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Abstract
The integrated use of electrical resistivity tomography (ERT) and ground penetrating radar 
(GPR) measurements, and in particular the joint analysis of 2D and 3D data, can represent 
a valid solution for target identification at complex archaeological sites. A good example, 
in this respect, is given by the case study of a Phoenician–Punic necropolis in the archaeo-
logical site of Nora, in southern Sardinia (Italy), where GPR and ERT measurements were 
collected before site excavation. In this specific case, the mix of soil and air in the buried 
chambers, as well as the orientation and the complex spatial distribution of these structures 
into the sandstone bedrock, generated a number of anomalies difficult to interpret only 
using 2D results. Only the integration of all GPR and ERT data in a 3D view, and the com-
parison with archaeological evidence after the excavation, allowed a solid interpretation of 
geophysical anomalies visible in the 2D sections. Overall, this case study demonstrates the 
efficiency of the combined use of GPR and ERT acquisitions and shows how, in general, 
only the joint analysis of 2D data and in a 3D view can help the interpretation of the real 
distribution of the buried archaeological remains at similar archaeological complex sites.

Keywords Electrical resistivity tomography · Ground penetrating radar · Tomb detection · 
Phoenician–Punic necropolis

1 Introduction

Archaeological research has shown, over the past two decades, a renewed interest in 
geophysical prospecting, undoubtedly thanks to the new perspectives offered by the 
most recent instruments and methods, capable of providing higher resolution and the 
possibility of acquiring a larger number of data in shorter times, with increased effi-
ciency and greater field productivity (Gaffney and Gater 2003; Linford 2006; Witten 
2006; Cardarelli et al. 2008; Ernenwein and Kvamme 2008; Gaffney 2008; Novo et al. 
2008; Campana and Piro 2009; Gaffney 2009; Nuzzo et  al. 2002; Trinks et  al. 2010; 
Utsi 2010; Batayneh 2011; Fassbinder 2011; Loke et  al. 2013). In this respect, two 
geophysical methods, in recent years, gained more extensive use in the archaeological 
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context: ground penetrating radar (GPR) and electrical resistivity tomography (ERT). 
The use of these methods in this field, either individually or in combination, is widely 
documented in the recent literature (Papadopoulos et al. 2006, 2009; Utsi 2010; Berge 
and Drahor 2011; de Silva et al. 2014; López et al. 2015; Küçükdemirci et al. 2017). 
In particular, the capabilities of GPR, known for several decades in the archaeological 
field, have been recently enhanced in terms of surveys’ speed, using multichannel sys-
tems to cover large investigation areas (Leckebusch 2005; Francese et al. 2009; Trinks 
et  al. 2010, 2018), also in terms of data processing and visualization (Nuzzo et  al. 
2002; Ernenwein and Kvamme 2008; Goodman et  al. 2011, Novo et  al. 2012; Cony-
ers 2015a, b; Zhao et al. 2015a, b, 2016; Verdonck et al. 2013, 2015; Economou et al. 
2017; Özkan and Samet 2017; Samet et  al. 2017). These advances make it possible 
to identify, quickly and with excellent resolution, the presence of structural remains, 
placed at shallow depth, provided that the soil does not have high electrical conduc-
tivity (Leckebusch et  al. 2001; Neubauer et  al. 2002; Leckebusch 2003; Berard and 
Maillol 2008; Booth et al. 2008; Belina et al. 2009). GPR can be considered also the 
best noninvasive method for archaeological research in an urban context (Leucci 2006; 
Leucci and Negri 2006; Trinks et al. 2009; Drahor 2011; Strapazzon et al. 2013). This 
is particularly true inside buildings or on paved surfaces where, for example, the use of 
ERT faces the logistical limitations of placing electrodes in galvanic contact with the 
ground (Leucci 2006; Athanasiou et al. 2007; Tsokas et al. 2008; Papadopoulos et al. 
2009).

