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Abstract During the last 15 years, more attention has been paid to derive analytic for-

mulae for the gravitational potential and field of polyhedral mass bodies with complicated

polynomial density contrasts, because such formulae can be more suitable to approximate

the true mass density variations of the earth (e.g., sedimentary basins and bedrock

topography) than methods that use finer volume discretization and constant density con-

trasts. In this study, we derive analytic formulae for gravity anomalies of arbitrary poly-

hedral bodies with complicated polynomial density contrasts in 3D space. The anomalous

mass density is allowed to vary in both horizontal and vertical directions in a polynomial

form of k ¼ axm þ byn þ czt, where m, n, t are nonnegative integers and a, b, c are

coefficients of mass density. First, the singular volume integrals of the gravity anomalies

are transformed to regular or weakly singular surface integrals over each polygon of the

polyhedral body. Then, in terms of the derived singularity-free analytic formulae of these

surface integrals, singularity-free analytic formulae for gravity anomalies of arbitrary

polyhedral bodies with horizontal and vertical polynomial density contrasts are obtained.

For an arbitrary polyhedron, we successfully derived analytic formulae of the gravity

potential and the gravity field in the case of m� 1, n� 1, t� 1, and an analytic formula of

the gravity potential in the case of m ¼ n ¼ t ¼ 2. For a rectangular prism, we derive an

analytic formula of the gravity potential for m� 3, n� 3 and t� 3 and closed forms of the

gravity field are presented for m� 1, n� 1 and t� 4. Besides generalizing previously

published closed-form solutions for cases of constant and linear mass density contrasts to
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higher polynomial order, to our best knowledge, this is the first time that closed-form

solutions are presented for the gravitational potential of a general polyhedral body with

quadratic density contrast in all spatial directions and for the vertical gravitational field of a

prismatic body with quartic density contrast along the vertical direction. To verify our new

analytic formulae, a prismatic model with depth-dependent polynomial density contrast

and a polyhedral body in the form of a triangular prism with constant contrast are tested.

Excellent agreements between results of published analytic formulae and our results are

achieved. Our new analytic formulae are useful tools to compute gravity anomalies of

complicated mass density contrasts in the earth, when the observation sites are close to the

surface or within mass bodies.

Keywords Gravity � Singularity-free � Polyhedral body � Prism � Horizontal and vertical

mass contrasts

1 Introduction

Gravitational data sets, which are measured using gravimeters based on land, in boreholes

or on board satellites, aircraft or marine vessels, are used to estimate locations and shapes

of embedded anomalous mass density bodies in the earth. For instance, gravity signal

extraction and enhancement techniques (Zhang et al. 2014) can be used to estimate the

approximated shapes of anomalous mass bodies in the underground. To more accurately

determine depths, volumes and densities of anomalies, elaborate gravity inversion algo-

rithms are employed (Li and Oldenburg 1998). To obtain more comprehensive and less

ambiguous models of the earth, gravity data have been jointly inverted with other geo-

physical data sets, such as seismic data and electromagnetic induction data using con-

straints that couple the models of the different material parameters structurally or

petrophysically (Moorkamp et al. 2011; Roberts et al. 2016). In recent years, rapid

improvement in gravimeter efficiency and modern inversion algorithms has enhanced the

capability of collecting large gravity data sets over large-scale areas and inverting such

data sets for 3D density models (Kamm et al. 2015). These two improvements guarantee

the wide application of the gravity methods in different geophysical or geodetic problems,

such as mineral exploration (Beiki and Pedersen 2010; Lelièvre et al. 2012; Martinez et al.

2013; Kamm et al. 2015; Abtahi et al. 2016), crustal structure and Moho studies (Van der

Meijde et al. 2013; De Castro et al. 2014) and geoid determination (Bajracharya and

Sideris 2004).

