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Abstract Seismic amplitude variation with offset and azimuth (AVOaz) inversion is well

known as a popular and pragmatic tool utilized to estimate fracture parameters. A single set

of vertical fractures aligned along a preferred horizontal direction embedded in a hori-

zontally layered medium can be considered as an effective long-wavelength orthorhombic

medium. Estimation of Thomsen’s weak-anisotropy (WA) parameters and fracture

weaknesses plays an important role in characterizing the orthorhombic anisotropy in a

weakly anisotropic medium. Our goal is to demonstrate an orthorhombic anisotropic

AVOaz inversion approach to describe the orthorhombic anisotropy utilizing the observ-

able wide-azimuth seismic reflection data in a fractured reservoir with the assumption of

orthorhombic symmetry. Combining Thomsen’s WA theory and linear-slip model, we first

derive a perturbation in stiffness matrix of a weakly anisotropic medium with

orthorhombic symmetry under the assumption of small WA parameters and fracture

weaknesses. Using the perturbation matrix and scattering function, we then derive an

expression for linearized PP-wave reflection coefficient in terms of P- and S-wave moduli,

density, Thomsen’s WA parameters, and fracture weaknesses in such an orthorhombic

medium, which avoids the complicated nonlinear relationship between the orthorhombic

anisotropy and azimuthal seismic reflection data. Incorporating azimuthal seismic data and

Bayesian inversion theory, the maximum a posteriori solutions of Thomsen’s WA

parameters and fracture weaknesses in a weakly anisotropic medium with orthorhombic

symmetry are reasonably estimated with the constraints of Cauchy a priori probability

distribution and smooth initial models of model parameters to enhance the inversion res-

olution and the nonlinear iteratively reweighted least squares strategy. The synthetic

examples containing a moderate noise demonstrate the feasibility of the derived
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orthorhombic anisotropic AVOaz inversion method, and the real data illustrate the

inversion stabilities of orthorhombic anisotropy in a fractured reservoir.

Keywords AVOaz inversion � Orthorhombic medium � Thomsen’s WA

parameters � Fracture weaknesses � Bayesian inversion theory

1 Introduction

Existing geophysical and geological data demonstrate that orthorhombic media with a

horizontal symmetry plane are rather common for naturally fractured reservoirs (Bakulin

et al. 2000). A set of parallel vertical fractures aligned along a preferred horizontal

direction embedded in a transverse isotropic background with a vertical symmetry axis

(VTI medium), or two orthogonal sets of rotationally invariant vertical fractures embedded

in a purely isotropic or VTI background can combine to form an effective long-wavelength

orthorhombic medium (Schoenberg and Helbig 1997; Bakulin et al. 2000, 2002). It needs

to be stressed that we mainly discussed an effective orthorhombic model formed by a

single set of aligned vertical fractures embedded in a VTI background medium in the text,

and the other orthorhombic models were involved in the appendices.

In a fractured reservoir, WA parameters and fracture weaknesses play a vital role in the

characterization of orthorhombic media, and an analytical expression for linearized PP-

wave reflection coefficient in terms of WA parameters and fracture weaknesses is far

difficult to derive due to the complexity of seismic wave propagation in such an

orthorhombic media. Pšenčik and Vavryčuk (1998) derived weak contrast PP-wave

reflection/transmission coefficients in weakly anisotropic media. Shaw and Sen (2004)

introduced a novel method of scattering function to derive the linearized PP- and PS-wave

reflection coefficients in weakly anisotropic media integrating the Born integral with

stationary phase. Bachrach (2015) derived a linearized reflection coefficient approximation

varying with offset and azimuth for orthorhombic media following the notation of Pšenčik

and Martins (2001). Schoenberg and Helbig (1997) defined the stiffness matrix of a

fracture-induced orthorhombic model formed by vertical fractures perpendicular to the

x axis and horizontal fine layers with a vertical z axis as the symmetry axis using the

stiffness tensor of the VTI background medium and the dimensionless fracture weaknesses,

which has fewer number of parameters compared with the general orthorhombic model

(one parameter less). Bakulin et al. (2000, 2002) described the estimation of fracture

parameters in all three orthorhombic models integrating the relations between the

Thomsen’s (1986) weak-anisotropy (WA) parameters (Rüger 1997, 1998; Tsvankin 1997)

and fracture weaknesses (Schoenberg and Helbig 1997). Stating from the stiffness matrix

of orthorhombic media derived by Schoenberg and Helbig (1997), and using the pertur-

bation matrix and scattering function, we derive an expression for linearized PP-wave

reflection coefficient in terms of P- and S-wave moduli, density, Thomsen’s WA param-

eters, and fracture weaknesses in an orthorhombic medium with weak anisotropy and small

weaknesses.

In an orthorhombic fractured reservoir, the azimuthal anisotropy of observable seismic

data can be used to perform better seismic fracture characterization incorporating the

amplitude variations with offset and azimuth (AVOaz) inversion (Mallick et al. 1998;

Shaw and Sen 2006; Downton and Roure 2015; Bachrach 2015; Chen et al. 2017; Pan et al.

2017a, b). However, the estimated orthorhombic anisotropic parameters are usually

unstable due to the seismic amplitude severely affected by noise and ill-conditioned
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inverse problems (Sacchi and Ulrych 1995; Downton 2005). In this paper, we implemented

the orthorhombic anisotropic AVOaz inversion in a Bayesian framework, and Cauchy and

Gaussian probability density function (PDF) are utilized for the a priori information of

model parameters and the likelihood function, respectively, to enhance the resolution of the

inversion results for model parameters in a weakly anisotropic medium with orthorhombic

symmetry. The nonlinear iteratively reweighted least squares (IRLS) strategy is finally

used to solve the maximum a posteriori solutions of model parameters to improve the

inversion stability. We finish with synthetic and real data case studies to illustrate the

feasibility of proposed orthorhombic anisotropic AVOaz equation and inversion approach

in a fractured reservoir.