On the contrary, in extra urban and rural contexts, the joint use of GPR and ERT is 
often a winning strategy to tackle the complex, small scale, stratified and laterally var-
ying situation of archaeological sites. For example, it is known that both the GPR and 
the ERT are excellent methods for the detection of the presence of voids and under-
ground cavities (Piro et al. 2001; El-Qady et al. 2005; Cardarelli et al. 2006; Kofman 
et al. 2006; Piscitelli et al. 2007; Boubaki et al. 2011; Putiška et al. 2012, Bottari et al. 
2017). For this reason, their application also in the archaeological context has found 
ever wider use (Edwards et  al. 2000; El-Behiry 2000; Piro and Goodman 2008; Piro 
and Gabrielli 2009; Abbas et al. 2012; Ekinci et al. 2012; Testone et al. 2012, 2015; 
Orlando 2013; Leucci et al. 2016). However, although a cavity represents an ideal tar-
get for both GPR and ERT measurements, in terms of contrast of physical properties 
with the hosting materials, different factors may contribute to making cavity identi-
fication and localization an uncertain task using both ERT and GPR. Among these 
factors, we highlight: (a) the small distance between different cavities (e.g., having a 
very thin separation wall); (b) the presence of small voids placed at great depths; (c) 
the presence of voids and cavities, different in size and orientation, totally or partially 
overlapped; and (d) the presence of cavities partially filled with soil or with soil mixed 
with waste or stones. In such conditions, the exact identification of each cavity can 
be problematic, in particular for GPR and ERT measurements taken from the ground 
surface using only 2D configurations. In fact, as shown in the most recent literature 
(Negri et  al. 2008; Abbas et  al. 2012; Orlando 2013; Arato et  al. 2015), only a joint 
use of 2D and 3D (or pseudo 3D) acquisition patterns, supported by an accurate choice 
of the acquisition parameters and data processing, can greatly improve the capabilities 
of GPR and ERT to image cavities. In this context, the goal of this paper is to present 
a challenging case study that demonstrates how the potential pitfalls of ERT and GPR 
data interpretation can be overcome if a careful use of joint data cross-checking is 
made and ancillary supporting data (e.g., excavation results) are considered.
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2  Archaeological and Geological Setting of the Area

The ancient settlement of Nora is located in southern Sardinia, on the promontory of Capo 
di Pula, which is situated nearly 35 km southwest from Cagliari (Italy) (Fig. 1). The ancient 
city lies on a narrow peninsula which, due to its morphology, provided an excellent and 
safe landing-place for the trading ships sailing the Mediterranean Sea in ancient times.

Because of these natural advantages, the area of Nora and its territory, which was 
directly connected to the region of Sulcis and its metal resources, soon became part and 
parcel of the sea-routes eastern sailors coming from Greece and from the Near East and 
established in the West for trading purposes (Botto 2011; Roppa 2013; Bonetto 2014).

The growth of Nora lasted for the whole Hellenistic period, until the city and the whole 
island of Sardinia were conquered by Rome (238–227 BC), and annexed to its territories 
as Provincia Sardiniae et Corsicae (Bonetto 2009, 2016a). However, Nora’s development 
and urban plan did not undergo an abrupt change until the second half of the first-century 
BC, when the urban area was gradually rearranged starting from the construction of the 
Roman forum, located in the city center to underline the administrative transition of the 
city which gained the status of municipium optimo iure (Bonetto 2002; Bonetto and Ghi-
otto 2017). From the late fifth-and the sixth-century AD, as a consequence of the disrup-
tion of the Roman Empire, the city began a phase of decline during which the roads and the 
infrastructure networks were gradually abandoned (Bonetto and Ghiotto 2013). The city, 

Fig. 1  Map of the studied area of Nora (southern Sardinia-Italy)
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reduced to a landscape of ruins, became a quarry of stone materials which were used to 
build the earliest dwellings of the medieval village of Pula, which lies a few km inland. 
The story of the archaeological research at Nora is strictly connected to the discovery of 
the oldest cemeteries of the settlement (Bonetto 2016b), which are the main focus of this 
paper.

Other issues to be discussed concern the geological context. The buried chamber inves-
tigated until now is dug on the surfaces of the local sedimentary fine-grained and soft 
sandstone (called “panchina tirreniana”) composed by beach conglomerations, arenitic 
conglomerations, cross-bedding sandstones and unconsolidated sands. This bedrock, easy 
to cut with metal tools, is characterized by intermediate porosity and permeability which 
are unable to prevent the infiltration of marine water at sea level depth (Di Gregorio et al. 
2000). This has been demonstrated during the recent excavations by the recurrent presence 
of salt water inside the Punic underground chambers whose depth reached the sea level.

The direction of the natural rock layers is 45°NE, their immersion is toward W, and the 
inclination is very low. Indeed, the rock surface shows a very modest slope toward south-
west. Although the whole surface of the area where the tombs have been unearthed seems 
to be nearly horizontal, recent excavations made in 2017, after the geophysical investiga-
tion, revealed that in ancient times only a small portion of this funerary area was character-
ized by a flat surface, while other areas were marked by a more articulated soil morphol-
ogy, with sloping stretches, shallow valleys, and areas located at different heights.

