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Abstract The forward modeling of the topographic effects of the gravitational parameters

in the gravity field is a fundamental topic in geodesy and geophysics. Since the gravita-

tional effects, including for instance the gravitational potential (GP), the gravity vector

(GV) and the gravity gradient tensor (GGT), of the topographic (or isostatic) mass

reduction have been expanded by adding the gravitational curvatures (GC) in geoscience, it

is crucial to find efficient numerical approaches to evaluate these effects. In this paper, the

GC formulas of a tesseroid in Cartesian integral kernels are derived in 3D/2D forms. Three

generally used numerical approaches for computing the topographic effects (e.g., GP, GV,

GGT, GC) of a tesseroid are studied, including the Taylor Series Expansion (TSE), Gauss–

Legendre Quadrature (GLQ) and Newton–Cotes Quadrature (NCQ) approaches. Numeri-

cal investigations show that the GC formulas in Cartesian integral kernels are more effi-

cient if compared to the previously given GC formulas in spherical integral kernels: by

exploiting the 3D TSE second-order formulas, the computational burden associated with

the former is 46%, as an average, of that associated with the latter. The GLQ behaves better

than the 3D/2D TSE and NCQ in terms of accuracy and computational time. In addition,

the effects of a spherical shell’s thickness and large-scale geocentric distance on the GP,

GV, GGT and GC functionals have been studied with the 3D TSE second-order formulas

as well. The relative approximation errors of the GC functionals are larger with the thicker

spherical shell, which are the same as those of the GP, GV and GGT. Finally, the very-

near-area problem and polar singularity problem have been considered by the numerical

methods of the 3D TSE, GLQ and NCQ. The relative approximation errors of the GC

components are larger than those of the GP, GV and GGT, especially at the very near area.

Compared to the GC formulas in spherical integral kernels, these new GC formulas can

avoid the polar singularity problem.
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1 Introduction

A tesseroid mass body (see Fig. 1) has been utilized widely for gravity/magnetic forward

modeling in related geoscience applications. Specifically, many research works have been

devoted to the application of the Taylor Series Expansion (TSE) approach for calculating

the topographic effects of a tesseroid. The 3D TSE approach was implemented for the

calculation of the gravitational potential (GP) and radial part of the gravity vector (GV)

formulas of a tesseroid by Heck and Seitz (2007). Wild-Pfeiffer (2008) utilized the 3D/2D
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Fig. 1 Definition of a tesseroid by modifying after Kuhn (2003). Dk, Dh and Dr are the dimensions of a
tesseroid, where Dk ¼ k2 � k1, Dh ¼ h2 � h1 and Dr ¼ r2 � r1. x, y and z are in the local Cartesian East–
North–Up coordinates of computation point P with respect to the integration point S. The points
PðkP; hP; rPÞ and SðkS; hS; rSÞ are also in the global spherical coordinates. The point S0 is the geometric
center point of a tesseroid, where the TSE method is applied, the integration point S is equal to S0
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TSE and Gauss–Legendre cubature for numerical calculation of the radial gravity gradient

tensor (GGT) (Mzz) compared to a spherical cap with closed and rigorous reference value.

Grombein et al. (2013) adopted the 3D TSE approach for numerical evaluation of the GP,

GV and GGT formulas of a tesseroid in Cartesian integral kernels. Deng et al. (2016)

provided the correct form of the GP formulas using the 3D TSE approach by correcting the

related works of Heck and Seitz (2007) and Grombein et al. (2013), which is widely

applied for higher-order tesseroid formulas. Recently, differently from the TSE second-

order tesseroid formulas given by Heck and Seitz (2007), Wild-Pfeiffer (2008), Grombein

et al. (2013) and related studies (i.e., Tsoulis et al. 2009; Chaves and Ussami 2013;

Claessens and Hirt 2013; Hirt and Kuhn 2014; Du et al. 2015; Shen and Han

2013, 2014, 2016; Grombein et al. 2014, 2016, 2017), Shen and Deng (2016) expanded the

3D TSE approach from the second-order to the fourth-order GP tesseroid formulas and

evaluated its reliability. Furthermore, Deng and Shen (2017b) offered the 3D TSE zero-

order, second-order, fourth-order and six-order GP, GV, GGT and gravitational curvatures

(GC) formulas of a tesseroid in spherical integral kernels, where GC represent the com-

ponents of the third-order gravitational tensor. The term ‘‘Cartesian integral kernels’’

means that the integral kernels expressions of the gravitational effects are represented in a

Cartesian coordinate system as well as ‘‘spherical integral kernels’’ refers to a spherical

one.

The Gauss–Legendre Quadrature (GLQ) approach has been extensively applied to

evaluate the related geodetic applications as well. Ku (1977) introduced the numerical

GLQ approach into the gravity/magnetic forward modeling. Asgharzadeh et al. (2007)

applied the GLQ approach to evaluate the topographic effects (i.e., GP, GV and GGT) of a

tesseroid, which is the same as Asgharzadeh et al. (2008) considered the magnetic effects

(i.e., magnetic potential (MP), magnetic vector (MV) and magnetic gradient tensor

(MGT)). Li et al. (2011) proposed the adaptive recursive algorithm based on the GLQ

approach for modeling the topographic effects in spherical coordinates. Hirt et al. (2011)

recommended the GLQ approach with mean kernels as accurate numerical evaluation of

different geodetic convolution integrals (i.e., Stoke’s integral, Hotine’s integral, Eötvös’s

integral, Green-Molodensky integral, tidal displacement integral, ocean tide loading inte-

gral, deflection-geoid integral, Vening-Meinesz’s integral). Roussel et al. (2015) adopted

the GLQ approach to numerically evaluate the topographic effects (i.e., GP, GV and GGT)

of an ellipsoidal prism. Du et al. (2015) compared the 3D TSE and GLQ approaches in

evaluating the magnetic effects (i.e., MP, MV and MGT) of a tesseroid. Recently, Uieda

et al. (2016) released the software Tesseroids for modeling the topographic effects (i.e.,

GP, GV and GGT) of a tesseroid with the GLQ approach. Analogously, the software by

forward modeling the magnetic effects (i.e., MP, MV and MGT) of a tesseroid was dis-

tributed by Baykiev et al. (2016), which is the same as Uieda et al. (2016) did by applying

the GLQ approach for numerical evaluation.

In modeling the GP, GV and GGT of a tesseroid, there exists the very-near-area

problem. This means that anomalous errors do appear when the tesseroid mass element is

rather close to the computation point in arbitrary direction. To solve this issue, Heck and

Seitz (2007) suggested replacing the tesseroid bodies with equivalent prisms at very near

area. Tsoulis et al. (2009) applied the combination approach of the prism in near region and

the tesseroid in far region for evaluating the terrain correction of the GV. Li et al. (2011)

proposed the algorithm by recursively dividing the grid resolution according to distance

from the computation point based on the GLQ approach. Grombein et al. (2013) recom-

mended the numerical horizontal subdivision approach, namely higher grid resolution

based on the 3D TSE second-order approach. Recently, Shen and Deng (2016) proposed
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the combination method of the 3D TSE formulas of a tesseroid with different orders in

different regions (i.e., very near zone, near zone, transition zone and far region), and

recommend the boundaries of the different regions in spherical distance are 1�, 15�, and
40� to achieve the accuracy of 10-5 m2 s-2 for the GP evaluation at the low latitude. In

addition, Uieda et al. (2016) expanded the recursive algorithm of Li et al. (2011) to the

‘‘stack-based’’ algorithm by adaptively controlling the distance-size ratio, where the

optimal recommendation values of the distance-size ratio for the GP, GV and GGT are 1,

1.5 and 8, respectively.

The gravity forward modeling of the GC in spherical integral kernels of a tesseroid is a

time-consuming work, which was shown in Deng and Shen (2017b), due to the compli-

cated transformation relationships as presented by Tóth (2005), Tóth and Földváry (2005),

Casotto and Fantino (2009), Šprlák et al. (2016), Šprlák and Novák (2015, 2016, 2017) and

Novák et al. (2017). The present study focuses on the derivation of the optimal GC

formulas of a tesseroid in Cartesian integral kernels. Analogously to the Cartesian integral

kernels for the GP, GV and GGT formulas provided in Grombein et al. (2013), the

Cartesian integral kernels for the GC are derived in both 3D and 2D forms. Applying these

new GC formulas provides a significant improvement in terms of the computational burden

if compared to the previously published GC formulas in spherical integral kernels (Deng

and Shen 2017b). Moreover, these new GC formulas are also implemented in evaluating

the polar singularity problem when the computation point is located at the North pole. The

3D/2D TSE, GLQ and Newton–Cotes Quadrature (NCQ) approaches are applied and

compared in evaluating the new optimal GC formulas in terms of the trade-off effects

between the computational time and numerical accuracy.

This paper is organized as follows. In Sect. 2 the theoretical aspects are presented,

where in Sect. 2.1 the 3D and 2D GC formulas of a tesseroid in Cartesian integral kernels

are derived, and Sect. 2.2 shows the analytical consistency of the GC formulas in both

spherical and Cartesian integral kernels. The algorithms of three different approaches,

namely the 3D/2D TSE, GLQ and NCQ, are briefly reviewed in Sect. 3. The numerical

experiments are investigated in Sect. 4, and the advantages of the optimal GC formulas are

shown by two numerical experiments in Sects. 4.1 and 4.5, respectively. In Sect. 4.2, the

3D/2D TSE, GLQ and NCQ approaches are applied for evaluating the GP, GV, GGT and

GC formulas in Cartesian integral kernels. Furthermore, the effects of the spherical shell’s

thickness and large-scale geocentric distance, which is from the field point P to the center

of the Earth, on the GP, GV, GGT and GC functionals in Cartesian integral kernels are

investigated in Sects. 4.3 and 4.4, respectively. Finally, conclusions are summarized and

main topics of further research work are recommended in Sect. 5.

