
Surv Geophys (2018) 39:729–751
https://doi.org/10.1007/s10712-018-9465-3

1 3

Quantifying Modern Recharge and Depletion Rates 
of the Nubian Aquifer in Egypt

Mohamed Ahmed1,2 · Karem Abdelmohsen1

Received: 4 April 2017 / Accepted: 9 February 2018 / Published online: 20 February 2018 
© Springer Science+Business Media B.V., part of Springer Nature 2018

Abstract Egypt is currently seeking additional freshwater resources to support national 
reclamation projects based mainly on the Nubian aquifer groundwater resources. In this 
study, temporal (April 2002 to June 2016) Gravity Recovery and Climate Experiment 
(GRACE)-derived terrestrial water storage  (TWSGRACE) along with other relevant data-
sets was used to monitor and quantify modern recharge and depletion rates of the Nubian 
aquifer in Egypt (NAE) and investigate the interaction of the NAE with artificial lakes. 
Results indicate: (1) the NAE is receiving a total recharge of 20.27  ±  1.95  km3 during 
4/2002−2/2006 and 4/2008–6/2016 periods, (2) recharge events occur only under exces-
sive precipitation conditions over the Nubian recharge domains and/or under a signif-
icant rise in Lake Nasser levels, (3) the NAE is witnessing a groundwater depletion of 
−  13.45  ±  0.82  km3/year during 3/2006–3/2008 period, (4) the observed groundwater 
depletion is largely related to exceptional drought conditions and/or normal baseflow reces-
sion, and (5) a conjunctive surface water and groundwater management plan needs to be 
adapted to develop sustainable water resources management in the NAE. Findings demon-
strate the use of global monthly  TWSGRACE solutions as a practical, informative, and cost-
effective approach for monitoring aquifer systems across the globe.
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CLM  Community land model
CMAP  Climate Prediction Center Merged Analysis of Precipitation
CRI  Coastline resolution improvement
DEM  Digital elevation model
DLR  German Aerospace Center
ETM  Enhanced Thematic Mapper
GDAS  Global Data Assimilation System
GIA  Glacial isostatic adjustment
GIS  Geographic information system
GLAS  Geoscience Laser Altimeter System
GLDAS  Global Land Data Assimilation System
GOES  Geostationary Operational Environmental Satellite
GOHS  Equipe Géodésie, Océanographie & Hydrologie Spatiales
GPCC  Global Precipitation Climatology Centre
GPI  GOES Precipitation Index
GRACE  Gravity Recovery and Climate Experiment
GRLM  Global reservoir and lake monitoring
GWS  Groundwater storage
JPL  Jet Propulsion Laboratory
LEGOS  Laboratoire d’Etudes en Geodésie et Océanographie Spatiales
LSM  Land surface model
Mascons  Mass concentration
MODIS  MODerate-resolution Imaging Spectroradiometer
MSU  Microwave sounding unit
NAE  Nubian aquifer in Egypt
NASA  National Aeronautics and Space Administration
NCAR   National Centre for Atmospheric Research
NOAA  National Oceanic and Atmospheric Administration
OLR  Outgoing Longwave Radiation
OPI  OLR-based Precipitation Index
SMS  Soil moisture storage
SSM/I  Special Sensor Microwave/Imager
SWS  Surface water storage
TM  Thematic Mapper
TWS  Terrestrial water storage
USDA-FAS  U.S. Department of Agriculture’s Foreign Agricultural Service
UT-CSR  University of Texas Center for Space Research
VIC  Variable infiltration capacity

1 Introduction

The understanding of the geologic and hydrologic settings of, and the controlling fac-
tors affecting, freshwater resources in Egypt is gaining increasing importance due to the 
challenges posed by natural and anthropogenic forcing factors. The natural factors might 
include, but are not limited to, changes in rainfall and/or temperature patterns, duration, 
and magnitude, whereas the anthropogenic factors could include population growth, over-
exploitation, and pollution. Given the Egyptian hyper-arid climate, Egypt is currently 
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receiving very little annual rainfall, distributed as 50, 20, and 5 mm over the Sinai Penin-
sula, Eastern Desert, and Western Desert, respectively (Ahmed et al. 2013; Mohamed et al. 
2015). These minimal rainfall amounts and the relatively higher air temperature (~ 30 °C) 
are extremely vulnerable to climate change. Recent climate change studies over Africa 
indicated a tendency toward higher extremes, where the arid or semiarid areas will becom-
ing increasingly dry and the wetter areas will witness intensified precipitation and flooding 
(Vörösmarty et al. 2000; Hulme et al. 2001).

Egypt’s total population is on rise; it increased from 22 million in 1950 to 94 million in 
2016 and is expected to continue for decades to come. The majority (95%) of the Egyptian 
population lives in the Nile River valley and Nile Delta (~ 10% of Egypt’s area), whereas 
Egypt’s deserts remain largely uninhabited, causing enormous pressures on the Nile River 
surface water resources. Given the fact that the Nile basin is largely extended over varying 
topographic and climatic regimes, it represents one of the most vulnerable river systems 
across the world. Recent studies have shown that Nile basin countries are expected to expe-
rience a water stress that will be manifested as changes in precipitation patterns, amounts, 
frequencies, and distributions along with changes in temperature, changes in river flow, and 
the occurrence of associated floods and drought events (e.g., Swain 2011). Egypt currently 
uses its total annual allocation (55 km3/year) of Nile River waters coming mainly (~ 85%) 
from the Blue Nile. In addition, some of the Nile River source countries declared that they 
will no longer abide by the treaty that regulated the distribution of the Nile River water. For 
example, Ethiopia just launched a major project to construct the Grand Ethiopian Renais-
sance Dam which will deprive Egypt of considerable portions of its Blue Nile water for 
several years. Recent studies (e.g., Sultan et al. 2014b) have shown that if the Grand Ethio-
pian Renaissance Dam reservoir (capacity: 70 km3) is to be filled in seven years, Egypt 
will lose, for each of the seven years following dam completion, a minimum of 15 km3 of 
its annual allocation to reservoir filling (10 km3), evaporation (3.5 km3), and infiltration 
(1.5 km3).