3  The Archaeological Researches (2012–2017)

In 2012, the disposal of the military base allowed the Office for archaeological heritage in 
Cagliari and the Archaeological Mission active in Nora since 19901 to conduct research in 
the central area of the isthmus. Up to now, four archaeological campaigns were conducted, 
carrying out topographic surveys and stratigraphic excavations, as well as geophysical 
acquisitions discussed in a specific section of this paper. All these activities contribute in 
different ways to provide new fundamental information about the funerary areas and the 
evolution of the settlement during centuries.

In order to organize the field work, the area was first cleaned up from vegetation, as it 
was entirely covered by dense Mediterranean scrub and small or medium-sized bushes. 
Later, the area was also cleaned up from plastic and metal waste, in order to reduce the 
noise in the geophysical data and in general to make field work easier.

First a topographic survey was performed using a Leica TS06 Plus total station, hooked 
up to some geo-referenced landmarks. The collected data were processed with a CAD soft-
ware2 based on Plate Carrée/WGS84 projections. Thanks to this preliminary georeferenc-
ing, we created the base map for the geophysical measurements and for the later archaeo-
logical excavations, which immediately highlighted very interesting traces related to the 
early stage of the settlement in this area.

Particular attention was dedicated to the northwestern part of the former military base, 
where the geophysical survey provided reliable indications about underground anomalies 

1 The Archaeological Mission in Nora is sustained by the Universities of Padova, Milano, Genova and 
Cagliari. The Soprintendenza Archeologia Belle Arti Paesaggio coordinates the activities with appreciated 
efforts.
2 Nemetschek Vectorworks  2013®.
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and possible archaeological evidence. Starting from this preliminary information, the exca-
vations carried out from 2012 to 2017 confirmed the presence of a large number of tombs, 
parts of an undiscovered Phoenician and Punic funerary area of this settlement.

3.1  The Phoenician Tombs

The archaeological excavations, carried out in a small part of the larger area previously 
investigated by means of geophysical measurements, affected about 100 square meters. Ten 
Phoenician tombs, in general well preserved despite the many historical events, modifica-
tions and reuse of this area during the millennia, have been localized here (Fig. 2). These 
Phoenician tombs consist of small pits dug into the bedrock, in general characterized by a 
regular layout with unfinished internal surfaces, used for the direct deposition of the burnt 
human remains with small grave goods or hosting cinerary urns filled with human ashes 
obtained by the cremation post mortem. Some of these very shallow tombs, excavated in 
the bedrock and differently oriented in the area, have an almost rectangular shape (Fig. 3a), 
and their size does not exceed 0.7 m × 0.35 m, for a depth of 0.55 m (T6, T7 and T11), 
while most of these have a square shape (Fig. 3b) with a side of 0.35 m and the same depth 
in the bedrock (T2, T16, T18, T20 and T21). Only in the case of two tombs (T10 and T15), 
the ashes and the grave goods were directly hosted in the shallow irregular pits (Fig. 3c). A 
hint about these tombs’ location was probably originally given by a small mound of soil or 
stones. Finally, a singular case in the context of this necropolis is represented by the tomb 
T18, the oldest among these excavated in this site. This square tomb, in fact, with a side of 
0.6 and depth of 0.45 m, was covered by a 0.17-m-thick slab of sandstone and contained 
human ashes and four different ancient vases, well preserved during the millennia thanks to 
the compacted soil therein. As discussed before, all these ancient tombs were found at very 
shallow depth below the actual ground level (about 0.5 m), suggesting that the shallower 
Phoenician tombs were probably damaged in their upper part already during the Roman 
period, or at the beginning of the twentieth century, when the whole peninsula was used 
for the cultivation of wheat (Patroni 1904). The funerary treasure and the cinerary urns 
hosted in the well-preserved tombs provided fundamental information about the trade that 
the Phoenician community of Nora established with the populations of mainland Italy. In 
particular, the production and the circulation in the western Mediterranean of the kind of 
pottery during the early seventh-century BC allow us to date the realization of these tombs 
to that specific period (Bonetto and Botto 2017).

These tombs represent, up to now, the most ancient evidence of the presence of the 
Phoenician settlement at Nora, very close to the chronological horizon of the “Stele di 
Nora” (Amadasi Guzzo 1990) and older than the earliest trace of the huts or of the reli-
gious structures found in the central area of the settlement. These archaeological evidence 
also reveal that the cemetery area was used for the ritual of cremation by the first Phoe-
nician merchants who established one of their main commercial emporium in Nora. The 
traces of these emporia also survive in a number of sites close to each other along the 
entire southern coast of the Sardinia Island, making a real commercial network between the 
Phoenician and the Nuragic populations distributed in the hinterland.

