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Abstract  During the last 20 years, geophysicists have developed great interest in using 
gravity gradient tensor signals to study bodies of anomalous density in the Earth. Deriv-
ing exact solutions of the gravity gradient tensor signals has become a dominating task 
in exploration geophysics or geodetic fields. In this study, we developed a compact and 
simple framework to derive exact solutions of gravity gradient tensor measurements for 
polyhedral bodies, in which the density contrast is represented by a general polynomial 
function. The polynomial mass contrast can continuously vary in both horizontal and verti-
cal directions. In our framework, the original three-dimensional volume integral of gravity 
gradient tensor signals is transformed into a set of one-dimensional line integrals along 
edges of the polyhedral body by sequentially invoking the volume and surface gradient 
(divergence) theorems. In terms of an orthogonal local coordinate system defined on these 
edges, exact solutions are derived for these line integrals. We successfully derived a set of 
unified exact solutions of gravity gradient tensors for constant, linear, quadratic and cubic 
polynomial orders. The exact solutions for constant and linear cases cover all previously 
published vertex-type exact solutions of the gravity gradient tensor for a polygonal body, 
though the associated algorithms may differ in numerical stability. In addition, to our best 
knowledge, it is the first time that exact solutions of gravity gradient tensor signals are 
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derived for a polyhedral body with a polynomial mass contrast of order higher than one 
(that is quadratic and cubic orders). Three synthetic models (a prismatic body with depth-
dependent density contrasts, an irregular polyhedron with linear density contrast and a tet-
rahedral body with horizontally and vertically varying density contrasts) are used to verify 
the correctness and the efficiency of our newly developed closed-form solutions. Excel-
lent agreements are obtained between our solutions and other published exact solutions. In 
addition, stability tests are performed to demonstrate that our exact solutions can safely be 
used to detect shallow subsurface targets.

Keywords  Gravity gradient tensor · Polyhedral bodies · Polynomial mass contrast · 
Shallow target detection · Gravity explorations

1  Introduction

Gravity exploration methods try to identify the anomalous mass bodies in the Earth 
(Blakely 1996). Gravity signals such as gravity fields and gravity gradient tensors are 
measured using gravimeters and gravity gradiometers, which can be located on the 
air–Earth interface, in boreholes, or be carried by marine ships and aircraft, and even by 
satellites (Nabighian et al. 2005). The amplitudes of the gravity field are inversely propor-
tional to the square of the distance (R) between the observation site and the causative body, 
that is  O(R−2) . As for the gravity gradient tensor, its amplitude is inversely proportional 
to the third power of distance, that is  O(R−3) . Therefore, compared to the gravity field, 
gravity gradient tensor signals are more sensitive to the shallow anomalous structures in 
the Earth (Droujinine et  al. 2007; Beiki and Pedersen 2010; Martinez et  al. 2013; Beiki 
et al. 2014; Gutknecht et al. 2014; Li 2015; Ramillien 2017). Mathematically, both grav-
ity field and gravity gradient tensor signals can be formulated as volume integrals over the 
causative body. When the observation site is located inside the mass body, a local spheri-
cal coordinate system can be introduced at the observation site, so that a factor of distance 
squared ( R2 ) would be introduced (such as dv = R2 sin �drd�d� , Blakely 1996), which can 
further weaken the singularity appearing in the integrands of the gravity signals (Jin 2002). 
Therefore, from the mathematical point of view, the gravity field can be evaluated with-
out mathematical singularities, as O(R−2 × R2) = O(1) , but the mathematical singularities 
always remain in the gravity gradient tensor formulation, when observation sites approach 
the causative body, that is O(R−3 × R2) = O(R−1).

Designing gravity gradiometers for measuring gravity gradient tensor signals is a dif-
ficult task. The gravity gradient tensor is a 3 × 3 symmetrical tensor with each entry being 
the second derivatives of the gravitational potential (or the first derivatives of the gravity 
field or the gravity acceleration). In terms of differential measurements, accelerations of at 
least two spatially separated masses were generally used to estimate the components of the 
gravity gradient tensor. Depending on the accuracies of the available gradiometers, grav-
ity gradient tensor signals can be applied in geodesy (0.01 Eötvös to 0.1 Eötvös), autono-
mous navigation (0.1 Eötvös to 1 Eötvös) and oilfield and mineral exploration geophys-
ics (1 Eötvös to 10 Eötvös) (Evstifeev 2017). In exploration geophysics, the cause of the 
increased interest in gravity gradiometers is that, compared to gravity anomalies measured 
by gravimeters, gravity gradient tensor signals contain more detailed information about 
the subsurface structures (Chapin 1998; Nabighian et al. 2005). Furthermore, compared to 
gravity field data, gravity gradient tensor anomaly maps generally provide more contrasting 
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and clearer edge delineations, such as those arising from salt domes in oil and gas pros-
pecting (Pedersen and Rasmussen 1990). Up to now, several gravity gradiometers have 
been adopted in realistic exploration geophysical problems, such as the 3D FTG (full ten-
sor gradiometer) system by Bell Geospace (Bell and Hansen 1998; Bell et al. 1997; Brew-
ster 2016; Abtahi et al. 2016) and the Falcon AGG airborne gravity gradiometer by BHP 
Billiton (Australia) (Lee 2001).

To invert measured gravity gradient tensor (GGT) signals, we need an accurate forward 
solver. In general, GGT forward modelling can be performed either numerically or ana-
lytically. Using numerical methods such as Gaussian quadrature approaches (Talwani and 
Ewing 1960), Fourier domain methods (Parker 1973; Wu and Chen 2016), finite-element 
methods and finite-difference methods (Cai and Wang 2005; Farquharson and Mosher 
2009; Jahandari and Farquharson 2013), the GGT signals caused by a mass body can be 
straightforwardly evaluated. However, the accuracies of numerical GGT signals can be 
seriously reduced by these numerical methods. For instance, using finite-element and 
finite-difference methods, improper translation of the computed gravitational potential to 
its second-order derivatives can lead to serious numerical errors. These undesired precision 
loss issues can be completely avoided by analytic approaches, which offer highly accurate 
GGT signals in terms of exact solutions.

Due to early limitations in the considered model geometries, the simple rectangular pris-
matic element has been widely accepted as a basic element in gravity forward modelling. 
Using these prismatic elements, the mass distributions in the Earth were simply approxi-
mated conceding a certain loss of geometrical accuracy. As for this basic element, sev-
eral exact solutions of the gravity gradient tensor signals were developed (Forsberg 1984; 
Li and Chouteau 1998; Montana et al. 1992; Nagy and Papp 2000; Holstein et al. 2013; 
De Stefano and Panepinto 2016). However, it is difficult to accurately approximate a com-
plex body using prisms. Polyhedral elements are endowed with great flexibility in pres-
entation of 3D mass sources with complex geometries. Compared to prismatic elements, 
discretisations in terms of polyhedrons need lower numbers of elements to represent com-
plicated mass bodies (Petrović 1996). Several analytical solutions have been successfully 
derived for the gravity gradient tensor signals of a homogeneous polyhedral body (Okabe 
1979; Götze and Lahmeyer 1988; Kwok 1991; Petrović 1996; Werner and Scheeres 1996; 
Tsoulis and Petrović 2001; Holstein 2002; Tsoulis 2012; Holstein et  al. 2013; D’Urso 
2014a). Closed-form solutions of the gravity gradient tensor were also derived for other 
homogeneous simple geometries, such as pyramids (Sastry and Gokula 2016) and cylin-
ders (Rim and Li 2016).

Seeking simplicity, geophysicists often assume that the Earth is composed of 3D anomalies 
in a layered medium or a succession of strata with horizontally undulating interfaces (e.g., 
sedimentary basins and underlying bedrock). In each layer, the rock mass density predomi-
nantly exhibits depth-dependent variations. To approximate the density variations in sedimen-
tary basins, several closed-form solutions of gravity signals were derived for depth-dependent 
mass contrast functions, such as exponential functions (Cordell 1973; Chai and Hinze 1988; 
Chappell and Kusznir 2008), hyperbolic functions (Litinsky 1989; Rao et al. 1995), parabolic 
functions (Chakravarthi et al. 2002), quadratic polynomials (Rao 1985, 1990; Gallardo-Del-
gado et al. 2003) and cubic polynomials (García-Abdeslem 2005). Compared to these depth-
dependent functions, polynomials offer a more flexible way to approximate arbitrarily vari-
able density distributions. Very recently, Jiang et al. (2017) have given a detailed performance 
comparison between polynomial mass contrast functions and depth-dependent mass contrast 
functions for the capability of approximating complicated density distributions in the Earth. 
The result clearly demonstrates the superiority of polynomial mass contrast functions over the 
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depth-dependent mass contrast functions. As the real Earth has complicated mass density dis-
tributions, it is important to deal with a general polynomial mass contrast function, which not 
only varies in depth (vertical direction), but also varies in the horizontal direction.