Egypt is seeking additional freshwater resources to overcome some of the aforemen-
tioned challenges and to pursue its plans for modernization and development. Currently, 
Egypt is planning to utilize more of its groundwater resources, at the expense of Nile River 
water, to support national reclamation projects; a minimum of 1.5  ×  106 acres will be 
reclaimed during the coming five years. According to the hydrogeological map of Egypt 
(RIGW/IWACO 1988), Egyptian aquifer systems (Fig. 1) include (1) the Nile aquifer that 
occupies the Nile flood plain and desert fringes (Late Tertiary to Quaternary); (2) the 
Moghra aquifer which occupies the western edge of the Delta (Lower Miocene); (3) the 
coastal aquifer that is distributed over northern and eastern coasts (Late Tertiary to Qua-
ternary); (4) the carbonate aquifer in the north and middle parts of the Western Desert 
(Upper Cretaceous to Eocene); (5) the fractured basement aquifer in the Eastern Desert and 
Sinai Peninsula (Precambrian); and (6) the Nubian aquifer covering the Western Desert, 
western parts of the Eastern Desert, and the middle parts of Sinai Peninsula (Cambrian to 
Upper Cretaceous). The majority of current Egyptian reclamation projects depend mainly 
on Nubian aquifer water resources.

The Nubian aquifer (area: 2 × 106 km2; Fig. 1, inset a) represents a transboundary aqui-
fer system shared by four countries: Egypt (38%), Libya (34%), Sudan (17%), and Chad 
(11%), where the majority of the aquifer’s water resources are located in Egypt (41.5 vol%) 
and Libya (41.5  vol%), and less of it in Chad (12.8  vol%) and Sudan (9  vol%) (Thor-
weihe and Heinl 2002). The Nubian aquifer contains three major sub-basins: the Dakhla 
sub-basin in Egypt; the Kufra sub-basin in Libya, northeastern Chad, and northwestern 
Sudan; and the northern Sudan sub-basin in northern Sudan (Fig. 1, inset a). The Dakhla 
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sub-basin in Egypt extends over two minor rift-related sub-basins: the Northwestern basin 
and the Upper Nile Platform (Fig. 1, inset a). In this study, the Dakhla sub-basin in Egypt 
was called the Nubian aquifer in Egypt (NAE). Given the fact that the health of the NAE 
affects the success of the Egyptian reclamation projects as well as the livelihood of many 
people, the ability to routinely observe the water resources of the NAE and make those 
observations publicly available to the decision makers is inevitable. In  situ observations 
(e.g., groundwater levels) of the NAE suffer from delay, gaps, discontinuity, inconsistency, 
and poor quality. Moreover, these observations are sparse and do not adequately represent 
the entire aquifer (NAE area: 0.66 × 106 km2) averaged estimates. Satellite remote sens-
ing observations offer an alternative and/or complement to local in  situ measurements 

Fig. 1  Hydrogeologic map showing the spatial distribution of the major aquifer systems in Egypt (RIGW/
IWACO 1988). Also shown are the spatial extension of the NAE (red polygon) and the spatial distribu-
tion of monitoring wells (colored crosses). Inset a The spatial extension of the Nubian aquifer sub-basins 
in Egypt, Libya, Chad, and Sudan as well as the major uplift. Also shown is the spatial extension of the 
Nubian recharge domains that extend over the aquifer outcrops and receive average annual rainfall (AAR) 
greater than 20 mm (hatched area). Inset b The spatial extension of the entire Nile basin along with the 
lower Nile basin (hatched area)
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and could be used to monitor the aquifer health and longevity. Most of these observa-
tions are globally distributed, free and publicly available, and temporally and spatially 
homogeneous.

The deployment of the Gravity Recovery and Climate Experiment (GRACE) mission 
and the collection of global temporal gravity fields over the past 15 years provide signifi-
cant practical strategies to routinely observe and monitor the water resources of the NAE. 
The GRACE mission, sponsored jointly by the National Aeronautics and Space Adminis-
tration (NASA) and the German Aerospace Center (DLR), is designed to map the temporal 
variations in Earth’s global gravity field on a monthly basis with unprecedented accuracy 
(Tapley et al. 2004a, b). The GRACE-derived variabilities in Earth’s gravity field can be 
used to make global estimates of the spatiotemporal variations in the total vertically inte-
grated components (e.g., surface water, groundwater, soil moisture and permafrost, snow 
and ice, wet biomass) of terrestrial water storage (TWS) (Wahr et al. 1998).

The GRACE-derived TWS  (TWSGRACE) data enabled the scientific community to 
address previously unresolvable hydrogeological questions (e.g., Ahmed et  al. 2011, 
2014b, 2016; Wouters et  al. 2014; Fallatah et  al. 2017). GRACE data have been exten-
sively used to quantify aquifers’ recharge and depletion rates (e.g., Tiwari et al. 2009; Lenk 
2013; Voss et al. 2013; Feng et al. 2013; Gonçalvès et al. 2013; Joodaki et al. 2014; Sul-
tan et al. 2014a; Wouters et al. 2014; Castle et al. 2014; Döll et al. 2014; Al-Zyoud et al. 
2015; Huang et al. 2015, 2016; Li and Rodell 2015; Chinnasamy and Agoramoorthy 2015; 
Chinnasamy et al. 2015; Ahmed et al. 2016; Huo et al. 2016; Jiang et al. 2016; Lakshmi, 
2016; Long et  al. 2016; Mohamed et  al. 2016; Castellazzi et  al. 2016; Veit and Conrad 
2016; Wada et  al. 2016; Yosri et  al. 2016; Chinnasamy and Sunde 2016). Recent stud-
ies utilizing  TWSGRACE data have shown that the NAE is witnessing an overall ground-
water depletion. The reported groundwater depletion rates of the NAE varied with the 
examined period as well as the data sources. For example, groundwater depletion rates of 
2.31  ±  1.00, 2.04  ±  0.99, 4.44  ±  0.42, and 2.58  ±  0.73  km3 were reported during the 
periods of April 2002 to November 2010, January 2003 to September 2012, January 2003 
to December 2012, and April 2002 to December 2013, respectively (Sultan et  al. 2013, 
2014b; Ahmed et  al. 2014a, 2015; Mohamed et  al. 2015). Mohamed et  al. (2016) have 
shown that the Nubian aquifer, from January 2003 to December 2012, is receiving an aver-
age annual recharge of 0.78 ± 0.49 and 1.44 ± 0.42 km3/year over the recharge domains 
in Sudan and Chad, respectively. By comparison, the Nubian aquifer in Libya and Egypt is 
witnessing a groundwater depletion of 0.48 ± 0.32 and 4.44 ± 0.42 km3/year, respectively. 
None of these studies has reported and/or quantified the amounts of natural recharge that 
the NAE is witnessing. Moreover, the recharge/discharge interaction of the NAE with arti-
ficial lakes, such as Lake Nasser and the Tushka Lakes, has not been clearly explained in 
many of these studies (Soltan et al. 2005; Sefelnasr 2007; Sefelnasr et al. 2015).