3.2  The Punic hypogea

Approximately in the middle of the fifth-century BC, the area of the Phoenician cemetery 
was reused for the funerary purposes and here has been excavated some Punic hypogea, 



1086 Surveys in Geophysics (2018) 39:1081–1105

1 3

where, due to the new burial ritual, the human remains and their grave goods were hosted 
(Ribichini 2004; Bartoloni 2009, 2015).

In particular, the archaeological excavation carried out from 2014 to 2017 allowed the 
localization, in the same area, of six different Punic hypogea. In this paper, considering 

Fig. 2  a Sketch of the western Phoenician–Punic necropolis of Nora (after the 2013–2017 archaeological 
excavations); b top view of the necropolis
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the status of the archaeological field work up to now, we only discuss the evidence pro-
vided by four of these hypogea (T1, T3, T8 and T9 in Figs. 2, 4, 6, 7), completely emp-
tied, while only two still remain to be excavated (T4 and T5 in Fig. 2). These tombs are 
composed by rectangular pits with articulated underground chambers (Figs. 4, 6, 7) dug 
at a significant depth considering the ancient and the actual ground level. In general, the 

Fig. 3  Examples of different shapes of Phoenician tombs in the northwestern necropolis of Nora: a rectan-
gular (T11); b square (T2); c irregular pit (T10); see Fig. 2 for the location details
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orientation of these hypogea is ESE-WNW according to the other Punic necropolis in 
the eastern bay in Nora (Bonetto et al. 2017b; Mazzariol and Bonetto 2017).

The access to the buried chambers is guaranteed by a rectangular descending well of 
about 2.1 m × 0.7 m in the tombs T1, T3, T4, T5 (Figs. 2, 4a, b, c, 6b, 7), slightly larger 
(2.5  m × 1.3  m) in the tombs T8 and T9 (Figs.  2, 4d, e, f, 6a, 7). The archaeological 

Fig. 4  Sketch of the sections of Punic tombs in the northwestern necropolis of Nora; for details see Fig. 2
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excavation also revealed that only the tombs T8 and T9 were still partially covered by 
broken slabs of sandstone (Figs. 2, 5a), while these slabs have been completely removed 
from the other four hypogea (Figs. 2, 5b). The actual ground level in the area (about 3 m 
a.s.l.) and the bottom of the deeper buried chamber (about 0.2 m a.s.l.) measured in the 
tomb T8 (Fig. 4d, d) testify of the ability in the realization of these buried structures 
excavated and partially overlapped at different depths, in a restricted area. This com-
plex scheme adopted in the necropolis of Nora is undoubtedly different from the one 
observed in other Punic necropolis (characterized by tombs with dromos) in Sardinia, 
in particular in Sulcis (Bartoloni 1987; Tronchetti 1989) and in Monte Sirai (Bartoloni 
2000). Excluding the very simple geometry of the tomb T9 (Figs. 2, 4e, f, 7), in fact, the 
other tombs present a very complex internal distribution (Figs. 6, 7), probably also due 
to the further modifications which occurred in the middle of the Roman Imperial Age 
(approximately in 3rd century AD), when some of these tombs (e.g., T3 in Figs. 4c, 6b, 
7) have been transformed into big tanks and partially or totally filled with a mix of sand 
and silt, pieces of pottery and other waste materials (Bonetto et al. 2017a).

The period of the first use of the underground Punic chambers is suggested by the 
chronology of the objects found in two unviolated tombs, preliminarily dated between 
the end of the fifth- and the fourth-century BC. Furthermore, it is important to stress 
some issues about the spatial extension of the necropolis and its relations with the geo-
morphological and geological context. Although the interested area appears quite small, 
other small trenches were excavated recently (2010–2011) and the emerged evidence of 
rock-cut tombs suggest that this funerary area was not small in size and probably occu-
pied an area of roughly 1 hectare. However, many doubts still existed about the exact 
position and orientation of the tombs in this larger area; thus, the geophysical surveys 
appeared absolutely necessary to define the restricted area for the excavations.

About the position of the funerary area within the geomorphological frame, it is quite 
certain that most of the tombs are located just in the narrowest piece of land between 
the eastern and western bays, where the maximum distance of the tombs from the shore-
lines probably does not exceed 30–40 m.