2 Theory and Method

2.1 Effective Elastic Stiffness Tensor in a Weakly Anisotropic Medium
with Orthorhombic Symmetry

A system of aligned vertical fractures embedded in a VTI background can be considered as

an effective long-wavelength orthorhombic medium. In the case that fracture faces are

perpendicular to the x axis (shown in Fig. 1a), and using the linear-slip theory with
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Fig. 1 Schematic diagram of orthorhombic media, where a is formed by a single set of vertical fractures
aligned yz-plane embedded in a VTI background, b is formed by two orthogonal vertical fracture sets
embedded in an isotropic background, and c is formed by two orthogonal vertical fracture sets embedded in
a VTI background
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physically intuitive relations between stress and discontinuity in displacement across the

fractures, the effective elastic stiffness tensor COA in such an orthorhombic medium can be

expressed as (Schoenberg and Helbig 1997)

COA ¼

C11 C12 C13 0 0 0

C12 C22 C23 0 0 0

C13 C23 C33 0 0 0

0 0 0 C44 0 0

0 0 0 0 C55 0

0 0 0 0 0 C66

2
6666664

3
7777775
¼

~C1 0
0 ~C2

� �
; ð1Þ

where 0 represents the 3 9 3 zero matrix, and ~C1 and ~C2 are given by

~C1 ¼

C11b 1 � DNð Þ C12b 1 � DNð Þ C13b 1 � DNð Þ

C12b 1 � DNð Þ C11b 1 � DN

C2
12b

C2
11b

� �
C13b 1 � DN

C12b

C11b

� �

C13b 1 � DNð Þ C13b 1 � DN

C12b

C11b

� �
C33b 1 � DN

C2
13b

C11bC33b

� �

2
66664

3
77775
; ð2Þ

and

~C2 ¼
C44b 0 0

0 C44b 1 � DVð Þ 0

0 0 C66b 1 � DHð Þ

2
4

3
5: ð3Þ

Here Cijb represents the stiffness elements of a VTI background medium, which is

constrained by C12b ¼ C11b � 2C66b and related to the P- and S-wave moduli M = C33b

and l ¼ C44b. dN, dV, and dH denote the dimensionless normal, vertical and horizontal

tangential fracture weaknesses, respectively, which change from zero for the case of no

fractures to unity for the case of extreme fracturing (Bakulin et al. 2000), and can be

expressed as (Schoenberg and Helbig 1997)

0� dN � ZNqC11b

1 þ ZNqC11b

\1; ð4Þ

0� dV � ZVqC44b

1 þ ZVqC44b

\1; ð5Þ

and

0� dH � ZHqC66b

1 þ ZHqC66b

\1; ð6Þ

where ZN, ZV, and ZH denote the nonnegative normal, vertical, and horizontal tangential

fracture compliances, respectively, and q represents the density term of a homogenous

isotropic background. Meanwhile, the normal fracture weakness dN depends on fluid

content filling the fractures and possible fluid flow between the fractures and pore space,

whereas the tangential fracture weaknesses dV and dH give a direct measure of fracture

density (Schoenberg and Douma 1988).

Under the weak-anisotropy assumption, the dimensionless Thomsen’s (1986) WA

parameters can be written in terms of stiffness elements of VTI background as
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eb � C11b � C33b

2C33b

; ð7Þ

cb � C66b � C44b

2C44b

; ð8Þ

and

db � C13b þ C44bð Þ2� C33b � C44bð Þ2

2C33b C33b � C44bð Þ � C13b þ 2C44b � C33b

C33b

; ð9Þ

where eb, cb, and db represent the three Thomsen’s WA parameters of VTI background.

In order to derive the perturbation in stiffness tensor of an orthorhombic medium

expressed using the dimensionless Thomsen’s WA parameters and fracture weaknesses, we

rewrite the expressions for the stiffness tensor of an orthorhombic medium.

Under the assumption of small WA parameters and fracture weaknesses, i.e., dN; etc �
1 (Shaw and Sen 2006), we neglected the terms that contain d2

N, e2
b, c2

b, d2
b, ebdN, cbdN, dbdN,

and cbdH, and thus, a new expression of WA approximate effective elastic stiffness tensor

in terms of Thomsen’s WA parameters and fracture weaknesses in a weakly anisotropic

medium with orthorhombic symmetry can be derived. Thus, the stiffness tensor for such a

medium is given by

COA ¼

C11 C12 C13 0 0 0

C12 C22 C23 0 0 0

C13 C23 C33 0 0 0

0 0 0 C44 0 0

0 0 0 0 C55 0

0 0 0 0 0 C66

2
6666664

3
7777775
; ð10Þ

where

C11 � M þ 2Meb �MdN; ð11Þ

C12 � kþ 2Meb � 4lcb � kdN; ð12Þ

C13 � kþMdb � kdN; ð13Þ

C22 � M þ 2Meb �Mv2dN; ð14Þ

C23 � kþMdb � kvdN; ð15Þ

C33 � M �Mv2dN; ð16Þ

C44 ¼ l; ð17Þ

C55 � l� ldV; ð18Þ

and

C66 � l� 2lcb � ldH: ð19Þ
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Here k ¼ M � 2l represents the first Lamé parameter of background medium, and

v ¼ k=M. eb, cb, and db represent the three Thomsen’s WA parameters of a VTI medium,

and dN, dV, and dH represent the three fracture weaknesses of aligned vertical fractures.