2 Theoretical Aspects

2.1 Optimal 3D and 2D GC Formulas of a Tesseroid in Cartesian Integral
Kernels

The optimal GP, GV and GGT formulas of a tesseroid in Cartesian integral kernels can be

referred in Grombein et al. (2013) and Uieda et al. (2016). The optimal GC formulas of a

tesseroid in Cartesian integral kernels are derived herein from second-order derivatives to

third-order derivatives. Following the Leibniz integral rule and the prism and point-mass

expressions (Kellogg 1929, p. 152; Tsoulis 1999; Nagy et al. 2000; Heck and Seitz 2007;
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Wild-Pfeiffer 2008; Grombein et al. 2013), the optimal GC formulas in Cartesian integral

kernels, denoted as VO�T3D
ijk , of a homogeneous tesseroid mass body with a constant density

qS (see Fig. 1) can be expressed as

VO�T3D
ijk ¼

Zk2

k1

Zh2

h1

Zr2

r1

IVijkdrSdhSdkS ð1Þ

IVijk ¼ 15DiDjDk

L7
PS

� 3

L5
PS

pijk

 !
K ð2Þ

K ¼ GqSr
2
S cos hS ð3Þ

LPS ¼
ffiffiffiffiffiffiffiffiffiffi
DiDi

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dx2 þ Dy2 þ Dz2

p
i 2 fx; y; zgð Þ ð4Þ

Dx ¼ rS cos hS sin kS � kPð Þ ð5Þ

Dy ¼ rS cos hP sin hS � sin hP cos hS cos kP � kSð Þð Þ ð6Þ

Dz ¼ rS cosw� rP ð7Þ

cosw ¼ sin hP sin hS þ cos hP cos hS cos kP � kSð Þ ð8Þ

pijk ¼
3Di i ¼ j ¼ k

0 i 6¼ j&i 6¼ k&j 6¼ k

T otherwise

8<
: ð9Þ

T ¼
Di j ¼ k&i 6¼ j;Dj ¼ Dk
Dj i ¼ k&i 6¼ j;Di ¼ Dk
Dk i ¼ j&i 6¼ k;Di ¼ Dj

8<
: ð10Þ

where G is the gravitational constant; (Dx, Dy, Dz) are the coordinates differences of the

source (or running) point S with respect to the local Cartesian topocentric coordinate

system of the origin point P, named the local p-xyz East–North–Up (ENU) coordinate

system (Casotto and Fantino 2009, Fantino and Casotto 2009; Roussel et al. 2015; Szwillus

et al. 2016; Deng and Shen 2017a, b), which is slightly different from the North-East-Up

(NEU) coordinate system in Tóth (2005), Tóth and Földváry (2005), Wild-Pfeiffer (2008)

and Grombein et al. (2013). The ENU is a right-handed system: its origin is at the field

point P, x-axis points to the East, y-axis points to the North, and z-axis points radially

outward the radial direction; whereas the NEU is a left-handed system: its origin is also at

the point P, x-axis points to the North, y-axis points to the East, and z-axis points radially

outward to the radial direction (Casotto and Fantino 2009). kP, hP and rP(kP 2 0; 2p½ �,
hP 2 �p=2; p=2½ �) are in spherical coordinates of point P, where kP is spherical longitude,

hP is spherical latitude, and rP is radial radius from the Earth center O to point P. Anal-

ogously, kS, hS and rS (kS 2 0; 2p½ �; hS 2 �p=2; p=2½ �) are also in spherical coordinates of

point S. LPS is the Euclidean distance between points P and S, and w denotes the angle

between the position vectors of points P and S as the spherical distance. IVijk is the

Cartesian integral kernel of the GC formulas. i, j and k are three different directional

parameters, respectively (i.e., i 2 fx; y; zg, j 2 fx; y; zg and k 2 fx; y; zg).
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Therefore, the optimal GP (VO�T3D), GV (VO�T3D
i ), GGT (VO�T3D

ij ) and GC (VO�T3D
ijk )

formulas in Cartesian integral kernels can be generally expressed as

VO�T3D

VO�T3D
i

VO�T3D
ij

VO�T3D
ijk

8>><
>>:

9>>=
>>;

¼
Zk2

k1

Zh2

h1

Zr2

r1

IV

IVi

IVij

IVijk

8>><
>>:

9>>=
>>;
drSdhSdkS ð11Þ

where IV , IVi and IVij are the corresponding Cartesian integral kernels of the GP, GV, GGT;

see Grombein et al. (2013) and Uieda et al. (2016).

Note that even though the optimal GC formulas are expressed in Cartesian integral

kernels, the 3D evaluation of the optimal GC formulas is still implemented in spherical

coordinates in the domain ½k1; k2� and ½h1; h2� and ½r1; r2�, with the volume element

drSdhSdkS running through a tesseroid body, which has also been discussed by Grombein

et al. (2013); the difference in adding the integral expression of the GC into the topo-

graphic effects between Eq. (11) in this paper and Eq. (20) in Grombein et al. (2013)

should also be noted. In terms of the topographic effects, the relationship of the formulas

between Cartesian integral kernels and spherical integral kernels will be discussed in

Sect. 2.2.

After substituting Eqs. (2–10) into Eq. (1), the 3D GC formulas in the ENU spherical

coordinate system can be obtained from the Cartesian integral kernels, which are listed in

Appendix 1. Furthermore, the 2D topographic effects formulas of a tesseroid are derived

from the 3D GP, GV and GGT formulas provided in Grombein et al. (2013) and the 3D GC

formulas in Cartesian integral kernels listed in Appendix 1 in this paper by applying the

integration with respect to the geocentric radius rS of the integration point S, and the results

are listed in Appendix 2.

2.2 The Relationship of 3D Topographic Effects of a Tesseroid Between
Cartesian Integral Kernels and Spherical Integral Kernels

Compared to the formerly presented formulas of the topographic effects of a tesseroid mass

body derived from spherical integral kernels (Heck and Seitz 2007; Asgharzadeh et al.

2007; Wild-Pfeiffer 2008; Shen and Deng 2016; Deng and Shen 2017b), the GP, GV and

GGT formulas derived from Cartesian integral kernels are presented in Grombein et al.

(2013). Moreover, the GC formulas in Cartesian integral kernels are presented both in 3D

and 2D forms, which are provided in Appendix 1 and 2 in this paper, respectively.

Just as described in Grombein et al. (2013), though the 3D integral forms of the GP, GV

and GGT formulas are derived from two different integral kernels—Cartesian and

spherical; their conclusive expressions, obtained by substituting the related parameters into

the general formulas, are consistent with each other. Furthermore, the consistency of the

two methodologies (Cartesian and spherical) for the 3D GP, GV and GGT formulas has

been presented and confirmed by two numerical investigations by 3D TSE second-order

expression in Grombein et al. (2013).

The detailed mathematical derivations and the final expressions of the 3D GC formulas

in spherical integral kernels, obtained by applying the complicated relations, namely the

complicated transformation formulas from the second derivatives of the GP to third

derivatives presented in Tóth (2005), Tóth and Földváry (2005), Casotto and Fantino

(2009), Šprlák and Novák (2015, 2016, 2017), Šprlák et al. (2016) and Novák et al. (2017),

can be found in Appendix A of Deng and Shen (2017b). In Sect. 2.1 of this paper, the 3D
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GC expressions derived from Cartesian integral kernels are presented, and the detailed

formulas are listed in Appendix 1 as Eqs. (32–41). Comparing Eqs. (A1–A10) in Deng and

Shen (2017b) with Eqs. (32–41) in this paper, it is obviously found that the paired

parameters (VT3D
xyz and VO�T3D

xyz ; VT3D
yyy and VO�T3D

yyy ; VT3D
yyz and VO�T3D

yyz ; VT3D
zzx and VO�T3D

zzx ;

VT3D
zzy and VO�T3D

zzy ; VT3D
zzz and VO�T3D

zzz ) have the same expressions, whereas other paired

parameters (VT3D
xxx and VO�T3D

xxx ; VT3D
xxy and VO�T3D

xxy ; VT3D
xxz and VO�T3D

xxz ; VT3D
yyx and VO�T3D

yyx )

have different expressions due to the fact that the GC expressions of a tesseroid are

derived, respectively, from spherical and Cartesian integral kernels. Numerical compar-

isons of their integral kernels with the help of the mathematical software Mathematica

(https://www.wolfram.com/mathematica) or Maple (http://www.maplesoft.com) show that

though the mentioned paired GC components have different expressions, they in fact

provide the same numerical results. Moreover, Appendix 2 of this paper provides the 2D

integral formulas of the GC functionals.

Concerning the 3D topographic effects (i.e., GP, GV, GGT, GC) of a tesseroid, though

the derivations are from two different mathematical approaches as spherical and Cartesian

integral kernels, respectively, the final mathematical expressions of the 3D GP, GV, GGT

and GC are analytically consistent in spherical coordinates. In terms of the mathematical

derivations and expressions of the GC components, the Cartesian integral kernels are much

simpler and more concise than spherical integral kernels, where the latter have been

derived on the complicated functional conversion relations, especially by applying the

transformation formulas from the GGT functionals to the GC functionals (Tóth 2005; Tóth

and Földváry 2005; Casotto and Fantino 2009; Šprlák and Novák 2015, 2016, 2017; Šprlák

et al. 2016; Novák et al. 2017). For this reason, we use the name ‘‘optimal’’ for Cartesian

integral kernels. Numerical comparisons of the computational time and approximation

errors will be implemented in Sect. 4.1.

3 Numerical Approaches for the Topographic Effects

3.1 Taylor Series Expansion Approach for the GP, GV, GGT and GC
Formulas of a Tesseroid in Cartesian Integral Kernels

The numerical evaluation of the GP, GV, GGT and GC formulas of a tesseroid derived

from spherical integral kernels have been typically addressed by the TSE approach (Kuhn

2003; Heck and Seitz 2007; Wild-Pfeiffer 2008; Deng et al. 2016; Shen and Deng 2016;

Grombein et al. 2013, 2016; Deng and Shen 2017b). As for the GP, GV and GGT formulas

derived from Cartesian integral kernels in Grombein et al. (2013), the TSE method with

second-order expression is also adopted. In this section, the numerical TSE approach up to

fourth-order expression is implemented to evaluate the GC formulas in Cartesian integral

kernels.

3.1.1 3D TSE Approach

The 3D TSE method for the GP, GV, GGT and GC formulas at the tesseroid geometric

center point S0 can be written as (Heck and Seitz 2007; Shen and Deng 2016; Grombein

et al. 2013, 2016; Deng and Shen 2017b)
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Fm ¼
X
i;j;k

Xijk

Dkð Þiþ1 Dhð Þjþ1 Drð Þkþ1

2iþjþk iþ 1ð Þ! jþ 1ð Þ! k þ 1ð Þ! ð12Þ

Xijk ¼
oiþjþkX kS; hS; rSð Þ

okiSoh
j
Sor

k
S

jkS¼k0;hS¼h0;rS¼r0
ð13Þ

where Fm are the different GP, GV, GGT and GC functionals with even order (i.e., m = 0,

2, 4,…) and m ¼ iþ jþ k, Xijk are the coefficient parameters of the corresponding GP,

GV, GGT and GC functionals, and the detailed expressions of X k0; h0; r0ð Þ are listed in

Table 3.

In addition, the following expressions of the zero-order, second-order and fourth-order

GC formulas are implemented for practical calculation:

F0 ¼ D0 ¼DkDhDrX000 ð14Þ

F2 ¼ D0 þ D2 ¼ F0 þ D2¼F0 þ
1

24
DkDhDr X200Dk

2 þ X020Dh
2 þ X002Dr

2
� �

ð15Þ

F4 ¼ D0 þ D2 þ D4 ¼ F2 þ D4

¼ F2 þ
1

576
DkDhDr X220Dk

2Dh2 þ X202Dk
2Dr2 þ X022Dh

2Dr2
� �

þ 1

1920
DkDhDr X400Dk

4 þ X040Dh
4 þ X004Dr

4
� �

ð16Þ

where Dm (i.e., m = 0, 2, 4,…) are even order terms of the coefficient parameters (namely

Dk, Dh and Dr), and the expressions of different-order coefficient parameters (e.g.,

X000;X200; . . .;X220; . . .;X004) can be referred in Appendix B of Deng and Shen (2017b).

We note that the zero-order, second-order and fourth-order tesseroid formulas herein

correspond, respectively, to the second-order error, fourth-order error and six-order error

tesseroid formulas in Heck and Seitz (2007) and Grombein et al. (2013, 2014, 2016, 2017).

3.1.2 2D TSE Approach

Similarly, the 2D TSE approach for the GP, GV, GGT and GC formulas can be obtained as

Hn ¼
X
i;j

Yij
Dkð Þiþ1 Dhð Þjþ1

2iþj iþ 1ð Þ! jþ 1ð Þ! ð17Þ

Yij ¼
oiþjY kS; hSð Þ

okiSoh
j
S

jkS¼k0;hS¼h0 ð18Þ

where Hn are even order functions and represent different GP, GV, GGT and GC functions

(i.e., n = 0, 2, 4,…) and n ¼ iþ j, Yij are the coefficient parameters of the corresponding

GP, GV, GGT and GC functions, and the detailed expressions of Y k0; h0ð Þ are listed in

Table 4.