Fig. 5  Top view of Punic hypogea in the northwestern necropolis of Nora: a well access covered with sand-
stone slabs (T8 and T9 in Fig. 2); b well access without sandstone slabs (T1 and T4 in Fig. 2)
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4  Geophysical Measurements

In 2013, starting from historical documentation and archaeological evidences gathered 
a priori, a geophysical survey was conducted on a limited area of 23.5  m × 7.5  m (176. 
25 m2) within the larger archaeological site already presented and formerly occupied by 
the Navy base in the Nora peninsula (Fig. 1). The main goals of the geophysical survey 

Fig. 6  Interior of Punic hypogea in the northwestern necropolis of Nora: a T8; b T3; c T1; (see Fig. 2 for 
location details)
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in this specific area were to identify the number and the exact location, volume and integ-
rity of undiscovered Phoenician and Punic tombs in the necropolis supposedly hosted here. 
Starting from the target, the geological setting and the orientation of some tombs exca-
vated in a neighboring area, we decided to collect a number of parallel GPR and ERT lines 
oriented approximately SE–NW (Fig.  8). Considering the complete abandonment of the 
former Navy base, before the geophysical surveys, it was necessary to clean the area from 
vegetation, stones and waste materials (e.g., reinforced concrete and metal waste) scattered 
on the surface or hidden under the top layer of soil. For this reason, as far as possible, the 
surface was regularized removing the upper part of the soil (about 5–10 cm). Despite these 

Fig. 7  3D view of the necropolis (brown, the 3D view of T8 hypogeum’s underground chambers); a view 
from the north; b view from the east c view from the southwest
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Fig. 8  Overlapping of GPR and ERT lines and archaeological excavations in the Phoenician–Punic necrop-
olis of Nora
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preliminary operations, fundamental to facilitate the GPR acquisitions, the presence in the 
area of interest of two small trees limited the exact overlapping of the ERT and GPR lines 
and forced the starting point of the GPR lines 10 m in NW direction, overlapping the ERT 
lines only for 13.5 m in the same direction.

4.1  Ground Penetrating Radar (GPR)

The GPR measurements were taken using an IDS Ris Hi-Mod Dual frequency system con-
nected to 200–600 MHz monostatic antennas mounted on a cart equipped with a magnetic 
encoder. The data were collected by moving the monostatic system along parallel transects, 
using a time window of 64 and 128 ns for the 600 MHz and the 200 MHz antennas, respec-
tively. For both frequencies, we used 512 samples per scan. In all the following interpreta-
tion, we assumed a propagation speed equal to 0.1 m/ns. Considering the expected geom-
etry, the complex spatial distribution of the targets and the information gathered a priori 
we decided to acquire the GPR measurements along parallel transects spaced 0.25 m apart 
and oriented SE-NW, using the origin of the reference system, as previously described and 
shown in Fig. 8. This tight acquisition scheme allowed a pseudo 3D reconstruction of the 
investigated subsoil volume, based on reflection amplitude slices at the different depths of 
interest and on the building of an isosurface model. All other results (ERT investigations 
and archaeological excavations) will be related to the same reference system. For GPR 
data processing, we used ReflexW and GPR-SLICE software for the isosurface model. The 
processing steps included time zero correction, dewow filtering, vertical signal amplitude 
recovering and background removal. Although, in general, the data migration allows an 
improvement in targets identification in the time-slices, in this specific case, without the 
possibility of having a good estimate of the EM wave velocity in the investigated media 
(i.e., using a bistatic configuration of antennas) and possible lateral variations of such, we 
decided not to employ migration processing.

Finally, at the end of the proposed processing steps, the 2D GPR profiles were inter-
polated using again RelflexW software in order to obtain a pseudo 3D volume and to 
extract the time-slices at different depths, GPR-SLICE was used to extract the isosurface 
related to most significant targets in a 3D view. Hereafter, considering the ratio between the 
maximum depth of interest and the best resolution obtained by two different antennas, we 
decided to show only the results of the 600 MHz antenna using, as previously described, a 
constant EM velocity equal to 0.1 m/ns.