2.2 Linearized PP-Wave Reflection Coefficient for a Weakly Anisotropic
Medium with Orthorhombic Symmetry

Considering the small perturbations in P- and S-wave moduli and Lamé parameters across

the interface, and neglecting the terms that contain DMdN, DkdN, DMeb, DMdb, Dlcb,

DldV, and DldH for the case of small WA parameters and fracture weaknesses, we can

derive the perturbations over a weakly anisotropic medium with orthorhombic symmetry

expressed as

DC11 � DM þ 2MDeb �MDdN; ð20Þ

DC12 � Dkþ 2MDeb � 4lDcb � kDdN; ð21Þ

DC13 � DkþMDdb � kDdN; ð22Þ

DC22 � DM þ 2MDeb �Mv2DdN; ð23Þ

DC23 � DkþMDdb � kvDdN; ð24Þ

DC33 � DM �Mv2DdN; ð25Þ

DC44 ¼ Dl; ð26Þ

DC55 � Dl� lDdV; ð27Þ

and

DC66 � Dl� 2lDcb � lDdH; ð28Þ

where DM, Dl, Dk, Deb, Dcb, Ddb, DdN, DdV, and DdH represent the perturbations in P- and

S-wave moduli, Lamé parameter, Thomsen’s WA parameters, and fracture weaknesses

between the layers separated by the interface, respectively.

The perturbations in stiffness tensor depend linearly on Thomsen’s WA parameters and

fracture weaknesses, which quantify the orthorhombic anisotropy in a weakly anisotropic

medium. Combining the perturbations in stiffness tensor and scattering function (Shaw and

Sen 2004, 2006), the linearized PP-wave reflection coefficient for a weakly anisotropic

medium with orthorhombic symmetry can be thus derived to characterize the orthorhombic

anisotropy incorporating wide-azimuth seismic data and inversion method.

Shaw and Sen (2004, 2006) proposed a novel approach to derive the linearized

reflection coefficients using the perturbations in stiffness tensor and the slowness and

polarization vectors in weakly anisotropic media. For a weakly anisotropic medium with

orthorhombic symmetry, the linearized PP-wave reflection coefficient is given by

RPP ¼ 1

4q cos2 h
S; ð29Þ

where h represents the angle between the normal to the interface and the phase vector

normal to the incident wave front, and the scattering function is written as
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S ¼ Dqnþ
X6

I¼1

X6

J¼1

DCIJgIJ ; ð30Þ

where Dq represents the perturbation in the density, n ¼ tit
0
i

��
r¼r0

, and gIJ ¼ t0ip
0
jtkpl

���
r¼r0

.

Here the parameters p and t represent the slowness and polarization vectors, respectively,

and the position vector r0 represents the point on the horizontal interface separating two

weakly isotropic or anisotropic media satisfying Snell’s law of reflection. The subscripts I

and J refer to Voigt’s concise notation, I takes values over i and j, whereas J takes values

over k and l with i, j, k, l = 1, 2, 3. The expressions for n and gIJ are shown in Appendix 1.

Combining Eqs. (20)–(30), we derived a new linearized PP-wave reflection coefficient

in terms of background elastic moduli, density, Thomsen’s WA parameters, and fracture

weaknesses (in Appendix 1) to characterize the orthorhombic anisotropy. Thus, the derived

linearized PP-wave reflection coefficient over a weakly anisotropic medium with

orthorhombic symmetry can be expressed as

RPP h;/ð Þ ¼ aM hð ÞDM
M

þ al hð ÞDl
l

þ aq hð ÞDq
q

þ aeb
hð ÞDeb þ adb

hð ÞDdb

þ adN
h;/ð ÞDdN þ adV

h;/ð ÞDdV þ adH
h;/ð ÞDdH;

ð31Þ

where aM hð Þ ¼ sec2 h
�

4, al hð Þ ¼ �2g sin2 h, aq hð Þ ¼ 1 � sec2 h
�

2
� 	�

2, aeb hð Þ ¼ sin2 h

tan2 h
�

2, adb
hð Þ ¼ sin2 h

�
2, adN

h;/ð Þ ¼ �sec2 h
�

4 2g sin2 h sin2 /
�


þ cos2 hÞ � 1�2,

adV
h;/ð Þ ¼ g sin2 h cos2 /, adH

h;/ð Þ ¼ �g sin2 h tan2 h sin2 / cos2 /, g ¼ l=M, and where

/ represents the azimuthal phase angle (/ ¼ 0 for the direction along the fracture orien-

tation), and the denominators of DM/M, Dl=l, and Dq=q denote the average values of the

corresponding P- and S-wave moduli and density parameters of the upper and lower layers.

The derived Eq. (31) depends linearly on P- and S-wave moduli, density, Thomsen’s

WA parameters, and fracture weaknesses, which quantifies the seismic reflection response

of an orthorhombic medium to estimate the elastic and anisotropic parameters from

observable azimuthal seismic reflection data in a fractured reservoir. Of course, the

accuracy of derived AVOaz equation can be simply verified compared with Eq. (16)

derived by Zong et al. (2012) for the case of isotropy, and with Eq. (6) derived by Chen

et al. (2017) for the case of transverse isotropy with a vertical symmetry axis (HTI)

anisotropy. For other cause of orthorhombic media, the corresponding linearized PP-wave

reflection coefficient can be derived in a similar way (shown in Appendix 1).