The zero-order, second-order and fourth-order tesseroid formulas for the 2D GP, GV,

GGT and GC expressions are implemented for practical calculation as
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H0 ¼ r0¼DkDhY00 ð19Þ

H2 ¼ r0 þr2 ¼ H0 þr2¼H0 þ
1

24
Y20Dk

2 þ Y02Dh
2

� �
ð20Þ

H4 ¼ r0 þr2 þr4 ¼ H2 þr4

¼ H2 þ
1

576
DkDh Y22Dk

2Dh2
� �

þ 1

1920
DkDh Y40Dk

4 þ Y04Dh
4

� � ð21Þ

where rn (i.e., n = 0, 2, 4,…) are even order terms of the coefficient parameters as

mentioned before.

Compared to the 3D TSE approach implemented in Grombein et al. (2013) for the GP,

GV and GGT calculations, we note the following differences including the calculation

strategy adopted in this paper: (1) The 2D forms expressions are used with 2D TSE

approach; (2) the different orders (zero-order, second-order and fourth-order) of 3D and 2D

TSE approach are applied; (3) we use superposition calculation for different-order tes-

seroid formulas, namely the practical calculation for 3D as Eqs. (14–16) and 2D as

Eqs. (19–21), whereas the order of 3D TSE approach in Grombein et al. (2013) is only

second-order and the calculation strategy of Grombein et al. (2013) is symbolic substi-

tution as step by step derivations; and (4) the evaluation of the GC expressions is addi-

tionally provided while Grombein et al. (2013) only presented the evaluation of the GP,

GV and GGT expressions.

3.2 Gauss–Legendre Quadrature Method for the GP, GV, GGT and GC
Formulas of a Tesseroid Both in Spherical and Cartesian Integral Kernels

Analogously to the 3D and 2D TSE approach for numerical evaluation of the GP, GV and

GGT formulas, the GLQ has been widely applied in the calculation for gravity and

magnetic effects (Stroud and Secrest 1966; Ku 1977; von Frese et al. 1981; Asgharzadeh

et al. 2007, 2008; Wild-Pfeiffer 2008; Li et al. 2011; Hirt et al. 2011; Du et al. 2015;

Roussel et al. 2015; Rexer and Hirt 2015; Uieda et al. 2016). In this paper, the GLQ

method is applied for the GC formulas both in spherical and Cartesian integral kernels.

Moreover, the 3D and 2D GLQ approaches are presented for the GP, GV, GGT and GC

formulas.

3.2.1 3D GLQ Approach

According to Asgharzadeh et al. (2007), Roussel et al. (2015) and Uieda et al. (2016), the

3D GP, GV, GGT and GC formulas derived both from Cartesian and spherical integral

kernels with 3D GLQ approach, truncated to degree (Nk, Nh, Nr), can be represented as

F3D
GLQ � GqS

ðk2 � k1Þðh2 � h1Þðr2 � r1Þ
8

XNr

k¼1

XNh

j¼1

XNk

i¼1

Wk
ðGLQÞiW

h
ðGLQÞjW

r
ðGLQÞkI ki; hj; rk

� �

ð22Þ

ki ¼ xi
k2 � k1

2
þ k2 þ k1

2
ð23Þ
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Wk
ðGLQÞi ¼

2

1� x2ið Þ P0
Nk xið Þ

� �2 ð24Þ

hj ¼ yj
h2 � h1

2
þ h2 þ h1

2
ð25Þ

Wh
ðGLQÞj ¼

2

1� y2j

� �
P0
Nh yj
� �� �2 ð26Þ

rk ¼ zk
r2 � r1

2
þ r2 þ r1

2
ð27Þ

Wr
ðGLQÞk ¼

2

1� z2k
� �

P0
Nr zkð Þ½ �2

ð28Þ

where F3D
GLQ is the function of the 3D general GP, GV, GGT and GC expressions, which are

from Eq. (21) of Grombein et al. (2013) and Appendix 1 of this paper; Nk, Nh, Nr are the

integer degrees of numerical quadrature (i.e., Nk, Nh, Nr = 1, 2, 3, 4, …) and Wk
ðGLQÞi,

Wh
ðGLQÞj, W

r
ðGLQÞk are the Gauss–Legendre weights for the spherical longitude, spherical

latitude and radius, respectively; I ki; hj; rk

� �
is the integral kernel of the integration point

ki; hj; rk

� �
for the 3D GP, GV, GGT and GC expressions; xi, yj and zk are the ith, jth, kth

root of the Nkth-, Nhth- and Nrth-order polynomials PNk , PNh and PNr ; P0
Nk xið Þ, P0

Nh yj
� �

and

P0
Nr zkð Þ are the first derivatives of PNk xið Þ, PNh yj

� �
and PNr zkð Þ, respectively, where the

interval [- 1, ? 1] is applied.

3.2.2 2D GLQ Approach

Similarly to the mathematical derivations of the 3D GLQ approach, the 2D GLQ for the

GP, GV, GGT and GC formulas derived both from Cartesian and spherical integral kernels

can be denoted as (Wild-Pfeiffer 2008; Hirt et al. 2011)

F2D
GLQ � GqS

ðk2 � k1Þðh2 � h1Þ
4

XNh

j¼1

XNk

i¼1

Wk
ðGLQÞiW

h
ðGLQÞjJ ki; hj

� �
ð29Þ

where F2D
GLQ is the function of the 2D general GP, GV, GGT and GC expressions, which are

listed in Appendix 2 of this paper; J ki; hj

� �
is the integral kernel of the integration point

ki; hj

� �
for the 2D GP, GV, GGT and GC expressions. Other parameters are the same as

the description of 3D GLQ approach.

The numerical values of the 1D GLQ nodes xi and weights wi in interval [a, b]

(
R b
a
f ðxÞdx ¼

Pn
i¼1 wif ðxiÞ) are reported in Table 5. When the interval [a, b] is set as [- 1,

? 1], the numerical values of the GLQ nodes and weights are consistent with the corre-

sponding values provided in Table 4 of Wild-Pfeiffer (2008) and Table 3 of Hirt et al.

(2011).
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3.3 Newton–Cotes Quadrature Method for the GP, GV, GGT and GC
Formulas of a Tesseroid in Both Spherical and Cartesian Integral Kernels

The NCQ approach was introduced in Appendix 1 ‘‘Interpolating quadrature formulae’’ of

Wild-Pfeiffer (2008) as a comparative numerical method to the GLQ for the evaluation of

the GP, GV and GGT expressions. However, Wild-Pfeiffer (2008) only cited the mathe-

matical definition of the numerical NCQ approach and did not carry out the numerical

experiments to confirm its reliability. Therefore, based on Wild-Pfeiffer (2008) we expand

the numerical NCQ approach, which can be divided into two types: Closed Newton–Cotes

Quadrature (CNCQ) and Open Newton–Cotes Quadrature (ONCQ), for evaluating the 3D/

2D topographic effects, respectively. The difference between the CNCQ and ONCQ lies in

whether it considers the end points in the sum of the numerical values. If they are con-

sidered, the NCQ is referred to as the CNCQ, otherwise, it is ONCQ. In other words, the

CNCQ uses the function values at all points, whereas ONCQ does not.

3.3.1 3D CNCQ and ONCQ Approaches

Expanding the 1D NCQ as described in Wild-Pfeiffer (2008), the 3D CNCQ and ONCQ

approaches for the numerical evaluation of the topographic effects are provided. The 3D

CNCQ and ONCQ forms of degree (Nk,Nh,Nr) can be expressed as

F3D
NCQ � GqS

XNr

k¼0

XNh

j¼0

XNk

i¼0

Wk
ðNCQÞiW

h
ðNCQÞjW

r
ðNCQÞkI ki; hj; rk

� �
ð30Þ

where F3D
NCQ is the general function expression of the 3D GP, GV, GGT and GC (see

Eq. (21) of Grombein et al. (2013) and Appendix 1 of this paper); Wk
ðNCQÞi, W

h
ðNCQÞj,

Wr
ðNCQÞk are the NCQ weights for the spherical longitude, spherical latitude and radius,

respectively.

3.3.2 2D CNCQ and ONCQ Approaches

Moreover, the 2D forms of the CNCQ and ONCQ can be written as

F2D
NCQ � GqS

XNh

j¼0

XNk

i¼0

Wk
ðNCQÞiW

h
ðNCQÞjJ ki; hj

� �
ð31Þ

where F2D
NCQ is the general function expression of the 2D GP, GV, GGT and GC (see

Appendix 2 of this paper).

The numerical values of the 1D CNCQ and the ONCQ (
R b
a
f ðxÞdx ¼

Pn
i¼1 wif ðxiÞ) with

the corresponding nodes xi and weights wi in interval [a, b] are presented in Tables 6 and 7,

respectively, where the nodes xi clearly show the difference between the CNCQ and

ONCQ.
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4 Numerical Investigations

4.1 Comparison of Computational Time Between Spherical and Cartesian
Integral Kernels

The comparison of the computational time between the spherical and Cartesian integral

kernels of the GP, GV and GGT expressions by 3D TSE second-order approach has been

numerically investigated in Sect. 6.1 of Grombein et al. (2013). Here, we further inves-

tigate the numerical efficiency of the spherical and Cartesian integral kernels of the GC

expressions by the 3D TSE zero-order, second-order and fourth-order tesseroid formulas.

Subsequently, analogously to Grombein et al. (2013) and Deng and Shen (2017b), the

constant spherical shell (h
0
= 1 km) is adopted, and the computational burdens of spherical

and Cartesian integral kernels for the GC formulas are calculated to show whether the

Cartesian integral kernels are optimal for evaluating the components of the GC. In addi-

tion, the GP, GV and GGT formulas between the spherical and Cartesian integral kernels

with the 3D TSE zero-order, second-order and fourth-order tesseroid formulas are re-

investigated as well.

Specifically, the constant topographic spherical shell is utilized with 1� 9 1�grid of the

constant thickness h
0
= 1 km. Therefore, for the TSE approach, the horizontal dimension

Dk ¼ Dh ¼ 1� and vertical dimension Dr ¼ h
0 ¼ 1 km are adopted for 360*180 = 64,800

tesseroid bodies in the representative application. Therefore, the total topographic effects

of the spherical shell can be approximately calculated by the sum of all the 64, 800 discrete

tesseroid bodies. If the grid resolution is 50 9 50, it should be noted that the total number of

the tesseroid bodies in Grombein et al. (2013) with 50 9 50 resolution should be corrected

from 9,931,200 to 9,331,200 (they added 600,000 more individual tesseroid bodies in

counting), namely the number of the tesseroid bodies for resolution 5
0
9 5

0
should be 360 *

180 * 12 * 12 = 9,331,200. Moreover, without loss of generality, the spherical coordinate

ðkP; hP; rPÞ of the computation point P is (0�, 0�, 6631 km), namely taking the GOCE-type

satellite height 260 km from the surface of a synthetic sphere, where the radius of the

sphere is 6371 km.

Consequently, the computational burden (unit: s) in percentage (%) form of the GP (V),

GV (Vx,Vy,Vz), GGT (Vxx, Vyy, Vzz, Vxy, Vxz, Vyz) and GC (Vxxx, Vxxy, Vxxz, Vxyz, Vyyx, Vyyy,

Vyyz, Vzzx, Vzzy and Vzzz) expressions for spherical and Cartesian integral kernels with the 3D

TSE zero-order, second-order and fourth-order are listed in Table 1. All the computation

CPU time costs are shown in percentage (%) form with respect to the 3D TSE approach

based on the second-order tesseroid formulas of the GP, GV, GGT and GC in spherical

integral kernels, respectively, for the reason that the 3D TSE second-order tesseroid for-

mulas are the most utilized approach for evaluating the tesseroid mass reduction in the

related geoscience areas (Tsoulis et al. 2009; Chaves and Ussami 2013; Du et al. 2015;

Shen and Han 2013, 2014, 2016; Shen and Deng 2016; Grombein et al.

