitoring (Daley et al. 2013; Dou et al. 2017; Zeng et al. 2017).

Many passive surface wave studies focus on the mathematical motivation, e.g., the feasibil-
ity of retrieving signals from ambient energy, or as it is often referred to, from “noise” (e.g., 
Campillo and Paul 2003; Snieder 2004; Wapenaar and Fokkema 2006; Stehly et  al. 2006; 
Cheng et al. 2018a), and others focus on the application, e.g., the data processing schemes 
(e.g., Park et al. 2004; Bensen et al. 2007; Groos et al. 2012; Fichtner 2014; Behm et al. 2014), 
the comparison with the active surface wave method (e.g., Cheng et al. 2015; Xia et al. 2017), 
and the limitations and recent improvements (e.g., Wapenaar and Ruigrok 2011; Chávez-
García and Kang 2014; Luo et al. 2015, 2016; Cheng et al. 2018b; Zhou et al. 2018). There are 
also several papers that focus on the noise source mechanisms, e.g., the seismic signature of 
noise itself or the passive surface waves (e.g., McNamara and Buland 2004; Groos and Ritter 
2009; Wang et al. 2014).

In the presented study, we propose a new approach to analyze the spatial and temporal 
noise patterns in the tau–p (intercept–slowness) domain. We formulate a criterion to classify 
and select passive surface wave data prior to the dispersion measurement. Two modeling tests 
demonstrate the motivation and workflow of the proposed method. Further insights are gained 
from the application to a traffic noise dataset.

In this paper, we use the term passive surface wave (PSW) for ambient seismic energy (or 
noise) excited by moving road vehicles and railway trains, which are also referred to as micro-
tremors in other papers (e.g., Aki 1957; Okada 2003). We focus on high-frequency (> 1 Hz) 
PSW because they contribute significantly to urban seismic noise in a broad frequency range 
from 1 Hz to more than 45 Hz with maximum amplitudes between 1 and 10 Hz (Groos and 
Ritter 2009). Besides, they can also provide a broad wavelength range from several meters to 
more than several kilometers, which is the highlighted target region for subsurface surveys for 
geotechnical applications.

2  Data selection in Passive Surface Wave Survey

Cheng et  al. (2018b) outline a workflow for the processing of ambient noise data for 
the subsurface shear-wave velocity structure including splitting, whitening, disper-
sion measurement (e.g., roadside passive MASW method in Park et  al. 2004, called 
PMSAW; MAPS method in Cheng et  al. 2016; SPAC method in Cho et  al. 2004 and 



1214 Surveys in Geophysics (2019) 40:1211–1228

1 3

Chávez-García et  al. 2006), stacking (over the frequency–velocity (f–v) domain), and 
inversion (Fig. 1). The stacking process serves as a temporal averaging function. Tem-
poral averaging over a sufficiently long period of time is a crucial step in every workflow 
applied to ambient noise data. It aims at randomization of the noise source distribution 
to fulfill requirements for the stationary phase assumption (Shapiro and Campillo 2004; 
Snieder 2004; Sabra et  al. 2005; Stehly et  al. 2006). It implies splitting a sufficiently 
long period (e.g., months to years) of continuously recorded seismic noise into shorter 
segments (e.g., days or hours, even minutes) and stacking the obtained interferograms 
or dispersion spectra for each segment over the entire record. In practice, the record-
length is always limited to save costs in field work, especially in urban environments. 
The limited record-length makes it challenging to provide an effectively stacked disper-
sion measurement from temporal averaging.

Including contributions from non-stationary sources will degrade the stacked record, 
if those non-stationary sources are not equally distributed in space. Recording over short 
time periods decreases the chance of sampling equally distributed non-stationary ambi-
ent noise sources. Thus, “the more the better” will not hold for the temporal averaging 
in real-world applications of high-frequency passive surface wave surveys. In order to 
avoid non-stationary contributions, it is important to apply data selection (quality con-
trol) before dispersion measurement into the regular workflow of the data processing.