Based on the derived linearized PP-wave reflection coefficient in such an orthorhombic

medium, we can characterize the effects of P- and S-wave moduli, density, Thomsen’s WA

parameters, and fracture weakness parameters on the PP-wave reflection, and further

implement the inversion for elastic moduli and fracture properties using the azimuthal

seismic data.

Figure 2 shows the effects of changes in model parameters on PP-wave reflection

coefficient. Form Fig. 2a, c, we find that both the reflectivities of P-wave moduli and

density term have contributions to the reflection coefficient at small angles of incidence,

which indicates that seismic data of large angles of incidence are necessary to be used to

discriminate the effects of P-wave moduli and density on PP-wave reflection coefficient.

Compared with the changes of the reflectivities of P-wave moduli and density, the change

of the reflectivity of S-wave moduli shown in Fig. 2b makes no contribution to the

reflection coefficient at small angles of incidence and contributes more at large angles of

incidence. From Fig. 2d, e, we can see that the changes of Thomsen’s WA parameters
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contribute the reflection coefficient similarly, and this may lead to uncertainties in esti-

mating the Thomsen’s WA parameters. From Fig. 2f, g, h, we can see that the changes in

fracture weaknesses contribute to the variation of reflection coefficient with not only angles

(a)

(b)

(c)

(d)

R P
P

ΔM/M
R P

P

Δμ/μ

R P
P

Δρ/ρ

R P
P

Δεb

R P
P

Δδb

R P
P

ΔδN

R P
P

ΔδV

R P
P

ΔδH(h)
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(f)
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but also azimuths, and the contributions of the normal weakness are more than the other

weakness parameters. To invert the Thomsen’s WA parameters and fracture weaknesses in

a weakly anisotropic medium with orthorhombic symmetry, we develop an AVOaz

inversion method in a Bayesian framework incorporating the constraints of Cauchy a priori

probability distribution and smooth initial models of model parameters.

2.3 AVOaz Inversion for Thomsen’s WA Parameters and Fracture
Weaknesses

The relative contrasts of elastic moduli and density in Eq. (31) can be substituted by

DM=M � D lnMð Þ, Dl=l � D lnlð Þ, and Dq=q � D lnqð Þ, where ln(•) denotes the natural

logarithm, and the symbol D indicates small perturbations across the interface, i.e.,

DM=Mj j � 1, Dl=lj j � 1, and Dq=qj j � 1. Combining Eq. (31) and convolution model

gives us the forward model which relates the azimuthal seismic traces to the logarithm of

P- and S-wave moduli, density, and to the Thomsen’s WA parameters and fracture

weaknesses:

T h;/ð Þ ¼ WaM hð ÞD lnM þWal hð ÞD ln lþWaq hð ÞD lnq

þ Waeb
hð ÞDeb þWadb

hð ÞDdb

þ WadN
h;/ð ÞDdN þWadV

h;/ð ÞDdV þWadH
h;/ð ÞDdH:

ð32Þ

Here W represents the wavelet matrix, and D represents the derivative matrix given by

(Hampson et al. 2005)

D ¼

�1 1 0 � � �
0 �1 1 . .

.

0 0 �1 . .
.

..

. . .
. . .

. . .
.

2
66664

3
77775
: ð33Þ

Equation (32) can be written in matrix form as

d ¼ Gm; ð34Þ

where d represents the observable azimuthal seismic data vector, G represents the forward

operator, and m is the model parameter vector given by

m ¼ lnM; ln l; lnq; eb; db; dN; dV; dHð Þ: ð35Þ

In this paper, we implement the AVOaz inversion in a Bayesian scheme (Pan et al.

2017a), which combines the model parameters with any prior information. The a posteriori

bFig. 2 Effects of changes in model parameters on PP-wave reflection coefficient, where a shows the effect

of change only in DM/M from -0.2 to 0.2 on reflection coefficients, b shows the effect of change only in
Dl=l from -0.2 to 0.2 on reflection coefficients, c shows the effect of change only in Dq=q from -0.2 to
0.2 on reflection coefficients, d shows the effect of change only in Deb from -0.2 to 0.2 on reflection
coefficients, e shows the effect of change only in Deb from -0.2 to 0.2 on reflection coefficients, f shows the
effect of change only in DdN from -0.2 to 0.2 on reflection coefficients, g shows the effect of change only in
DdV from -0.2 to 0.2 on reflection coefficients, and h shows the effect of change only in DdT from -0.2 to
0.2 on reflection coefficients
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probability distribution function (PDF) of estimated model parameters (p(m|d)) in Eq. (34)

can be solved as a joint PDF of a priori PDF (p(m)) and a likelihood function (p(d|m))

given by

p m djð Þ ¼ p mð Þp d mjð ÞR
p dð Þdm / p mð Þp d mjð Þ; ð36Þ

where p(�) represents the probability density. We chose a convolution operator as a forward

solver expressed by Eq. (32), and a Cauchy PDF as the prior PDF due to its high-resolution

solution (Sacchi and Ulrych 1995; Downton 2005). Thus, the a posteriori PDF of estimated

model parameters combined a Gaussian PDF for the likelihood function with a Cauchy

PDF for the a priori PDF can be expressed as

p m djð Þ /
YN
i¼1

1

1 þ m2
i

�
r2
m

" #
� exp � d�Gmð ÞT d�Gmð Þ

2r2
d

" #
; ð37Þ

where r2
d and r2

m represent the variances of seismic noise and model parameters, respec-

tively, and N represents the sample numbers of seismic data. After some algebraic oper-

ation, the objective function of model parameters for the maximum a posteriori inverse

solution of Eq. (34) can be thus written as

F mð Þ ¼ d�Gmð ÞT d�Gmð Þ þ 2r2
d

XN
i¼1

ln 1 þ m2
i

�
r2
m

� 	
; ð38Þ

where F(�) represents the objective function.