4.2  Electrical Resistivity Tomography (ERT)

Based on the early results of the GPR acquisitions, we decided to collect in the same 
area a series of parallel ERT lines, spaced 0.5 m apart and oriented SE–NW as shown 
in Fig.  8. The ERT lines overlap 16 GPR lines, over a total length of 13.5  m. This 
partial overlapping was forced, as previously described, by the presence in the investi-
gated area of two small trees that made the acquisition of the GPR lines cumbersome. 
The ERT lines were acquired using an IRIS Syscal Pro resistivity meter. For each line, 
we used 48 electrodes, spaced 0.5 m, for a total length of 23.5 m, using a skip zero 
dipole–dipole acquisition scheme. For each line, we measured both direct and recipro-
cal quadrupoles (by swapping potential with current electrodes) in order to estimate 
the measurement errors (Daily et  al. 2004). Each set of data was composed of 2105 
measurements, including a complete acquisition of direct and reciprocal resistances 
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measurements and using an optimized scheme simultaneously using all the 10 physi-
cal channels for the voltage of the IRIS Syscal Pro instrument. We set as acquisition 
parameter a target of 50 mV for the potential readings and a pulse duration of 250 ms 
for current injection. The repetition error threshold of the resistivity meter measure-
ment cycles was set to 5%, with minimum and maximum number of cycles equal to 
3 and 6, respectively. The processing of each of the ERT lines was performed using 
an Occam inversion approach (LaBrecque et  al. 1999) as embedded in the ProfileR 
freeware code. The data whose reciprocal error exceeded 5% were excluded as out-
liers. In general, this criterion implied a loss of approximately 10% of the collected 
data. The total amount of measurements saved for each line and used for the inversion 
processing is about 900. Finally, using the inversion results we produced a pseudo 3D 
distribution of electrical resistivity, obtaining maps at different depths of investigation 
and a 3D model on the basis of the acquired 2D ERT lines, using the VOXLER3.0 
software (Golden Software Inc.).

5  Discussion of Geophysical Surveys and Archaeological Excavation 
Results

In order to discuss the results of the geophysical surveys carried out in the necropolis of 
Nora, here we will compare them against the evidence emerging from the archaeological 
excavation in this area. In particular, here we first analyze and compare the results for three 
GPR and ERT sections, the locations of which are shown in Fig. 8 and which allow us to 
identify the relative position of these sections with respect to the complex spatial distribu-
tion of the burials excavated from 2014 to 2017. The distribution and the extent of the 
excavated burials (T1, T3, T8 and T9) are shown, respectively, in Figs. 4, 7, and 8. In Fig. 8 
the descending wells of the excavated tombs (the total extent of the tombs is represented by 
dashed lines) are highlighted with dark gray color, where with gray color are indicated the 
tombs which must be still excavated. These structures are mainly aligned in the ESE-WNW 
direction, while the ERT and GPR lines run from SE to NW: as a consequence, the GPR 
and ERT profiles never cross orthogonally the hypogea.

In general, the excavation work unearthed a number of structures very close to each 
other and with buried chambers different in size, also partially overlapped at different 
depths as in the case of tombs T8 and T9 (Figs.  2, 4f, 7, and 8). Given this excavation 
evidence, we can compare the images of the excavated volumes against the corresponding 
2D GPR and ERT lines collected over some of these structures. To better understand and 
to clearly represent the spatial complex distribution of these excavated chambers in the 
bedrock, in particular, Fig. 7 shows a 3D virtual reconstruction. These images are obtained 
using both Blender and Meshlab software, starting from a 3D photogrammetric relief using 
SfM (Structure from Motion) technique in the tombs T1, T3, and  T9. For the tomb  T8, we 
specify that the SfM relief has not been performed yet. The images reported in Figs. 4, 6, 
7, and 8 show how the spatial complexity of the excavated chambers, combined with the 
different conditions of these burials (violated or non-violated, and thus partially or totally 
filled with soil), may have influenced the distribution, the size and the consequent interpre-
tation of the anomalies in the geophysical 2D sections.

Considering the origin and the total length of the ERT lines (23.5 m each), we remark 
that the GPR lines overlap these lines only for a length of 13.5  m, with the GPR lines 
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starting at 10  m along the ERT lines. We also remark that the excavation work started 
at 7 m along the ERT line and ended at 19 m along the same line in SE-NW direction 
(Fig. 8). Note that in the following images (Figs. 9, 10, and 11) the horizontal scale of the 
geophysical sections (x) always run from SE to NW (from left to right).  

Fig. 9  Comparison between archaeological and geophysical results (ERT 2 and GPR 21 profiles); see 
Figs. 8 and 12 for details
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Finally, considering the partial overlapping between the different geophysical data 
and the excavated tombs, the GPR and ERT lines were cut at the edges of the excavation 
area (see the map in Figs. 8, 9, 10,  and 11) for clearer representation.