For general polynomial functions, Pohánka (1998), Holstein (2003), Hansen (1999), 
D’Urso (2014b) and Ren et al. (2017a) have successfully derived closed-form solutions for the 
gravity field of a polyhedral body, in which the mass contrast linearly varies in both horizontal 
and vertical directions. Quite recently, analytical expressions for the gravity field of a poly-
hedral body with cubic polynomial density contrast in both horizontal and vertical directions 
were derived by D’Urso and Trotta (2017) and Ren et al. (2018). Nevertheless, only Holstein 
(2003) and D’Urso (2014b) have successfully derived closed-form solutions for gravity gradi-
ent tensor of a polyhedral body, in which the mass contrast varies linearly in both horizontal 
and vertical directions. To the best of our knowledge, closed-form solutions for gravity gradi-
ent tensor signals of a polygonal body with high-order polynomial mass contrasts (such as 
quadratic and cubic orders) varying in both horizontal and vertical directions have not been 
previously reported.

To overcome this both theoretically and practically important issue, we have successfully 
derived closed-form solutions for modelling the gravity gradient tensor of the above cases in 
this study. Inside the polyhedral body, its density contrast is approximated by a general polyno-
mial function (currently, a maximum order up to and including three is considered). The poly-
nomial mass contrast function can vary in both horizontal and vertical directions. Therefore, 
it has the capability to approximate complicated mass contrasts in realistic Earth models. To 
begin with, we apply the Gaussian gradient theorem to transform the volume integrals of GGT 
signals into surface integrals over the faces of polyhedra. Then, we apply the surface divergence 
theorem to further transform these surface integrals into a sequence of line integrals along the 
edges of the polyhedra. In the process of reducing the integral dimension, several vector or 
dyadic identities are employed to reduce the orders of the density polynomials and of the singu-
larities in R in the integrands. The line integrals along the edges of the polyhedra are evaluated 
in terms of known analytical expressions (e.g., Gradshteyn and Ryzhik 2007).

To verify the accuracies of our new analytical solutions, a right rectangular prism with 
depth-dependent density contrasts, an irregular polyhedron with linear density contrast and 
a tetrahedral element with horizontally and vertically varying density contrast are tested. For 
the prism model, its reference solution for the gravity gradient tensor is computed from the 
derivatives of García-Abdeslem’s (2005) analytical solution for the gravity field. The analyti-
cal solution derived by Holstein (2003) is used as reference for the irregular polyhedral model. 
Results from high-order Gaussian quadrature are used as reference solutions for the tetrahe-
dron model.

2 � Theory

For an arbitrary interior point � of the polyhedral body (see Fig. 1, Appendix A and Table 5), 
let �(�) denote the density contrast in the polyhedral mass target at that point. The difference 
between two points denotes a vector, for example, the vector from a source point � to the 
observation point �′ is denoted by � − �� . The gravitational acceleration field at the observa-
tion point �′ is (Ren et al. 2018)

(1)�
�
��
�
= G

⎡⎢⎢⎣
−

N�
i=1

�̂i ∬
𝜕Hi

𝜆(�)

R
ds +∭

H

∇�𝜆(�)

R
dv

⎤⎥⎥⎦
,
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where G = 6.673 × 10−11 m3 kg−1 s−2 is Newton’s gravitational constant, ∇� is the gradient 
operator on point � , R = |� − ��| is the distance from the observation site to the running 
integral point in the source polyhedral body H, and the gradient theorem (Tai 1997) is 
applied.

Using Eq.  (1) for the gravity field, the gravity gradient tensor � can be derived as 
follows:

where ∇�� denotes the gradient operator on point �′ and the relation ∇�
1

R
= −∇��

1

R
 is used.

Using the following vector identity (Tai 1997):

where � can be a scalar or a vector, setting � =
1

R
 and � = ∇� and using the gradient 

theorem (Tai 1997), the volume integral term ∭
H
(∇�

1

R
)(∇��)dv in Eq. (2) can be further 
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(3)∇(��) = �∇� + (∇�)�,

Fig. 1   Illustration of the 
geometry of a polyhedral body 
H and the associated geometric 
quantities on face �Hi with their 
definitions given in Table 5
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Setting � =
1

R
 and � = � in Eq. (3), the surface integral ∬

�Hi
�∇�

1

R
ds in Eq.  (2) can be 

transformed as

where the surface gradient theorem (Tai 1997) is used. The symbol ∇s denotes the surface 
gradient operator, where the subscript s means it is an operator on a 2D surface. In the 
above, the definition (A.3) of the number hi , constant over facet plane i, as the projection 
onto the facet normal �i of the position vector of a planar point � relative to the observation 
point �′ and the following vector identity were used:

where f is an arbitrary scalar function and �̂ is the outward pointing normal unit vector of 
the considered surface. In Eq. (5), we set f = �

R
.

Substituting Eqs. (4) and (5) into Eq. (2), we obtain the following expression for the gravity 
gradient tensor of a polyhedral body H with arbitrary mass contrast function �(�):
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The density function � is defined as a general polynomial function. It allows for the density 
variations in both horizontal and vertical directions, which is defined as:

where P is the maximum polynomial order, and �d are the d-th order density terms. For 
instance, the zero (constant), first (linear), quadratic and cubic order density terms are 
given as:

where aklm are known coefficients which can be estimated by fitting measured gravity field 
data (Blakely 1996). The total gravity signal is the sum of the individual contributions 
from different mass densities, such as �0 , �1 , �2 and �3.

Substituting the density contrast in Eqs. (8) into (7), we get the final gravity gradient tensor:

where �d denotes the individual contribution from the d-th order density contrast. In 
this study, we only consider the cases 0 ≤ P ≤ 3 . For simplicity, we denote x, y and z by 
xp(p = 1, 2, 3) in the following sections, that is

2.1 � Constant Density Contrast

For the constant term, substituting �0 = a000 and ∇��0 = 0 into Eq. (7), we get �0 as follows:

Detailed derivations of expressions for the line integral ∫
Cij

1

R
dl and the surface integral 

∬
�Hi

1

R3
ds are given in Appendix B.
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2
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3

(13)� =

P∑
d=0

�d,

(14)

⎧
⎪⎨⎪⎩
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Mi�
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Cij

1

R
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𝜕Hi

1

R3
ds

⎞⎟⎟⎟⎠
�̂i.
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2.2 � Linear Density Contrast

As for the linear terms in the polynomial density contrast, we set �1 = � ⋅ � , where 
� = (a100, a010, a001) and � = (x, y, z) . Substituting � = �1 = � ⋅ � and ∇�� = ∇��1 = � and 
∇�∇��1 = � into Eq. (7), we get

The above equation consists of one kind of line integral, i.e., ∫
Cij

�

R
dl and two kinds of sur-

face integrals, i.e., ∬
�Hi

 �
R3
ds and ∬

�Hi

1

R
ds , with their detailed derivations given in Appen-

dix C.

2.3 � Quadratic Density Contrast

As for the quadratic term in the polynomial density contrast in Eq. (11), its gradient is

The second derivative of �2 is

Substituting �2 and its derivatives ∇��2 and ∇�∇��2 into the general expression of the grav-
ity gradient tensor in Eq. (7), four kinds of integrals need to be considered (their detailed 
derivations are given in Appendix D), which are the line integral term ∫

Cij

xpxq

R
dl , the sur-

face integral term ∬
�Hi

xpxq

R3
ds , the surface integral term ∬

�Hi

xp

R
ds and the volume integral 

term ∭
H

1

R
dv , where, using p, q = 1, 2, 3 , the notations in Eq.  (14) are adopted, and the 

product xpxq represents an arbitrary quadratic monomial.

2.4 � Cubic Density Contrast

Finally, we discuss the gravity gradient tensor due to the cubic density terms given in 
Eq. (12). For the first- and second-order derivatives in Eq. (7), we have

(16)

�1 = G
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ds

⎤
⎥⎥⎥⎦
�̂i

− �̂i�∬
𝜕Hi

1

R
ds

⎫
⎪⎬⎪⎭
.

(17)
∇�𝜆2 =

(
2a200x + a110y + a101z

)
�̂ +

(
a110x + 2a020y + a011z

)
�̂

+
(
a101x + a011y + 2a002z

)
�̂.

(18)

∇�∇�𝜆2 = 2a200�̂�̂ + a110�̂�̂ + a101�̂�̂

+ a110�̂�̂ + 2a020�̂�̂ + a011�̂�̂

+ a101�̂�̂ + a011�̂�̂ + 2a002�̂�̂.
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and

Substituting �3 , ∇��3 and ∇�∇��3 into the expression of the gravity gradient tensor in 
Eq. (7), we find that we only need to deal with four types of integrals (their detailed deriva-
tions are given in Appendix E) to get the final closed-form solutions of �3 in Eq.  (13). 
These four types of integrals are the line integral ∫

Cij

xpxqxt

R
dl , the surface integral 

∬
�Hi

xpxqxt

R3
ds , the surface integral ∬

�Hi

xpxq

R
ds and the volume integral ∭

H

xp

R
dv , with 

p, q, t = 1, 2, 3 . Here, the notations in Eq. (14) are used, such that xpxq and xpxqxt represent 
arbitrary quadratic and cubic monomials, respectively.