2013, 2014, 2016, 2017; Deng and Shen 2017b). Note that the actual computational burden

strongly depends on hardware (e.g., our resources for calculations are Intel CPU i5 with 4

cores).

The GP (V) evaluation and average value (Vm) by the 3D TSE in Cartesian and

spherical integral kernels with different orders are listed in Table 1. The computational

burdens of Cartesian integral kernels are the same as those of spherical integral kernels for

the second-order and fourth-order, respectively.
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Similarly, Table 1 lists the evaluation of the GV (Vx, Vy and Vz) and the average values

(Vm
i ). As for V

m
i , the computational burdens of Cartesian integral kernels are less than those

of spherical integral kernels for the second-order and fourth-order as 1% and 6%,

respectively, where for the zero-order it is the same as 6% for spherical integral kernels.

Additionally, the computational burden of GGT (Vij) and GC (Vijk) and the average

values (Vm
ij and Vm

ijk) are listed in Table 1. The computational burdens of Cartesian integral

kernels are less than those of spherical integral kernels with Vm
ij by 1, 15 and 145% and

with Vm
ijk by 3, 54 and 528% for the zero-order, second-order and fourth-order,

correspondingly.

When estimating the total sum of the average time costs of Vm, Vm
i , V

m
ij and Vm

ijk, 5, 82

and 813% are required for Cartesian integral kernels for the zero-order, second-order and

fourth-order, respectively, which are, respectively, fewer than those of spherical integral

kernels by 1, 18 and 170%.

Compared to the numerical experiment in the Sect. 6.1 of Grombein et al. (2013),

herein there are some differences for the estimation of the GP, GV and GGT: (1) The

utilized programming language is Mathematica for this paper, while C?? for Grombein

et al. (2013); (2) the different hardware: for this paper, Intel CPU i5 with 4 cores is used;

(3) the distinctive evaluation strategy: the initial input formulas of V , Vz and Vzz are

equivalent for spherical and Cartesian integral kernels, and other parameters input formulas

of the GP, GV, and GGT are adopted in initial and unreduced expressions for spherical

integral kernels provided in Eqs. (22–23) of Grombein et al. (2013) and the other optimal

GP, GV and GGT formulas provided in Eq. (21) of Grombein et al. (2013) for Cartesian

integral kernels, where for Grombein et al. (2013) it has been discussed in Sect. 3.1 of this

paper.

However, for higher-order derivatives especially for the GGT evaluation in Grombein

et al. (2013) and the GGT and GC evaluation in this paper, significant improvements can

be found for Cartesian integral kernels if compared to spherical integral kernels. Fur-

thermore, for the GC evaluation, the forms of spherical integral kernels as Eqs. (A1), (A2),

(A3) and (A5) in Appendix A of Deng and Shen (2017b) are more complicated than those

of Cartesian integral kernels as Eqs. (32), (33), (34) and (36) in Appendix 1 of this paper.

Therefore, in terms of the computational burden, Cartesian integral kernels are also

numerically optimal rather than spherical integral kernels with the 3D TSE approach,

especially for the GC functionals.

4.2 Comparison of Accuracy and Computational Time for Cartesian Integral
Kernels with Different Numerical Approaches

Following the idea of Sect. 4.1, the constant spherical shell (h’ = 1 km) model is as well

implemented to perform accuracy and computational time by the different numerical

methods (3D/2D TSE, GLQ and NCQ (CNCQ/ONCQ)) for the GP, GV, GGT and GC

formulas in Cartesian integral kernels to show which numerical method is optimal for

evaluating the GP, GV, GGT and GC formulas in Cartesian integral kernels in terms of

accuracy and computational time. Furthermore, by expanding the works of Grombein et al.

(2013), where the 3D TSE second-order approach is applied, the different-order (zero-

order, second-order and fourth-order) formulas are presented to illustrate the different

accuracy and computational time of the 3D/2D TSE approach.

The general analytical formulas for the GP (V sh), GV (Vsh
i ), GGT (Vsh

ij ) and GC (Vsh
ijk) of

the spherical shell can be referred in Grombein et al. (2013) and Deng and Shen (2017b).
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Consequently, the reference values of the GP, GV, GGT and GC in the following section

for the computation point P at GOCE-type height can be referred in Table 2 ‘‘Satellite

column’’ of Deng and Shen (2017b). Afterward, the absolute approximation errors for the

GP, GV, GGT and GC can be obtained between the reference values and the actual

calculated values by different numerical methods (3D/2D TSE, GLQ and CNCQ/ONCQ),

and the absolute approximation errors divided by the reference values equal the relative

approximation errors in the following numerical experiments.

Therefore, the absolute approximation errors in Log10 scale and computational CPU

time for the GP (dV), GV (dgz), GGT (dVxx, dVyy and dVzz) and GC (dVxxz, dVyyz and dVzzz)

based on 3D/2D TSE with different orders (zero-order, second-order and fourth-order), 3D/

2D GLQ with nodes 1 to 7 and 3D/2D NCQ (CNCQ and ONCQ) with nodes 2 to 7 can be

evaluated. Because of the similarities among the figures for the GP, GV, GGT and GC,

herein only the figure of the GC component (dVzzz) is illustrated in Fig. 2. All the com-

putational CPU time is shown as the percentage form with respect to the 3D TSE approach

based on second-order tesseroid formulas of the GP, GV, GGT and GC, respectively. It is

Table 2 Ranges (from minimum to maximum) and standard deviation (STD) in Log10 scale for the
differences of the relative approximation errors for the GP, GV, GGT and GC in Fig. 6

Name Figure 6a Figure 6b Figure 6c 3D GLQ 3D CNCQ

GP (dV)

Range [- 6.2, - 5.0] [- 6.2, - 5.0] [- 6.8, - 5.6] [- 6.2, - 5.0] [- 5.9, - 4.7]

STD 0.3 0.3 0.3 0.3 0.3

GV (dVz)

Range [- 6.5, - 3.6] [- 6.5, - 3.6] [- 7.1, - 4.2] [- 6.5, - 3.6] [- 6.2, - 3.3]

STD 0.7 0.7 0.7 0.7 0.7

GGT (dVxx)

Range – [- 6.5, - 2.2] [- 7.1, - 2.8] [- 6.5, - 2.2] [- 6.2, - 1.9]

STD – 1.1 1.1 1.1 1.1

GGT (dVyy)

Range [- 6.9, - 2.2] [- 6.9, - 2.2] [- 7.5, - 2.8] [- 6.9, - 2.2] [- 6.6, - 1.9]

STD 1.2 1.2 1.2 1.2 1.2

GGT (dVzz)

Range [- 8.4, - 2.2] [- 8.4, - 2.2] [- 9.0, - 2.8] [- 8.4, - 2.2] [- 8.1, - 1.9]

STD 1.3 1.3 1.3 1.3 1.3

GC (dVxxz)

Range – [- 6.8, - 0.8] [- 7.4, - 1.4] [- 6.8, - 0.8] [- 6.5, - 0.5]

STD – 1.4 1.4 1.4 1.4

GC (dVyyz)

Range [- 6.7, - 0.8] [- 6.7, - 0.8] [- 7.3, - 1.4] [- 6.7, - 0.8] [- 6.4, - 0.5]

STD 1.4 1.4 1.4 1.4 1.4

GC (dVzzz)

Range [- 7.5, - 0.8] [- 7.5, - 0.8] [- 8.1, - 1.4] [- 7.5, - 0.8] [- 7.2, - 0.5]

STD 1.5 1.5 1.5 1.5 1.5

– Means that the values are indeterminate
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noted that the time unit is second and the actual computational burden depends on

hardware.

For the 3D and 2D comparisons as shown in Fig. 2, the 2D calculation approximation

errors are only presented as dV for the GP, dVz for the GV, dVzz for the GGT and dVzzz for

the GC. As for the 3D and 2D TSE methods of the GC component (dVzzz) with different

zero-order, second-order and fourth-order in Fig. 2, the absolute approximation errors are

at the same level in Fig. 2a; and the computational time of the 2D TSE is more efficient

than that of the 3D TSE in Fig. 2b. The same rules of the absolute approximation errors

and computational time can be found for the 3D/2D GLQ, CNCQ and ONCQ approaches

with different 3D/2D nodes as well. Therefore, the 2D form of the GC component (dVzzz)

(see Eq. (56)) is more efficient than the 3D form in Cartesian integral kernel [see Eq. (41)]

to reach the same accuracy.

As for the comparison of the TSE and GLQ approaches, the absolute approximation

errors in 3D/2D nodes 1 of the 3D/2D GLQ are approximately equivalent to the 3D/2D

zero-order TSE in Fig. 2a, while for 3D/2D nodes 2 of the 3D/2D GLQ, the absolute

approximation errors are smaller than these of the second-order TSE in 3D and 2D forms;

it is similar for the nodes 3 of the 3D/2D GLQ and the 3D/2D fourth-order TSE. Among

the GLQ, CNCQ and ONCQ, the absolute approximation errors of the 3D/2D GLQ at

nodes 1 and 3D/2D CNCQ at nodes 2 are about at same level, whereas there is an increased

approximation error from the nodes 2 to 3 for the 3D/2D ONCQ. For the 3D/2D nodes

from 3 to 7, the absolute approximation errors of the 3D/2D GLQ are smaller than these of

the 3D/2D CNCQ and ONCQ. The property of the increased approximation errors from the

nodes 2 to 3 for the 3D/2D ONCQ shows the instability of the ONCQ approach at the start

(a) (b)

Fig. 2 a GC (dVzzz) absolute approximation errors in Log10 scale with 3D/2D TSE (blue triangle), GLQ
(red circle), CNCQ (green square) and ONCQ (black pentagrams). As for the TSE, the 3D/2D nodes 1, 2 and
3 mean zero-order, second-order and fourth-order, respectively; and for the GLQ, the 3D/2D nodes are from
1 to 7, whereas for the CNCQ and ONCQ, the 3D/2D nodes are from 2 to 7 with computation point P (0�, 0�,
6631 km) and grid resolution 1� 9 1�, the unit of GC (dVzzz) is m

-1 s-2; b GC (dVzzz) histogram of CPU
time percentage by 3D TSE (blue column), GLQ (red column), CNCQ (green column) and ONCQ (black
column) with respect to the 3D TSE second-order tesseroid formulas. As for the TSE, the 3D/2D nodes 0, 2
and 4 mean zero-order, second-order and fourth-order, respectively
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node 2, which will be verified and validated in Sect. 4.5. Moreover, results in Fig. 2b

demonstrate that the GLQ method performs better in terms of the computational time if

compared to the 3D/2D TSE and NCQ (CNCQ and ONCQ) approaches.

In conclusion, for all the numerical approaches (3D/2D TSE, GLQ, CNCQ and ONCQ),

with higher order for the TSE and more nodes for the GLQ, CNCQ and ONCQ, the

absolute approximation errors are less, whereas the computational time is larger, except for

the ONCQ with 3D/2D nodes 2. Among the numerical approaches mentioned in this paper,

the GLQ approach is recommended for practical calculation in terms of the computational

efficiency. Moreover, the nodes of the GLQ approach should be carefully chosen in terms

of the trade-off effects between the computational time and numerical accuracy.