Fig. 10  Comparison between archaeological and geophysical results (ERT 3 and GPR 23 profiles); see 
Figs. 8 and 12 for details
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Figures  9, 10, and 11 show three ERT and GPR lines: a preliminary analysis of the 
ERT sections shows the presence of anomalies with high resistivity (red color) normally 
correlated with the presence of cavities, such as those of interest in this survey, whereas 
in the GPR sections the maximum amplitude of the reflection of the EM signal and the 

Fig. 11  Comparison between archaeological and geophysical results (ERT 4 and GPR 25 profiles); see 
Figs. 8 and 12 for details
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reverberation would be associated with the same type of structure. These assumptions are 
generally true in the case of isolated, empty structures orthogonally crossed by the ERT 
and GPR lines. However, in this specific case, evidently, the circulation of the electrical 
and EM signals within these structures with complex and spatially articulated geometries 
and filled with different materials complicates the a priori interpretation. Figures 9, 10, and 
11 show the comparison between geophysical results and actual tomb locations as derived 
from excavation. The dashed lines shown in the ERT and GPR sections of Figs. 9, 10, and 
11, therefore, allow to evaluate the actual correspondence of the anomalies with respect to 
the excavated structures. Except for the T8 tomb in Fig. 11, all the buried chambers inter-
cepted by these 2D ERT and GPR lines were completely or almost completely filled with 
soil and waste. Fig. 9, in particular, shows the relative location of ERT line 2, GPR line 21 
and the excavated tombs (T9, T1, and T3, going from SE to NW). Considering the loca-
tions of the edges of the structures detected by the archaeological excavations, it is clear 
that the ERT section identifies the structures (e.g., T9) as larger than they actually are.

This is not a total surprise, as ERT inversion is conducted with an Occam approach, that 
thus seeks the smoothest model that can reproduce the field data within their error level—
estimated by reciprocal check. In addition, it is known that any inversion procedure has 
its own cell dimension which in turn should be fixed according to both vertical and lateral 
resolution. In this way, the shape of resistivity “anomalies” cannot be expected to match 
the actual shape/dimension of the buried structures that are sharp contrasts between voids 
and host rock. Thus, the edges of sharp discontinuities are smeared and the objects appear 
larger and smoother than they actually are. In addition, the resistivity values are relatively 
low with respect to expected values for cavities—in fact, as discussed before, most of the 
cavities are filled or half filled with soil, as a consequence of violation (probably in ancient 
times). The lower electrical resistivity of the hosting rock, as compared to that expected for 
the geology of the area, is probably related to the effect of the salt water intrusion visible in 
some of the excavated chambers.

The GPR data in the same Fig. 9 also require careful considerations to allow a correct 
interpretation of the anomalies. In particular, the T9 tomb, covered by a sandstone slab 
(Figs. 4e, f, 5a, 8, 9, 10, and 11), was only partially detected by the GPR acquisition. In this 
case, the presence of the covering sandstone slab generates a clear effect (i.e., a combina-
tion of shallow diffractions) that allows the identification of the lateral boundaries of the 
structure that is completely filled with soil (i.e., it is a violated tomb). Note also that the 
GPR signal is clearly attenuated by the relatively high electrical conductivity of the filling 
material. A very different GPR signal response was collected over tomb T1, as well as over 
the small subsurface void between tomb T3 and tomb T1, both completely filled with soil. 
In both cases, a strong GPR signal attenuation, due to the conductive material filling the 
shallow structures, is apparent. On the other hand, it is interesting to note how GPR data 
clearly show the presence of a small volume of air inside the partially filled tombs T3 and 
T1: this causes also strong reverberation of the signal, as apparent in Figs. 9, 10, and 11.

Figure 10 shows a second set of 2D data with ERT line 3 and GPR line 23—again see 
Fig. 8 for location. These profiles cross over the buried structures T9 and T3. Note also the 
presence of a shallow pit filled with soil, close to T21, that has a clear effect in terms of GPR 
attenuation between 14 m and 15 m. GPR also detects the deeper structure of T3, with rever-
berations in the partially filled void. However, similar to what was discussed for Fig. 9, a num-
ber of apparent inconsistencies appear between the geophysical data and the size and the con-
ditions of the excavated structures. This is true both in terms of resistivity values for the ERT 
sections and in terms of signal attenuation for the GPR data. Both ERT and GPR sections 
between 11 and 14.5 m detect the presence of possible structures not confirmed up to now, by 



1099Surveys in Geophysics (2018) 39:1081–1105 

1 3

the archaeological excavations. In fact, as described before, from 2014 to 2017, only the tombs 
T1, T3, T8, and T9 were completely excavated and well documented. However, 3D effects, 
with signals coming from lateral anomalies, shall not be excluded in such a complex environ-
ment. Figure 8 confirms the lateral presence of other structures that may explain the anomalies 
shown in the ERT and GPR profiles.