2.5 � Comparison with Other Solutions

The previously published analytical solutions of gravity gradient tensors for different 
geometries and mass density contrasts are listed in Table  1. Most of these solutions 
were designed for rectangular prisms with constant density contrasts (Forsberg 1984; 
Montana et al. 1992; Li and Chouteau 1998; Nagy and Papp 2000; Rim and Li 2016) 

(19)

∇�𝜆3(�) =
(
a102z

2 + a111yz + a120y
2 + 2a201xz + 2a210xy + 3a300x

2
)
�̂

+
(
a012z

2 + 2a021yz + 3a030y
2 + a111xz + 2a120xy + a210x

2
)
�̂

+
(
3a003z

2 + 2a012yz + a021y
2 + 2a102xz + a111xy + a201x

2
)
�̂

(20)

∇�∇�𝜆3(�)

=
(
6a300x + 2a210y + 2a201z

)
�̂�̂ +

(
2a210x + 2a120y + a111z

)
�̂�̂ +

(
2a201x + a111y + 2a102z

)
�̂�̂

+
(
2a210x + 2a120y + a111z

)
�̂�̂ +

(
2a120x + 6a030y + 2a021z

)
�̂�̂ +

(
a111x + 2a021y + 2a012z

)
�̂�̂

+
(
2a201x + a111y + 2a102z

)
�̂�̂ +

(
a111x + 2a021y + 2a012z

)
�̂�̂ +

(
2a102x + 2a012y + 6a003z

)
�̂�̂.

Table 1   A list of available analytical solutions of the gravity gradient tensor for different geometries and 
different orders of polynomial mass contrasts

Shape Order of density contrast References

Rectangular prism Constant Forsberg (1984), Montana et al. (1992), Li and 
Chouteau (1998) and Nagy and Papp (2000)

Cylinder Constant Rim and Li (2016)
Truncated square pyramid Linear in depth Sastry and Gokula (2016)
Polyhedron Constant Okabe (1979), Götze and Lahmeyer (1988), 

Kwok (1991), Werner and Scheeres (1996), 
Tsoulis and Petrović (2001), Holstein (2002), 
Holstein et al. (2007a, b), Tsoulis (2012) and 
D’Urso (2014a)

Polyhedron Linear Holstein (2003) and D’Urso (2014b)
Polyhedron Constant Our solution
Polyhedron Linear Our solution
Polyhedron Quadratic Our solution
Polyhedron Cubic Our solution
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and for polyhedra (or cylinders) with constant density contrasts (Okabe 1979; Götze 
and Lahmeyer 1988; Kwok 1991; Werner and Scheeres 1996; Holstein 2002; Holstein 
et  al. 2007a, b; Tsoulis and Petrović 2001; Tsoulis 2012; D’Urso 2014a). Only a few 
studies have been carried out for linear mass density contrasts (Holstein 2003; D’Urso 
2014b; Sastry and Gokula 2016). Using our new findings, we successfully derive a set 
of analytical expressions of the gravity gradient tensor signals for a general polyhedron 
with constant, linear, quadratic and cubic polynomial mass functions. Our closed-form 
solutions for constant and linear polynomial mass functions may have different forms 
from the previously published solutions, but they should produce the same results. In 
addition, we were not only the first to find the exact solutions for the quadratic and cubic 
cases, but also our solutions allow for mass contrasts varying simultaneously in both 
horizontal and vertical directions. However, it is difficult to derive closed-form solu-
tions of the GGT for higher-order polynomial density contrasts, simply because analyti-
cal expressions cannot be found for 1D edge integrals in terms of the existing integral 
tables (Gradshteyn and Ryzhik 2007).

3 � Verification

Three models were used to validate our closed-form solutions. The first one is a rectangu-
lar prism model (Fig. 2), for which the derivatives of closed-form solutions for the grav-
ity field in García-Abdeslem (2005) were taken as references. The second model is an 
irregular polyhedron with linear density contrast, taken from Holstein (2003), for which a 
comparison with Holstein’s (2003) solution is given. The third model is a relatively com-
plicated tetrahedral body (Fig. 5). As there are no reference solutions for the GGT of poly-
hedral mass bodies with quadratic and cubic density contrasts, we have used high-order 
Gaussian quadrature rules (such as 512 × 512 × 512 = 124,217,728 quadrature points) to 
calculate GGT reference solutions. Additionally, we allowed the density in the tetrahedral 
body to vary in both horizontal and vertical directions. We should mention that because 
our formulae require the observation site to be located at the origin of the Cartesian coordi-
nate system, for each observation site, a coordinate translation must be performed to move 
the observation site to the origin.

10km

8km

0 1

23

4 5

67

8 9

(a) (b)

x
y

z

5km

5km

10km

1m
2km

2km 1m

O

Fig. 2   a García-Abdeslem’s (2005) prism model. b The prism in the left panel is decomposed into two 
polyhedral bodies
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3.1 � A Prismatic Body with Depth‑Dependent Density Contrast

The prism is located in a Cartesian coordinate system with the z-axis downward. In Fig. 2a, 
the coordinate ranges of the prismatic body are x = [10, 20]  km, y = [10, 20]  km and 
z = [0, 8] km. The density function is a depth-dependent cubic polynomial which is taken 
from García-Abdeslem (2005):

where the density contrast is in kg∕m3 and z is in km.
In the García-Abdeslem’s (2005) work, an analytic formula for the vertical gravity 

field caused by a rectangular prism with density contrast varying as a depth-dependent 
cubic polynomial was derived. Therefore, we took the derivatives of García-Abdeslem’s 
solution (i.e., Txz , Tyz , Tzz ) as references to verify our solution for the gravity gradient 
tensor. Furthermore, to verify our solution for an arbitrary polyhedral body, we decom-
posed the original rectangular prism into two polyhedra (as shown in Fig.  2b). These 
two polyhedra share the plane with vertices 1, 3, 8 and 9. Note, this test requires points 
1, 3, 8 and 9 to be co-planar. If they were not co-planar, the surface (1, 3, 8, 9) would 
need to be divided into two triangles (1, 3, 8) and (3, 8, 9). The values of Txz , Tyz and Tzz 
were computed at two observation sites. One is located at point (12, 12, − 0.001) km 
with a 1-m offset right above the top face of the prismatic body, whereas the other one 
is located at point (20, 10, − 0.001) km, that is near a corner of the rectangular prism.

The results computed by our closed-form solution and by derivatives of García-
Abdeslem’s (2005) gravity field solution are compared in Table  2. We compare GGT 

(21)�(�) = − 747.7 + 203.435z − 26.764z2 + 1.4247z3,

Table 2   Comparison of gravity gradient tensors calculated by our new closed-form solution and deriva-
tives of García-Abdeslem’s (2005) gravity field solution for the prismatic body given in Fig. 2

The relative errors of the tensor trace are calculated as |Txx + Tyy + Tzz|∕(|Txx| + |Tyy| + |Tzz|) . Symbol (−) 
indicates no solution available

Observation sites (km) Component Our solution (s−2) Derivatives of García-
Abdeslem’s solution (s−2)

Above the top face (12, 
12, – 0.001)

Txz − 3.88858891017895E–08 − 3.88858891017895E–08
Tyz − 3.88858891017896E–08 − 3.88858891017894E–08
Tzz − 1.64520148647808E–07 − 1.64520148647807E–07
Txx 8.22600743239035E–08 –
Tyx − 2.05924999039651E–08 –
Tyy 8.22600743239036E–08 –
|Txx + Tyy + Tzz|

|Txx| + |Tyy| + |Tzz|
2.73514373119212E–15 –

Above a corner(20, 10, 
− 0.001)

Txz 3.76066135071827E–07 3.76066134249181E–07
Tyz − 3.76066137294381E–07 − 3.76066133541187E–07
Tzz − 2.14583791999808E–08 − 2.14583798887903E–08
Txx 1.07291859383300E–08 –
Tyx 3.60015219545839E–07 –
Tyy 1.07291932616670E–08 –
|Txx + Tyy + Tzz|

|Txx| + |Tyy| + |Tzz|
3.77463390064588E–13 –
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elements Txz , Tyz , Tzz , because only gz is given in García-Abdeslem (2005). Excel-
lent agreement is obtained between these two approaches, with relative errors on the 
order of 10−13% at site (12, 12, − 0.001) km and relative errors 10−6–10−7% at site (20, 
10, −  0.001)  km. The tensor trace Txx + Tyy + Tzz = ∇2

��
U is a useful tool for indicat-

ing numerical error. Using the Poisson equation ∇2
��
U = −4�G� for the gravitational 

potential U, the tensor trace vanishes outside the source body and is −4�G� inside the 
source body. Since our observation points are outside the source body, we have calcu-
lated the relative errors shown in Table 2 as |Txx + Tyy + Tzz|∕(|Txx| + |Tyy| + |Tzz|) . The 
relative error of the tensor trace is 2.74 × 10−13% at the location above the top face and 
3.77 × 10−11% above the corner. Both our solution and García-Abdeslem’s (2005) solu-
tion for the GGT are singular, when observation sites are located on edges and corners. 
When the observation site gets close to the corner, the mathematical singularity becomes 
stronger, and this is, why the relative error is larger at site (20, 10, − 0.001) km.

