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Abstract
Forests provide important ecosystem services such as carbon sequestration. Forest land-
scapes are intrinsically heterogeneous—a problem for biomass and productivity assess-
ment using remote sensing. Forest structure constitutes valuable additional information for 
the improved estimation of these variables. However, survey of forest structure by remote 
sensing remains a challenge which results mainly from the differences in forest structure 
metrics derived by using remote sensing compared to classical structural metrics from field 
data. To understand these differences, remote sensing measurements were linked with an 
individual-based forest model. Forest structure was analyzed by lidar remote sensing using 
metrics for the horizontal and vertical structures. To investigate the role of forest structure 
for biomass and productivity estimations in temperate forests, 25 lidar metrics of 375,000 
simulated forest stands were analyzed. For the lidar-based metrics, top-of-canopy height 
arose as the best predictor for describing horizontal forest structure. The standard devia-
tion of the vertical foliage profile was the best predictor for the vertical heterogeneity of 
a forest. Forest structure was also an important factor for the determination of forest bio-
mass and aboveground wood productivity. In particular, horizontal structure was essential 
for forest biomass estimation. Predicting aboveground wood productivity must take into 
account both horizontal and vertical structures. In a case study based on these findings, 
forest structure, biomass and aboveground wood productivity are mapped for whole of 
Germany. The dominant type of forest in Germany is dense but less vertically structured 
forest stands. The total biomass of all German forests is 2.3 Gt, and the total aboveground 
woody productivity is 43 Mt/year. Future remote sensing missions will have the capability 
to provide information on forest structure (e.g., from lidar or radar). This will lead to more 
accurate assessments of forest biomass and productivity. These estimations can be used to 
evaluate forest ecosystems related to climate regulation and biodiversity protection.
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1 Introduction

Forests are crucial components of the Earth system. They represent an important pool in 
the global carbon cycle as they bind huge amounts of atmospheric carbon (Bonan 2008; 
Grace et al. 2014; Pan et al. 2011). Quantifying forest carbon stocks (e.g., forest biomass) 
and forest carbon fluxes (e.g., forest productivity) is important for understanding the effects 
of land use and climate change (Foley et al. 2005). However, forests can be heterogene-
ously structured which lead to variable biomass stocks and carbon fluxes (Rödig et  al. 
2018; Saatchi et al. 2011). The structural heterogeneity makes it difficult to reliably esti-
mate forest biomass or forest productivity for larger regions. For example, biomass estima-
tions for the Amazon rainforest—the largest intact tropical forest on Earth—range from 39 
to 93 GtC (Houghton et al. 2001; Malhi et al. 2006; Saatchi et al. 2007, 2011). The range 
of estimates arises from different methodological approaches which take into account the 
landscape heterogeneity in different ways.

Remote sensing is a promising technique that can be used to capture the state of forests 
with high spatial resolution (e.g., Exbrayat et al. 2019). However, remote sensing cannot 
measure directly forest biomass and productivity, but it can partly detect the structure of 
forests. In general, forest structure is related to the spatial distribution of trees and their 
variability in size (Schall et al. 2018b). Most of current estimates of forest biomass from 
remote sensing are based on relationships between forest structure and biomass. For-
est height characterizes one aspect of forest structure. For example, forest canopy height, 
derived from lidar remote sensing, is often used for forest biomass estimations (Asner and 
Mascaro 2014; Dubayah et al. 2010; Lefsky et al. 1999). However, more complex struc-
tural characteristics of forests are often ignored, and considerable uncertainties remain.

Forest structure, however, is an important element in forest ecology as it is linked to 
many ecological processes (Pretzsch 2009; Shugart et  al. 2010; Snyder 2010). It is also 
used as indicator for biodiversity, as vertically structured forests foster the biodiversity of 
some taxa (Boncina 2000; Ishii et al. 2004; Schall et al. 2018a). Further, horizontal and 
vertical structural heterogeneities enhance resistance of forest ecosystems against distur-
bances (Dobbertin 2002; Pretzsch et al. 2016). Some studies also explored the effects of 
forest structure on forest productivity (Bohn and Huth 2017; Dănescu et al. 2016; Hardi-
man et al. 2011; Liang et al. 2016; Schall et al. 2018b) and found that variables charac-
terizing forest structure are the main drivers of forest productivity instead of biodiversity 
variables.

Although forest structure plays an important role in understanding forest dynamics, 
there are no global forest structure maps available. There are few coarse-resolution maps, 
but these only show components of forest structure (e.g., forest height from MODIS and 
ICESat, resolution 1 km; Lefsky 2010; Simard et al. 2011). Clearly, an efficient analysis 
of the multilayered forest structure for larger regions is required. New satellite missions 
are being launched (e.g., GEDI, BIOMASS and Tandem-L) which will use novel tech-
nologies to measure forest structure on a global scale including forest height and vertical 
heterogeneity.

A systematic framework for ecologically meaningful structural classes has been recently 
proposed, which suggests two main elements: the horizontal and the vertical forest struc-
tures (Bohn and Huth 2017; Cazcarra-Bes et al. 2017; Fischer et al. 2019; Tello et al. 2014, 
2018). However, there are several ways to describe horizontal and vertical forest structures 
from field data (del Río et  al. 2016; Pommerening 2002; Reineke 1933; Shugart 2003; 
Zenner and Hibbs 2000). It will be difficult to find a suitable definition of forest structure 
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for a wide range of applications, spatial scales and forest types. Moreover, forest struc-
ture metrics are different depending on whether they are based on field or remote sensing 
data. Field-based descriptors for forest structure are derived from individual tree size meas-
urements, while remote sensing descriptors are often based on the heterogeneous canopy 
structure for a given area (Cazcarra-Bes et al. 2017). A hybrid approach for forest structure 
measured by field data and by remote sensing is the terrestrial laser scanning, which allows 
very detailed measurements of single trees and forest canopy structure (Disney 2018). 
However, this technique is limited to forest with a limited extent due to its high degree of 
detail. Airborne or satellite-based remote sensing data are therefore a suitable choice for 
capturing forest structure on a larger scale.