Figure 11 shows the results of ERT line 4 and GPR line 25 crossing over the T9 and T8 
tombs and intercepting these in different positions and at different depths, and finally reach-
ing T3 (see Fig. 8 for reference). Once again, GPR is very sensitive to shallow conductive vs. 
resistive anomalies in terms of signal attenuation: see the complex effect of the T8 structure 
on the GPR profile between 10 and 12 m. However, GPR can detect quite well the structures 
partially filled with soil, e.g., T3 between 14 and 18 m. The ERT section also locates these 
structures, although not providing precise information on the size and conditions of the tombs 
(violated or non-violated), as previously discussed.

Overall, it must be noted that the interpretation of the geophysical results is heavily affected 
by the complexity of the 3D structure of the site (Figs. 7, 8). In fact, the three 2D ERT and 
GPR sections examined above, as well as the entire dataset acquired in this case study, cross 
at a slant angle the volumes of the buried structures, having different sizes, and mutual spatial 
relationships, often being very close to each other, and sometimes overlapping. In addition, the 
cavities are sometimes (partially or totally) filled with soil. This 3D complexity made particu-
larly challenging the identification of individual structures from the juxtaposition of 2D sec-
tions, each of them affected to some extent by lateral 3D effects.

Starting from the evidence which emerged from the archaeological excavation and from 
the inconsistencies with the anomalies in the ERT and GPR 2D sections, we decided to com-
pare the 2D data with the pseudo 3D view both in a slice map (Fig. 12) and using an isosur-
faces view (Fig. 13). In this case, in particular for the slice map (Fig. 12), it is clear that only 
by superimposing the exact position of the tombs and knowing their real condition (filled or 
empty) it is possible to evaluate the actual correspondence of the signals with the real distri-
bution of the targets. It should be noted that while in the image of Fig. 12, the GPR and the 
ERT data provide only a general indication of the area affected by the presence of the tombs 
(considering the depth of − 1.3 m), the images reported in Fig. 13 showing the isosurfaces for 
ERT and GPR signals allow us (particularly in the case of the GPR) to highlight the presence 
of different complex structures in the underground, with a good correspondence, for example, 
with the real geometry of the deeper part of the T8 tomb (see also for comparison the image in 
Fig. 7). We must take into account that, in most archaeological contexts, the information made 
available by the historical archives or by any other information source is insufficient to define 
a priori the exact orientation of expected buried targets, as well as the expected size and geom-
etry. Thus, the problems we face at this site are by no means an exception. In general, we can 
conclude that only a comparison between 2D and 3D views of the system can help reduce the 
uncertainties in the interpretation on the real geometry and the spatial distribution of the bur-
ied structures. In this sense, the present case study also demonstrates the limits of the pseudo 
3D (also called 2.5 D) representation, considering the acquisition geometries and the signal 
circulation in 2D dimensions, not in a real 3D pattern.
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6  Conclusions

From the archaeological point of view, the use of geophysical surveys in the site of 
Nora, despite some problems, has allowed us to detect with high accuracy the presence 
of some unknown buried tombs, helping their localization before the excavation. Note 

Fig. 12  Slice maps of ERT (a) and GPR (b) at − 1.3 m depth overlapped with archaeological evidence
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that in most cases the detection of existing archaeological targets is by far more impor-
tant than the identification of their exact shape. The Punic tombs, made of complex 
buried volumes accessible through vertical wells, have been often violated and reused 
over the ages, producing often some modifications in the shape of the original structures 
and their filling with anthropogenic waste materials and soil. Fortunately, thanks to their 
complex geometry and their articulation in the deeper part some of these Punic hypo-
gea have preserved their integrity. In general, the mix of the Punic buried structures 
and their modifications with the shallower Phoenician burials certainly create in this 
necropolis a very complex system.

From a geophysical point of view, this site represents a very challenging case study that 
helped us to evaluate and discuss the benefits and the limitations of the ERT and GPR sur-
face measurements in complex archaeological sites. Undoubtedly, the presented case of the 
Phoenician–Punic necropolis of Nora shows a number of different problems that must be 
taken into account in the acquisition as well as in the interpretation of the data in similar 
contexts. On the other hand, even though the geophysical data could not resolve entirely 
the 3D complexity of the site, they still provided key information. The case study demon-
strates that only the joint use of 2D ERT and GPR measurements in a pseudo 3D pattern 
and in particular the comparison of 2D and pseudo 3D results can provide the necessary 
reliability of the information needed to drive the archaeological excavation.

Fig. 13  Comparison between GPR envelope amplitudes (a) and ERT resistivity isosurface (b) obtained by 
2D data (see Fig. 8 for more details). The red square in the figure b indicates the position of the GPR data 
in relation to the ERT measurements
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