In summary, the excellent agreement of the different solutions has successfully verified 
the accuracy of our new closed-form solutions for a polyhedral body with depth-dependent 
polynomials up to and including cubic order.

3.2 � An Irregular Polyhedron with Linear Density Contrast

An irregular polyhedron is tested to compare our solution with Holstein’s (2003) solution 
for linear media. The target model is composed of 8 faces and 10 points (Fig. 3), originally 
designed by Holstein et al. (1999, Appendix A). The linear density contrast inside the tar-
get body is taken from Holstein (2003, Appendix C), that is

(22)G� = −
80

645
+

4(x + 2y − 10z)

645
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-20

z 
(k

m
) -10

9

40

4

x (km)

0

7

20

3

0

y (km)

1

020

62

-20

8

40 -40

Fig. 3   Irregular polyhedral model described in Holstein et  al. (1999, Appendix A). (x, y, z) coordinates 
of the vertices are 1 (10, 10,−12) km, 2 (10,−10,−12) km, 3 (−10,−10,−12) km, 4 (−10, 10,−12) km, 5 
(−20, 30,−12) km, 6 (30, 30,−12) km, 7 (20, 20,−22) km, 8 (20,−30,−22) km, 9 (−20,−30,−22) km and 
10 (−20, 20,−22) km. Two test points for comparison with Holstein’s (2003) solution are marked by blue 
stars. A vertical profile is marked by a red dotted line
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where the density � is in kg∕m3 , coordinates are given in km. First, we compute the grav-
ity gradient tensor at two test points, an outer point with coordinates of (0, 0, 0) km and 
an interior point at the centroid �̄ =

1

88
(40, 250,−1541)  km. The results are shown in 

Table 3. An excellent agreement is obtained between our closed-form solution and Hol-
stein (2003)’s solution.

Second, the gravity gradient anomalies are evaluated on a vertical profile passing 
through the target body, in order to validate our formulas by the well-known Poisson equa-
tion ∇2

��
U = −4�G� , where U is the gravitational potential. The vertical profile is from a 

point with coordinates of (0, 0,− 34) km to a point with coordinates of (0, 0, 0) km, with 
observation points placed at a uniform vertical (z) spacing of 1 km. Due to the discontinu-
ity of the gradient tensor signals on the boundary, we only perform tests at two points 
which are very close to the boundary (with a small distance of ± 10−10 km). The value of 

Table 3   Values of the gravity gradient tensors for the irregular polyhedron and the observation points 
marked by blue stars in Fig. 3

At the outer point (0, 0, 0) km At the centroid (40, 250, − 1541)/88 km

Our solution Holstein’s (2003) solu-
tion

Our solution Holstein’s (2003) 
solution

Txx(s
−2) − 7.6908531369E–01 − 7.6908531369E–01 − 2.0052858984E+00 − 2.0052858984E–00

Txy(s
−2) 1.7105121125E–02 1.7105121125E–02 2.8319243428E–02 2.8319243428E–02

Txz(s
−2) − 6.0704410609E–02 − 6.0704410609E–02 − 2.7865844320E–04 − 2.7865844319E–04

Tyy(s
−2) − 4.5350144435E–01 − 4.5350144435E–01 − 9.5222605949E–01 − 9.5222605949E–01

Tyz(s
−2) − 2.6549313009E–01 − 2.6549313009E–01 1.2199835474E–01 1.2199835474E–01

Tzz(s
−2) 1.2225867580E+00 1.2225867580E–00 − 9.6088586564E+00 − 9.6088586564E–00
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Fig. 4   a Comparison of the Laplacian term Txx + Tyy + Tzz calculated by our new closed-form solution to 
the reference value of −4�G� for the causative body in Fig.  3. b Relative errors calculated as 
(Txx+Tyy+Tzz)+4�G�

|Txx|+|Tyy|+|Tzz|
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−4�G� is used as the reference. The relative errors are calculated using the formula 
(Txx+Tyy+Tzz)+4�G�

|Txx|+|Tyy|+|Tzz|  and shown in Fig.  4. The maximum absolute relative error is 

3.08389 × 10−13%.

3.3 � A Tetrahedral Mass Body with Horizontal and Vertical Density Contrasts

In practical gravity exploration, the underground mass bodies can have complicated 
shapes. To calculate their GGT signals, we generally need to discretise the underground 
mass bodies into sets of disjoint elements with different shapes, such as structured hexa-
hedral or prismatic elements and unstructured tetrahedral elements. Compared to reg-
ular prismatic elements, unstructured tetrahedral elements can well approximate arbi-
trarily complicated anomalies. Using recent Delaunay triangulation techniques (e.g., Si 
2015), geophysicists can easily set up discretised triangulated grids to represent compli-
cated anomalous targets. Therefore, unstructured grid techniques have been widely used 
in the geophysical community, not only in gravity exploration (Jahandari and Farquhar-
son 2013; Ren et al. 2017c), but also in the electromagnetic induction community (Li 
and Key 2007; Schwarzbach et al. 2011; Ren et al. 2013) and the seismic imaging field 
(Lelièvre et al. 2011). Testing a single tetrahedral mass body not only aims to test the 
performance of our new closed-from solutions for complicated density contrasts (hori-
zontal and vertical density contrasts), but also demonstrates its compatibility with other 
codes developed for unstructured grids. This verification is an important step towards 
joint inversion for multiple parameters, such as magnetisation vector, conductivity, 
velocity and mass density on the same unstructured gird.

The geometry of the tetrahedron is shown in Fig. 5. We used the density contrast as 
given in D’Urso and Trotta (2017, equation 166), which includes horizontal variation of 
the density contrast

(23)� = − 747.7 + 203.435z − 26.764z2 + 1.4247z3−23.205x − 23.205y,

x (km)

z (km)

y (km)

1(0,0,0.02)

2(-0.05,0.01,0.1) 3(0.05,0.05,0.08)

4(0.05,-0.05,0.05)

-0.16 0.16

-0.16

0.16

Fig. 5   A tetrahedron with cubic polynomial density contrast. The coordinates of the vertices are 
(0, 0, 0.02)  km for vertex 1, (− 0.05, 0.01, 0.1)  km for vertex 2, (0.05, 0.05, 0.08) km for vertex 3 
and (0.05,−0.05, 0.05) km for vertex 4. The measuring plane is marked by red colour and located at 
x = [−0.16, 0.16]  km, y = [−0.16, 0.16]  km and z = 0  km. The red dashed line marks a profile passing 
through the interior
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where the unit of the density is kg /m3 and the units of the coordinates are km.
A measuring plane is located above the tetrahedron in a range of x = [− 0.16, 0.16] km, 

y = [− 0.16, 0.16]  km and z = 0km. On the measuring plane, the gravity gradient ten-
sors were computed using our closed-form solution and a Gaussian quadrature rule with 
512 × 512 × 512 points. The high-order Gaussian quadrature rule was built by projecting 
the tetrahedral element into a hexahedral element (Rathod et al. 2006) and then applying 
the standard Gauss Legendre Quadrature rule (Golub and Welsch 1969). Since there are 
no published results of GGTs for high-order polynomial density contrasts, we compare 
to results computed by high-order Gaussian quadrature as the reference solutions. The 
six components of the gravity gradient tensor are shown in Fig. 6 for our analytical solu-
tions and in Fig. 7 for Gaussian quadrature solutions. The relative errors with regard to 
the Gaussian quadrature solution are shown in Fig. 8. Clearly, the results from our ana-
lytical solution agree quite well with those computed by the Gaussian quadrature rule, 
with absolute relative errors less than 2 × 10−7% . The computation time for the analyti-
cal solution is about 0.9 s, and the computation time for 512 × 512 × 512 points Gauss-
ian quadrature is about 3.7194 h.

Furthermore, the sums of the diagonal entries Txx + Tyy + Tzz were computed using the 
analytical solution. When the observation site is outside the source region, as in our example, 
these three diagonal entries satisfy the Laplace equation, that is ∇2U = Txx + Tyy + Tzz = 0 , 
thus providing an independent means of verification of our closed-form solutions. As 
shown in Fig. 9, the relative error |Txx + Tyy + Tzz|∕(|Txx| + |Tyy| + |Tzz|) has a maximum 
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Fig. 6   Gravity gradient tensor of the tetrahedron model on the measuring plane (cf. Fig. 5) calculated by 
our analytical method. The mass contrast is given in Eq. (23)
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value of 3.26 × 10−12% . Therefore, the condition of ∇2U = Txx + Tyy + Tzz = 0 is satisfied 
by our solutions.