4.3 Influence of the Spherical Shell’s Thickness on the GP, GV, GGT and GC

In this section, expanding the idea of the approximation errors between the analytical for-

mulas and the numerical 3D TSE approach for a homogeneous spherical shell (Grombein

et al. 2013; Shen andDeng 2016; Uieda et al. 2016; Deng and Shen 2017b), we investigate the

influence of a spherical shell’s thickness on the evaluation of the GP, GV, GGT and GC

formulas, where the thickness of the spherical shell varies, namely the thickness h’ is variable

in this section rather than constant as previously assumed in Sect. 4.2. Shen and Deng (2016)

concluded that with thicker shell, the approximation errors were larger for the GP evaluation.

Furthermore, it is essential to pay attention to the approximation errors variation of the GP,

GV, GGT and GC with different spherical shell’s thicknesses.

Generally, the thickness of the spherical shell is set as 1 km (i.e., Grombein et al. 2013;

Shen and Deng 2016; Uieda et al. 2016; Deng and Shen 2017b). In Kuhn and Hirt (2016),

the thickness 6 km of a spherical shell was selected to indicate the extreme situation for the

global topographic masses. Moreover, Shen and Deng (2016) studied the influence of the

shell’s thicknesses 1 and 8 km on the GP calculation by a simple example with different-

order tesseroid formulas, where the spherical shell with 8 km was assumed as the worst-

case situation for high mountainous areas. In the numerical experiment, the variable

thickness h’ is set as six constant values: 10 m, 100 m, 1, 6, 8 and 10 km. The numerical

3D TSE second-order formulas are adopted for the GP, GV, GGT and GC in Cartesian

integral kernels as well. The condition of other parameters is the same as that of Sect. 3.3

in Deng and Shen (2017b).

Because of the similar variation trends of the eight curves (dV , dVz, dVxx, dVyy, dVzz,

dVxxz, dVyyz and dVzzz) for the different thicknesses, we only show the relative approxi-

mation errors in Log10 scale of the GP, GV, GGT and GC for the thickness h
0
= 10 km in

Fig. 3. Moreover, the differences of the relative approximation errors for the thicknesses

(100 m, 1, and 10 km) compared to the thickness 10 m are demonstrated in Figs. 4a–c, and

Fig. 4d reveals the differences in the relative approximation errors between the thicknesses

8 and 6 km.

Comparing to Fig. 4a in Deng and Shen (2017b), Fig. 3 reveals the thickness effects for

the relative approximation errors of the GP, GV, GGT and GC. The turning points for the

eight components are 6377.6 km for the GP (dV), 6381.5 km for the GV (dVz), 6385.4 km

for the GGT (dVxx, dVyy and dVzz) and 6389.3 km for the GC (dVxxz, dVyyz and dVzzz),

which are smaller than those of Fig. 4a in Deng and Shen (2017b). Therefore, with the

larger thickness of the spherical shell, the turning points for the relative approximation

errors of the GP, GV, GGT and GC move nearer to the surface of the spherical shell.
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Figure 4a, b and c obviously displays that the different thicknesses of the spherical shell

affect the relative approximation errors of the GP, GV, GGT and GC. Particularly, the

change trend ranges of the GP, GV, GGT and GC in Log10 scale are approximately [- 0.3,

0.2], [- 0.4, 0.2], [- 0.6, 0.2] and [- 0.8, 0.4] in Fig. 4a, [- 1.1, 0.9], [- 1.1, 0.9],

[- 1.4, 1.0] and [- 1.6, 1.3] in Fig. 4b, and [- 1.2, 2.4], [- 1.2, 2.2], [- 1.5, 0.6] and

[- 2.8, 2.1] in Fig. 4c, respectively. Therefore, Fig. 4a–c validates the assumption of Shen

and Deng (2016) that the approximation errors are larger for the GP evaluation with a

thicker spherical shell. Moreover, our numerical experiments indicate that the same rule

can be applied for the GV, GGT and GC evaluation.

The maximum GC values shown in Fig. 4a–c at the very near area are about 0.4, 1.3 and

2.1 in Log10 scale, whereas the values of other topographic effects (i.e., GP, GV and GGT)

are not so obvious. Hence, as for the four types of the topographic effects, the GC is more

sensitive than the GP, GV and GGT at the very near area of the computation point, which

can be obviously illustrated in Fig. 4a–c.

Concerning the assumed worst-situation for high mountainous areas of 8 km in Shen

and Deng (2016) and 6 km in Kuhn and Hirt (2016), the differences of the relative

approximation errors are presented in Fig. 4d. The average change trends of the GP, GV,

GGT and GC are about 0.2, 0.2, - 0.2 and - 0.2 in Log10 scale in Fig. 4d excepting for

the turning points region, which means that the overall impact of the assumed worst-

situation (8 km from Shen and Deng (2016) or 6 km from Kuhn and Hirt (2016)) for the

global high mountainous areas is not obvious except for the turning points of the topo-

graphic effects. Moreover, the amplitude of differences variation range for the topographic

Fig. 3 Visualization of the relative approximation errors in Log10 scale for the GP (dV(blue curve)), GV
(dVz(red curve)), GGT (dVxx(green dashed curve), dVyy(dark-blue dashed curve) and dVzz(yellow dotted

curve)) and GC (dVxxz(deep-sky-blue dashed curve), dVyyz(thistle dashed curve) and dVzzz (magenta dotted

curve)) with from 6371 km to 6401 km with interval 0.15 km. The thickness of the spherical shell h’ is
10 km with resolution 150 9 150
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effects at the turning points region is listed from big to small as GV, GC, GGT and GP in

Fig. 4d with ranges of [- 1.4, 1.6], [- 1.1, 1.1], [- 0.8, 1] and [- 0.5, 1], respectively.

4.4 Influence of Large-Scale Geocentric Distance on the GP, GV, GGT
and GC

In this section, based on the experiment in Sect. 3.3 of Deng and Shen (2017b), the

geocentric distance is expanded from [6371, 6401 km] to [6371, 7371 km]. Additionally,

the interval of the geocentric distance is changed to 2 km other than 0.15 km. The purpose

is to show the effects of the large-scale geocentric distance variation of the computation

point P on the evaluation of the GP, GV, GGT and GC. Herein, the Cartesian integral

kernels are applied for the evaluation of the GP, GV, GGT and GC, where Deng and Shen

(a) (b)

(c) (d)

Fig. 4 Illustration of differences of the relative approximation errors in Log10 a between 100 and 10 m;
b between 1 km and 10 m; c between 10 km and 10 m; d between 8 and 6 km. Other parameters are the
same as in Fig. 3
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(2017b) adopted the spherical integral kernels. Other conditions are the same as in

Sect. 3.3 of Deng and Shen (2017b).

For the interval [6371 km, 6401 km] in Figs. 5a and 5b, the detailed curve trend can be

referred to Fig. 4 of Deng and Shen (2017b). Figure 5a presents that the afterward curves

trends of the GP, GV, GGT and GC are generally similar: with the geocentric distance

increase, the relative approximation errors decline rapidly, which is called rapid drop zone;

then at the one level, they arrive at the concussion zone, where the relative approximation

errors of the GP, GV, GGT and GC change with large variation; at a certain level, the

whole curve rule finally tends to be stable, denoted as stable zone. The ranges of the

relative approximation errors are about 10-15–105 for the GC, 10-15–103 for the GGT,

10-15–100 for the GV and 10-14–10-3 for the GP. In rapid drop zone, the amplitude of the

relative approximation errors is listed by order from big to small as GC, GGT, GV and GP.

Moreover, the three curves of the GC functionals (dVxxz, dVyyz and dVzzz) overlap together

in rapid drop zone, the same for three curves of the GGT functionals (dVxx, dVyy and dVzz).

In concussion zone, the vibration amplitude of the deep-sky-blue dashed curve (dVxxz) is

the largest among the eight curves. In stable zone, the relative approximation errors values

for the eight curves can be roughly divided as three levels: 10-14 for the blue curve (dV);
between 10-14 and 10-12.5 for the red curve (dVz), the green dashed curve (dVxx), the

yellow dotted curve (dVzz) and the deep-sky-blue dashed curve (dVxxz); and around 10-12.5

for the dark-blue dashed curve (dVyy), the thistle dashed curve (dVyyz) and the magenta

dotted curve (dVzzz).

Figure 5b reveals that the absolute approximation errors of the two Laplace parameters

(dDV2 for the GGT and dDV3 for the GC) decline gradually with the increasing geocentric

distance. The ranges of the two curves are 10-25–10-14 s-2 for the GGT and 10-30–10-20

m�1s�2 for the GC, which show that the sum of the GC functionals (dVxxz, dVyyz and dVzzz)

satisfies the Laplace equation at proper precision and the same for that of the GGT

functionals (dVxx, dVyy and dVzz).

(a) (b)

Fig. 5 a Illustration of the relative approximation errors of the GP (dV with blue curve), GV (dVz with red
curve), GGT (dVxx with green dashed curve, dVyy with dark-blue dashed curve and dVzz with yellow dotted

curve) and GC (dVxxz with deep-sky-blue dashed curve, dVyyz with thistle dashed curve and dVzzz with

magenta dotted curve) in Log10 scale for the large-scale geocentric distance of the computation point P with
[6371 km, 7371 km] with interval 2 km and resolution 150 9 150; b visualization of the absolute
approximation errors of Laplace parameters for the GGT (dDV2) and GC (dDV3)
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4.5 Influence of the Latitude on the GP, GV, GGT and GC

The polar singularity problem of the GGT by spherical integral kernels with the 3D TSE

method was solved by Cartesian integral kernels in Grombein et al. (2013). Deng and Shen

(2017b) showed that the GC formulas in spherical integral kernels with the 3D TSE

method have the polar singularity problem as well. Therefore, in this numerical experi-

ment, the GC formulas in Cartesian integral kernels are implemented to solve the polar

singularity problem of the GC. Moreover, for the evaluation of the GP, GV, GGT and GC

in Cartesian integral kernels, the 3D GLQ and CNCQ/ONCQ approaches are implemented

to illustrate the computational accuracy compared to the 3D TSE approach. The conditions

(i.e., the grid resolution 150 9 150, the information of the spherical shell) of this numerical

experiment are the same as Sect. 3.4 of Deng and Shen (2017b).

The differences of the relative approximation errors for the GP, GV, GGT and GC in

Log10 scale by different approaches (e.g., 3D TSE with zero-order and second-order, 3D

GLQ with nodes 1 and 2, 3D CNCQ/ONCQ with nodes 2 and 3) are presented in Fig. 6

with the influence of the latitude. Furthermore, the statistical information (e.g., ranges from

minimum to maximum, standard deviation) for the differences of the GP, GV, GGT and

GC shown in Fig. 6 is listed in Table 2. Due to the similarities among the 3D TSE, GLQ,

CNCQ for the GP, GV, GGT and GC functionals in Cartesian integral kernels, only the 3D

TSE approach is presented in Fig. 6b, and its statistical information is listed in Table 2,

which also list the statistical information for the 3D GLQ and CNCQ approaches.

Generally, all the eight curves have the similar variation rule in Fig. 6a–c: with the

latitude increasing from the equator to North Pole, the eight curves for the differences of

the relative approximation errors in Fig. 6a–c with the 3D TSE and ONCQ approaches rise

steeply, especially in the polar region (hP � 80�), where the yellow curves of the GGT

(dVzz) decrease at latitude about 31
� because of the change of the logarithmic scale referred

in Grombein et al. (2013) and Deng and Shen (2017b). Just as mentioned in Ballard et al.