We study the spatial and temporal noise patterns in the tau–p domain, and propose 
a simple, but stable, criterion to classify PSW by calculating the signal-to-noise ratio 
(SNR) of the root-mean-square (RMS) energy of the tau–p domain wavefield, which 
will be demonstrated in the following Sect. 3.

In this study, we use the terms “coherent noise” and “incoherent noise” to demon-
strate the “good” and “bad” contribution of the passive surface waves to dispersion 
measurement, respectively (Cupillard et al. 2011). Directional noise effects or azimuthal 
adjustment would not be involved due to the linear receiver configuration along roads 
or railways (e.g., Park et  al. 2004; Hayashi et  al. 2016; Dou et  al. 2017; Zeng et  al. 
2017). We do not consider the statistical or stochastic properties (e.g., Groos and Ritter 
2009; Nakata and Beroza 2015; Zhong et al. 2015) because the conditions based on the 

Fig. 1  Passive surface wave data processing scheme. Modified from Cheng et al. (2018b)
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statistical rules would not hold under the fact that the length of the time series is limited 
to seconds or hours (Brockwell and Davis 2013).

3  Numerical Modeling

We carry out two simplified roadside modeling tests to investigate the influence of different 
source distributions on dispersion measurements and on the characteristics of PSW in the 
tau–p domain. Considering a laterally homogeneous dissipative medium, we generate the 
passive seismic wavefield by summing of modal components (Aki and Richards 1980). We 
closely follow the noise simulation procedure described in Cheng et al. (2016). The medium 
is a two-layer model (Table 1), whose properties are taken from Le Feuvre et al. (2015) and 
Cheng et al. (2016). Sources are randomly located on the road, such as the dark gray stars 
shown in Fig. 2a. A 15.0 Hz Ricker wavelet is chosen as the source impulse.

Figure 2b displays 5-s-long PSW in the space–time (x–t) domain recorded at 24 vertical-
component receivers. The observed wavefield is mostly made up of Rayleigh waves. Several 
linear arrivals indicate the emergence of Rayleigh waves, e.g., at ~ 2.0 s, while some arrivals 
are interfered by the arrivals coming from the opposite direction, e.g., at ~ 1.7  s. We refer 
to these opposite direction arrivals as the incoherent noise due to their interference with the 
other (desired) arrivals. In well-randomized seismic source fields, these interferences will 
be canceled after sufficient temporal averaging (Snieder 2004; Campillo 2006). In practice, 
however, they will produce two kinds of aliasing during dispersion measurement: One is the 
“crossed” aliasing which has been first presented and addressed using the FK-based method 
in Cheng et al. (2018b); the other is the high-velocity aliasing which will be analyzed in this 
study. When the forward-propagating and back-propagating surface waves are not well sepa-
rated, their waveforms overlap and crosstalk between these arrivals with opposite propagation 
directions will be introduced. In this case, the velocity scanning on the crosstalk will produce 
the high-velocity aliasing during dispersion measurement. It usually happens in the lower-
frequency band, especially below 5 Hz, because longer wavelengths increase the chance for 
crosstalk.

However, the crosstalk is not always directly visible in the x–t domain. In order to reveal the 
temporal distribution and variation of the velocity information, we turn to the tau–p domain. 
We apply a slant-stacking operator (Diebold and Stoffa 1981; McMechan and Yedlin 1981) on 
the PSW wavefield s(x, t) to transform the wavefield from the x–t domain to the tau–p domain:

where p is the slowness and τ is the intercept on the time axis. As for each τ, u(p, τ) will 
reach a maximum if the scanning slowness p is close to the real slowness of PSW. For 
convenience, we convert slowness (p) into velocity (v = 1/p). Crosstalk in the x–t domain 
(the cyan boxes highlighted in Fig. 2b) maps the associated high-velocity aliasing (from 

(1)u(p, �) =

N∑

i=1

s
(
xi, t = � + pxi

)

Table 1  Earth model parameters Layer VS (m/s) VP (m/s) ρ (g/cm3) h (m)

1 220 380 2.0 10
2 440 760 2.0 Infinite
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500 to 800 m/s) in the tau–p domain (the red boxes highlighted in Fig. 2c) at around 1.4 s 
and 3.6 s. The coherent noise at around 2.0 s indicates an expected apparent velocity range 
between 150 and 400 m/s, and this velocity range is considered as the “signal window.” 
Next, we calculate the root-mean-square (RMS) value of the wavefield u(p, τ) along the p 
direction.