In this study, we combined forest inventory data, forest modeling and airborne lidar 
remote sensing to answer the question, “How can we estimate forest structure from remote 
sensing, and what is the role of forest structure for forest biomass and aboveground wood 
productivity estimations?” The aim is to classify forests into structural categories, using 
horizontal and vertical structural descriptors that can be measured by remote sensing 
(Fig.  1). Based on this structural classification, we explore whether forest biomass and 
aboveground wood productivity can be estimated more accurately if structural information 
is included. We are using an individual-based model to generate hypotheses on the rela-
tions among structural variables and ecosystem variables (aboveground wood productivity 
and biomass). Since the output from individual-based forest models (a tabulation of each 
tree, its species and its size) resembles standard forest inventories from field data, obtained 
results can be directly applied to forest inventories.

We used the forest model FORMIND (Bohn and Huth 2017; Fischer et  al. 2016) to 
generate thousands of forest stands. With this large set of data, we examined in detail the 
role of forest structure for biomass and aboveground wood productivity estimations. Fur-
thermore, in a case study for Germany we will explore how well forest biomass and above-
ground wood productivity can be derived from remote sensing data including information 

Fig. 1  Biomass and aboveground 
wood productivity estimations 
are related to forest structure. 
In this study, we distinguish 
between horizontal forest 
structure, which represents the 
density of trees in a forest stand, 
and the vertical forest structure, 
which quantifies the vertical 
heterogeneity of tree heights. 
Forest structure can be estimated 
by measurements from field data 
and from remote sensing
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on forest structure (Fig. 2). This presents a conceptual approach that can be applied across 
large areas where lidar data are available.

2  Methods

2.1  Simulating Temperate Forest Stands with a Forest Model

We applied the individual- and process-based forest gap model FORMIND (Fischer et al. 
2016) in the “forest factory mode.” In contrast to classical long-term simulations, this 
mode allows the creation of thousands of forest stands based on different stem size distri-
butions and species mixtures. For each forest stand, competitions for light, space and water 
were calculated depending on the spatial arrangement and the size of the trees (by applying 
established processes from the FORMIND model). A full forest inventory is then available 
for each stand, which can include different arrangements of trees leading to different hori-
zontal and vertical structures.

In order to generate such forest stands, trees were randomly selected from the stem size 
distribution, were given a species identity and were then planted within a stand. Fifteen 
stem size distributions were applied, which cover a gradient from young to old and dis-
turbed to undisturbed forests (tree height differ between 5 m and 40 m). Species mixtures 

Fig. 2  Concept of this study. (1) Applying the forest model FORMIND, a large data set of virtual forest 
stands was generated (“forest factory data set”). For each forest stand of this data set, a virtual lidar cam-
paign was simulated. These lidar data were used to estimate forest structure from remote sensing data. 
Then, relationships were explored to determine aboveground biomass and aboveground woody productivity 
(AWP) using remote sensing-based forest structure metrics. (2) In a case study for Germany, a lidar cam-
paign was simulated for each forest stand from the national forest inventory data set of Germany (BWI). 
Forest structure for each stand was estimated from this lidar data. Based on the estimated forest structure 
and the relationships found in the first part of this study, Germany-wide maps of biomass and AWP were 
produced
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included all combinations of eight common temperate species using the species-specific 
allometries and model algorithms of the FORMIND model version for temperate forests 
(Bohn et al. 2014). For each combination of age and species, we assembled 100 simulated 
forest stands, each stand with a size of 20  m × 20  m. This is done under the conditions 
that: (1) there is enough space available for the crowns of every tree and (2) every tree in 
the simulated forest has positive net primary productivity under environmental conditions 
of the temperate zone (light, temperature, water). The net primary productivity of each 
forest in this study is calculated using climate date of a site in Germany (climate station 
of the Hainich, Germany). In total, five different climates over time were applied (years 
2000–2004). For more details regarding the forest factory mode of the FORMIND model, 
see Bohn and Huth (2017).

In this “forest factory mode,” we have created a total of 375,000 different virtual forest 
stands, each characterized by an inventory of all trees. We refer always to this data set if 
the term “field data” is used within this study. For each stand, the simulated forest structure 
was described by horizontal and vertical structural characteristics (e.g., basal area, maxi-
mal tree height). In addition, aboveground biomass (AGB) and aboveground woody pro-
ductivity (AWP) of each forest stand were calculated using the FORMIND model. The full 
data set is available in Electronic supplementary material.

2.2  Remote Sensing Data

For each forest stand, a lidar point cloud was simulated following the approach described 
by Knapp et al. (2018a). This lidar model uses the positions, heights, crown diameters and 
crown lengths of all trees to generate a 3D voxel representation of a stand and to simulate 
lidar measurements. The point clouds obtained for all stands were rasterized to 1 m reso-
lution canopy height models (CHM) by taking the height values of the highest returns in 
each 1 m pixel, respectively, and setting empty pixels to ground height 0. Data were further 
aggregated to vertical CHM profiles of 1-m height bins which served as inputs to calculate 
vertical foliage profiles (VFP, see section “Describing forest structure from field data” of 
Appendix 1).

2.3  Describing Forest Structure with Field Data and Lidar Remote Sensing

Several structural indices were used to characterize the forest structure. For each 
20 m × 20 m forest stand from the forest factory data set, we calculated horizontal and ver-
tical descriptors of the structure from field data and from remote sensing data. Here, we 
present the most important metrics used in this study. However, other metrics are also pos-
sible. In total, 13 metrics were examined to describe forest structure from field data and 25 
metrics which estimate forest structure from lidar remote sensing. A full list of all these 
indices can be found in sections “Describing forest structure from field data” and “Describ-
ing forest structure from remote sensing data” of Appendix 1.