Incorporating the initial model regularization, Eq. (38) then gives

F mð Þ ¼ d�Gmð ÞT d�Gmð Þ þ 2r2
d

XN
i¼1

ln 1 þ m2
i

�
r2
m

� 	
þ Cmod; ð39Þ

where

Cmod ¼ xM lnM � lnM0ð ÞT
lnM � lnM0ð Þ þ xl lnl� lnl0ð ÞT

lnl� lnl0ð Þ
þ xq lnq� lnq0ð ÞT

lnq� lnq0ð Þ þ xeb
eb � eb0ð ÞT eb � eb0ð Þ

þ xdb
db � db0ð ÞT db � db0ð Þ þ xdN

dN � dN0ð ÞT dN � dN0ð Þ
þ xdV

dV � dV0ð ÞT dV � dV0ð Þ þ xdH
dH � dH0ð ÞT dH � dH0ð Þ:

ð40Þ

In Eq. (40), xi represent the initial model regularization parameters of P- and S-wave

moduli, density, Thomsen’s WA parameters, and fracture weaknesses, respectively, and

the subscript 0 represents the initial model parameters.

Equation (39) is nonlinear due to the introduction of Cauchy-sparse and initial model

regularization, which can be solved using the IRLS strategy (Scales and Smith 1994). After

a few iterations, reasonable inversion results can be obtained.
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3 Examples

3.1 Synthetic Examples

To test the feasibility of the proposed AVOaz inversion for Thomsen’s WA parameters and

fracture weaknesses proposed in this paper, we use a well log data in a gas-bearing

fractured field as model parameters. The logging Thomsen’s WA parameters and fracture

weaknesses are calculated by using well logs and rock physics analysis results (Pan et al.

2017a, b). In Fig. 3, we present a process of constructing the effective rock physics model

with orthorhombic symmetry used to estimate the Thomsen’s WA parameters and fracture

weaknesses by using the conventional well logs, including the rock minerals and their

volume fraction, the porosity of matrix pores, the pore fluid types and water saturation, and

the fracture density (Backus 1962; Hill 1952; Hornby et al. 1994; Hudson 1981;

Schoenberg and Muir 1989). The original P- and S-wave moduli, density, Thomsen’s WA

parameters, and fracture weaknesses of a well are displayed in blue in Fig. 4. The synthetic

azimuthal seismic data are simulated with the convolution model of the linearized PP-wave

reflection coefficient and seismic wavelet (Richer wavelets are utilized here). Azimuths are

30�, 60�, 90�, and 120�, and the incidence phase angles are 0�–34�. We implement the

orthorhombic anisotropic AVOaz inversion on the synthetic data. The initial models (in

green) and inverted results (in red) of P- and S-wave moduli, density, Thomsen’s WA

parameters, and fracture weaknesses are displayed in green and red in Fig. 4, respectively.

Figure 5 shows the relative prediction errors (the difference values between real and

estimated values divided by real values) of model parameters without noise. From Figs. 4

and 5, we find that the elastic moduli and orthorhombic anisotropic parameters can be

estimated reasonably even with fairly smoothing initial models. The errors of P- and

S-wave moduli and density are about within 5%, and the errors of Thomsen’s WA

parameters and fracture weaknesses are about 10%. To further demonstrate the stability of

proposed AVOaz inversion for a weakly anisotropic medium with orthorhombic symmetry,

we add a Gaussian random noise to the true synthetic seismic data with different signal-to-

noise ratios (SNR) being 5:1 and 2:1, respectively. The inverted results and corresponding

relative prediction errors are shown in Figs. 6, 7, 8, and 9, respectively. As is in the case of

Estimation of the mixed mineral moduli with V-R-H (Hill, 1952) average

Estimation of the VTI background moduli with Backus (1962) average

Estimation of non-fractured dry skeleton with anisotropic SCA-DEM (Hornby et al., 1994) model

Calculation of orthorhombic stiffness matrix (Tsvankin, 1997)

Estimation of fractured dry skeleton with Hudson’s (1981) model and Schoenberg-Muir’s (1989) model

Estimation of fractured saturated skeleton with anisotropic Gassmann’s (1951) equation

Velocity, Thomsen’ WA parameters and fracture weaknesses (Bakulin et al., 2000)

Fig. 3 Process of constructing effective rock physics model with orthorhombic symmetry
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noises, reasonable estimates of model parameters can be obtained, and the errors of

background elastic moduli are within 10%, and the errors of orthorhombic anisotropic

parameters are about 20%, which are feasible for our application. However, the estimation

precisions of Thomsen’s WA parameters and fracture weaknesses are not as good as those

of P- and S-wave moduli and density, which may result from the differences of contri-

butions of model parameters on PP-wave reflection coefficient shown in Fig. 2.