In this study, temporal (April 2002 to June 2016)  TWSGRACE data along with the out-
puts of land surface models (LSMs) were used to provide improved estimates of recharge 
and depletion rates of the NAE. This study extends the previous investigations by (1) uti-
lizing enhanced state-of-the-art  TWSGRACE solutions, the global mass concentration solu-
tions (mascons); (2) utilizing outputs from several LSMs; four versions of the Global Land 
Data Assimilation System (GLDAS) to isolate the GRACE-derived groundwater storage 
(GWS); (3) broadening the time interval by four years; and (4) investigating the interaction 
of the NAE with artificial lakes, such as Lake Nasser and the Tushka Lakes.
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2  Data and Methods

In this section, a brief description of the GRACE, surface water, soil moisture, and rainfall 
datasets used in this study is provided. The procedures used to extract  TWSGRACE, surface 
water storage (SWS), soil moisture storage (SMS) anomalies, and AAR are also presented 
in this section. All of the datasets used in this exercise are monthly and were acquired 
throughout the time period of April 2002 to June 2016.

2.1  GRACE‑Derived TWS  (TWSGRACE) Data

Three sources of GRACE data have been utilized in this study: spherical harmonics and 
mascon products of the University of Texas Center for Space Research (UT-CSR) and 
mascon solutions from the Jet Propulsion Laboratory (JPL). It is worth mentioning that, 
compared to the spherical harmonics fields, the mascon solutions provide higher signal-
to-noise ratio, higher spatial resolution, and reduced error and do not require spectral 
(e.g., destriping) and spatial (e.g., smoothing) filtering or any empirical scaling techniques 
(Luthcke et al. 2013; Watkins et al. 2015; Save et al. 2016; Wiese et al. 2016; Scanlon et al. 
2016). However, rescaling spherical harmonic solutions significantly increases the agree-
ment with mascon solutions (Watkins et al. 2015; Scanlon et al. 2016).

The spherical harmonics of the UT-CSR GRACE solution (Level 2; Release 05; degree/
order: 60; available at: ftp://podaa c.jpl.nasa.gov/allDa ta/grace /L2/CSR/RL05) were used in 
this study. The GRACE-derived C20 and degree-1 coefficients were replaced with those 
estimated by Cheng et al. (2011) and Swenson et al. (2008), respectively. The glacial iso-
static adjustment (GIA) correction was applied using the GIA model developed by A et al. 
(2013). The temporal mean (April 2002 to June 2016) was removed from these solutions, 
and systematic and random errors were reduced by applying destriping and Gaussian (half-
width: 200 km) filters, respectively (Wahr et al. 1998; Swenson and Wahr 2006). Following 
the procedures advanced by Wahr et al. (1998), the spherical harmonic coefficients were 
then converted to  TWSGRACE grids of equivalent water thickness.

The generated  TWSGRACE grids were then rescaled to minimize the attenuation in the 
amplitude of the  TWSGRACE time series due to the application of GRACE post-processing 
steps (e.g., Landerer and Swenson 2012; Long et al. 2015). The approach described in Vel-
icogna and Wahr (2006) was adapted to scale  TWSGRACE. Two synthetic mass distributions 
were assumed across the NAE, converted into Stokes coefficients (up to degree 60), filtered 
using destriping and Gaussian (200 km) filters, and then reconverted to mass distributions. 
The ratio of the recalculated mass distribution to the original mass distribution is called the 
scaling factor. One of the selected synthetic mass distributions was chosen to represent the 
global  TWSGRACE trend results, while the other was set to be 1.0 inside the NEA spatial 
domain and 0.0 outside it. These synthetic mass distributions were selected to reflect a 
real picture of what the  TWSGRACE trends look like across the NAE spatial domain. The 
final scaling factor (1.90 ± 0.80) was selected as the average of the two scaling factors, 
generated by using the two different synthetic mass distributions, whereas the difference 
was used to quantify errors associated with that scaling factor. Raw  TWSGRACE estimates 
over the NAE were then multiplied by the generated scaling factor to calculate the scaled 
 TWSGRACE estimates.

The JPL mascon data (Release 05; version 2; 0.5° × 0.5° grid; available at: ftp://podaa 
c.jpl.nasa.gov/allDa ta/tellu s/L3/masco n/RL05/JPL/) provide monthly gravity field vari-
ations for 4551 equal areas of 3° spherical caps. The coastline resolution improvement 

ftp://podaac.jpl.nasa.gov/allData/grace/L2/CSR/RL05
ftp://podaac.jpl.nasa.gov/allData/tellus/L3/mascon/RL05/JPL/
ftp://podaac.jpl.nasa.gov/allData/tellus/L3/mascon/RL05/JPL/
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(CRI) filtered data, utilized to determine the land and ocean fractions of mass inside every 
land/sea mascon, were used in this study (Watkins et  al. 2015; Wiese et  al. 2016). The 
UT-CSR mascon solutions (Release 05; version 1; 0.5°  ×  0.5° grid; available at: http://
www.csr.utexa s.edu/grace /RL05_masco ns.html) approach uses the geodesic grid technique 
to model the surface of the Earth using equal area gridded representation of the Earth via 
40,962 cells (40,950 hexagons + 12 pentagons) (Save et al. 2012, 2016). The size of each 
cell is about equatorial 1°, the number of cells along the equator is 320, the average area of 
each cell is 12,400 km2, and the average distance between cell centers is 120 km. The UT-
CSR mascon does not suffer from oversampling at the poles like an equiangular grid (Save 
et al. 2016).