2.3.1  Forest Structure Estimation from Field Data

Forest structure can be described by metrics derived from tree-level inventory data—
from either real forest inventories or simulated stands. Here, these descriptors of forest 
structure were inspired by previous studies (Bohn and Huth 2017; Cazcarra-Bes et al. 
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2017; Fischer et  al. 2019). Horizontal structure is described by stand basal area BA 
 (m2), which is the sum of all tree basal area values of one forest stand:

where d (m) is the stem diameter of a tree. Vertical structure is quantified by the standard 
deviation of tree heights  SDth (m):

where h (m) is the height of a tree and h̄ (m) the mean tree height of a stand.

2.3.2  Forest Structure Estimation from Remote Sensing

Horizontal structure for each forest stand from the lidar data set is described by the 
mean top-of-canopy height (m), which is the mean of the canopy height model (CHM) 
with 1 m resolution:

where PCHM,i is the height of the CHM in pixel i and imax is the total number of pixels. Ver-
tical structure is quantified by the standard deviation of the vertical foliage profile  (SDVFP 
(m)):

where pi is the foliage profile value (leaf area per  m2) in height bin hi, imax is the number 
of height bins and N is the count of all pi that are not zero. The process of creating the 
required vertical foliage profile (VFP) from a discrete lidar point cloud is described in sec-
tion “Calculating the vertical foliage profile from a CHM” of Appendix 1.

2.4  Estimating Forest Biomass and Productivity from Forest Structure

For estimating forest biomass and aboveground wood productivity, we follow a two-step 
approach. First, horizontal (i.e., TCH) and vertical (i.e.,  SDVFP) forest structure was esti-
mated based on remote sensing measurements. Second, the derived information on for-
est structure was used to estimate forest biomass and aboveground wood productivity. 
We compare three different approaches which differ in the degree of complexity:
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(a) Hstruct: We estimate the aboveground biomass (AGB) and aboveground woody pro-
ductivity (AWP) only with the information from the horizontal forest structure (here 
TCH). For this, we used the following power-law approach:

(b) Vstruct: We estimate the biomass and productivity only from the vertical forest structure 
(here  SDVFP).

(c) Hstruct + Vstruct: We estimate the biomass and productivity from the horizontal and verti-
cal forest structures.

For all three variants, we applied the artificial forest stand data set described in Sect. 2.1. 
For each simulated forest stand, a virtual 3D airborne lidar scan was available (Sect. 2.2). 
Using these lidar data, for each stand all structural metrics (e.g., TCH,  SDVFP) were calcu-
lated (Sect. 2.3). Beside these metrics, also AGB and AWP are known for all stands. With 
this information, we fitted the unknown parameters of equations (a)–(c) by linear model fit 
using the double logarithmic transformation.

2.5  Preparation of Nationwide Biomass and Productivity Maps with the German 
National Forest Inventory Data Set

The German national forest inventory data (BWI) record forest stands on a sample basis 
according to a standardized procedure throughout Germany (Thuenen-Institut 2015). It 
consists of more than 45,000 field plots and is repeated every 10 years. The field plot var-
ies in size (circa 20 m × 20 m) due to the angle count sampling method. For every plot of 
the BWI data set, the stem diameter (DBH) and species identification of all trees meas-
ured were available. Tree height and aboveground biomass were calculated using the same 
species-specific allometries as applied to the forest factory data set (Sect. 2.1). The BWI 
plots are distributed on a regular grid across Germany. Plot density varies between regions 
but there is at least one plot located within each 4 km × 4 km grid cell. For each forest stand 
of the BWI, all structural and stand features were determined as described above (cf. sec-
tion “Describing forest structure from field data” of Appendix 1), a virtual lidar campaign 
was carried out and the remote sensing-based metrics were then calculated (cf. section 
“Describing forest structure from remote sensing data” of Appendix 1).

Using the information on forest structure from simulated lidar remote sensing for each 
BWI plot and the equations from Sect. 2.4 (parameters are derived from the forest factory 
data set), we derived forest biomass and aboveground wood productivity maps for Ger-
many. As the exact positions of the BWI plots are unknown, we used their approximate 
positions (on the regular grid, i.e., with a precision of at least 4 km) to geolocate the esti-
mated forest attributes for each plot. We used Voronoi tessellation to interpolate between 
BWI plots. In this procedure, each forested point in Germany got assigned to the closest 
BWI plot nearby. Gridded maps of the different forest attributes were produced by raster-
izing the tessels with 250 m pixel resolution. The rasters were masked with a forest cover 
mask based on a forest cover map from Hansen et  al. (2013; 50% minimum tree cover, 
resampled to 250 m resolution).

AGBH = a ⋅ TCHb, AWPH = m ⋅ TCHn.

AGBV = a ⋅ SDb
VFP

, AWPH = m ⋅ SD
p

VFP
.

AGBH+V = a ⋅ TCHb
⋅ SD

p

VFP
, AWPH+V = m ⋅ TCHn

⋅ SD
p

VFP
.
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3  Results

3.1  Estimating Forest Structure from Lidar Remote Sensing

Analyzing 375,000 forest stands from the forest factory data set, we investigated 
whether forest structure can be determined using lidar remote sensing. For this pur-
pose, two field-based metrics were analyzed—basal area (BA) as proxy for the horizon-
tal forest structure (i.e., the density of the forest) and tree height heterogeneity  (SDth) as 
proxy for the vertical heterogeneity of a forest stand. In total, we tested 325 correlations 
between structural descriptors estimated from field data and remote sensing data. Top-
of-canopy height (TCH) as a horizontal descriptor estimated from remote sensing has 
the highest correlation with the horizontal metric basal area estimated from field data 
(r2 = 0.86, see Fig. 3a). The quadratic top-of-canopy height (r2 = 0.76, see Fig. 4) and 
the fractional canopy cover with a threshold of 10 m (r2 = 0.81) show similar results and 
are also suitable to estimate the horizontal structure.