Δ(p) reflects the effective wavefield energy for each slowness p, and refer to it as p energy 
curve (the red dashed line in Fig. 2c). The dominant peak of p occurs at the signal window, 
which means the modeled PSW window is dominated by coherent noise. This is consistent 
with the dispersion energy image in Fig. 2d, which is measured using the roadside passive 
MASW method (Park et al. 2004).

In comparison, we add interferences (red stars in Fig. 3a) into the same model with 
some near-field sources around the receivers (Fig. 3a). It is hard to tell any significant 
changes between the wavefield in the x–t (Figs. 2b, 3b), but the wavefield in the tau–p 
domain (Fig.  3c) does present a distinct increase in the high-velocity aliasing, which 
indicates the quality of the modeled PSW decreases with increasing of crosstalk. 
Although the peak of p energy is still located at the signal window (the red dashed 
line in Fig.  3c), the dispersion measurement is less clear compared to that measured 
from the wavefield without near-field sources (Fig.  3d). We introduce the concept of 

(2)Δ(p) =

�∑N

i
u
�
p, �i

�2

N

Fig. 2  a Configuration of sources and receivers. The dark gray stars denote the random source locations; 
the green triangles denote the linear array with a 2-m spatial interval and a 200 Hz sampling rate. The white 
arrows indicate the driving direction. b Observed noise wavefield in the x–t domain. The red box indicates 
the linear Rayleigh waves arrival. Two cyan boxes indicate the crosstalk between arrivals with opposite 
propagation directions. c The measured wavefield in the tau–p domain. The red boxes shows the p energy 
curve, the RMS-value of the wavefield u(p, τ) for each p. d The measured dispersion energy image in the 
f–v domain. The white dashed line indicates the synthetic dispersion curve
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signal-to-noise ratio (SNR) to quantify the quality of PSW by calculating SNR of p 
energy curve, called factor ϕ:

where v1 and v2 are used to define the signal window (the coherent noise with v1 < v < v2).
Figure 4 displays the normalized p energy curves from the first model (red line) and 

from the second model (black line), and the signal window between 150 and 400 m/s (two 
dashed lines). This signal window indicates the most common phase velocity range for 
the near-surface structure in urban areas. In practice, we suggest to draw all the p energy 
curves together to locate the main p energy peak  v0 and define the signal window with 
[v0 − 100, v0 + 100]. Using Eq. 3, we calculate SNR of each p energy curve with ϕ1 = 8.78 

(3)𝜙 =
max

{
Δ(p)|v1<1∕ p<v2

}

rms
{
Δ(p)|1∕p < v1, 1∕p > v2

}

Fig. 3  a Configuration of sources and receivers. b Observed noise wavefield in the x–t domain. c The meas-
ured wavefield in the tau–p domain. d The measured dispersion energy image in the f–v domain

Fig. 4  The normalized p energy 
curves determined from the 
first and the second models. 
Two black vertical dashed lines 
indicate the signal window, 
150–400 m/s, used for the calcu-
lation of factor ϕ 
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and ϕ2 = 1.62, which is also consistent with the corresponding dispersion measurements 
(Figs.  2d, 3d). It shows that we can use a threshold method to select the segments that 
satisfy our expectations on dispersion measurement (e.g., imaging resolution, reliability, 
accuracy). More details about the threshold method for factor ϕ will be described in the 
following section.

4  Application to Field Data

The passive surface wave survey was carried out in the city of Yueyang, China (Fig. 5). 
A linear array with 24 receivers (4.5 Hz vertical component) was deployed along the Bei-
jing–Guangzhou railway (white dot-dashed line in Fig. 5), which is one of the busiest rail-
ways in China for both passenger trains and freight trains. The trace interval was fixed to 
10.0 m, and the sampling interval was 2.0 ms. Thirty-min-long continuous PSW data were 
recorded from local time 12:15–12:45 on May 6, 2016. After this, an active shot was also 
recorded at the center of the same array with a 20 kg rock as shown in the red box in Fig. 5.