An accurate gravity modeling solver plays a key role in interpreting or inverting gravity

data sets. Generally, the structure of the real earth has complicated geometrical shapes and

mass density distributions. Thus, the important question arises of how to efficiently

approximate the 3D mass structure of the earth by volume discretization techniques. As an

arbitrary mass body can be reasonably well represented by a set of disjoint polyhedral

bodies with simple mass distributions, an arbitrary polyhedral body is generally adopted to

reduce to maximum extend geometrical discretization errors. Therefore, seeking an

accurate gravity modeling solver using 3D polyhedra is an essential step. Currently, dif-

ferent approaches can be adopted to evaluate the gravity anomaly caused by a polyhedral

mass body, such as finite element methods (Kaftan et al. 2005; Cai and Cy 2005), finite

difference methods (Farquharson and Mosher 2009), finite volume methods (Jahandari and
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Farquharson 2013) and direct Newton integral methods (Blakely 1996). The finite element,

finite difference and the finite volume methods translate the Poisson boundary value

problem of the gravity potential into a system of linear equations. Then, linear system

solvers are used to obtain the gravity potential. However, the accuracies of the gravity

anomalies calculated by these three algorithms do not only depend on the quality of the

discretization elements and the accuracies of the solvers for systems of linear equations,

but also depend on the accuracies of the numerical techniques to translate the computed

gravitational potentials into gravity fields. Therefore, in general, numerical solutions

provided by these solvers are less accurate than solutions from direct Newton integral

methods. As for the direct Newton integral methods, if we can derive analytic formulae of

the gravity anomaly for a polyhedral mass body, the highest accuracies can be achieved.

Therefore, to find possible analytic formulae has become an essential topic in gravity

modeling problems using direct Newton integral approaches.

When the distance from the observation site to the mass body is much larger than the

size of the polyhedral body, a constant mass density can be assigned to each polyhedral

body in gravity forward modeling and inversion. Aiming to improve accuracy and effi-

ciency, different analytic formulae were derived for a homogeneous (with constant mass

density contrast) polyhedral body (Paul 1974; Barnett 1976; Okabe 1979; Pohanka 1988;

Werner 1994; Holstein and Ketteridge 1996; Petrović 1996; Tsoulis and Petrović 2001;

Holstein 2002; D’Urso 2013, 2014a; Conway 2015), for a homogeneous prismatic poly-

hedron (Nagy 1966; Banerjee and Das Gupta 1977; Smith 2000; Nagy et al. 2000; Tsoulis

et al. 2003) and for a circular disk or a flat lamina (Conway 2016) during the last four

decades.

Seeking simplicity, researchers generally assumed that the earth is composed of 3D

anomalies in a layered medium or a succession of strata with horizontally undulating

interfaces (e.g., sedimentary basins and underlying bedrock). In each layer, the rock mass

density predominantly exhibits depth-dependent variations (Garcı́a-Abdeslem 1992).

Different efforts were made to derive analytic formulae for anomalous masses with internal

layering such as exponential depth-dependent mass density variations (Chai and Hinze

1988), quadratic polynomial depth-dependent mass density variations (Rao 1990) and

cubic polynomial depth-dependent mass density variations (Garcı́a-Abdeslem 2005).

However, geological formations can be more complicated so that the above assumption

of dominant depth-dependent mass density variations can be inappropriate. Also, exoge-

netic (e.g., weathering, fluvial, coastal and glacial) and endogenetic processes (e.g., dia-

genesis of rocks, plate tectonics, volcano eruptions and earthquakes) at different scales

generally have changed the mass density structures of crust and mantle into 3D structures

with both horizontal and vertical variations in mass density (Martı́n-Atienza and Garcı́a-

Abdeslem 1999). Therefore, it is critical for us to establish more general density distri-

bution models for the mass bodies in the earth. This leads to the necessity of developing

formulae capable of computing gravity responses of a polyhedral body with both hori-

zontal and vertical variations in mass density (Zhou 2009b). Until now, only a few studies

have been carried out on this more and more important topic. For instance, for a 3D

polyhedral body with linear mass density varying in both horizontal and vertical directions,

several authors derived different closed-form solutions by using different techniques

(Pohanka 1998; Hansen 1999; Holstein 2003; Hamayun and Tenzer 2009; D’Urso 2014b).