(2016), if the tesseroid bodies are in the polar region, the geographic geometry of the

tesseroid approaches to zero, the tesseroid would suffer accidental variability, which would

influence the evaluation of the GP, GV, GGT and GC (Heck and Seitz 2007; Wild-Pfeiffer

2008; Grombein et al. 2013; Shen and Deng 2016; Deng and Shen 2017b). In Table 2, the

standard derivation values for each figure are equal for the corresponding GP, GV, GGT

and GC components, except for the GGT (dVxx) and GC (dVxxz) in Fig. 6a.

The important difference among Fig. 6a–c lies in the polar singularity problem of the

computation point P at the North Pole. In particular, the GGT (dVxx) and GC (dVxxz) values

in Fig. 6a are indeterminate at the North Pole, where the polar singularity occurs. In other

words, Fig. 6a shows the gaps for the green curve (dVxx) and deep-sky-blue curve (dVxxz) at

latitude 90�. For Cartesian integral kernels with different numerical approaches in

Fig. 6b,c, the GGT (dVxx) and GC (dVxxz) values can be estimated at the North Pole, which

means that Fig. 6b,c do not show the gaps for the green curve (dVxx) and deep-sky-blue

curve (dVxxz) at latitude 90
�. Therefore, analogously to the solution of the polar singularity

problem of GGT by Cartesian integral kernels in Grombein et al. (2013), the polar sin-

gularity problem of the GC discovered in Deng and Shen (2017b) can also be solved by the

Cartesian integral kernels with the different numerical approaches (3D TSE, GLQ, CNCQ

and ONCQ).

Subsequently, the statistical information of the ranges and standard derivation for

Figs. 6b and the 3D GLQ column in Table 2 are the same, which confirm the stability of

3D TSE and GLQ. For the 3D CNCQ column in Table 2 and 3D ONCQ in Fig. 6c, the

Surv Geophys (2018) 39:365–399 385

123



values of the ranges and standard derivation for the 3D CNCQ in Table 2 are closer to

those of 3D TSE and GLQ than those of 3D ONCQ. Put another way, the 3D ONCQ is

more unstable than other applied approaches (e.g., 3D TSE, GLQ, CNCQ) in this paper at

start 3D node 2. Thus, for the practical application of the 3D ONCQ approach at start node

2, it needs further investigation.

(a) (b)

(c)

Fig. 6 Visualization of differences of the relative approximation errors in Log10 scale of the GP (dV with
blue curve), GV (dVz with red curve), GGT (dVxx with green curve, dVyy with dark-blue curve and dVzz with

yellow curve) and GC (dVxxz with deep-sky-blue curve, dVyyz with thistle curve and dVzzz with magenta

curve) a between 3D TSE zero-order and second-order for spherical integral kernels; b between 3D TSE
zero-order and second-order for Cartesian integral kernels; c between the 3D ONCQ nodes 2 and 3 for
Cartesian integral kernels
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5 Conclusions

In this contribution, based on the previous GC formulas derived from spherical integral

kernels (Deng and Shen 2017b), the optimal GC formulas in Cartesian integral kernels are

provided not only in the 3D forms but also in the 2D forms. The consistency of the tesseroid

modeling from spherical and Cartesian integral kernels has been analytically presented and

numerically confirmed in terms of accuracy and computational time. Compared to the GC

formulas in spherical integral kernels, the advantage of the GC formulas in Cartesian integral

kernels lies in that they are more concise in their expressions and more efficient in numerical

calculations, with reduction in the average computational burden of 1% for the GV, 15% for

the GGT and 54% for the GC with the 3D TSE second-order formulas.

Moreover, as for these integral formulas of the topographic effects in both spherical and

Cartesian integral kernels, which are listed in Deng and Shen (2017b) and this paper, many

numerical approaches can be applied for the evaluation of these topographic effects. In this

paper, the 3D/2D TSE zero-order, second-order and fourth-order, the GLQ and NCQ

(CNCQ and ONCQ) approaches are implemented in the numerical evaluation of the

topographic effects with Cartesian integral kernels for comparison, especially for the GC.

In terms of accuracy and computational time, the GLQ approach is recommended for

practical application of the topographic effects if compared to the TSE zero-order, second-

order and fourth-order and NCQ approaches.

In addition, the effects of the spherical shell’s thickness on the relative approximation

errors of the GP, GV, GGT and GC in Cartesian integral kernels have been investigated

with the 3D TSE second-order tesseroid formulas. For thicker spherical shell, the relative

approximation errors are larger not only for the GP evaluation (cf. Shen and Deng 2016),

but also for the GV, GGT and GC evaluations. Compared to other topographic effects, the

relative approximation errors of the GC are more sensitive, especially in the very near area

of the computation point.

Besides, the effects of the large-scale geocentric distance variation on the relative

approximation errors of the GP, GV, GGT and GC in Cartesian integral kernels have been

studied with the 3D TSE second-order tesseroid formulas. Generally, as the large-scale geo-

centric distance increases, the curves trends of the relative approximation errors of the GP, GV,

GGT and GC can be divided as three processes: (1) rapid drop zone with speedily declining

relative approximation errors; (2) concussion zone with the large vibration amplitude of the

relative approximation errors; and (3) stable zone with the stable relative approximation errors.

Furthermore, the polar singularity problem of the GC in spherical integral kernels,

which was pointed out in Deng and Shen (2017b), can be solved numerically by Cartesian

integral kernels with the 3D TSE second-order, GLQ and NCQ (including CNCQ and

ONCQ) approaches. In other words, the formulas of the GC in Cartesian integral kernels

can avoid the polar singularity of the computation point because of no additional coor-

dinates transformation, where the coordinates transformation relationship would introduce

polar singularity from denominator parameters.

Apart from the numerical approaches mentioned in this paper (e.g., 3D/2D TSE with zero-

order, second-order and fourth-order, GLQ, CNCQ and ONCQ), other numerical approaches

and mathematical models can be adopted to calculate the topographic effects of a tesseroid,

especially for the GC functionals. For instance, there are many numerical approaches,

including different quadrature approaches (e.g., Gauss–KronrodQuadrature; Clenshaw–Curtis

Quadrature; Lobatto–Kronrod Quadrature), 3-D Cauchy-type approach (Zhdanov and Liu

2013), Fast Multipole Method (Casenave et al. 2016), FFT series approach (Schwarz et al.
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1990;Wu2016; Sampietro et al. 2016), Legendre polynomial series approach (Ramillien 2017)

and the rotation method between Earth-Centred Rotational and Earth-Centred P-Rotational

reference frames (Marotta and Barzaghi 2017). In fact, the concept of the GC in topographic

effects can also be applied for othermass bodies in spatial domain, especially for the polyhedral

bodies (Holstein 2002; D’Urso 2013, 2014a, 2014b, 2015, 2016; Ren et al. 2017;Werner 2017;

D’Urso and Trotta 2017) and prism (Nagy et al. 2000; D’Urso 2017).

The potential application of the GC in spatial domain could be used as primary refer-

ence in the next-generation topographic gravity field model (topographic effects on

establishing high-resolution and high-accuracy global/local gravity fields and geoids) and

may have extensive applications in geodesy and related geoscience, especially for the

inversion for the internal structure of the Earth.
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Appendix 1: 3D GC Formulas of a Tesseroid in Cartesian Integral
Kernels

The 3D GC formulas of a tesseroid derived from Cartesian integral kernels in spherical

coordinates in the local East–North–Up (ENU) topocentric reference system are listed

here:

VO�T3D
xxx ¼

Zk2

k1

Zh2

h1

Zr2

r1

K � 15r3S cos
3 hS sin

3 kP � kSð Þ
L7
PS

þ 9rS cos hS sin kP � kSð Þ
L5
PS

 !
drSdhSdkS

ð32Þ

VO�T3D
xxy ¼

Zk2

k1

Zh2

h1

Zr2

r1

K
15r3S cos

2 hS sin2 kP � kSð ÞA
L7
PS

� 3rSA

L5
PS

 !
drSdhSdkS ð33Þ

VO�T3D
xxz ¼

Zk2

k1

Zh2

h1

Zr2

r1

K � 15r2S cos
2 hS sin

2 kP � kSð ÞB
L7
PS

þ 3B

L5
PS

 !
drSdhSdkS ð34Þ

VO�T3D
xyz ¼

Zk2

k1

Zh2

h1

Zr2

r1

K
15r2S cos hS sin kP � kSð ÞAB

L7
PS

 !
drSdhSdkS ð35Þ

VO�T3D
yyx ¼

Zk2

k1

Zh2

h1

Zr2

r1

K � 15r3S cos hS sin kP � kSð ÞA2

L7
PS

þ 3rS cos hS sin kP � kSð Þ
L5
PS

 !
drSdhSdkS

ð36Þ
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VO�T3D
yyy ¼

Zk2

k1

Zh2

h1

Zr2

r1

K
15r3SA

3

L7
PS

� 9rSA

L5
PS

 !
drSdhSdkS ð37Þ

VO�T3D
yyz ¼

Zk2

k1

Zh2

h1

Zr2

r1

K � 15r2SA
2B

L7
PS

þ 3rSB

L5
PS

 !
drSdhSdkS ð38Þ

VO�T3D
zzx ¼

Zk2

k1

Zh2

h1

Zr2

r1

K � 15rS cos hS sin kP � kSð ÞB2

L7
PS

þ 3rS cos hS sin kP � kSð Þ
L5
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 !
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ð39Þ

VO�T3D
zzy ¼

Zk2

k1

Zh2

h1

Zr2

r1

K
15rSAB

2

L7
PS

� 3rSA

L5
PS

 !
drSdhSdkS ð40Þ

VO�T3D
zzz ¼

Zk2

k1

Zh2

h1

Zr2

r1

K � 15B3

L7
PS

þ 9B

L5
PS

 !
drSdhSdkS ð41Þ

where K ¼ GqSr
2
S cos hS,LPS ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2P þ r2S � 2rPrS cosw

p
, A ¼ cos hP sin hS �

sin hP cos hS cos kP � kSð Þ and B ¼ rP � rS cosw.