The secular trend in  TWSGRACE data was extracted by simultaneously fitting a trend and 
seasonal (e.g., annual and semiannual) terms to each  TWSGRACE time series. The trend 
solutions are displayed in Fig. 2. Errors associated with monthly  TWSGRACE and calculated 
trend values were then estimated (Tiwari et  al. 2009; Scanlon et  al. 2016): (1) monthly 
 TWSGRACE time series were fitted using annual, semiannual, and trend terms and residu-
als (R1) were calculated; (2) R1 were smoothed using a 13-month moving average, a trend 
was removed, and the residuals (R2) were calculated; (3) the standard deviation of R2 rep-
resents the maximum uncertainty in monthly  TWSGRACE values; (4) Monte Carlo simula-
tions (e.g., Hastings 1970; Vrugt et al. 2009) were performed by fitting trends and seasonal 
terms for many (n = 20,000) synthetic monthly datasets, each with values chosen from a 
population of Gaussian-distributed numbers having a standard deviation similar to that of 
the examined population; and (5) the standard deviation of the extracted synthetic trends 
was interpreted as the trend error for  TWSGRACE. The generated trend data were then statis-
tically analyzed by using parametric techniques (i.e., Student t test) to identify trends that 
are statistically significant at 95 and at 65% levels of confidence.

Given the fact that  TWSGRACE data have no vertical resolution, since GRACE cannot 
distinguish between anomalies resulting from different components of TWS (e.g., surface 
water, soil moisture, and groundwater), the contributions of SWS and SMS need to be 
quantified and removed from  TWSGRACE time series (Fig. 3) to calculate GWS according 
to the following equation:

where ΔGWS, ΔSWS, and ΔSMS represent the change, with respect to the temporal (April 
2002 to June 2016) mean, in groundwater, surface water, and soil moisture storage, respec-
tively. Errors in GWS are then estimated by adding, in quadrature, errors associated with 
 TWSGRACE, SWS, and SMS according to the following equation:

where �TWSGRACE
 , �SMS , and �SWS represent errors in ΔTWS, ΔSWS, and ΔSMS, 

respectively.

2.2  SWS Data

Two main surface water reservoirs within the NAE were examined: Lake Nasser and the 
Tushka Lakes (Fig.  1). Both reservoirs are expected to affect  TWSGRACE and therefore 
GWS estimates over the NAE. Figure 4, for example, shows the GRACE average sensitiv-
ity kernel function over the Lake Nasser. The sensitivity kernel function is generated by 

(1)ΔGWSGRACE = ΔTWSGRACE − ΔSMS − ΔSWS,

(2)�GWSGRACE
=

√

(�TWSGRACE
)2 +

(

�SMS

)2
+
(

�SWS

)2
,

http://www.csr.utexas.edu/grace/RL05_mascons.html
http://www.csr.utexas.edu/grace/RL05_mascons.html
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converting 1 cm uniformly distributed Lake Nasser height into monthly Stokes coefficients 
up to degree 60.

The Lake Nasser surface levels time series was extracted from averaging two main sur-
face water-level datasets: (1) the U.S. Department of Agriculture’s Foreign Agricultural 
Service (USDA-FAS) global reservoir and lake monitoring database (GRLM; available 
at: https ://www.pecad .fas.usda.gov/crope xplor er/globa l_reser voir/), and (2) the Hydroweb 
database at Laboratoire d’Etudes en Geophysique et Oceanographie Spatiales (LEGOS/
GOHS; available at: http://www.legos .obs-mip.fr/fr/soa/hydro logie /hydro web/) (Crétaux 
et al. 2011). The Lake Nasser monthly level anomalies were then generated, with respect 
to the temporal mean (April 2002 to June 2016), over the entire NAE (Fig. 5a). The accu-
racy of lake levels derived from these two databases has been estimated at 3–4 cm for the 

Fig. 2  Secular trend images of monthly (April 2002 to June 2016)  TWSGRACE estimates generated, from a 
UT-CSR spherical harmonics, b UT-CSR mascons, c JPL mascons, and d average solution over the NAE 
and surroundings. Also shown is the spatial extension of the NAE (hatched area)

https://www.pecad.fas.usda.gov/cropexplorer/global_reservoir/
http://www.legos.obs-mip.fr/fr/soa/hydrologie/hydroweb/
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largest lakes (Birkett 1995; Shum et al. 2003; Swenson and Wahr 2009). In this study, the 
monthly errors in Lake Nasser level estimates were calculated as the standard deviation 
of sub-monthly water levels collected from Hydroweb and GRLM databases (e.g., Muala 

Fig. 3  Temporal variations in  TWSGRACE estimates, along with the associated uncertainties, extracted from 
the UT-CSR mascons (blue line), JPL mascons (green line), UT-CSR spherical harmonics (red line), and 
average (black line) solutions over the NAE

Fig. 4  GRACE unscaled dimensionless averaging sensitivity kernel function generated over the Lake 
Nasser area within the NAE
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et al. 2014). Trends in Lake Nasser levels and associated trend errors were estimated using 
the procedures described for  TWSGRACE.

The Tushka spillway was constructed in 1978 to protect the Aswan High Dam from 
cyclic flooding events. In 1990, Lake Nasser started to rise; it reached a height of 182 m 
and spilled over into the Tushka spillway in September 1998. This event resulted in the 
formation of the first Tushka Lake. In subsequent years, as water continued to flow through 
the spillway, five additional lakes were created (Fig. 1). Examination of temporal satellite 
images indicates a gradual decrease in areas and volumes of the Tushka Lakes. Over 80% 
of the loss is via evaporation given the low permeability of the variegated shale underlying 
much of these lakes (e.g., Sultan et al. 2013). In this study, the monthly volume, area, and 
water height decrease in the Tushka Lakes were quantified. Two Landsat images (paths: 
176 and 175; row: 44; spatial resolution: 30 m; available at: https ://earth explo rer.usgs.gov/) 
were mosaicked and used to quantify the temporal variations, in water covered areas, of the 
Tushka Lakes in a geographic information system (GIS) environment. Landsat 5 Thematic 
Mapper (TM) images, Landsat 7 Enhanced Thematic Mapper (ETM +) images, and Land-
sat 8 images were used for the 2002, 2003–2012, and 2013–2016 periods, respectively. The 
Tushka Lakes’ volumes were calculated using the areas and water depth information. The 
water depth estimates were quantified using a digital elevation model (DEM; spatial reso-
lution: 90 m), acquired prior to the formation of the Tushka Lakes, and validated using data 
extracted from topographic sheets (scale 1: 100,000). A 10% error estimate for the Tushka 
Lakes level time series was assumed (e.g., Castle et al. 2014). Moreover, the Tushka Lakes’ 
volumes during the period from 2002 to 2010 were compared to, and validated against, 
volumes extracted using different remote sensing images [e.g., MODerate-resolution 
Imaging Spectroradiometer (MODIS) and Advanced Very High-Resolution Radiometer 