Next, with the aim of testing the case of cross-varying mass contrasts, the following 
density contrast and the same tetrahedral body as shown in Fig. 5 were used:

where the unit of density is kg /m3 and the units of the coordinates are km. This density 
contrast function simultaneously varies in both horizontal and vertical directions, ranging 
from about −300 to 400 kg/m3 . A measurement profile is positioned at x = [−0.2, 0.2] km, 
y = 0 km and z = 0 km. The six components of the gravity gradient tensor were calculated 
by our analytical formulae and Gaussian quadrature with 512 × 512 × 512 points as shown 
in Fig. 10. The relative errors of our solutions with respect to the Gaussian quadrature solu-
tions are shown in Fig. 11. Note, that the maximum absolute relative errors are less than 
5 × 10−8 %. Therefore, the results computed by our analytical solution have excellent agree-
ment with those computed by high-order Gaussian quadrature, for this case where the den-
sity contrast simultaneously varies in both horizontal and vertical directions. Furthermore, 
a test was conducted with observations sites located on a path at x = [−0.05, 0.05]  km, 
y = 0 km, z = 0.04 km crossing the interior. For this setup, the tensor elements and traces 
Txx + Tyy + Tzz were calculated. An excellent agreement between the computed traces of 
the gravity gradient tensor and the reference value of −4�G� (see Fig.  12) is obtained, 
which clearly verifies our closed-form solution.

(24)� = 6 × 104xy + 2 × 105xz2 + 9 × 105xyz,
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Fig. 7   Similar to Fig. 6, but for solutions calculated by Gaussian quadrature with 512 × 512 × 512 points
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Fig. 8   Relative errors of gravity gradient tensors computed by our methods for the tetrahedron model 
(Fig. 5) with respect to the Gaussian quadrature solution (using 512 × 512 × 512 points). The mass contrast 
is given in Eq. (23)

Fig. 9   a Absolute values of tensor traces Txx + Tyy + Tzz of our closed-form solution for a tetrahedral anom-
aly and observation sites distributed on a plane (Fig. 5). The density contrast is given in Eq. (23). b Relative 
errors of tensor traces Txx + Tyy + Tzz calculated as |Txx + Tyy + Tzz|∕(|Txx| + |Tyy| + |Tzz|)
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3.4 � Numerical Stability

Theoretically, closed-form solutions should be accurate. However, due to the limitations 
of floating point arithmetics, these solutions contain inevitable rounding errors, when the 
amplitudes of the gravity signals approach zero. This phenomenon has been observed in 
previous studies (Holstein and Ketteridge 1996; Holstein 2003; Holstein et  al. 2007a), 
which shows that the relative error of the gravity field will grow, when the distance 
between the mass target and the observation site approaches infinity. We use relative error 
here to avoid discussion of anomaly magnitude and instrument-dependent measurement 
accuracy. Beyond a certain distance, gravity anomalies can even be totally corrupted by 
floating point errors. Assuming that the mass body has a size of � and the site-to-target 
distance is denoted by � , the growth of the relative error � satisfies the following formula 
(Holstein and Ketteridge 1996; Holstein 2003; Holstein et al. 2007a):

where � is defined as � = �∕� , �−1 is referred to as the dimensionless target distance, the 
exponent � indicates the speed of error growth, and � is the relative error when 1

�
= 1 , iden-

tified in these papers as the floating point machine precision constant. On a log–log scale 
plot, Eq. (25) is a linear error growth curve lg(�) = � lg

(
1

�

)
+ lg(�).
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Fig. 10   Gravity gradient tensors of the tetrahedron model (Fig. 5) along the profile at x = [−0.2, 0.2] km, 
y = 0 km and z = 0 km calculated by our analytical method (solid lines) and the high-order Gaussian quad-
rature rule with 512 × 512 × 512 points (circles). The mass contrast is given in Eq. (24)
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We present an experiment, in which the tetrahedron shown in Fig. 5 was used to recover 
the above linear error growth curve. The size of the tetrahedron was set to the diameter of its 
circumscribed sphere, that is � = 0.134 km. The starting point for the profile is located at the 
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Fig. 11   Relative errors of the analytical solutions with respect to the high-order Gaussian quadrature solu-
tions for tensor elements of the tetrahedral model (Fig. 5), with density contrast given in Eq. (24)
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centre of the circumscribed sphere of the tetrahedral model. The measuring profile is formu-
lated as x = y, z = 0 km.

Following Holstein et al. (2007a), the equivalent mass point approach was adopted as the 
reference solution, by which the tetrahedral body is approximated by a point source located at 
the centre of the circumscribed sphere. The anomalies calculated by our new closed-form 
expressions and by the equivalent point-mass approach are denoted by T and Tpoint , respec-
tively. In addition, the relative errors � =

|||T − Tpoint
|||∕
|||Tpoint

||| were computed. Four polyno-

mial density contrasts of different orders were used for the stability test:

where the unit of the density contrast is kg/m3 and the units of the coordinates are km. 
The ranges of density contrasts are about 200–1800  kg/m3 for the linear case, about 
40–2200 kg/m3 for the quadratic case and about 10–2250 kg/m3 for the cubic case.

(26)�0 = 1000,

(27)�1 = 10,000(x + y + z),

(28)�2 = 100,000(x2 + y2 + z2 + xz + yz + xy),

(29)�3 = 1,000,000(z3 + yz2 + y2z + y3 + xz2 + xyz + xy2 + x2z + x2y + x3),
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contrast c and cubic density contrast d 
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The relative error curves are shown in Fig. 13 for the above four density contrasts. 
In Fig. 13, at low dimensionless target distances �−1 , the relative errors decrease with 
increasing �−1 , because the tetrahedron is better approximated as a mass point with 
increasing distance. However, the gravity anomalies are progressively corrupted with 
increasing target distance, and when the dimensionless target distance ( �−1 ) is beyond 
a critical value, the rounding error in the unstable calculations exceeds the solution dif-
ference, resulting in a rising trend of the relative errors (cf. Holstein 2003). We recon-
structed the entire error growth curves by extrapolating the ascending parts back to 
(�−1 = 1, � = �) . In Fig. 13, the reconstructed curves are denoted by blue dashed lines. 
We observe that there are two linear error growth trends for each polynomial density 
contrast, that is Tzx and Tzy share the same error growth behaviour, and Txx , Tyy , Tzz and 
Tyx share the same error growth behaviour. The estimated values of � are shown in 
Table 4. Using the estimated � , the critical dimensionless target distances were calcu-
lated from that value of �−1 where the rising part of the error curve indicates a relative 
error of 1 (Holstein and Ketteridge 1996; Holstein 2003; Zhou 2010) in Eq. (25), which 
are also shown in Table 4.

As shown in Table 4, for the linear density case, � is about 4.31 for Txx , Tyy , Tzz and Txy 
and about 5.28 for Txz and Tyz , which agrees with previously estimated values of 4 and 5 
given by Holstein (2003), respectively. As � indicates the error growth speed, Table 4 and 
Fig. 13 also show that the higher the order of the density contrast polynomial is, the faster 
the errors accumulate. At the critical dimensionless target distance, the accumulated round-
ing error has the same amplitude as the true anomaly. Therefore, to safely use our exact 
solution, we should require our observation sites to be located in a range, which is less than 
the critical value 1

�crit
 . Finally, interested readers are referred to Table  4 for the specific 

dimensionless site-target distances for the constant, linear, quadratic and cubic density 
cases.

4 � Conclusions

In the presented work, we have derived a set of closed-form solutions for the gravity gradient 
tensor of an arbitrary polyhedral body. The density contrast of the polyhedral body is repre-
sented as a polynomial function of up to and including third order. The polynomial function 
allows density contrasts to simultaneously vary in both horizontal and vertical directions. To 
our best knowledge, this is the first time that analytical solutions of the gravity gradient ten-
sor are derived for an arbitrary polyhedral body with polynomial orders up to three. Three 
synthetic models (a prismatic body, an irregular polyhedron and a tetrahedral body) were 
used to test the correctness and the efficiency of our newly developed closed-form solu-
tions. By comparing to published closed-form solutions and high-order Gaussian quadrature 

Table 4   Experimental values 
of � and 1∕�crit for polynomial 
density contrasts of different 
orders. All experiments were 
performed on a computer 
with an Intel Core i5-4590 
processor using double precision 
arithmetics

Order Txz , Tyz Txx , Tyy , Tzz , Txy

� 1∕�crit � 1∕�crit

Constant 4.21 5195.26 3.23 70,079.11
Linear 5.28 926.39 4.31 4256.74
Quadratic 6.31 302.90 5.36 835.48
Cubic 7.33 137.09 6.39 282.00
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solutions, the high accuracies of our solutions with deviations of less than 2 × 10−7 % from 
the Gaussian quadrature solutions were demonstrated. The computation time used by our 
analytical solution is significantly less than that of the high-order Gaussian quadrature.