Appendix 2: 2D Topographic Effects Formulas of a Tesseroid in Cartesian
Integral Kernels

Analogously, based on the 3D GP, GV and GGT formulas provided in Eq. (21) of

Grombein et al. (2013) and 3D GC formulas listed in Appendix 1, the 2D topographic

effects formulas of a tesseroid in Cartesian integral kernels in the local East–North–Up

(ENU) topocentric reference system are listed here:

VO�T2D ¼ 1

4
GqS

Zk2

k1

Zh2

h1

cos hs 2LPS rs þ 3 coswrp
� �

þ r2p 1þ 3 cos 2wð Þ ln LPS þ rs � rp cosw
� �h i

jrS¼r2
rS¼r1

dhSdkS

ð42Þ

VO�T2D
x ¼ GqS

Zk2

k1

Zh2

h1

cos2 hs sin kS � kPð Þ r2p þ r2s � rprs cosw� 3r2p þ r2s

� �
cos 2wþ 3rprs cos 3w

� �h

csc2 w=2LPS þ 3rp cosw ln LPS þ rs � rp cosw
� �

�jrS¼r2
rS¼r1

dhSdkS

ð43Þ
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VO�T2D
y ¼ GqS

Zk2

k1

Zh2

h1

A cos hs r2p þ r2s � rprs cosw� 3r2p þ r2s

� �
cos 2wþ 3rprs cos 3w

� �h
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jrS¼r2
rS¼r1

dhSdkS

ð44Þ

VO�T2D
z ¼ GqS
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k1

Zh2

h1

coshs½ðð3r2p þ r2s Þ cosw� rprsð2þ 3 cos 2wÞÞ=LPS

þ 1

2
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VO�T2D
yy ¼ GqS
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k1

Zh2

h1

cos hs½ 3A2 � 1
� �

ln LPS þ rS � rP coswð Þ

þ csc4 w

4L3
PS

ðrP 1� 24A2
� �

r2S þ 1� 11A2
� �

r2P
� �

cosw

þ 2rS 6A2 � 1
� �

r2S þ 9A2 � 1
� �

r2P
� �

cos 2w

þ rP 3A2 r2P � r2S
� �

� r2P
� �

cos 3w

þ rS 1� 4A2
� �

r2S þ 2 1� 3A2
� �

r2P
� �

cos 4w

þ 3A2 � 1
� �

r2SrP cos 5wþ 12A2rSr
2
P þ r3SÞ�j

rS¼r2
rS¼r1

dhSdkS ð46Þ

VO�T2D
zz ¼ 1

2
GqS

Zk2

k1

Zh2

h1

cos hs½ 3 cos 2wþ 1ð Þ ln LPS þ rS � rP coswð Þ

� ð2rS 4r2S þ 6r2P
� �

cos 2wþ 4r3S � 6r2SrP cos 3wþ 10rSr
2
P

� 2rP 11r2S þ 3r2P
� �

coswÞ=L3
PSÞ�j

rS¼r2
rS¼r1

dhSdkS ð47Þ

VO�T2D
xy ¼ 3GqS

Zk2

k1

Zh2

h1

A cos2 hs sin kS � kPð Þ½ln LPS þ rS � rPcoswð Þ

þ csc4 w

12L3
PS

ð�rP 24r2S þ 11r2P
� �

coswþ 6rS 2r2S þ 3r2P
� �

cos 2wþ 3rP r2P � r2S
� �

cos 3w

� 2rS 2r2S þ 3r2P
� �

cos 4wþ 3r2SrP cos 5wþ 12rSr
2
PÞ�j

rS¼r2
rS¼r1

dhSdkS

ð48Þ

VO�T2D
yz ¼ 3GqS

Zk2

k1

Zh2

h1

A cos hs½cosw ln LPS þ rS � rP coswð Þ

þ ðcsc2 wð�2r3S cosw� 3rP 2r2S þ r2P
� �

cos 2wþ 2rS 2r2S þ 3r2P
� �

cos 3w

� 3r2SrP cos 4wþ 3r2SrP þ r3PÞÞ=6L3
PS�j

rS¼r2
rS¼r1

dhSdkS ð49Þ
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VO�T2D
xz ¼ 3GqS

Zk2

k1

Zh2

h1

cos2 hs sin kS � kPð Þ½cosw ln LPS þ rS � rP coswð Þ

þ ðcsc2 wð�2r3S cosw� 3rP 2r2S þ r2P
� �

cos 2wþ 2rS 2r2S þ 3r2P
� �

cos 3w

� 3r2SrP cos 4wþ 3r2SrP þ r3PÞÞ=6L3
PS�j

rS¼r2
rS¼r1

dhSdkS

ð50Þ

VO�T2D
xyz ¼ �3GqS

Zk2

k1

Zh2

h1

A cos2 hs sin kS � kPð Þ r5s

rpL5
PS

" #
jrS¼r2
rS¼r1

dhSdkS ð51Þ

VO�T2D
yyy ¼ GqS

Zk2

k1

Zh2

h1

"
� cos hS csc6 wAB

8rPL5
PS

ð�2rSrP 136A2 � 27
� �

r2S þ 8 16A2 � 3
� �

r2P
� �

cosw

þ 4 9� 7A2
� �

r4S þ 28A2 þ 15
� �

r2Sr
2
P þ 6r4P

� �
cos 2w

þ rSrPðð16A2 � 57Þr2S � 48r2PÞ cos 3w
þ r2SððA2 � 1Þr2S þ 21r2PÞ cos 4w
þ 3r3SrP cos 5wþ 64A2 � 24

� �
r4P

þ 272A2 � 81
� �

r2Sr
2
P þ 89A2 � 33

� �
r4S

#					
rS¼r2

rS¼r1

dhSdkS

ð52Þ

VO�T2D
yyz ¼ GqS

Zk2

k1

Zh2

h1

cos hs r3s
L2
PS � 3A2r2s

� �
rpL5

PS

" #					
rS¼r2

rS¼r1

dhSdkS ð53Þ

VO�T2D
zzx ¼ 3GqS

Zk2

k1

Zh2

h1

cos2 hs sin kS � kPð Þ Br4s

rpL5
PS

" #					
rS¼r2

rS¼r1

dhSdkS ð54Þ

VO�T2D
zzy ¼ 3GqS

Zk2

k1

Zh2

h1

cos hsA
Br4s

rpL5
PS

" #					
rS¼r2

rS¼r1

dhSdkS ð55Þ

VO�T2D
zzz ¼ �GqS

Zk2

k1

Zh2

h1

coshs r3s

4r2p þ r2s � 8rprs coswþ 3r2s cos 2w
� �

2rpL5
PS

2
4

3
5
					
rS¼r2

rS¼r1

dhSdkS

ð56Þ
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VO�T2D
yyx ¼

Zk2

k1

Zh2

h1

GqS cos
2 hs csc

6 w sin kP � kSð Þ
"
Bð 64A2 � 8
� �

r4P

þ 272A2 � 27
� �

r2Pr
2
S þ 89A2 � 11

� �
r4S � 2rPrS

8 16A2 � 1
� �

r2P

þ 136A2 � 9
� �

r2S

 !
cosw

þ 4 2r4P þ 5þ 28A2
� �

r2Pr
2
S þ 3� 7A2

� �
r4S

� �
cos 2w

þ 16A2 � 19
� �

r2S � 16r2P
� �

rPrS cos 3w

þ 7r2P þ 3A2 � 1
� �

r2S
� �

r2S cos 4wþ rPr
3
S cos 5wÞ=8rPL5

PS

#					
rS¼r2

rS¼r1

dhSdkS

ð57Þ

where cos 2w ¼ 2 cos2 w� 1, cos 3w ¼ 4 cos3 w� 3 cosw, cos 4w ¼ 8 cos4 w� 8 cos2 wþ
1 and cos 5w ¼ 16 cos5 w� 20 cos3 wþ 5 cosw, and other parameters are the same as in

Appendix 1.

Appendix 3: Tables of numerical approaches (3D/2D TSE, GLQ, NCQ)
for the Topographic Effects

See Tables 3, 4, 5, 6 and 7

Table 3 Detailed expressions of 3D Fm and X k0; h0; r0ð Þ in Eqs. (12–16) with K0 ¼ GqSr
2
0 cos h0,

LP0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2P þ r20 � 2rPr0 cosw0

p
, cosw0 ¼ sin hP sin h0 þ cos hP cos h0 cos kP � k0ð Þ, A0 ¼ cos hP sin h0 �

sin hp cos h0 cos kP � k0ð Þ and B0 ¼ rP � r0 cosw0

Fm X k0; h0; r0ð Þ

VO�T3D K0

LP0

VO�T3D
x � K0r0 cos h0 sin kP�k0ð Þ

L3
P0

VO�T3D
y

K0r0A0

L3
P0

VO�T3D
z � K0B0

L3
P0

VO�T3D
xx

K0 3r2
0
cos2 h0 sin2 kP�k0ð Þ�L2

P0ð Þ
L5
P0

VO�T3D
yy

K0ð3r20A2
0
�L2

P0Þ
L5
P0

VO�T3D
zz

K0 3B2
0
�L2

P0ð Þ
L5
P0

VO�T3D
xy � 3K0r

2
0
cos h0 sin kP�k0ð ÞA0

L5
P0

VO�T3D
yz

3K0r0A0B0

L5
P0

VO�T3D
xz

3K0r0 cos h0 sin kP�k0ð ÞB0

L5
P0

VO�T3D
xxx K0 � 15r3

0
cos3 h0 sin3 kP�k0ð Þ

L7
P0

þ 9r0cosh0 sin kP�k0ð Þ
L5
P0

� �

VO�T3D
xxy K0

15r3
0
cos2 h0 sin2 kP�k0ð ÞA0

L7
P0

� 3r0A0

L5
P0

� �
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Table 3 continued

Fm X k0; h0; r0ð Þ

VO�T3D
xxz K0 � 15r2

0
cos2 h0 sin2 kP�k0ð ÞB0

L7
P0

þ 3B0

L5
P0

� �

VO�T3D
xyz K0

15r2
0
cos h0 sin kP�k0ð ÞA0B0

L7
P0

� �

VO�T3D
yyx K0 � 15r3

0
cos h0 sin kP�k0ð ÞA2

0

L7
P0

þ 3r0 cos h0 sin kP�k0ð Þ
L5
P0

� �

VO�T3D
yyy K0

15r3
0
A3
0

L7
P0

� 9r0A0

L5
P0

� �

VO�T3D
yyz K0 � 15r2

0
A2
0
B0

L7
P0

þ 3r0B0

L5
P0

� �

VO�T3D
zzx K0 � 15r0 cos h0 sin kP�k0ð ÞB2

0

L7
P0

þ 3r0 cos h0 sin kP�k0ð Þ
L5
P0

� �

VO�T3D
zzy K0

15r0A0B
2
0

L7
P0

� 3r0A0

L5
P0

� �

VO�T3D
zzz K0 � 15B3

0

L7
P0

þ 9B0

L5
P0

� �

Table 4 Detailed expressions of 2D Hn and Y k0; h0ð Þ in Eqs. (17–21). Other parameters are the same in
Table 3

Hn Y k0; h0ð Þ

VO�T2D 1
4
GqS cos h0½2LP0 r0 þ 3 cosw0r0ð Þ þ r20 1þ 3 cos 2w0ð Þ ln LP0 þ r0 � rP cosw0ð Þ�jr0¼r2

r0¼r1

VO�T2D
x GqS cos

2 h0 sin k0 � kPð Þ r2P þ r20 � rPr0 cosw0 � 3r2P þ r20
� �

cos2w0 þ 3rPr0cos3w0

� ��
csc2 w0=2LP0 þ 3rP cosw0 ln LP0 þ r0 � rP cosw0ð Þ

�
jr0¼r2
r0¼r1

VO�T2D
y GqSA0cosh0 r2P þ r20 � rPr0 cosw0 � 3r2P þ r20

� �
cos 2w0 þ 3rPr0 cos 3w0

� ��
csc2 w0=2LP0 þ 3rP cosw0 ln LP0 þ r0 � rP cosw0ð Þ

�
jr0¼r2
r0¼r1

VO�T2D
z GqS cos h0 3r2p þ r20

� �
cosw0 � rpr0ð2þ 3 cos 2w0Þ

� �
=LP0 þ

1

2
rp 1þ 3 cos 2w0ð Þ




ln LP0 þ r0 � rp cosw0

� ��
jr0¼r2
r0¼r1

VO�T2D
xx

–

VO�T2D
yy GqS cos h0½ 3A2

0 � 1
� �

ln LP0 þ r0 � rP cosw0ð Þ

þ csc4 w0

4L3
P0

ðrP 1� 24A2
0

� �
r20 þ 1� 11A2

0

� �
r2P

� �
cosw0

þ 2r0 6A2
0 � 1

� �
r20 þ 9A2

0 � 1
� �

r2P
� �

cos 2w0

þ rP 3A2
0 r2P � r20
� �

� r2P
� �

cos 3w0

þ r0 1� 4A2
0

� �
r20 þ 2 1� 3A2

0

� �
r2P

� �
cos 4w0

þ 3A2
0 � 1

� �
r20rP cos 5w0 þ 12A2

0r0r
2
P þ r30Þ�j

r0¼r2
r0¼r1

VO�T2D
zz

1

2
GqS cos h0½ 3 cos 2w0 þ 1ð Þ ln LP0 þ r0 � rP cosw0ð Þ

� ð2r0 4r20 þ 6r2P
� �

cos 2w0 þ 4r30 � 6r20rP cos 3w0 þ 10r0r
2
P

� 2rP 11r20 þ 3r2P
� �

cosw0Þ=L3
P0�j

r0¼r2
r0¼r1
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Table 4 continued