Fig. 5  Temporal variations, averaged over the NAE, in a Lake Nasser level anomalies, b Tushka Lakes 
level anomalies, and c SMS. Also shown are the uncertainty limits associated with each monthly value

https://earthexplorer.usgs.gov/
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(AVHRR) for area calculations and Geoscience Laser Altimeter System (GLAS) for water-
level estimation] and techniques (e.g., Chipman and Lillesand 2007; Lillesand et al. 2015). 
The Tushka Lakes’ monthly level anomalies were then generated with respect to the tem-
poral mean (April 2002 to June 2016) and averaged over the entire NAE (Fig. 5b). Trends 
in the Tushka Lakes’ levels and associated trend errors were estimated using the proce-
dures described for  TWSGRACE.

2.3  SMS Data

Soil moisture data (Fig. 5c) were extracted from GLDAS model (version 1; available at: 
ftp://hydro 1.sci.gsfc.nasa.gov) given that previous studies over Saharan Africa (Ahmed 
et al. 2016) have shown that GLDAS provides more reasonable estimates of soil moisture 
in arid areas when compared to estimates from other LSMs. GLDAS is a NASA-developed 
land surface modeling system which performs advanced simulations to quantify optimal 
fields of land surface states (e.g., soil moisture, snow, surface temperature) and fluxes (e.g., 
evapotranspiration, ground heat flux) using ground and satellite-based observations (Rodell 
et al. 2004). Soil and elevation data inputs are based on high-resolution globally distributed 
datasets. The Climate Prediction Center (CPC) Merged Analysis of Precipitation (CMAP) 
data represents the precipitation inputs, whereas the radiation inputs are generated from 
the observation based downward radiation products, derived using Air Force Weather 
Agency (AFWA) fields and procedures. Other meteorological forcing data are produced by 
the National Oceanic and Atmospheric Administration (NOAA) Global Data Assimilation 
System (GDAS) atmospheric analysis system (Rodell et al. 2004). The GLDAS model sim-
ulates soil moisture through four versions: variable infiltration capacity (VIC), community 
land model (CLM), Noah, and Mosaic (Koster and Suarez 1996; Liang et al. 1996; Koren 
et  al. 1999; Dai et  al. 2003; Rodell et  al. 2004). The soil moisture time series over the 
NAE was calculated by averaging the soil moisture estimates from the four GLDAS model 
versions (i.e., VIC, CLM, Noah, and Mosaic). The associated errors for GLDAS-derived 
monthly soil moisture estimates were calculated as the mean monthly standard deviation 
from the four GLDAS model simulations (e.g., Tiwari et al. 2009; Voss et al. 2013; Castle 
et al. 2014; Joodaki et al. 2014). Errors in soil moisture trends were calculated as the stand-
ard deviation of the trends computed from the four GLDAS simulations (Voss et al. 2013; 
Castle et al. 2014).

2.4  Rainfall Data

Rainfall data were utilized to explore the climatic controls on the temporal variation in 
 TWSGRACE and GWS observed over the NAE. The CMAP data (available at: https ://
www.esrl.noaa.gov/psd/data/gridd ed/data.cmap.html) were utilized in this study. CMAP 
data provide global (88.75°N to 88.75°S) merged precipitation estimates from a variety 
of satellite- and ground-based sources from January 1979 to January 2017 with spatial 
and temporal resolutions of 2.5° and one month, respectively (Xie and Arkin 1997). The 
satellite sources used to produce monthly CMAP data include the Geostationary Opera-
tional Environmental Satellite (GOES) Precipitation Index (GPI), the Outgoing Longwave 
Radiation (OLR)-based Precipitation Index (OPI), the Special Sensor Microwave/Imager 
(SSM/I), and the microwave sounding unit (MSU). In addition to the aforementioned satel-
lite sources, CMAP also integrates the National Centre for Atmospheric Research (NCAR) 
reanalysis precipitation data along with the Global Precipitation Climatology Centre 

ftp://hydro1.sci.gsfc.nasa.gov
https://www.esrl.noaa.gov/psd/data/gridded/data.cmap.html
https://www.esrl.noaa.gov/psd/data/gridded/data.cmap.html
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(GPCC) data of ~ 200,000 routinely operating precipitation gauges (Xie and Arkin 1997). 
Over northern and eastern Africa, it has been demonstrated that CMAP data provide the 
best spatial and temporal correspondence with gauge-based measurements of rainfall and 
stream flow (e.g., Adeyewa et al. 2003; Dinku et al. 2008; Beighley et al. 2011; Sylla et al. 
2013).

3  Results and Discussion

3.1  Temporal Variations in TWS Anomalies

Figure  2 shows the secular trend images in  TWSGRACE estimates generated from CSR 
spherical harmonics (Fig. 2a), CSR mascon (Fig. 2b), JPL mascon (Fig. 2c), and the aver-
age of the three solutions (Fig. 2d) over NAE. Inspection of Fig. 2d indicates that the NAE 
is experiencing an average negative (− 3 mm/year)  TWSGRACE trends during the investi-
gated period. Higher  TWSGRACE depletion rates (< − 6 mm/year) are observed over the 
northeastern parts of NAE. The northern coastal areas as well as the southern parts of the 
NAE, close to recharge areas in Sudan, are witnessing lower  TWSGRACE depletion rates 
(> − 2 mm/year).

The spatial distributions of negative  TWSGRACE trends slightly vary with the source of 
 TWSGRACE data. For example, in case of the CSR mascon solutions (Fig. 2b), areas wit-
nessing a uniform negative (− 3 mm/year)  TWSGRACE trend are centered over the NAE; 
the location of these areas is shifted to the east and to the west in case of CSR spherical 
harmonics (Fig. 2a) and JPL mascon (Fig. 2c) solutions, respectively. Over the entire NAE, 
comparison between  TWSGRACE trends generated from the three solutions (Fig. 2a-c) with 
the mean trend (Fig.  2d) indicates that JPL mascon-derived trends (Fig.  2c) are slightly 
(10%) lower than mean trends (Fig.  2d). However, CSR mascon (Fig.  2b) and spherical 
harmonics-derived (Fig.  2a) trends explain 96 and 93%, respectively, of the mean trend 
variabilities (Fig. 2d). This is probably related to the way that the  TWSGRACE products have 
been generated. For example, JPL mascons were generated from 3° spherical caps, UT-
CSR mascons were generated from 1° hexagons, and UT-CSR spherical harmonics were 
smoothed using a 200 km Gaussian filter (spatial resolution: ~ 125,000 km2).