3.2 Field Data Example

The proposed azimuthally anisotropic EI inversion approach has been tested on the real

data set from Gaoshiti area, which is located in the Sichuan Basin, China. A series of

tectonic gas-bearing reservoirs exit in this work area, and formation micro-imaging (FMI)

interpretation shows the gas is trapped in the Sinian Dengying formation. The lateral

continuity of reservoir is better, and a large amount of vertical or near-vertical fractures is

well developed in the low-porosity and low-permeability reservoir. In this work area, we

assume that the gas-bearing reservoir can be treated as an orthorhombic medium formed by
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Fig. 4 Model parameter estimation without noise, where a represents the estimated P- and S-wave moduli,
density parameters, b represents the estimated Thomsen’s WA parameters, and c represents the estimated
fracture weaknesses. Note that the blue lines represent the true values, the green lines represent the initial
models, and the red lines represent the estimated values
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a single set of vertically aligned fractures embedded in a horizontal layer (Fig. 1a). Before

implementing the AVOaz inversion, the observable seismic data are processed by a con-

tractor to preserve the amplitudes of the true subsurface reflection interfaces as correctly as

possible. After processing, the wave-mode conversions, inter-bed multiples, and aniso-

tropic moveout are assumed to be neglected. To further enhance the SNR of observable

seismic data, we used the angle-stack trace gathers, and the four azimuthal seismic data are

22.5�, 67.5�, 112.5�, and 157.5� shown in Fig. 10, and the average angles for the near, mid-

and far stacks are 5� (and a range of 0�–10�), 15� (and a range of 10�–20�) and 25� (and a

range of 20�–30�), respectively. Black lines in the figures represent the well log position,

and red circles in each profile indicate the location of gas-bearing fractured reservoirs. We

observed that there was amplitude anomaly in the location of the reservoirs.

We construct the initial models of model parameters by using the constructed rock

physics model with orthorhombic symmetry (Fig. 2). The estimated Thomsen’s WA

parameters and fracture weakness parameters are smoothed under the constraint of hori-

zons, and the smooth results are treated as the initial models of model parameters. Then,

we perform the AVOaz inversion with the constraints of Cauchy a priori probability

distribution and smooth initial models of model parameters to enhance the inversion res-

olution. According to the nonlinear IRLS strategy, we estimate the Thomsen’s WA

(a) (b)
T

(
e

mi
s)

Error of M (%) Error of μ (%) Error of ρ (%)

T
(

e
mi

s)

Error of εb (%) Error of δb (%)

(c)

T
(

e
mi

s)

Error of δN (%) Error of δV (%) Error of δH (%)

Fig. 5 Prediction errors of the model parameters without noise, where a represents the estimated P- and
S-wave moduli, density parameters, b represents the estimated Thomsen’s WA parameters, and c represents
the estimated fracture weaknesses
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parameters and fracture weakness parameters iteratively. Figures 11, 12, and 13 show the

inversion results of P- and S-wave moduli, density, Thomsen’s WA parameters, and

fracture weaknesses, where the white dashed ellipses in well A indicate the target reservoir

zones and the white lines are the corresponding inverted results of P- and S-wave moduli,

density, Thomsen’s WA parameters, and fracture weaknesses, and the red rectangles in

well B show the response of gas-bearing fractured reservoir. Note that well A is used to

establish the initial model of P- and S-wave moduli, density, Thomsen’s WA parameters,

and fracture weaknesses, and well B is used to demonstrate the inversion results dissoci-

ating from the establishment of the initial model. We find that the estimated P- and S-wave

moduli, density, and Thomsen’s WA parameters show anomalously low value, while the

estimated fracture weaknesses show anomalously high value at the position of gas-bearing

fractured reservoir. The fracture weaknesses indicate the fracture development of the layer,

and the inverted fracture weaknesses may be used to characterize the fracture-developed

target. Moreover, there is a good match between the estimated results with the response of

gas-bearing fractured reservoir in well B.

In order to test the reliability of the inversed P- and S-wave moduli, density, Thomsen’s

WA parameters, and fracture weaknesses, we firstly present the comparisons between the
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Fig. 6 Model parameter estimation with SNR = 5, where a represents the estimated P- and S-wave moduli,
density parameters, b represents the estimated Thomsen’s WA parameters, and c represents the estimated
fracture weaknesses
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true well logs estimated by using the well log interpretations and rock physics analysis

(black) and inverted results (red) at well location in Fig. 14. We can see that the inverted

results are reasonably consistent with the true well logs, which indicates that our proposed

inversion method can make a reliable inversion for elastic moduli and orthorhombic

parameters. Then, we use the inversed parameters to create the synthetic seismic data with

extracted wavelets and show the comparisons between the synthetic and real traces in

Fig. 15. A good match between the traces can be seen, and it further demonstrates the

accuracy of our proposed AVOaz inversion for orthorhombic anisotropy.

4 Discussion and Conclusions

The presented methodology aims to simultaneously estimate the P- and S-wave moduli,

density, Thomsen’s WA parameters, and fracture weaknesses in a gas-bearing fractured

reservoir directly from wide-azimuth observable seismic reflection data. Combining

Thosmen’s (1986) WA theory with linear-slip model, we derived a new expression for

stiffness elements of a weakly anisotropic medium with orthorhombic symmetry formed by
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Fig. 7 Prediction errors of the model parameters with SNR = 5, where a represents the estimated P- and
S-wave moduli, density parameters, b represents the estimated Thomsen’s WA parameters, and c represents
the estimated fracture weaknesses
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a single set of aligned vertical fractures embedded in a VTI background, and then using the

perturbation matrix and scattering function, we derived the linearized PP-wave reflection

coefficient in terms of P- and S-wave moduli, density, Thomsen’s WA parameters, and

fracture weaknesses to describe the relationship between the orthorhombic anisotropy and

azimuthal seismic reflection data. Combing the derived AVOaz equation and Bayesian

seismic inversion with regularization constraints, the elastic and anisotropic parameters

were reasonably estimated demonstrated using both synthetic and real data in a gas-bearing

fractured reservoir.