We apply the following workflow for automatic data selection of PSW: ① Divide the 
consecutive PSW into a series of 5-s-long noise segments overlapping by 50%; ② calculate 
the factor ϕ for each segment; ③ filter the segments with a threshold method; ④ disperse 
measurements on the selected segments with higher ϕ; ⑤ stack all the selected dispersion 
measurements and pick the final dispersion curve; ⑥ invert for 1D Vs profile; ⑦ construct 
a pseudo-2D Vs map. PMASW method (Park et al. 2004) is implemented for dispersion 
measurement. We use 12-trace-shot bins for dispersion imaging, and roll along the line 
with 1-trace interval.

Data examples from segment 431 (left panel of Fig. 6) and 412 (right panel of Fig. 6) 
illustrate how we calculate the factor ϕ. First, the x–t domain (Fig. 6a1, a2) is transformed 

Fig. 5  An aerial photograph of 
the survey along the Beijing–
Guangzhou Railway, Yueyang, 
China. The white dashed line 
indicates the railway line, and 
the red dashed line indicates the 
survey line
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to the tau–p domain (Fig.  6b1, b2). In the next step, we plot the p energy curves using 
Eq. 2 (Fig. 7). Figure 7a displays the p energy distribution for the whole segments and indi-
cates a main energy peak at v0 = 300 m/s. Thus, we define a signal window, 200–400 m/s, 
as the dashed lines show in Fig. 7a and b. Finally, the factor ϕ is calculated using Eq. 3 
(ϕ412 = 12.74; ϕ431 = 1.30). The measured ϕ-values are also consistent with the measured 
dispersion images (Fig. 6c1, c2). If we do not reject the segment 431, it will deteriorate the 
stacked dispersion measurement by introducing high-velocity aliasing below 5 Hz and by 
distorting the dispersion energy within the medial frequency band (6–13 Hz).

To identify the frequency- and time-dependent behavior of source processes, we 
apply short-time Fourier transform (STFT), with a 5-s time window, on the 30-min 
recording (Fig.  8a). The obtained spectrogram in Fig.  8b reveals a regular pattern of 
higher power spectral density (PSD) while trains passed by and lower PSD during quiet 
time. Traffic-induced seismic energy contributes significantly to the observed PSW in a 
broad frequency range from ~ 2 Hz to more than 50 Hz. The maximum amplitudes occur 
at around 10 Hz and tend to slowly decrease with the increasing frequency. Long lasting 

Fig. 6  Wavefield images in the x–t domain (a, b), the tau–p domain (c, d) and the f–v domain (e, f) for seg-
ments 431 (left panel) and 412 (right panel)
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and very narrow-band signals above 2 Hz, recognized as horizontal lines of increased 
PSD in the spectrograms (e.g., 30.7  Hz, 42.1  Hz), are sinusoidal-type seismic waves 
most likely excited by rotating machinery such as train engines (Kar and Mohanty 2006; 
Groos and Ritter 2009; Nedilko 2016).

Fig. 7  a p energy curves distribution for the whole segments. Two cyan dashed lines define the signal win-
dow where the main energy peak locates at 300 m/s. b The normalized p energy curves determined from 
segments 431 and 412. Two black dashed lines indicate the signal window, 200–400 m/s

Fig. 8  a Observed noise wavefield in the x–t domain with a 30 min duration. b STFT spectrogram of the 
continuous record with a 5-s window. c The curve determined from the continuous record. The red dots 
indicate the “high quality” segments above the threshold 2, while the gray dots indicate the “low quality” 
segments below the threshold. The cyan lines highlight the time windows for further analysis
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We calculate the factor ϕ for each noise segment and select the noise segments with 
high ϕ-values for the further dispersion measurement. Figure 8c displays the measured fac-
tor ϕ for all noise segments along the time direction, which reflects changes in the quality 
of PSW in terms of coherency. In general, the higher factor ϕ indicates the higher quality 
PSW, which would contribute to the dispersion measurement, and vice versa. However, the 
total number of segments is limited due to the limited recording length. In this case, using 
only selected segments for dispersion stacking will decrease with the increasing threshold 
value due to lack of data. Therefore, we need a trade-off solution between the accuracy and 
the stability of dispersion measurement stacking. We set a threshold value ϕ0 = 2.0, from 
which the factor ϕ increases rapidly as indicated by the red dots peak between 1250 and 
1400 s (Fig. 8c). Only segments with higher ϕ-value (red dots in Fig. 8c) are kept for fur-
ther dispersion measurement.