Hn Y k0; h0ð Þ

VO�T2D
xy 3GqSA0 cos

2 h0 sin k0 � kPð Þ½ln LP0 þ r0 � rPcosw0ð Þ

þ csc4 w0

12L3
P0

ð�rP 24r20 þ 11r2P
� �

cosw0 þ 6r0 2r20 þ 3r2P
� �

cos 2w0

þ 3rP r2P � r20
� �

cos 3w0 � 2r0 2r20 þ 3r2P
� �

cos 4w0

þ 3r20rP cos 5w0 þ 12r0r
2
PÞ�j

r0¼r2
r0¼r1

VO�T2D
yz 3GqSA0 cos h0½cosw0 ln LP0 þ r0 � rP cosw0ð Þ

þ ðcsc2 w0ð�2r30 cosw0 � 3rP 2r20 þ r2P
� �

cos 2w0

þ 2r0 2r20 þ 3r2P
� �

cos 3w0 � 3r20rP cos 4w0 þ 3r20rP þ r3PÞÞ=6L3
P0�j

r0¼r2
r0¼r1

VO�T2D
xz 3GqS cos

2 h0 sin k0 � kPð Þ½cosw0 ln LP0 þ r0 � rP cosw0ð Þ
þ ðcsc2 w0ð�2r30 cosw0 � 3rP 2r20 þ r2P

� �
cos 2w0

þ 2r0 2r20 þ 3r2P
� �

cos 3w0 � 3r20rP cos 4w0 þ 3r20rP þ r3PÞÞ=6L3
P0�j

r0¼r2
r0¼r1

VO�T2D
xxx

–

VO�T2D
xxy

–

VO�T2D
xxz

–

VO�T2D
xyz �3GqSA0 cos

2 h0 sin k0 � kPð Þ r5
0

rPL5
P0

h i
jr0¼r2
r0¼r1

VO�T2D
yyx GqS cos

2 h0 csc
6 w0 sin kP � k0ð Þ½B0ð 64A2

0 � 8
� �

r4P

þ 272A2
0 � 27

� �
r2Pr

2
0 þ 89A2

0 � 11
� �

r40

� 2rPr0 8 16A2
0 � 1

� �
r2P þ 136A2

0 � 9
� �

r20
� �

cosw0

þ 4 2r4P þ 5þ 28A2
0

� �
r2Pr

2
0 þ 3� 7A2

0

� �
r40

� �
cos 2w0

þ 16A2
0 � 19

� �
r20 � 16r2P

� �
rPr0 cos 3w0

þ 7r2P þ 3A2
0 � 1

� �
r20

� �
r20 cos 4w0

þ rPr
3
0 cos 5w0Þ=8rPL5

P0�j
rS¼r2
rS¼r1

VO�T2D
yyy GqS½

� cos h0 csc6 w0A0B0

8rPL5
P0

ð�2r0rP 136A2
0 � 27

� �
r20 þ 8 16A2

0 � 3
� �

r2P
� �

cosw0

þ 4 9� 7A2
0

� �
r40 þ 28A2

0 þ 15
� �

r20r
2
P þ 6r4P

� �
cos 2w0

þ r0rPðð16A2
0 � 57Þr20 � 48r2PÞ cos 3w0

þ r20ððA2
0 � 1Þr20 þ 21r2PÞ cos 4w0

þ 3r30rP cos 5w0 � 81r20r
2
P þ 89A2

0r
4
0 � 33r40

þ 272A2
0r

2
0r

2
P þ 64A2

0r
4
P � 24r4PÞ�j

r0¼r2
r0¼r1

VO�T2D
yyz GqS cos h0 r30

L2
P0�3A2

0
r2
0ð Þ

rPL5
P0


 �
jr0¼r2
r0¼r1

VO�T2D
zzx 3GqS cos

2 h0 sin k0 � kPð Þ B0r
4
0

rPL5
P0

h i
jr0¼r2
r0¼r1

VO�T2D
zzy 3GqScosh0A0

B0r
4
0

rPL5
P0

h i
jr0¼r2
r0¼r1

VO�T2D
zzz �GqScosh0 r30

4r2Pþr2
0
�8rPr0 cosw0þ3r2

0
cos 2w0ð Þ

2rPL5
P0


 �
jr0¼r2
r0¼r1

– Means that the related forms cannot be integrated from 3D to 2D forms with respect to r0
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Table 5 GLQ nodes xi and weights wi (i = 1… N) with values rounded to ten decimal digits in interval [a,
b] for 1�N� 7, where h = (b - a)

Degree N Nodes xi Weights wi

1 x1 = 0.5,000,000,000 (a ? b) w1 = h

2 x1 = a ? 0.2,113,248,654 h
x2 = a ? 0.7,886,751,345 h

w1 = 0.5,000,000,000 h
w2 = 0.5,000,000,000 h

3 x1 = a ? 0.1,127,016,653 h
x2 = a ? 0.5,000,000,000 h
x3 = a ? 0.8,872,983,346 h

w1 = 0.2,777,777,778 h
w2 = 0.4,444,444,444 h
w3 = 0.2,777,777,778 h

4 x1 = a ? 0.0,694,318,442 h
x2 = a ? 0.3,300,094,782 h
x3 = a ? 0.6,699,905,218 h
x4 = a ? 0.9,305,681,558 h

w1 = 0.1,739,274,226 h
w2 = 0.3,260,725,774 h
w3 = 0.3,260,725,774 h
w4 = 0.1,739,274,226 h

5 x1 = a ? 0.0,469,100,770 h
x2 = a ? 0.2,307,653,449 h
x3 = a ? 0.5,000,000,000 h
x4 = a ? 0.7,692,346,551 h
x5 = a ? 0.9,530,899,230 h

w1 = 0.1,184,634,425 h
w2 = 0.2,393,143,352 h
w3 = 0.2,844,444,444 h
w4 = 0.2,393,143,352 h
w5 = 0.1,184,634,425 h

6 x1 = a ? 0.0,337,652,429 h
x2 = a ? 0.1,693,953,068 h
x3 = a ? 0.3,806,904,070 h
x4 = a ? 0.6,193,095,930 h
x5 = a ? 0.8,306,046,932 h
x6 = a ? 0.9,662,347,571 h

w1 = 0.0,856,622,462 h
w2 = 0.1,803,807,865 h
w3 = 0.2,339,569,673 h
w4 = 0.2,339,569,673 h
w5 = 0.1,803,807,865 h
w6 = 0.0,856,622,462 h

7 x1 = a ? 0.0,254,460,438 h
x2 = a ? 0.1,292,344,072 h
x3 = a ? 0.2,970,774,243 h
x4 = a ? 0.5,000,000,000 h
x5 = a ? 0.7,029,225,757 h
x6 = a ? 0.8,707,655,928 h
x7 = a ? 0.9,745,539,562 h

w1 = 0.0,647,424,831 h
w2 = 0.1,398,526,957 h
w3 = 0.1,909,150,253 h
w4 = 0.2,089,795,918 h
w5 = 0.1,909,150,253 h
w6 = 0.1,398,526,957 h
w7 = 0.0,647,424,831 h

Table 6 CNCQ nodes xi and weights wi (i = 1 … N) with values in interval [a, b] for 2�N� 7, where
h = (b - a)

Degree N Nodes xi (i = 1 … N) Weights wi (i = 1 … N)

2 x1 = a
x2 = b

w1 = h/2
w2 = h/2

3 x1 = a
x2 = (a ? b)/2
x3 = b

w1 = h/6
w2 = 2 h/3
w3 = h/6

4 x1 = a
x2 = (2a ? b)/3
x3 = (a ? 2b)/3
x4 = b

w1 = h/8
w2 = 3 h/8
w3 = 3 h/8
w4 = h/8

5 x1 = a
x2 = (3a ? b)/4
x3 = (a ? b)/2
x4 = (a ? 3b)/4
x5 = b

w1 = 7 h/90
w2 = 16 h/45
w3 = 2 h/15
w4 = 16 h/45
w5 = 7 h/90
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Table 6 continued

Degree N Nodes xi (i = 1 … N) Weights wi (i = 1 … N)

6 x1 = a
x2 = (4a ? b)/5
x3 = (3a ? 2b)/5
x4 = (2a ? 3b)/5
x5 = (a ? 4b)/5
x6 = b

w1 = 19h/288
w2 = 25h/96
w3 = 25h/144
w4 = 25h/144
w5 = 25h/96
w6 = 19h/288

7 x1 = a
x2 = (5a ? b)/6
x3 = (2a ? b)/3
x4 = (a ? b)/2
x5 = (a ? 2b)/3
x6 = (a ? 5b)/6
x7 = b

w1 = 41h/840
w2 = 9h/35
w3 = 9h/280
w4 = 34h/105
w5 = 9h/280
w6 = 9h/35
w7 = 41h/840

Table 7 ONCQ nodes x
i
and

weights w
i
(i = 1 … N) with

values in interval [a, b] for
2�N� 7, where h = (b - a)

Degree N Nodes xi Weights wi

2 x1 = (3a ? b)/4
x2 = (a ? 3b)/4

w1 = h/2
w2 = h/2

3 x1 = (5a ? b)/6
x2 = (a ? b)/2
x3 = (a ? 5b)/6

w1 = 3 h/8
w2 = h/4
w3 = 3 h/8

4 x1 = (7a ? b)/8
x2 = (5a ? 3b)/8
x3 = (3a ? 5b)/8
x4 = (a ? 7b)/8

w1 = 13 h/48
w2 = 11 h/48
w3 = 11 h/48
w4 = 13 h/48

5 x1 = (9a ? b)/10
x2 = (7a ? 3b)/10
x3 = (a ? b)/2
x4 = (3a ? 7b)/10
x5 = (a ? 9b)/10

w1 = 275 h/1152
w2 = 25 h/288
w3 = 67 h/192
w4 = 25 h/288
w5 = 275 h/1152

6 x1 = (11a ? b)/12
x2 = (3a ? b)/4
x3 = (7a ? 5b)/12
x4 = (5a ? 7b)/12
x5 = (a ? 3b)/4
x6 = (a ? 11b)/12

w1 = 247 h/1280
w2 = 139 h/1280
w3 = 127 h/640
w4 = 127 h/640
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w6 = 247 h/1280
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x3 = (9a ? 5b)/14
x4 = (a ? b)/2
x5 = (5a ? 9b)/14
x6 = (3a ? 11b)/14
x7 = (a ? 13b)/14

w1 = 4949 h/27648
w2 = 49 h/7680
w3 = 6223 h/15360
w4 = 6257 h/34560
w5 = 6223 h/15360
w6 = 49 h/7680
w7 = 4949 h/27648
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Šprlák M, Novák P (2015) Integral formulas for computing a third-order gravitational tensor from volu-

metric mass density, disturbing gravitational potential, gravity anomaly and gravity disturbance.
J Geodesy 89:141–157. https://doi.org/10.1007/s00190-014-0767-z
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