For the vertical forest structure, the standard deviation of the vertical foliage profile 
 (SDVFP) shows the strongest correlation with the field-based metric  SDth (r2 = 0.75, see 
Fig. 3b). The Shannon index of the vertical foliage profile also reveals a relevant corre-
lation (r2 = 0.53, see Fig. 4), but the analysis did not identify any further remote sensing 
metric that could be used to describe the vertical structure. A full list of all analyzed 
correlations between field-based structural metrics and remote sensing-based metrics is 
shown in Fig. 4. For the analyses that follow, the remote sensing-based metrics with the 
highest correlation were used, i.e., TCH as proxy for the horizontal structure and  SDVFP 
as proxy for the vertical structure.

Fig. 3  Remote sensing-based estimation of the forest structure based on the analysis of the forest factory 
data set. The figure shows the estimate of a the horizontal forest structure (basal area) using top-of-canopy 
height (TCH) derived from lidar and b the estimate of the vertical forest structure (tree height heterogene-
ity) using the standard deviation of the vertical foliage profile  (SDVFP) derived also from lidar. For this 
study, all forest inventories from the forest factory data set (in total 375,000 temperate forest stands with a 
size of 20 m × 20 m) were analyzed
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3.2  Analyzing the Role of Remote Sensing‑Based Forest Structure for Biomass 
and Productivity Estimations

All 375,000 temperate forest stands from the forest factory data set were analyzed to inves-
tigate the role of forest structure for the determination of forest biomass and aboveground 
wood productivity. For this purpose, the forest stands were grouped into sixteen forest 
structure classes with equal spacing, consisting of four horizontal (TCH 0–6  m, 6–12, 
12–18, > 18) and four vertical  (SDVFP 0–2 m, 2–4, 4–6, > 6) structure classes. It turns out 
that forest structure is a key factor in estimating forest biomass and aboveground wood 
productivity. There is an increase in forest biomass with increasing TCH—which is a proxy 
for the horizontal structure (Fig. 5a). However, biomass in forests with an open horizontal 
structure (TCH < 12 m) is much more influenced by vertical structure than in closed forests 
(TCH > 12 m).

The relation between aboveground wood productivity and forest structure is more com-
plex. For stands with a homogeneous vertical structure  (SDVFP between 0 and 2  m), the 
productivity increases with the density of the forest (high horizontal structure; Fig.  5b). 
The highest productivity is achieved for these single-layer forest stands  (SDVFP < 2 m) and 
a medium dense horizontal structure (TCH around 15  m). However, as the vertical struc-
ture increases to more heterogeneous stands  (SDVFP > 2 m), the positive effect of the hori-
zontal forest structure on productivity is reduced. For forest stands with heterogeneous ver-
tical structure  (SDVFP > 4  m), productivity increases only slightly with increasing density 

Fig. 4  Correlations (coefficient of determination r2) between field-based structural metrics and remote sens-
ing-based metrics. Numbers and gray scale indicate the coefficient of determination. For each of the 375 
correlations, in total 375,000 forest stands from the forest factory data set (Sect. 2.1) were analyzed. For 
every virtual forest stand, a forest inventory was available allowing the calculation of the aboveground bio-
mass (AGB) and several structural indices (e.g., maximum tree height, standard deviation of tree height). 
The productivity AWP for each stand was determined by applying the FORMIND model. All structural 
indices from remote sensing are derived from the virtual lidar campaign for each forest stand in the forest 
factory data set. Highlighted are the two correlations from Fig. 3 for the horizontal structure (blue) and ver-
tical structure (green). All structural metrics are explained in section “Describing forest structure from field 
data” of Appendix 1 (field-based) and “Describing forest structure from remote sensing data” of Appendix 
1 (remote sensing-based)
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of the horizontal structure and can even decline for forests with dense horizontal structure 
(TCH > 18 m). Forests with a heterogeneous vertical structure represent multilayered forests 
where large trees shade smaller trees, which then reduce the aboveground wood productiv-
ity of smaller trees. To summarize, following the analysis of 375,000 forest stands from the 
forest factory data set TCH (as a proxy for the horizontal forest structure) plays an important 
role in forest state monitoring (like forest biomass). However, both horizontal and vertical 
forest structures are relevant for aboveground wood productivity estimates (Fig. 5b; Table 1).

To quantify the relation between forest structure and biomass/productivity, three statisti-
cal approaches between these variables were investigated (cf., methods 2.4). On the one 
hand, these approaches were created with only one information about forest structure and 
on the other hand with information on horizontal and vertical forest structures (Table 1). 