The numerical stability tests show that, when dealing with cubic density contrast, our 
closed-form solutions would generate inaccurate solutions, if the dimensionless target dis-
tance, which is defined as the ratio of the distance between the observation site and the 
causative body to the dimension of the causative body, is larger than about 282 for Txx , Tyy , 
Tzz , Tyx components, and 137 for Tzx , Tzy components, on a profile with x = y and z = 0m . 
This inaccuracy problem is caused by the limited precision of floating point operations, 
when the amplitudes of the gravity gradient tensors are very close to zero. However, since 
most applications of gravity gradient tensors aim at detecting anomalous bodies in the very 
shallow subsurface of the Earth, this problem of precision loss should not cause a serious 
problem in practical situations, and our closed-form solutions are very safe to be applied in 
exploration geophysics.

For the cases of constant, linear, second and cubic polynomial order, there are systematic 
recurrences of previously evaluated integrals as well as occurrences of new types of integrals, 
when going to higher polynomial order. We assume that this is a trend even for higher poly-
nomial orders ( P > 3 ). However, extending our work to higher polynomial orders will be a 
nontrivial task as more and more complicated integrals need to be considered. By contrast, 
using the analytical expressions presented in this study, closed-form solutions for the magnetic 
field can be derived easily.
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Appendix A: Geometric Symbols

The target body H is a polyhedron bounded by N polygonal faces, the geometric quantities of 
which and their definitions are given in Fig. 1 and Table 5, respectively. The i-th face �Hi of H 
is composed of Mi edges of which the j-th edge is denoted by Cij . Symbol �ij denotes a point on 
the j-th edge of face �Hi of the polyhedral body H. The symbol �̂i denotes the outward point-
ing unit normal vector of face �Hi . The vertices on face �Hi are arranged in an anticlockwise 
order around the unit vector �̂i . The starting point and ending point on edge Cij are denoted by 
�0ij and �1ij , respectively. Thus, the tangential unit vector �̂ij along edge Cij is calculated as:

(A.1)�̂ij =
�1ij − �0ij

|�1ij − �0ij| .

http://creativecommons.org/licenses/by/4.0/
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Furthermore, the outward pointing unit vector �ij of edge Cij and face �Hi is calculated as:

Let us establish a local Cartesian coordinate system, the origin of which is located at the 
observation point �′ , that is �� = (0, 0, 0) . Symbol � = (x, y, z) represents an arbitrary 
source point in the polyhedron, and R = |� − ��| is the distance from a source point to the 
observation point. The three unit vectors �̂i , �̂ij and �̂ij form a natural orthonormal basis on 
edge Cij so that projections of vector (� − ��) along these three unit vectors yield a set of 
local coordinates (mij, sij, hi) on edge Cij , which are calculated as:

In Fig.  1, point �ij is the projection of �′ onto edge Cij . Vector �ij = �ij − �� is pointing 
from the observation site �′ to point �ij with its magnitude being denoted by L0ij . Since 
� − �� = �ij + (� − �ij) and �ij ⋅ �̂ij = 0 , the 1D parametrised local coordinate sij along edge 

(A.2)�̂ij = �̂ij × �̂i.

(A.3)

⎧⎪⎨⎪⎩

mij =
�
� − ��

�
⋅ �̂ij

sij =
�
� − ��

�
⋅ �̂ij

hi =
�
� − ��

�
⋅ �̂i

.

Table 5   List of symbols

� An arbitrary source point
�′ An observation point
R Distance from � to �′

� Gravity field
� Gravity gradient tensor
H A polyhedral body
�(�) Density contrast
�Hi The i-th face of the mass body
Cij The j-th edge of the i-th face
N The number of faces on the polyhedral body
Mi The number of edges on face �Hi

�̂i An outward unit normal vector to face �Hi

�̂ij An outward unit normal vector to edge Cij of face �Hi

�̂ij A tangent unit vector on edge Cij

hi Projection of vector (� − ��) along direction �̂i
mij Projection of vector (� − ��) along direction �̂ij

sij Projection of vector (� − ��) along direction �̂ij
�0ij , �1ij The start and end points of edge Cij

R0ij , R1ij Distances from �′ to �0ij and �1ij
s0ij , s1ij Parametrised coordinates sij for points �0ij and �1ij
�ij Projection of �′ to edge Cij

�i Projection of �′ to face �Hi

�̂⟂
ij

A tangent unit vector on face �Hi pointing from �i to �ij
�i Distance from projection point �i to a source point �ij on edge Cij

�ij, L0ij A vector pointing from �′ to �ij and its magnitude
�(�i) Solid angle of the circular region centred at �i within �Hi
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Cij can also be calculated as sij = (� − �ij) ⋅ �̂ij . Thus, any source point on edge Cij can be 
denoted by this local coordinate sij:

Using the fact that �� = (0, 0, 0) , the above equation becomes:

Meanwhile, the distance R = |� − ��| , from any source point on edge Cij to the observation 
site, is parametrised as

The distances from �′ to the vertices �0ij and �1ij are defined as

where s0ij and s1ij are the parametrised coordinates of the vertices �0ij and �1ij , respectively.
In addition, in Fig. 1, �i is the projection of the observation site �′ on the i-th face �Hi , 

and 𝝆̂⊥

ij
=

�ij−�i

|�ij−�i| is the unit vector which points from point �i to point �ij . The direction of 

𝝆̂⊥

ij
 can be either identical or opposite to the direction of the outward normal vector �ij on 

edge Cij . �i = |� − �i| is the distance between the projection centre �i and a source point 
� ∈ �Hi.

Appendix B: Gravity Gradient Tensor due to Constant Density Contrast

Using the local coordinate sij = (� − ��) ⋅ �̂ij along edge Cij and using Eq.  (A.6), the line 
integral in (15) can be converted into a definite integral:

where dsij is a differential of variable sij . The values of sij at the vertices �0ij and �1ij are s0ij 
and s1ij , respectively. The analytical solution of the above definite integral can be looked up 
in integral tables (equation 2.261 in Gradshteyn and Ryzhik 2007):

(A.4)� = �ij + sij�̂ij, for � ∈ Cij.

(A.5)� = �ij + sij�̂ij, for � ∈ Cij.

(A.6)R =
√

s2
ij
+ L2

0ij
, for � ∈ Cij.

(A.7)R0ij =
√

s2
0ij
+ L2

0ij
,

(A.8)R1ij =
√

s2
1ij
+ L2

0ij
,

(B.1)∫
Cij

1

R
dl = ∫

s1ij

s0ij

1√
s2
ij
+ L2

0ij

dsij,

(B.2)
�

s1ij

s0ij

1√
s2
ij
+ L2

0ij

dsij = ln

(
s1ij + R1ij

s0ij + R0ij

)
, if L0ij ≠ 0

=
|||||
ln

s1ij

s0ij

|||||
, if L0ij = 0 and �� ∉ Cij.
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When the observation site lies on the extension of edge Cij ( L0ij = 0 and s1ij ⋅ s0ij > 0 ), the 
integrand function is reduced to 1

|sij| which leads to the second formula of Eq.  (B.2). We 

should note that when the observation site �′ is located within the edge Cij ( L0ij = 0 and 
s1ij ⋅ s0ij ≤ 0 ), the linear integral term ∫

Cij

1

R
dl has a weak logarithmic singularity. There-

fore, we cannot compute gravity gradient tensors, when the observation site is located on 
an edge of the polyhedral body.

The analytic expression for the surface integral term ∬
�Hi

1

R3
ds in Eq.  (15) can be 

derived using the result from Ylä-Oijala and Taskinen (2003) and Ren et al. (2017b)

where

where the variables mij , s1ij , s0ij , L0ij , hi , R1ij and R0ij are shown in Fig. 1 and all can be 
calculated in terms of the coordinates of the vertices of the polyhedral body. In Eq. (B.3), 
the observation site cannot be located on the surface �Hi of the polyhedral body. In the 
case that the observation site is located on the surface of the polyhedral body, �� ∈ �Hi , the 
gravity gradient tensor is singular, which is an inherent feature of gravity gradient tensor 
(Li and Chouteau 1998; Holstein 2003).