In Appendix 2, under the assumption of weak anisotropy and small weaknesses, we also

derived the linearized PP-wave reflection coefficients in terms of P- and S-wave moduli,

density, Thomsen’s WA parameters, and fracture weaknesses in an another orthorhombic

medium formed by two orthogonal vertical fracture sets with rotationally invariant prop-

erties embedded in an isotropic or VTI background. During the derivation of AVOaz

equation in orthorhombic media, weak anisotropy, small fracture weaknesses, and small

perturbations in parameters should be satisfied.
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Fig. 8 Model parameter estimation with SNR = 2, where a represents the estimated P- and S-wave moduli,
density parameters, b represents the estimated Thomsen’s WA parameters, and c represents the estimated
fracture weaknesses
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Appendix 1: Derivation for Linearized PP-Wave Reflection Coefficient
in a Weakly Anisotropic Medium with Orthorhombic Symmetry Formed
by a Single Set of Aligned Vertical Fractures Embedded in a VTI
Background

The relationships between the subscripts (I, J) and (i, j, k, l) in Eq. (30) are given by Shaw

and Sen (2006)

I ¼ idij þ 9 � i� jð Þ 1 � dij
� 	

; ð41Þ

and
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Fig. 9 Prediction errors of the model parameters with SNR = 2, where a represents the estimated P- and
S-wave moduli, density parameters, b represents the estimated Thomsen’s WA parameters, and c represents
the estimated fracture weaknesses
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J ¼ kdkl þ 9 � k � lð Þ 1 � dklð Þ; ð42Þ

where dij and dkl both denote the Kronecker delta.

For the case of P-wave incidence and reflection, the polarization and slowness vectors

are given by

t = sin h cos/; sin h sin/; cos h½ �; ð43Þ

t0 ¼ � sin h cos/;� sin h sin/; cos h½ �; ð44Þ

p ¼ 1=a sin h cos/; sin h sin/; cos h½ �; ð45Þ

and

p0 ¼ 1=a � sin h cos/;� sin h sin/; cos h½ �; ð46Þ

where a represents the background P-wave velocity, and / represents the azimuthal phase

angle.
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Fig. 10 Azimuthal observable seismic data at different phase angles of azimuth, where a shows an average
angle of 22.5� (and a range of 0�–45�), b shows an average angle of 67.5� (and a range of 45�–90�), c shows
an average angle of 112.5� (and a range of 90�–135�), and c shows an average angle of 157.5� (and a range
of 135�–180�)
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Substituting Eqs. (43) and (44) into Eq. (30), the expression of n is then given by

n ¼ cos2 h� sin2 h ¼ cos 2h: ð47Þ

Substituting Eqs. (43)–(47) into Eq. (30), the expression of gIJ is then given by

g11 ¼ sin4 h cos4 /
�
a2; g12 ¼ sin4 h sin2 / cos2 /

�
a2; g13 ¼ sin2 h cos2 h cos2 /

�
a2;

g22 ¼ sin4 h sin4 /
�
a2; g23 ¼ sin2 h cos2 h sin2 /

�
a2; g33 ¼ cos4 h

�
a2;

g44 ¼ �4 sin2 h cos2 h sin2 /
�
a2; g55 ¼ �4 sin2 h cos2 h cos2 /

�
a2;

g66 ¼ 4 sin4 h sin2 / cos2 /
�
a2; g21 ¼ g12, g31 ¼ g13, g32 ¼ g23:

ð48Þ

The calculation of Eq. (30) then yields
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Fig. 11 Estimated P- and S-wave moduli, and density parameters using the AVOaz inversion, where a
shows the estimated P-wave modulus M, b shows the estimated S-wave modulus l, and c shows the
estimated density q
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S¼ Dqnþ
X6

I¼1

X6

J¼1

DCIJgIJ

¼ Dqcos 2hþ sin4 hcos4 /
a2

DM�MDdN þ 2MDeb½ �

þ 2 sin4 h sin2 /cos2 /
a2

Dk� kDdN þ 2MDeb � 4lDcb½ �

þ 2 sin2 hcos2 hcos2 /
a2

Dk� kDdN þMDdb½ � þ sin4 h sin4 /
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DM�Mv2DdN þ 2MDeb


 �
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0

Dl
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¼ 1
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� 1
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� 4l sin4 h sin2 /cos2 /
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DdH:

ð49Þ

Combining Eq. (49), the calculation of Eq. (29) finally gives
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Fig. 12 Estimated Thomsen’s WA parameters using the AVOaz inversion, where a shows the estimated eb,
and b shows the estimated db

118 Surv Geophys (2018) 39:99–123

123



RPP h;/ð Þ ¼ sec2 h
4M

DM � 2 sin2 h
M

Dlþ 1

2q
1 � sec2 h

2

� �
Dq

þ sin2 h tan2 h
2

Deb þ
sin2 h

2
Ddb �

sec2 h
4

2
l
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sin2 h sin2 /þ cos2 h
� 	

� 1
h i2

DdN

þ l
M

sin2 h cos2 /DdV � l
M

sin2 h tan2 h sin2 / cos2 /DdH;

ð50Þ

Appendix 2: Derivation for Linearized PP-Wave Reflection Coefficients
in a Weakly Anisotropic Medium with Orthorhombic Symmetry Formed
by Two Orthogonal Vertical Fracture Sets Embedded in an Isotropic
or VTI Background

Two orthogonal vertical fracture sets embedded in an isotropic or VTI background can be

both considered as an effective long-wavelength orthorhombic medium (Bakulin et al.