Fig. 5  Role of forest structure for biomass and aboveground wood productivity (AWP) estimations. For all 
375,000 forest stands, forest structure was estimated from remote sensing. As horizontal forest structure 
descriptor, the top-of-canopy height (TCH) was used, and as vertical structure descriptor, the standard devi-
ation of the vertical foliage profile  (SDVFP) was used. All forest stands were grouped in 16 structure classes 
(four horizontal classes and four vertical classes). Shown are a the observed mean aboveground biomass 
and b the observed mean aboveground wood productivity (AWP) in relation to the forest structure classes. 
Biomass and AWP values are taken directly from the forest factory data set. Error bars indicate the standard 
deviation

Table 1  Aboveground biomass (AGB) and aboveground wood productivity (AWP) determined using struc-
tural metrics from 3D remote sensing (TCH as horizontal descriptor,  SDVFP as vertical descriptor)

For the calibration of the approaches, all forest stands (20 m × 20 m) from the forest factory data set were 
used. R-squared values indicate the correlation between observed value from the forest factory data set and 
the estimated value using the corresponding approach. For all approaches we got a p value ≤ 0.01. Given are 
the root-mean-square error (RMSE) and the normalized RMSE (nRMSE; normalized by the mean value of 
the observation). The detailed scatterplots can be found in Appendix 1 (Figs. 9 and 10)

Approach Forest biomass AGB (t/ha) Forest productivity AWP [t/(ha year)]

Hstruct AGB
H
= 9.49 ⋅ TCH

1.22

r
2 = 0.90, rmse = 28 (30%)

AWP
H
= 1.68 ⋅ TCH

0.31

r
2 = 0.14, rmse = 2.1 (75%)

Vstruct AGB
V
= 34.77 ⋅ SD

0.48

VFP

r
2 = 0.01, rmse = 98 (158%)

AWP
V
= 4.03 ⋅ SD

−0.34

VFP

r
2 = 0.09, rmse = 2.1 (75%)

Hstruct + Vstruct AGB
H+V = 7.55 ⋅ TCH

1.20
⋅ SD

0.23

VFP

r
2 = 0.90, rmse = 29 (31%)

AWP
H+V = 2.55 ⋅ TCH

0.34
⋅ SD

−0.39

VFP

r
2 = 0.31, rmse = 1.8 (64%)
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The best results for biomass estimation are obtained with the  Hstruct and Hstruct + Vstruct 
approach (r2 = 0.90, nRMSE = 30%; Table  1 and Fig.  9), while only the Hstruct + Vstruct 
approach is somehow suitable for aboveground wood productivity estimation (r2 = 0.31, 
nRMSE = 64%; Table  1 and Fig.  10). The error for the productivity estimate for forest 
stands with a size of 20 m × 20 m can be improved from 75 to 64% by taking both struc-
tural dimensions into account (Fig. 6; Table 1).

3.3  Case Study: Estimating Forest Biomass and Productivity at Country Level

We estimate forest structure for whole of Germany based on 45,000 plots from the Ger-
man national forest inventory data (BWI data set) and relate this information to forest bio-
mass and aboveground wood productivity. For this country-wide analysis, we used lidar 
data derived from a virtual lidar campaign over all BWI forest stands (for more details see 
methods 2.5). With this lidar data set, we created two maps for estimated horizontal and 
vertical structures of forests in Germany (Fig. 7). According to this analysis, 19% of all 
forest stands in Germany have a dense structure (horizontal structure with TCH > 18 m), 
which corresponds to high and closed forests. Only 10% of all forests have an open struc-
ture (horizontal structure with TCH < 6 m), which means that these stands are either low in 
height or have a low tree density. The mean value of TCH—the proxy for horizontal struc-
ture—for Germany is 12.4 m. The amount of forest area with heterogeneous vertical struc-
ture  (SDVFP > 6 m) is with 6% low compared to the amount of forest areas with simple ver-
tical structure (20%,  SDVFP < 2 m). Most stands in Germany represent a medium value of 
heterogeneity in vertical structure (60%,  SDVFP between 2 m and 4 m) which corresponds 
to forests with a low number of layers. For whole Germany, the mean value of  SDVFP—the 
proxy for the vertical forest structure—is 3.1 m. Overall, according to this study, we have 
large areas with dense forests in Germany, but these forests are often less vertically struc-
tured with only one to two layers.

The densest forests can be found in the northern part and in the southern part of Ger-
many. Within Germany, there is a trend for the horizontal structure to become increas-
ingly dense from north to south (Fig.  16a). Looking at the east–west gradient of the 

Fig. 6  Histogram for estimated forest biomass (a) and aboveground woody productivity (AWP, b) for all 
forest stands from the forest factory data set. Each of this forest attributes was estimated with the three 
approaches: Hstruc—horizontal structure, Vstruc—vertical structure and Hstruc + Vstruc—horizontal and vertical 
structures. The histograms of the estimated values were compared with the observed values from all for-
est stands (black line). The detailed relationships between estimated and observed biomass/productivity are 
presented in Figs. 9 and 10
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horizontal structure, however, one finds the densest stands in the middle region; at the 
outer edges, the horizontal structure is rather open (Fig. 16c). A similar pattern emerges 
for the vertical structural index with the most heterogeneous stands in the southern part 
of Germany (Fig.  16b). Regarding the relationship between horizontal forest struc-
ture and topographic gradients, no clear trend was observable (Fig. 16e). What can be 
detected, however, is that the variability of open and dense forests stands increases sig-
nificantly for altitudes higher than 1000 m (Fig. 16e). The same applies to the vertical 
structure (Fig. 16f). In addition, a clear trend can be identified with vertically homoge-
neous stands at lower altitudes and vertically heterogeneous stands at higher altitudes 
(Fig. 16f).

Three regions in Germany show a high structural heterogeneity: the Black Forest, 
the Bavarian Forest and the mid-Alpine foothills. Looking at the described structural 
characteristics especially for forest areas in national parks and for forest areas outside 
national parks, there are only minor differences (Fig.  17). The horizontal structure of 
these forest stands is similar (TCH national park: 11.7 m vs. TCH non-national park: 
12.4 m) and the vertical structure as well  (SDVFP national park: 3.3 m vs.  SDVFP non-
national park: 3.1 m).