Appendix C: Gravity Gradient Tensor due to Linear Density Contrast

First, we consider the line integral term ∫
Cij

�

R
dl in Eq. (16). Using the parametrisation in 

Eq. (A.5), it can be changed to

where

The analytic solution for the first linear integral in Eq. (C.1) has been given in Eq. (B.2).
Second, we deal with the surface integral term ∬

�Hi

�

R3
ds . Using the identity ∇�

1

R
=

��−�

R3
 , 

our previous assumption �� = (0, 0, 0) , and Eq. (6) (setting f = 1

R
 ), we have

(B.3)hi �
�Hi

1

R3
ds =

⎧⎪⎨⎪⎩

hi�hi�
Mi∑
j=1

�ij, if hi ≠ 0

0, if hi = 0

, �� ∉ �Hi

(B.4)�ij = arctan
mijs1ij

L2
0ij
+ ||hi||R1ij

− arctan
mijs0ij

L2
0ij
+ ||hi||R0ij

,

(C.1)∫
Cij

�

R
dl = �ij ∫

s1ij

s0ij

1√
s2
ij
+ L2

0ij

dsij + �̂ij ∫
s1ij

s0ij

sij√
s2
ij
+ L2

0ij

dsij ,

(C.2)∫
s1ij

s0ij

sij√
s2
ij
+ L2

0ij

dsij =
√

s2
ij
+ L2

0ij

||||
s1ij

s0ij

= R1ij − R0ij.
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where ∇s denotes the surface gradient operator, and the surface gradient theorem is used 
(Tai 1997). According to Eq. (A.3), hi = (� − ��) ⋅ �̂i . Analytic expressions for the line inte-
gral term ∫

Cij

1

R
dl and the surface integral term hi ∬�Hi

1

R3
ds have been presented in 

Eqs. (B.1) to (B.2) and Eqs. (B.3) to (B.4), respectively.
Third, the surface integral term ∬

�Hi

1

R
ds can be evaluated using the result of Ren et al 

(2017a, equation 33),

where as shown in Fig. 1, �i is the projection point of the observation site onto the plane 
containing the face �Hi , �i = ||� − �i

|| , � is a running integral point on edge Cij , i.e., � ∈ Cij . 
Using the geometrical variables given in Fig. 1, we have (Ren et al. 2017a):

(C.3)

∬
𝜕Hi

�

R3
ds = −∬

𝜕Hi

∇�

1

R
ds

= −

⎡
⎢⎢⎣∬𝜕Hi

∇s

1

R
ds + �̂i ∬

𝜕Hi

�̂i ⋅ ∇�

1

R
ds

⎤
⎥⎥⎦

= −

Mi�
j=1

�̂ij ∫
Cij

1

R
dl+�̂ihi ∬

𝜕Hi

1

R3
ds,

(C.4)∬
�Hi

1

R
ds =

Mi∑
j=1

mij ∫
Cij

R

�2
i

dl − �
(
�i
)||hi||,

(C.5)mij ∫
Cij

R

�2
i

dl = ||hi||
(
arctan

||hi||s1ij
mijR1ij

− arctan
||hi||s0ij
mijR0ij

)
+ mij ln

s1ij + R1ij

s0ij + R0ij

.

ijC

αijio
α

ijp
ijm

0ijs

1ijs

Fig. 14   Illustration of the angular extent �ij(�i) subtended by edge Cij of polygon �Hi and the total angular 
extent �(�i) = 2� , when �i ∈ �Hi
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When mij → 0 , the limit of Eq. (C.5) exists and is equal to zero. Therefore, there is no sin-
gularity in Eq. (C.5). As demonstrated in Fig. 14, �(�i) is the angular extent of the arc region 
lying within a plane containing surface �Hi and centred at �i . Note that the projection point 
�i can be located inside, outside or on edges of the surface �Hi . The value of the extent angle 
�(�i) depends on the geometrical relation between �i and the polygon �Hi . When point �i is 
located inside �Hi , �(�i) = 2� ; when point �i is located on an edge of the polygon �Hi but 
not at a vertex, �(�i) = � ; when point �i is located at a vertex, �(�i) is the angle enclosed by 
its two adjacent edges. To avoid judgement of the geometrical relation between point �i and 
the polygon �Hi and facilitate programming, the angle �(�i) can be expressed as a sum of the 
angles subtended by each edge of the polygon �Hi (Wilton et al. 1984, page 278):

where the contribution of each edge is calculated as

and 𝝆̂⊥

ij
=

�ij−�i

|�ij−�i| is the unit vector from point �i to point �ij . The contribution �ij of edge Cij 

to the angular extent �(�i) vanishes, when point �i is on the edge Cij or on its extension, and 
otherwise the sign of �ij depends on whether unit vector 𝝆̂⊥

ij
 is identical or opposite to unit 

normal vector �̂ij.
Finally, the closed-form solution for gravity gradient tensor �1 in Eq. (13) caused by a lin-

ear density contrast can be obtained by substituting Eqs. (C.4), (C.3) and (C.1) into Eq. (16).

Appendix D: Gravity Gradient Tensor due to Quadratic Density Contrast

First, using Eqs. (A.5) and (14), the line integral ∫
Cij

xpxq

R
dl is transformed as

(C.6)�
(
�i
)
=

Mi∑
j=1

�ij(�i),

(C.7)
𝛼ij(�i) =

�
�̂ij ⋅ 𝝆̂

⊥

ij

�⎛⎜⎜⎝
arctan

s1ij

���mij
���
− arctan

s0ij

���mij
���

⎞
⎟⎟⎠
, when mij ≠ 0

= 0, when mij = 0,

(D.1)

∫
Cij

xpxq

R
dl = ∫

s1ij

s0ij

(
�ij ⋅ �̂p + sij�̂ij ⋅ �̂p

)(
�ij ⋅ �̂q + sij�̂ij ⋅ �̂q

)
√

s2
ij
+ L2

0ij

dsij

=
(
�̂ij ⋅ �̂p

)(
�̂ij ⋅ �̂q

)
∫

s1ij

s0ij

s2
ij√

s2
ij
+ L2

0ij

dsij

+
[(
�ij ⋅ �̂p

)(
�̂ij ⋅ �̂q

)
+
(
�ij ⋅ �̂q

)(
�̂ij ⋅ �̂p

)]
∫

s1ij

s0ij

sij√
s2
ij
+ L2

0ij

dsij

+
(
�ij ⋅ �̂p

)(
�ij ⋅ �̂q

)
∫

s1

s0

1√
s2
ij
+ L2

0ij

dsij.
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Using the integral table (Equation 2.264.3 in Gradshteyn and Ryzhik 2007), we obtain

Analytic solutions for the remaining second and third line integrals in Eq. (D.1) have been 
derived in Eqs. (C.2) and (B.2), respectively. Thus, we have successfully derived the ana-
lytic expressions for the line integral ∫

Cij

xpxq

R
dl in Eq. (D.1).

Second, we consider the surface integral ∬
�Hi

xpxq

R3
ds, (p, q = 1, 2, 3 ). In view of the 

assumption that �� = (0, 0, 0) , we have

Using the above equation and the following divergence vector identity:

xpxq

R3
 can be transformed as (setting � = xp�̂q and � =

1

R
):

Integrating the above equation over the face �Hi and applying the surface divergence theo-
rem (Tai 1997), we have

(D.2)
�

s1ij

s0ij

s2
ij√

s2
ij
+ L2

0ij

dsij =
s1ijR1ij − s0ijR0ij

2
−

L2
0ij

2
ln

R1ij + s1ij

R0ij + s0ij
, if L0ij ≠ 0

=
s1ijR1ij − s0ijR0ij

2
, if L0ij = 0 and �� ∉ Cij.

(D.3)xk

R3
=

�̂k ⋅ �

R3
=

�̂k ⋅
(
� − ��

)
R3

= −�̂k ⋅ ∇�

1

R
, k = 1, 2, 3.

(D.4)∇ ⋅ (��) = � ⋅ ∇� + �∇ ⋅ �,

(D.5)

xpxq

R3
= −xp�̂q ⋅ ∇�

1

R

= −

[
∇� ⋅

(
xp�̂q

R

)
−

1

R
∇� ⋅

(
xp�̂q

)]

= −

[
∇s ⋅

(
xp�̂q

R

)
+ �̂i ⋅ ∇�

(
xp�̂q

R
⋅ �̂i

)
−

1

R
�̂p ⋅ �̂q

]

= −

[
∇s ⋅

(
xp�̂q

R

)
+
(
�̂q ⋅ �̂i

)
�̂i ⋅

(
�� − �

R3
xp +

�̂p

R

)
−

�̂p ⋅ �̂q

R

]

= −∇s ⋅

(
xp�̂q

R

)
+
(
�̂q ⋅ �̂i

)
hi

xp

R3
+

�̂p ⋅ �̂q −
(
�̂q ⋅ �̂i

)(
�̂p ⋅ �̂i

)
R

.

(D.6)

∬
𝜕Hi

xpxq

R3
ds

= −∬
𝜕Hi

∇s ⋅

(
xp�̂q

R

)
ds +

(
�̂q ⋅ �̂i

)
hi ∬

𝜕Hi

xp

R3
ds +

[
�̂p ⋅ �̂q −

(
�̂q ⋅ �̂i

)(
�̂p ⋅ �̂i

)]
∬
𝜕Hi

1

R
ds

= −

Mi∑
j=1

(
�̂ij ⋅ �̂q

)
∫
Cij

xp

R
dl +

(
�̂q ⋅ �̂i

)
hi ∬

𝜕Hi

xp

R3
ds +

[
�̂p ⋅ �̂q −

(
�̂q ⋅ �̂i

)(
�̂p ⋅ �̂i

)]
∬
𝜕Hi

1

R
ds,
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where ∫
Cij

xp

R
dl = �̂p ⋅ ∫Cij

�

R
dl and ∬

𝜕Hi

xp

R3
ds = �̂p ⋅ ∬𝜕Hi

�

R3
ds . The analytic solutions for the 

linear integral ∫
Cij

�

R
dl and for the surface integral ∬

�Hi

�

R3
ds have already been given in 

Eqs. (C.1) and in (C.3), respectively. Furthermore, the surface integral term ∬
�Hi

1

R
ds has 

been derived in Eq. (C.4).
Third, the surface integrals ∬

�Hi

xp

R
ds for (p = 1, 2, 3) are the three components of the vec-

tor surface integral ∬
�Hi

�

R
ds , that is ∬

𝜕Hi

xp

R
ds = �̂p ⋅ ∬𝜕Hi

�

R
ds . Using our assumption 

�� = (0, 0, 0) , Eq. (6) (setting f = R ) and the surface gradient theorem (Tai 1997), the integral 
∬

�Hi

�

R
ds can be calculated as (Ren et al. (2017a), equation 34)

The analytic solution of the surface integral ∬
�Hi

1

R
ds in Eq.  (D.7) has been presented in 

Eq. (C.4), and the remaining line integral ∫
Cij

Rdl in Eq. (D.7) can be computed according 

to integral tables (equation 2.262.1 in Gradshteyn and Ryzhik 2007),

It is easy to see that the limit of the logarithmic term in Eq. (D.8) is zero when L0ij → 0 
(Ren et al. 2018).