Compared to the raw stacked dispersion image with all of the segments involved 
(Fig. 9a1), the selective stacked result is significantly improved with much clearer and more 
continuous dispersion energy trend (Fig.  9b1). The information retrieved below 5  Hz is 
important for Vs model construction at larger depths. Besides, our approach also improves 
higher mode coherency which will contribute to the stability and accuracy of the subse-
quent inversion process (Xia et al. 2000, 2003; Luo et al. 2007). We also present the active 
surface wave inversion result here. Active data acquisition is challenged by the ever-present 
traffic noise (Fig. 9a2), and the dispersion measurements are affected by a distorted funda-
mental mode and the lack of higher modes (Fig. 9b2). For comparison, Fig. 10a exhibits 
all these picked dispersion curves together, as well as the inverted one. The blue dots indi-
cate the biased dispersion curve from the raw result (Fig. 9a1) with a higher fundamental 
mode below 5 Hz and an abnormal bump around 12 Hz. Compared to the black dots in 

Fig. 9  a1 Dispersion measurement before data selection. b1 Dispersion measurement after data selection. 
a2 Wavefield of the active surface wave in the x–t domain. b2 Dispersion measurement of the active surface 
wave
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the active result, the red dots extend the critical lower-frequency band from 5 to 2 Hz and 
retrieve more realistic higher mode information. Both the fundamental and higher mode 
data from the selected stacked result (the red curves) were used for the final inversion using 
the damped least-squares method and the singular-value decomposition (SVD) technique 
(Xia et al. 1999, 2003). The black line in Fig. 10b shows the final inverted 1D Vs model 
when the RMS error reaches the error tolerance (10 m/s) after three iterations. The cyan 
line indicates the initial Vs model created by the algorithm presented in Xia et al. (1999).

Figure 11 maps the final pseudo-2D Vs section under the survey line. Although the reso-
lution of the Vs section is slightly low, a flat bedrock interface is delineated with confidence 
at 65 m deep (the dashed line) and low velocity zones (LVZs) are outlined with the contour 
line for Vs = 400 m/s. These LVZs were supposed to be the indicator of the permeable frac-
tures (e.g., Saito et al. 2004), and these sites need to be monitored considering the long-
term safety of the railway transportation system. The overburden is mainly made of clays, 
but the south side is more loose and wet and used for planting vegetables, and the north 
side is more solid and dry as shown in the photographs at the bottom of Fig. 11. These soil 
conditions are consistent with the inverted pseudo-2D Vs model.

5  Discussion

The proposed tau–p-based method aims to establish a classification and selection criterion 
for PSW. Data segments with minimum influence from non-stationary sources distribution 
are identified and used for further dispersion measurement. This is a general data selection 
processor that is also applicable to other surface wave methods such as ReMi (Louie 2001), 
SPAC (Chávez-García et al. 2006) or hybrid methods based on interferometry technique 
like MAPS (Cheng et al. 2016; Pang et al. 2019). In order to apply the proposed method on 
interferometry methods like MAPS, data selection should be performed after cross-corre-
lation because cross-correlation could contribute to the retrieval of coherent surface waves, 
and it would avoid the potential waste of the limited data.