Using the estimated horizontal and vertical forest structures of each stand in Ger-
many (cf., Fig. 7), it is possible now to estimate forest biomass and aboveground wood 
productivity. Applying the best approach Hstruct + Vstruct (as shown in Table 1), we pro-
duced a forest biomass and aboveground wood productivity map for Germany (Fig. 8). 
In southern Germany we found higher biomass values compared to the north. The total 

Fig. 7  Horizontal and vertical forest structures for Germany estimated from 3D remote sensing. As hori-
zontal index for forest structure, we used top-of-canopy height (as proxy for the density of a forest stand), 
and as index for the vertical heterogeneity, the standard deviation of the vertical foliage profile was used. 
Low values of vertical structure stand for a homogenous structure, higher values for a heterogeneous struc-
ture
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biomass of all forested areas in Germany is 2.3 Gt, and the mean biomass of forested 
areas is 209  t/ha. We estimated a total aboveground wood productivity of 43 Mt/year 
with a mean value of 4 t/ha/year.

We obtained a good agreement when comparing the estimated biomass (Hstruct + Vstruct 
approach) with the observed biomass from the BWI plots (r2 = 0.76, RMSE = 65 t/ha; cf. 
Fig. 14). Using only horizontal structural information produces also good results for the 
biomass estimation (r2 = 0.76, RMSE = 66 t/ha, cf. Fig. 14). However, if only vertical struc-
ture is used as input, the results are poor (r2 = 0.14, RMSE = 125  t/ha, cf. Fig. 14). This 
shows that for the estimation of the biomass, the information about the horizontal structure 
is sufficient.

4  Discussion

Forest structure is usually quantified using tree sizes from inventory measurements. In this 
study, we estimated forest structure from remote sensing (lidar) and provide a workflow to 
generate forest structure maps for Germany.

4.1  Estimating Horizontal and Vertical Forest Structures

For each structural dimension, a metric was found which could be used to determine hori-
zontal and vertical forest structures. It was harder to find a metric for the vertical structure. 
For the measurement of vertical forest structure by remote sensing, standard deviation of 
the vertical foliage profile is very well suited to reflect the heterogeneity in the vertical leaf 

Fig. 8  Estimation of a forest biomass and b aboveground wood productivity for Germany by applying the 
Hstruct + Vstruct approach. The Hstruct + Vstruct approach was calibrated using all forest stands from the forest 
factory data set (cf., Table 1). Structural information for each forest stand was taken from Fig. 7
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distribution. For the estimation of the horizontal structure, top-of-canopy height (TCH) was 
selected, which is a height measurement and at first glance not a structural measure. How-
ever, TCH is a quite general metric that covers also information on the forest structure. On 
the one hand, it is affected by the height and shape of the largest trees in the upper canopy 
and is therefore closely linked to the basal area of these canopy trees. On the other hand, 
TCH also provides information about the horizontal vegetation density and the openness of 
a forest stand, if, for example, canopy gaps occur (Lu et al. 2016). For these reasons, TCH 
is suited to describe the density of a forest and thus its horizontal structure. However, hori-
zontal structure can be also described by other approaches, which more closely include the 
positions of all trees. For example, the concepts of point pattern analysis could be used for 
this purpose (Wiegand et al. 2013). This would require identifying all individual trees from 
remote sensing, which has so far only been tested for small areas (e.g., Ferraz et al. 2016).

4.2  The Role of Forest Structure for Biomass and Productivity

For the estimation of forest biomass and productivity, the concept of forest structure clas-
sification in combination with forest modeling and remote sensing has a high potential for 
applications on larger scales. For 375,000 forest stands, we have investigated the relations 
between structure, biomass and aboveground wood productivity in forest ecosystems. For-
est structure has been shown to be an important factor for estimating biomass and produc-
tivity from remote sensing. In particular, horizontal forest structure seems to be a good 
predictor for forest biomass, while the vertical forest structure showed only weaker rela-
tionships with forest biomass. Hence, metrics describing the horizontal structure of forests 
might be a good choice for forest biomass estimations which is in accordance with other 
studies (Asner and Mascaro 2014; Knapp et  al. 2018a). Metrics describing the vertical 
structural (e.g., the standard deviation of the vertical foliage profile) are useful for forest 
productivity estimations. Vertical foliage profile showed a much higher correlation with the 
ground-based standard deviation of tree heights than the standard deviation of the classical 
canopy height model profile. With VFP, the weight of larger and smaller canopy trees is 
the same, while classical lidar profiles are dominated by upper canopy trees. Small canopy 
trees may only provide a minor contribution to stand biomass, but can play an important 
role for stand productivity—which emphasizes the role of vertical structure for productiv-
ity estimations (Bohn and Huth 2017). In a study by Stark et al. (2012), the Shannon index 
of the lidar profile was successfully related to forest dynamics like productivity and mortal-
ity rates. In our study, this Shannon index performed also very well as vertical metric, as it 
measures the heterogeneity of leaf densities in different layers.

Our aim was to estimate forest structure from a single remote sensing measurement and 
use this information for improved biomass and productivity estimations. An alternative 
approach for productivity estimations would be to analyze the change in forest structure 
and relate this to biomass change or productivity. For example, with lidar or radar it is pos-
sible to detect larger changes in forest height over a certain time period. However, often an 
exact detection of the height change via remote sensing is not possible, because particularly 
old-growth forests rarely change their canopy height and the detection error of the sensor 
is often larger than the actual change in height (e.g., Knapp et al. 2018b). In addition, data 
are often only available for a single remote sensing campaign (e.g., country-wide airborne 
lidar campaigns). Therefore, there is a strong need for the estimation of forest productivity 
from forest structure.
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We assume a simplified Central European climate and sites with homogenous soil 
conditions, without any spatial heterogeneities. This has the advantage of eliminating 
the influence of changing climate and soil properties on biomass and productivity esti-
mations. It allowed to study the fundamental role of forest structure on biomass and pro-
ductivity. Future studies will investigate the influence of changing environmental factors 
on these estimations.