Figure  3 shows the temporal variations in  TWSGRACE time series generated over the 
NAE. Inspection of Fig.  3 shows an excellent agreement in amplitudes, phases, and 
trends of  TWSGRACE extracted from UT-CSR mascon, JPL mascon, and UT-CSR spheri-
cal harmonic solutions. Moreover, the minute observed differences lie mostly within the 
uncertainty limits of each  TWSGRACE estimate. Figure 3 also shows an overall depletion 
in  TWSGRACE estimates extracted from the three different  TWSGRACE solutions. Deple-
tion rates of − 3.26 ± 0.16 mm/year (− 2.15 ± 0.11 km3/year), − 3.73 ± 0.23 mm/year 
(−  2.46  ±  0.15  km3/year), and −  3.15  ±  0.30  mm/year (−  2.08  ±  0.20  km3/year) were 
observed in  TWSGRACE estimates of UT-CSR mascon, JPL mascon, and UT-CSR spheri-
cal harmonic solutions, respectively. The average depletion rate over the entire NAE, 
as calculated from the mean of the three solutions (black line; Fig.  3), is estimated at 
− 3.38 ± 0.21 mm/year (− 2.23 ± 0.14 km3/year).

Piecewise trend analysis of the average of the three  TWSGRACE solutions (black line; 
Fig. 3), shown in Table 1, is conducted over four distinctive periods: April 2002 to Feb-
ruary 2006 (Period I), March 2006 to March 2008 (Period II), April 2008 to Decem-
ber 2012 (Period III), and January 2013 to June 2016 (Period IV) (black dashed lines; 
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Fig. 3). Examination of Fig. 3 and Table 1 shows that the NAE is witnessing a  TWSGRACE 
decline during Periods I and III at almost the same rate [Period I: −  6.40  ±  0.98  mm/
year (− 4.23 ± 0.65 km3/year); Period III: −6.61 ± 0.48 mm/year (− 4.36 ± 0.32 km3/
year)] and with a much lower rate during Period II [Period II: −  0.37  ±  1.14  mm/year 
(− 0.25 ± 0.75 km3/year)]. However, during Period IV the NAE witnesses a  TWSGRACE 
increase (Period IV: 9.38  ±  1.34  mm/year; 6.19  ±  0.88  km3/year). The temporal vari-
ability in  TWSGRACE is related to temporal variations in one or more of the  TWSGRACE 
compartments (e.g., SWS, SMS, and GWS). Below, the temporal variations in each of the 
 TWSGRACE compartments are discussed.

3.2  Temporal Variations in SWS Anomalies

Figure 5a shows the temporal variations in Lake Nasser level anomalies during the exam-
ined period. It is worth mentioning that during the investigated period Lake Nasser’s maxi-
mum height (179.71  m) was observed in November 2007, whereas its minimum height 
(169.52 m) was observed in July 2012. Lake Nasser general fluctuation is mainly attributed 
to the seasonality in the Nile River. It has been reported that the Nile River is witnessing 
64-, 19-, 12-, and 7-year climate cycles (e.g., Kondrashov et  al. 2005). Examination of 
Fig. 5a shows that Lake Nasser is witnessing an overall height increase of 0.42 ± 0.30 mm/
year. Piecewise trend analysis (Table 1) indicates that the Lake Nasser level anomalies are 
declining (− 9.18 ± 0.84 mm/year) during Period I, increasing (23.79 ± 0.73 mm/year) 
during Period II, declining (−  8.66  ±  0.78  mm/year) during Period III, and increasing 
(6.19 ± 1.17 mm/year) during Period IV. Analysis of Lake Nasser trends indicates that the 
temporal variations in lake levels during Periods I, III, and IV are in phase and consistent 
with, and largely driving, the temporal variations in  TWSGRACE. This assumption is sup-
ported by the fact that the  TWSGRACE trends, observed during these periods, are correlated 
with increases and decreases of the level of Lake Nasser during the same periods (Figs. 3 
and 5a and Table 1).

The temporal variations in the Tushka Lakes level anomalies are shown in Fig.  5b. 
Starting in 2002, the Tushka Lakes have witnessed a dramatic decrease in volume, 
area, and water level. For example, the Tushka Lakes’ volumes (areas) are estimated at 
27.11 km3 (1669.62 km2), 11.81 km3 (972.42 km2), 5.55 km3 (512.72 km2), and 0.36 km3 
(130.18 km2) in Januaries of 2002, 2006, 2010, and 2016, respectively. Analysis of tempo-
ral variations in the Tushka Lakes’ volumes indicates that they cumulatively lost 56, 80, 
and 98% of their volumes in 2006, 2010, and 2016, respectively, compared to their volume 
in 2002. The loss in the Tushka Lakes’ volumes and areas is believed to be an evapora-
tion loss (e.g., Chipman and Lillesand 2007; Sultan et al. 2013). Examination of Fig. 5b 
shows that the levels of the Tushka Lakes are experiencing an overall systematic decrease 
in water levels of − 1.94 ± 0.01 km3/year that is equivalent to − 1.36 ± 0.01 km3/year 
(− 2.06 ± 0.30 mm/year) if distributed over the entire NAE.

3.3  Temporal Variations in SMS Anomalies

Figure  5c shows the temporal variations in GLDAS-derived SMS time series extracted 
over the NAE. Inspection of Fig. 5c shows that the SMS is witnessing an overall deple-
tion of − 1.19 ± 0.02 mm/year (− 0.79 ± 0.01 km3/year). Inspection of piecewise trend 
analysis results (Table  1) and Fig.  5c indicates that the SMS is always declining dur-
ing the four investigated periods but at varying rates (Period I: − 0.83 ± 0.09 mm/year; 
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Period II: −  1.71  ±  0.09  mm/year; Period III: −  1.26  ±  0.03  mm/year; and Period IV: 
− 0.62 ± 0.10 mm/year).