Figure  8 presents a different data segment of train-induced seismic noise. We 
recorded the timeline for four slow-speed (80–120 km/h) trains that passed by at around 

ba

Fig. 10  a The dispersion curves picked from the dispersion images in Fig. 9. The blue dots denote the dis-
persion measurement before data selection. The red dots denote the result after data selection. The gray 
dots denote the result of active surface wave. The green crosses denote the forward dispersion curves from 
the last iteration of the inversion. b The inverted 1D Vs models from the picked dispersion curves after data 
selection (the red curves in a). The cyan dashed line indicates the initial Vs model, the gray dashed lines 
indicate the inverted Vs model for each iteration, and the black solid line indicates the final Vs model
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t1 = 20 s, t2 = 820 s, t3 = 1040 s, t4 = 1780 s, respectively (Fig. 12), to connect the seis-
mic signature with the associated train event. We did not have time to take photographs 
for the China Railways High-speed (CRH) trains whose design speed is about 380 km/h, 
but our sensors did capture their footprints, e.g., at around 640 s and 1290 s (Fig. 8a).

It takes about 10 s for passenger train A, as well as passenger train B and C, to pass 
through the line from the end side, but about 15  s for the freight train (Fig.  8a). The 
freight train moves slower than passenger trains. Two parallel events are detected on the 
time window from 820 to 860 s (Fig. 8a) with different loads on the wagons (highlighted 
by the yellow box in Fig. 12). The first half of the wagons were loaded with heavy stone 
for construction usage, while the last half of wagons were loaded with light oil.

In order to further understand the seismic signature of moving trains, three time win-
dows with different train events (indicated by the cyan dashed line in Fig. 8c) are pre-
sented in Fig. 13. Considering only 50-s time window for trains arriving and departing, 
we get an M-shaped change for the � − t curves (Fig.  13). Table  2 presents the time 
windows for the M-shaped change for the � − t curves of four trains. We suppose this 
phenomenon is caused by the transfer of energy between ballistic waves and coda waves 
as the distance changes. In the far distance, the recorded wavefields are mostly weak 
coda waves. In the intermediate distance, the energy of the coda waves increases with 
the trains arriving or departing. In the short distance, there is a transfer of energy from 
coda waves to ballistic waves as the distance decreases. It is a common practice in seis-
mology to use the seismic coda of earthquakes for coda wave imaging (Aki 1969; Aki 
and Chouet 1975; Campillo and Paul 2003; Snieder 2004, 2006; Paul et  al. 2005). In 

Fig. 11  The final pseudo-2D Vs section. The dash line is inferred as surface of the bedrock. The solid lines 
indicate the potential “dangerous” areas, the low velocity zone (LVZ). The bottom panel displays the real-
site pictures for reference at the south end, the middle, the north end, respectively
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seismology, the scattered waves of the coda are usually considered as random, as well as 
seismic noise. The time window between which two face-to-face trains get close to each 
other shows a V-shaped change in factor ϕ (e.g., 860–960 s), because the left-going and 
right-going waves are out of phase with each other and the coupled PSW will undergo 
destructive interference. 

Fig. 12  Timeline for four trains that passed through our survey line at t1 = 20  s, t2 = 820  s, t3 = 1040  s, 
t4 = 1780 s, respectively. The yellow boxes show the mixed wagon train, with the first half loading heavy 
stone and the last half loading light oil. We did not capture the CRH trains’ photograph due to their high 
speed

a b c

Fig. 13  The zoomed in view of the highlighted windows in Fig. 8c

Table 2  Time windows for each 
process change in ϕ in Fig. 8

ϕ change Train A (s) Freight train (s) Train B (s) CRH (s)

↑ 0–16 800–810 1020–1035 1265–1280
↓ 16–20 810–820 1035–1040 1280–1300
↑ 20–40 820–840 1040–1045 1300–1315
↓ 40–45 840–850 1045–1060 1315–1330
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6  Conclusions

We established a simple, but stable, criterion in the tau–p domain to select data segments 
with minimum contribution from non-stationary sources. Modeling tests and real-world 
application show that the proposed data selection technique in the tau–p domain performs 
well in improving the dispersion measurement of the passive surface waves. The real-world 
application also indicates that the � − t curve, a by-product of the data selection, provides 
a novel view to understand and track the time-variant processes for seismic signatures of 
traffic noise.

In particular, the approach improves the dispersion measurements for datasets of lim-
ited recording length. This provides a possibility for very short (tens of seconds to several 
minutes) passive surface wave surveys, which will significantly reduce costs in field work.
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