In perspective, information about forest structure can be used to distinguish differ-
ent forest types, for example natural forests, forests that are disturbed by natural haz-
ards or forests that have been managed by different strategies (Dieler et al. 2017; Mül-
ler et al. 2000; Peck et al. 2014; Young et al. 2017). It is also worthwhile to consider 
forest structure in the context of biodiversity research (Jetz et  al. 2016; Pereira et  al. 
2013; Pettorelli et al. 2016). Forest structure can be a valuable indicator of biodiversity, 
since habitat structure and habitat heterogeneity can be correlated with animal and plant 
species diversity (e.g., Boncina 2000; Ishii et al. 2004; Schall et al. 2018a; Tews et al. 
2004). All of this emphasizes the need for large-scale forest structure estimations from 
remote sensing.

4.3  Linking Forest Models with Remote Sensing

In this study, the role of forest structure for biomass and productivity estimations was 
investigated by analyzing a large data set generated from a forest model. The synergy 
of forest models with remote sensing is a promising method. Structural realism in a 
model is a requirement for applying such a concept, which was realized here by the 
individual-based approach of the FORMIND model (Fischer et al. 2016; Shugart et al. 
2015). In particular, forest gap models are helpful tools to understand forest responses 
to climate change, modified disturbance regimes and structural changes (Shugart et al. 
2018). A few studies have tried to link remote sensing and forest modeling, covering 
model parameterization and initialization (Falkowski et al. 2010; Hurtt et al. 2004; Ran-
son et  al. 2001), exploring several remote sensing metrics for ecosystem service esti-
mations (Knapp et al. 2018a; Köhler and Huth 2010; Palace et al. 2015) and for error 
quantification (Frazer et al. 2011; Hurtt et al. 2010).

To sum up, forest models can help to find reliable estimates of forest biomass and 
productivity as presented in this study. Gap models are particularly valuable because 
they take into account not only large-scale disturbances but also small‐scale variations 
of forest structures (due to gap-building processes). Linking forest models with remote 
sensing can help to extrapolate local findings to larger scales and better understand eco-
system patterns and processes (Knapp et al. 2018b; Rödig et al. 2017, 2018).

Here, we used information from airborne lidar remote sensing—however, this anal-
ysis is not limited to airborne lidar, but can also be applied to other remote sensing 
techniques such as lidar and radar satellite missions. Therefore, the forest structure 
classification presented here can be applied also to other regions. Measurements of the 
upcoming satellite missions will offer a unique opportunity to reduce the uncertainties 
in the estimation of aboveground carbon emissions from forests (resulting from photo-
synthesis, respiration, mortality, human disturbances). These missions will also provide 
the opportunity to identify changes in forest structure which can be relevant for the esti-
mation of forest productivity. This will improve our understanding of the global carbon 
cycle, which will be relevant for climate modeling and policy adaptation.
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5  Conclusion

In this study, we applied a novel approach of linking remote sensing measurements with 
dynamic forest models to study the role of forest structure for biomass and productivity. 
While information on horizontal structure seems to be sufficient for estimating biomass, 
information on horizontal and vertical structures is required for estimating aboveground 
wood productivity. In a case study for Germany, maps for forest structure, biomass and 
aboveground wood productivity were provided. The presented workflow is transferable to 
other regions as remote sensing data are available. Future satellite missions that measure 
forest structure (like GEDI from 2018, BIOMASS from 2020 and Tandem-L expected 
from 2022) will allow the derivation of more accurate estimations of forest biomass, pro-
ductivity and other forest ecosystem services.
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Appendix 1: Estimation of Forest Attributes Using Structural 
Information

Describing Forest Structure from Field Data

The study examined a total of 13 field-based metrics to describe forest structure, which are 
listed in the following. Forest structure was described, for example, by basal area BA  [m2], 
which is the sum of all tree basal area values  BAi of a forest stand:

where di (m) is the stem diameter of a tree i (in total n trees in a stand). Alternative metrics 
to describe the horizontal and vertical structures of a forest stand are:

standard deviation of stem diameters: SDDBH =
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d̄ is the mean diameter of all trees within a stand. The same metrics can be calculated 
also for the tree height distribution (where Hi (m) is the height of a tree) or basal area dis-
tribution. Especially for the tree height distribution, we have calculated further metrics.

maximum height: Hmax = max
(

Hi

)

mean height: Hmean =
1

n

∑

i Hi

quadratic mean height: Hquad⋅mean =

�

1

n

∑

i H
2i
i

Lorey’s height: HLorey’s =
∑

i Hi⋅BAi
∑

i BAi

.

Describing Forest Structure from Remote Sensing Data

Estimating forest structure from remote sensing is more challenging as remote sensing data 
are not tree-based as in the field-based case. This study examined a total of 25 remote 
sensing-based metrics to describe forest structure. The basis for most metrics is the lidar-
derived canopy height model (CHM) with a spatial resolution of 1 m × 1 m. In this study, 
we described horizontal structure for each 20 m × 20 m forest stand mainly by the mean 
top-of-canopy height TCH (m), which is the mean of the canopy height model (CHM):

where PCHM,i is the forest height of the CHM in pixel i and n is the number of pixels. Alter-
native metrics based on the CHM are:

maximum height: Hmax = max
(

PCHM,i

)

quadratic TCH: QTCH =

�
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i=1
P2
CHM,i

n

relative height of the CHM: RHq = quantileq
(

PCHM,i

)

It is also possible to calculate the standard deviation, the coefficient of variation and the 
skewness of the CHM (functions are described above in the field-based section). In this 
study, we considered further advanced metrics based on the CHM:

Shannon index of the CHM: ShannonCHM = −

imax
∑

i=1
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�

⋅ ln
�

CHM
�
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��

,

with CHM (hi) being the CHM profile value (pixel count) in bin i. CHM (hi) has to 
be > 0, and CHM (hi) = 0 is ignored,