3.4  Temporal Variations in GWS Anomalies

Figure 6a shows the GWS time series extracted, according to Eqs.  (1) and (2), over the 
NAE. Inspection of Fig.  6a shows that the NAE is witnessing an overall GWS decline 
of −  0.55  ±  0.27  mm/year (−  0.36  ±  0.18  km3/year). Piecewise trend analysis results 
(Table  1) shows that the NAE is experiencing a GWS increase (5.16  ±  1.23  mm/
year; 3.41  ±  0.81  km3/year) during Period I followed by a sharp GWS decrease 
(− 20.37 ± 1.24 mm/year; − 13.45 ± 0.82 km3/year) during Period II, then a GWS increase 
during periods III and IV (Period III: 6.52 ± 0.85 mm/year, 4.31 ± 0.56 km3/year; Period 
IV: 6.07 ± 2.45 mm/year, 4.00 ± 1.68 km3/year).

Given the paucity of the groundwater-level measurements in the study area, monthly 
(April 2005 to April 2008) water-level data of six monitoring wells, distributed in the 
Western Desert of Egypt (refer to Fig. 1 for well locations), were used to validate the GWS 
variability over the NAE. The water level in these wells ranges from 200.30 m to 246.6 m. 
Unfortunately, the specific yield information for these wells is not available. Hence, the 
water-level time series for each well was normalized by its standard deviation following 
the approach advanced by Castle et al. (2014) where we subtracted the temporal mean from 
each monthly water-level value and then divided by the temporal standard deviation. The 

Fig. 6  a Temporal variations in the GWS estimates generated over the NAE along with their uncertainty 
limits. b Validation of the GWS anomalies (black solid thick line) against the available monthly well obser-
vations (individual well: colored circles; average: blue thick line) over the NAE
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normalized water-level and GRACE-derived GWS measurements are shown in Fig.  6b. 
Inspection of Fig. 6b indicated that the GRACE-derived GWS estimates generally capture 
the observed temporal groundwater-level variability during Periods I and II as indicated by 
the analysis of the available water level data.

3.5  Groundwater Recharge and Depletion Rates and Conditions

Examination of Fig. 6a and Table 1 reveals that the NAE is receiving natural recharge dur-
ing Periods I (GWS trend: 3.41 ± 0.81 km3/year), III (GWS trend: 4.31 ± 0.56 km3/year), 
and IV (GWS trend: 4.00  ±  1.68  km3/year). However, the NAE is experiencing GWS 
depletion of − 13.45 ± 0.82 km3/year during Period II. The sharp GWS decline rate dur-
ing Period II is largely related to exceptional drought conditions in Period I compared to 
the previous periods. Examination of the AAR and Lake Nasser levels indicates a decline 
during Period I (AAR: 120 mm; Lake Nasser level: 174.6 m) compared to the preceding 
years (1998–2002; AAR: 133 mm; Lake Nasser level: 178.2 m). Another common con-
tributing factor, for the observed GWS depletion, could be the baseflow recession. Nor-
mal baseflow recession occurs naturally during periods of extended drought and could 
cause extensive water-level declines over time periods of weeks to months that result in 
volumetrically significant storage depletion (e.g., Alley and Konikow 2015). It is worth 
mentioning that during Period II the trend of the combined GWS and SWS components 
still positive (0.88  ±  0.75  km3/year), suggesting the possible usage of Lake Nasser sur-
face water resources during periods similar to Period II. In other words, during the periods 
where the GWS trends are declining, Lake Nasser surface water could be used to augment 
the running irrigation projects and hence minimize the impacts of the GWS decline. One 
other possible solution could be channeling the encroaching Lake Nasser water, in high 
flood years such as Period II, across the western plateau reaching the lowlands west of the 
plateau, that are largely underlain by the Nubian aquifer, to recharge the NAE (e.g., Sultan 
et al. 2013).

To quantify the recharge rates during Periods I, III, and IV, the discharge rate (natural 
discharge + anthropogenic groundwater extraction) was added to the GWS trends using the 
following equation:

The sum of the average annual anthropogenic groundwater extraction and the aver-
age annual natural discharge for NAE was estimated at 2.85 km3/year (Sultan et al. 2007; 
Mohamed et  al. 2016). The recharge rates for the NAE are estimated at 6.26  ±  0.81, 
7.16 ± 0.56, and 6.85 ± 1.68 km3/year during Periods I, III, and IV, respectively. The total 
recharge during Periods I, II, and IV is estimated at 20.27 ± 1.95 km3; however, approxi-
mate average annual recharge rate of 1.66 km3/year is estimated during the three periods.

The recharge rates of the NAE during Periods I, III, and IV are partially attributed to 
increasing the AAR during the investigated periods compared to the preceding periods. 
Comparing AAR approach was used instead of examining the trends in rainfall given 
the fact that a rainfall value is already a rate and so it corresponds to a trend signal in 
 TWSGRACE, whereas a trend in rainfall corresponds to an increase in  TWSGRACE rate. 
However, a one-to-one correspondence, in magnitudes, is not to be expected, given that 
AAR could be redistributed as runoff and evapotranspiration that could affect the spatial 
and temporal distribution of the precipitated water, and hence the recharge locations and 
magnitudes. Moreover, a progressive shift in timing between the AAR and recharge should 
be also expected given the time rainfall takes to feed the groundwater in shallow and deep 

(3)Recharge = ΔGWS + Discharge.
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aquifers (e.g., Owor et al. 2009; Ahmed et al. 2011, 2014b; Hocking and Kelly 2016). It 
is worth mentioning that, over-arid and semiarid regions such as the NAE, only a small 
portion of any episodic rainfall event will reach the aquifer’s water table in the time of this 
event. However, this portion will increase gradually with time. The time lag between the 
rainfall and the recharge events depends on magnitude and duration of rainfall, soil type, 
texture, and hydrologic properties, and density and types of vegetation (e.g., Vogel and 
Van Urk 1975; Mauth et al. 2003; Döll and Flörke 2005; Keese et al. 2005; Thomas et al. 
2016). Over the NAE, for example, the groundwater response to local rainfall events is 
delayed by 1–4 months; highest rainfall occurs in January; the peak rise in the groundwater 
level is recorded in April to May (e.g., Sultan et al. 2011; 2013; Gad 2009). These esti-
mates are compared to, and correlated with, those from other arid and semiarid environ-
ments of similar geologic and climatic settings (e.g., Döll and Flörke 2005; Thomas et al. 
2016; Tirogo et al. 2016). It is worth mentioning that the effective recharge and ground-
water flow within the NAE could take thousands of years. For example, a progression of 
groundwater ages was observed within the NAE from southwest (< 0.03 × 106 years) to 
northeast (1 × 106years). This age progression suggests that the NAE received autochtho-
nous recharge events that were primarily occurred at the foothills of the Uweinat mountain-
ous area (Fig. 1). The spatial distribution of the age progression indicates relatively high 