Fourth, the volume integral term ∭
H

1

R
dv can be calculated as (equation 18, Ren et al. 

2018):

where the analytic solution for the integral term ∬
�Hi

1

R
ds has been given in Eq. (C.4).

In conclusion, the gravity gradient tensor �2 in Eq. (13) of a polyhedral body with quad-
ratic density contrast �2 in Eq. (11) can be evaluated in terms of closed-form solutions by 
substituting Eqs. (11), (D.7), (D.9), (D.1) and (D.6) into Eq. (7).

Appendix E: Gravity Gradient Tensor due to Cubic Density Contrast

First, we deal with the line integral ∫
Cij

xpxqxt

R
dl . In terms of the definition of the local coor-

dinate sij , which is given in Eq. (A.5), we obtain

(D.7)∬
𝜕Hi

�

R
ds =

Mi∑
j=1

�̂ij ∫
Cij

Rdl+�̂ihi ∬
𝜕Hi

1

R
ds.

(D.8)∫
Cij

Rdl = ∫
s1ij

s0ij

√
s2
ij
+ L2

0ij
dsij =

1

2

[
L2
0ij
ln

s1ij + R1ij

s0ij + R0ij

+ s1ijR1ij − s0ijR0ij

]
.

(D.9)∭
H

1

R
dv =

1

2

N∑
i=1

hi ∬
�Hi

1

R
ds,
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Using the integral table (Gradshteyn and Ryzhik (2007), equation 2.264.3), we get

Here, the integrals ∫ s1ij
s0ij

1√
s2
ij
+L2

0ij

dsij , ∫ s1ij
s0ij

sij√
s2
ij
+L2

0ij

dsij and ∫ s1ij
s0ij

s2
ij√

s2
ij
+L2

0ij

dsij can be analyti-

cally evaluated using Eqs.  (B.2), (C.2) and (D.2), respectively. Finally, this gives the 
closed-from solution for the line integral ∫

Cij

xpxqxt

R
dl in Eq. (E.1).

Second, we will deal with the surface integral ∬
�Hi

xpxqxt

R3
ds . Similar to Eq. (D.5), the inte-

grand xpxqxt
R3

 can be transformed as follows:

(E.1)

∫
Cij

xpxqxt

R
dl = ∫

s1ij

s0ij

(
�ij ⋅ �̂p + sij�̂ij ⋅ �̂p

)(
�ij ⋅ �̂q + sij�̂ij ⋅ �̂q

)(
�ij ⋅ �̂t + sij�̂ij ⋅ �̂t

)
√

s2
ij
+ L2

0ij

dsij

=
(
�ij ⋅ �̂p

)(
�ij ⋅ �̂q

)(
�ij ⋅ �̂t

)
∫

s1ij

s0ij

1√
s2
ij
+ L2

0ij

dsij

+
[(
�ij ⋅ �̂p

)(
�ij ⋅ �̂q

)(
�̂ij ⋅ �̂t

)
+
(
�ij ⋅ �̂p

)(
�ij ⋅ �̂t

)(
�̂ij ⋅ �̂q

)

+
(
�ij ⋅ �̂q

)(
�ij ⋅ �̂t

)(
�̂ij ⋅ �̂p

)]
∫

s1ij

s0ij

sij√
s2
ij
+ L2

0ij

dsij

+
[(
�ij ⋅ �̂t

)(
�̂ij ⋅ �̂p

)(
�̂ij ⋅ �̂q

)
+
(
�ij ⋅ �̂p

)(
�̂ij ⋅ �̂q

)(
�̂ij ⋅ �̂t

)

+
(
�ij ⋅ �̂q

)(
�̂ij ⋅ �̂p

)(
�̂ij ⋅ �̂t
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∫

s1ij

s0ij

s2
ij√

s2
ij
+ L2

0ij

dsij

+
(
�̂ij ⋅ �̂p

)(
�̂ij ⋅ �̂q

)(
�̂ij ⋅ �̂t

)
∫

s1ij

s0ij

s3
ij√

s2
ij
+ L2

0ij

dsij

,

(E.2)
∫

s1ij

s0ij

s3
ij√

s2
ij
+ L2

0ij

dsij =

(
s2
ij
− 2L2

0ij

)√
s2
ij
+ L2

0ij

3

||||||||

s1ij

s0ij

=

(
s2
1ij
− 2L2

0ij

)
R1ij

3
−

(
s2
0ij
− 2L2

0ij

)
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3
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Integrating the above equation over the face �Hi and applying the surface divergence theo-
rem (Tai 1997) to the first term on the right-hand side, we get

where the line integral ∫
Cij

xpxq

R
dl can be analytically evaluated using Eq. (D.1), the values 

of the surface integrals ∬
�Hi

xpxq

R3
ds and ∬

�Hi

xp

R
ds can be analytically calculated using 

Eqs. (D.6) and (D.7), respectively.
Third, using the result from (Ren et al. 2018, equation 26), the surface integral ∬

�Hi

xpxq

R
ds 

can be calculated as

where the closed-form solution for surface integral ∬
�Hi

xp

R
ds is given in Eq. (D.7). The line 

integral ∫
Cij

xpRdl = �̂p ⋅ ∫Cij
�Rdl . Using Eq.  (A.5) and the integral table Gradshteyn and 

Ryzhik (2007, equations 2.262.1–2.262.2), ∫
Cij

�Rdl is calculated as

(E.3)

xpxqxt

R3
= −xpxq�̂t ⋅ ∇�

1

R

= −

[
∇� ⋅

(
xpxq�̂t

R

)
−

1

R
∇� ⋅

(
xpxq�̂t

)]

= −

[
∇s ⋅

(
xpxq�̂t

R

)
+ �̂i ⋅ ∇�

(
xpxq�̂t

R
⋅ �̂i

)
−

�̂t ⋅ ∇�

(
xpxq

)
R

]

= −

{
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(
xpxq�̂t

R

)
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(
�̂i ⋅ �̂t

)
�̂i ⋅

[
�� − �

R3
xpxq +

∇�

(
xpxq

)
R

]
−

�̂t ⋅ ∇�

(
xpxq

)
R

}
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(
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R

)
−
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hi
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−
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(
�̂i ⋅ �̂t

)
�̂i
]
⋅

xp�̂q + xq�̂p

R

}
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(E.4)
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R3
ds = −

Mi∑
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(�̂ij ⋅ �̂t)∫
Cij

xpxq

R
dl +

(
�̂i ⋅ �̂t

)
hi ∬

𝜕Hi

xpxq

R3
ds

+
[
�̂t ⋅ �̂q −

(
�̂i ⋅ �̂t

)(
�̂i ⋅ �̂q

)]
∬
𝜕Hi

xp

R
ds

+
[
�̂t ⋅ �̂p −

(
�̂i ⋅ �̂t

)(
�̂i ⋅ �̂p

)]
∬
𝜕Hi

xq

R
ds,

(E.5)
∬
𝜕Hi

xpxq

R
ds =

Mi∑
j=1

(
�̂ij ⋅ �̂q

)
∫
Cij

xpRdl +
(
�̂i ⋅ �̂q

)
hi ∬

𝜕Hi

xp

R
ds

−
[
�̂q ⋅ �̂p −

(
�̂i ⋅ �̂p

)(
�̂i ⋅ �̂q

)]
∬
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The surface integral ∬
�Hi

Rds in Eq. (E.5E.6) can be calculated using the result of Ren et al. 

(2017a, equation 33). This means

where the calculation of the angular extent �(�i) has been presented in Eq. (C.6), and

When mij approaches zero, the last two terms in Eq. (E.9) approach zero.
Fourth, volume integral ∭

H

xp

R
dv can be calculated from Ren et al. (2018, equation 24)

where the surface integral ∬
�Hi

Rds is given in Eq. (E.8).

To conclude, substituting Eqs.  (12), (E.10), (E.5E.6), (E.4) and (E.1) into Eq.  (7), we 
can obtain the solution of the gravity gradient tensor �3 in Eq. (13) due to a cubic density 
contrast.
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