Kurtosis of the CHM: KurtosisCHM = n ⋅
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with n being the total pixel number, PCHM,i the value of pixel i and PCHM the mean value of 
the CHM (which is the same as TCH),

the p–h ratio of the CHM: P ∶ HCHM =
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with CHM (hi) being the pixel count in height bin hi and imax is the highest height bin.
Another class of metrics calculates the fractional canopy cover above a certain thresh-

old × (m) using the CHM: FCCx =

∑
hmax
hi=x

CHM(hi)
∑

hmax
hi=0

CHM(hi)
, with CHM (hi) the count of CHM pixels 

in height bin hi and × the height threshold to distinguish canopy from gap.
Instead of using the CHM as the basic information for calculating all these lidar metrics, 

we have used the vertical foliage profile (VFP) for a second class of metrics. All the above-
described metrics can be calculated using the VFP. For this reason, the VFP was divided into 
1-m height classes. This height classes can now be used in the equations described above by 
replacing the CHM. The generation of a VFP profile from a CHM is described below.

Calculating the Vertical Foliage Profile from a CHM

The vertical foliage profile (VFP) was reconstructed from the CHM profile at 1 m vertical 
resolution following the approach described by Harding et al. (2001).

with k being the light extinction coefficient, Δh the width of one height bin and P(hi) the 
value of the cumulative CHM profile in height bin hi. The method reconstructs the vertical 
leaf profile by giving more weight to lower parts of the profile. All pixels below 5 m height 
were regarded as ground and the light extinction coefficient was set to 0.3 which has been 
shown to result in good LAI estimations (Getzin et al. 2017).

Estimation of Forest Biomass and Productivity Using Forest Structure

See Figs. 9 and 10.
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Fig. 9  Relationship between observed biomass and estimated biomass derived by three different approaches 
(see Table  1). Each point represents one of 375,000 forest stands from the forest factory data set. The 
observed biomass have been derived by summing up the biomass values of all trees in the 20 m × 20 m 
stand. The estimated biomass was determined using the structural information for each forest stand. a Esti-
mation of biomass using only information from the horizontal structural index TCH (AGB = 9.49 * TCH1.22, 
r2 = 0.90), b using the vertical structural index  SDVFP (AGB = 34.77 * SDVFP

0.48, r2 = 0.01) and c using the ver-
tical and horizontal structural index (AGB = 7.55 * TCH1.20 * SDVFP

0.23, r2 = 0.90). A comparison of the esti-
mated biomass values for the different approaches is shown in Fig. 6a



727Surveys in Geophysics (2019) 40:709–734 

1 3

Appendix 2: Analysis of the German Forest Inventory Data Set

All analyses so far referred to the forest factory data set. This Appendix reproduces all 
analyses with the empirical BWI data set. For each forest stand of the BWI data set, a 
virtual lidar campaign was carried out and the remote sensing-based metrics were then 
calculated.

See Figs. 11, 12, 13, 14, 15, 16 and 17.

Fig. 10  Relationship between observed and estimated aboveground woody productivity (AWP) for 375,000 
forest stands (forest factory data set). Each dot represents one forest stand. a Estimation of productivity 
using only the horizontal structural index TCH (AWP = 1.68 * TCH0.31, r2 = 0.14), b only the vertical struc-
tural index  SDVFP (AWP = 4.03 * SDVFP

−0.34, r2 = 0.09) and c using the vertical and horizontal structural index 
(AWP = 2.55 * TCH0.34 * SDVFP

−0.39, r2 = 0.31). A comparison of the estimated productivity values with the dif-
ferent approaches is shown in Fig. 6b

Fig. 11  Remote sensing-based estimation of the forest structure using the BWI data set. Each dot represents 
one stand of the BWI. The figure shows the estimate of a the horizontal forest structure (basal area) from 
lidar using top-of-canopy height and b the vertical forest structure (tree height heterogeneity) from lidar 
using the standard deviation of the vertical foliage profile
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Fig. 12  Overview of all correlations between field-based structural metrics and remote sensing-based met-
rics based only on the BWI data set. Numbers and gray scale indicate the coefficient of determination. All 
structural metrics are explained in Appendix 1

Fig. 13  Role of forest structure for biomass, derived from the BWI data set (more than 45,000 field plots, 
20 m × 20 m). Forest structure is estimated from remote sensing. As horizontal forest structure descriptor 
the top-of-canopy height (TCH) was used and as vertical structure descriptor the standard deviation of the 
vertical foliage profile  (SDVFP). Shown is the mean aboveground biomass in relation to the forest structure 
classes. Error bars indicate the standard deviation
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Fig. 14  Relationship between observed biomass and estimated biomass. Each point represents one forest 
stand from the forest inventory data set BWI. The observed biomass has been taken from the BWI data set. 
The estimated biomass values were determined using different approaches (cf. Table 1) and information on 
forest structure. a Estimation of biomass using only the horizontal structural index TCH, b only the vertical 
structural index  SDVFP and c using the vertical and horizontal structural index. A comparison of the esti-
mated values with the different approaches is shown in Fig. 15

Fig. 15  Histogram for forest 
biomass estimates for Germany 
based on the BWI data set. The 
biomass was estimated using 
three different approaches: 
H—horizontal structure (blue), 
V—vertical structure (green) and 
H + V—horizontal and vertical 
structures (red). The histogram 
was compared with the measured 
values from the BWI data set 
(black line)
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Fig. 16  Forest structure of Germany over different gradients. Mean value of the horizontal structure (TCH) 
from a south to north, c west to east in Germany and e over the altitudinal gradient. Mean value of the verti-
cal structure  (SDVFP) from a south to north, c west to east in Germany and e over the altitudinal gradient. 
The structure values correspond to Fig. 7 (forest structure maps of Germany)
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