Fig. 7  a Temporal variations in AAR generated over the Nubian recharge domains (solid black line) and 
the lower Nile basin (dashed black line). Average Lake Nasser level (solid gray line) is also shown. b Tem-
poral variations in average annual recharge (dashed black line) and recharge-to-rainfall ratio (dashed gray 
line) over the NAE during the investigated periods
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groundwater flow velocities (~ 2 m/year) toward the north and low velocities (0.2 m/year) 
toward the east (e.g., Sturchio et al. 2004; Patterson et al. 2005; Sultan et al. 2013).

Figure 7a shows the AAR for the investigated Periods I, II, III, and IV as well as two 
preceding periods (1979–1997 and 1998–2002), averaged over the Nubian aquifer outcrops 
in Chad and Sudan (layout in Fig. 1, inset a) that are receiving AAR greater than 20 mm. 
A conservative 20 mm/years value was selected based on the fact that, in Egypt a rainfall 
event of less than 5  mm is not expected to produce a significant recharge and/or runoff 
events (e.g., Milewski et al. 2009). Examination of Fig. 7a indicates that the AAR over the 
Nubian aquifer recharge domains increased from 91 mm during 1979–1997 period to 133 
during 1998–2002 period. This AAR increase is partially responsible for the groundwater 
recharge events during Period I. The annual recharge rates as well as the recharge-to-rain-
fall ratio are displayed in Fig. 7b. Similarly, the increase in the recharge rates during Peri-
ods III and IV is related to the increase in the AAR during Periods II and III, respectively. 
For example, the AAR increased from 120 mm during Period I to 155 mm and 121 mm 
during Periods II and III, respectively (Fig. 7a, b).

It is worth mentioning that the recharge rates of the NAE during Periods IV are also 
partially attributed to the increase in Lake Nasser levels. The average Lake Nasser level 
was estimated at 174.6, 175.7, 174.5, and 175.6 m during Period I, Period II, Period III, 
and Period IV, respectively. The Lake Nasser level during Period IV is 1.1 m higher than 
the average level during Period III. The increase in Lake Nasser levels is supported by 
increasing the AAR over the lower Nile basin (layout in Fig. 1, inset b) during the same 
periods (Period I: 706 mm; Period II: 763; Period III: 748 mm; and Period IV: 769 mm). 
The AAR over the lower Nile basin during Period IV is 21 m higher than the AAR during 
Period III.

Given the current overall GWS depletion rate (−  0.55  ±  0.27  mm/year; 
− 0.36 ± 0.18 km3/year) during the entire investigated period (April 2002 to June 2016), 
the longevity of the NAE can be estimated. Based on modeled recoverable groundwater 
volumes (5180 km3) (Bakhbakhi 2006), the NAE could last for more than 10,000 years 
assuming a constant GWS depletion and recharge rates. Increasing depletion rates and/or 
decreasing the recharge rate would reduce the NAE’s longevity.

4  Summary and Conclusions

Egypt is currently seeking additional freshwater resources to pursue its plans for moderni-
zation and development. Decision makers are planning to utilize more of Egyptian ground-
water resources, at the expenses of the limited Nile River surface water, to support national 
reclamation projects (1.5 × 106 acre in 5 years). Almost all of the reclamation areas are 
planned to utilize NAE groundwater resources. The NAE needs to be routinely and con-
tinuously monitored because of its importance.

Previous studies that utilized  TWSGRACE to monitor the NAE reported groundwater 
depletion rates varied with the examined period as well as the data sources. In addition, the 
reported groundwater depletion rates were extracted from the entire time series, ignoring 
the temporal variability and cyclicity occurred at different time intervals. None of these 
studies reported groundwater recharge within the NAE. In this study, temporal (April 
2002 to June 2016)  TWSGRACE data along with the outputs of LSMs were used to provide 
improved estimates recharge and depletion rates of the NAE and to investigate the interac-
tion of the NAE with the artificial lakes.
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Results indicate that during Periods I, III, and IV the NAE is receiving a total recharge 
of 20.27  ±  1.95  km3. Recharge events of the NAE occur only under excessive precipi-
tation conditions over the Nubian recharge domains (in Sudan and Chad) and/or under 
a significant rise in Lake Nasser levels. The sharp GWS decline rate during Period II 
(−  13.45  ±  0.82  km3/year) in the NAE is largely related to exceptional drought condi-
tions in Period I compared to the previous periods. Another common contributing factor 
for the observed GWS depletion could be the normal baseflow recession. However, dur-
ing this period the trend in the combined GWS and SWS components is still increas-
ing (0.88  ±  0.75  km3/year) suggesting the possible usage of Lake Nasser surface water 
resources in development plans.

Findings indicate that Egyptian decision makers are facing a real challenge to provide 
and maintain sustainable water resource management. However, they are highly recom-
mended to use a conjunctive surface water and groundwater management plan given the 
fact that in periods where the GWS is declining (e.g., Period II), the SWS of Lake Nasser 
could be utilized.

The study results demonstrate that global monthly  TWSGRACE solutions can provide a 
practical, informative, and cost-effective approach for monitoring aquifer systems located 
in any geologic or hydrologic setting across the globe. However, it is worth mentioning 
that, in the calculations of  TWSGRACE and GWS trends, the temporal variations that are 
related to semiannual, annual, multi-annual, and decadal climatic cycles were assumed 
to be represented in the examined  TWSGRACE record, while the semiannual, annual, and 
multi-annual cycles are likely to be represented in the available  TWSGRACE records, the 
decadal cycles might not be, given the short GRACE operational period (15 years). The 
acquisition of  TWSGRACE data over the upcoming years by the GRACE-FO (expected in 
2017/2018; nominal/expected lifetime: 5/10 years) and GRACE-II (planned in 2025; nomi-
nal/expected lifetime: 5/10 years) missions will in part address these limitations by ena-
bling the acquisition of continuous and lengthy  TWSGRACE records.
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