2000, 2002). To further simplify the procedure of parameter estimation, the fracture sets
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Fig. 13 Estimated fracture weakness parameters using the AVOaz inversion, where a shows the estimated
normal fracture weakness DN, b shows the estimated vertical tangential fracture weakness DV, and c shows
the estimated horizontal tangential fracture weakness DH
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Fig. 14 Comparison of well curves in time domain (blue) and inverted results (red) at well location, where
a shows the estimated P- and S-wave moduli, density parameters, b shows the estimated Thomsen’s WA
parameters, and c shows the estimated fracture weaknesses
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Fig. 15 Comparisons between
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stack traces at different azimuths,
where a shows the azimuth of
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112.5�, and d shows the azimuth
of 157.5�
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are assumed to be rotationally invariant. For such a weakly anisotropic medium with

orthorhombic symmetry formed by two orthogonal vertical fracture sets embedded in an

isotropic background, where the first fracture set is perpendicular to the x axis (shown in

Fig. 1b), neglecting the terms that contain dN1dN2 and dT1dT2 for the case of small fracture

weaknesses, an expression for the effective elastic stiffness tensor can be approximated as

COA ¼

C11 C12 C13 0 0 0

C12 C22 C23 0 0 0

C13 C23 C33 0 0 0

0 0 0 C44 0 0

0 0 0 0 C55 0

0 0 0 0 0 C66

2
6666664

3
7777775
� Ĉ1 0

0 Ĉ2

� �
; ð51Þ

where 0 represents the 3 9 3 zero matrix, and Ĉ1 and Ĉ2 are given by

Ĉ1 ¼
M 1 � dN1 � v2dN2ð Þ k 1 � dN1 � dN2ð Þ k 1 � dN1 � vdN2ð Þ
k 1 � dN1 � dN2ð Þ M 1 � v2dN1 � dN2ð Þ k 1 � vdN1 � dN2ð Þ
k 1 � dN1 � vdN2ð Þ k 1 � vdN1 � dN2ð Þ M 1 � v2dN1 � v2dN2ð Þ

2
4

3
5; ð52Þ

and

Ĉ2 ¼
l 1 � dT2ð Þ 0 0

0 l 1 � dT1ð Þ 0

0 0 l 1 � dT1 � dT2ð Þ

2
4

3
5: ð53Þ

Here dNi ¼ ZNiM= 1 þ ZNiM½ � and dTi ¼ ZTil= 1 þ ZTil½ � represent the normal and tan-

gential weaknesses of two orthogonal vertical fracture sets related to the corresponding

normal and tangential fracture compliances ZNi and ZTi.

Following a similar derivation method for the case of small fracture weaknesses, the

expression for linearized PP-wave reflection coefficient in such an orthorhombic medium

can be expressed as

RPP h;/ð Þ ¼ sec2 h
4

DM
M

� 2g sin2 h
Dl
l

þ 1

2
� sec2 h

4

� �
Dq
q

� sec2 h
4

2g sin2 h sin2 /þ cos2 h
� 	

� 1

 �2

DdN1

þ g sin2 h cos2 / 1 � tan2 h sin2 /
� 	

DdT1

� sec2 h
4

2g sin2 h cos2 /þ cos2 h
� 	

� 1

 �2

DdN2

þ g sin2 h sin2 / 1 � tan2 h cos2 /
� 	

DdT2:

ð54Þ

Similarly, for such an orthorhombic medium formed by two orthogonal vertical fracture

sets embedded in a VTI background (shown in Fig. 1c), neglecting the terms that contain

ebdN1, ebdN2, ebdN1dN2, cbdN1, cbdN2, cbdN1dN2,dbdN1, dbdN2, dbdN1dN2, cbdT1, cbdT2, and

cbdT1dT2 for the case of weak anisotropy and small fracture weaknesses, an expression for

the effective elastic stiffness tensor can be approximated as
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COA ¼

C11 C12 C13 0 0 0

C12 C22 C23 0 0 0

C13 C23 C33 0 0 0

0 0 0 C44 0 0

0 0 0 0 C55 0

0 0 0 0 0 C66

2
6666664

3
7777775
�

^̂
C1 0

0
^̂
C2

" #
; ð55Þ

where 0 represents the 3 9 3 zero matrix, and
^̂
C1 and

^̂
C2 are given by

^̂
C1 ¼

M 1 � dN1 � v2dN2ð Þ þ 2Meb k 1 � dN1 � dN2ð Þ þ 2Meb � 4lcb k 1 � dN1 � vdN2ð Þ þMdb

k 1 � dN1 � dN2ð Þ þ 2Meb � 4lcb M 1 � v2dN1 � dN2ð Þ þ 2Meb k 1 � vdN1 � dN2ð Þ þMdb

k 1 � dN1 � vdN2ð Þ þMdb k 1 � vdN1 � dN2ð Þ þMdb M 1 � v2dN1 � v2dN2ð Þ

2
64

3
75;

ð56Þ

and

^̂
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l 1 � DdT2ð Þ 0 0

0 l 1 � dT1ð Þ 0

0 0 l 1 � dT1 � dT2ð Þ � 2lcb

2
4

3
5: ð57Þ

Following a similar derivation method for the case of weak anisotropy and small

fracture weaknesses, the expression for linearized PP-wave reflection coefficient in such an

orthorhombic medium can be expressed as

RPP h;/ð Þ ¼ sec2 h
4

DM
M

� 2g sin2 h
Dl
l

þ 1

2
� sec2 h

4

� �
Dq
q

þ sin2 h tan2 h
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4
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 �2
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ð58Þ
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