For a 3D prismatic body with arbitrary density contrast variations in both horizontal and

vertical directions, Zhou (2009a) derived a generalized numerical solution in terms of 1D

line integrals for the gravity anomaly. However, singularities exist in these 1D line inte-

grals when the observation point is placed on any of the faces of the rectangular prism or
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inside the prism. Therefore, more careful treatment should be considered to deal with

singularities. More recently, for a 2D polygon body with polynomial density contrast

variations in both horizontal and vertical directions, D’Urso (2015) derived singularity-free

closed-form solutions using the generalized Gauss theorem, in which the mass density

polynomials have up to cubic order.

However, to our best knowledge, there are still no publications that deal with analytic

formulae for 3D polyhedral bodies with complicated polynomial mass density variations in

both horizontal and vertical directions. In this study, we derive closed-form solutions for a

3D polyhedral body (and a prismatic body as a specific example) with mass density contrast

as k ¼ axm þ byn þ czt, wherem, n, t are nonnegative integers and a, b, c are coefficients of

mass density. Using several simple vector identities and integration by parts, we first

transform the volume integrals of the gravity anomalies into a set of surface integrals over

each polygon of the polyhedral body. Then, singularity-free analytic formulae are derived

for these surface integrals. Finally, we obtain a set of completely singularity-free analytic

formulae of gravity anomalies for arbitrary polyhedral bodies with horizontal and vertical

polynomial density contrasts. Our analytic formulae are the first to (1) generalize previously

published closed-form solutions for cases of constant mass density contrasts (Paul 1974;

Barnett 1976; Okabe 1979; Pohanka 1988; Werner 1994; Holstein and Ketteridge 1996;

Petrović 1996; Tsoulis and Petrović 2001; D’Urso 2013, 2014a; Conway 2015) and linear

mass density contrasts (Pohanka 1998; Hansen 1999; Holstein 2003; Hamayun and Tenzer

2009; D’Urso 2014b, 2016) to higher polynomial order, (2) permit computation of the

gravitational potential for a general polyhedral body with quadratic density contrast in all

spatial directions using closed-form solutions and (3) permit computation of the vertical

gravitational field for a prismatic body with quartic density contrast along the vertical

direction using closed-form solutions. Additionally, our analytic formulae are singularity-

free, which means the observation site can be located anywhere with respect to the mass

body. Consequently, our singularity-free analytic formulae can be used in gravity modeling

problems with high accuracy requirements such as terrain correction problems (where the

observation sites locate on the earth’s surface) and borehole gravity problems (where the

observation sites are very close to the mass targets).

To verify our new analytic formula, a prismatic body with different depth-dependent

polynomial variations and a polyhedral body in form of a triangular prism with constant

density contrasts are examined. Excellent agreement between the published solutions

(Blakely 1996; Garcı́a-Abdeslem 2005; Tsoulis 2012) and our solutions is obtained.

2 Theory

2.1 Reduction of Order of Singularities

Given a polyhedral body H, a local Cartesian coordinate system is built in a way where the

observation site r0 is coincident with the coordinate origin, that is, r0 ¼ ð0; 0; 0Þ. Then, the
polynomial mass density contrast in body H can be defined as:

kðrÞ ¼ axm þ byn þ czt; ð1Þ

where r ¼ ðx; y; zÞ is a source point. The coefficients a, b, c, m, n, t are generally esti-

mated by fitting the gravity responses generated by the mass density function kðrÞ to the

gravity data set collected in the field (Grant and West 1965). The integer values m, n, t are
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the polynomial orders of the mass density. Then, the gravity potential and the gravity field

are expressed as:

/ðr0Þ ¼ G

ZZZ

H

kðrÞ
R

dv; ð2Þ

gðr0Þ ¼ rr0/ðr0Þ ¼ �G

ZZZ

H

kðrÞrr
1

R

� �
dv; ð3Þ

where R ¼ jr� r0j and G ¼ 6:673� 10�11 m3 kg�1 s�2 is the gravitational attraction

constant.

2.1.1 Gravitational Potential

Substituting the polynomial mass contrast in Eq. (1) into Eqs. (2) and (3), we have

/ðr0Þmnt ¼ aG

ZZZ

H

xm

R
dvþ bG

ZZZ

H

yn

R
dvþ cG

ZZZ

H

zt

R
dv

¼ aG/x
m þ bG/y

n þ cG/z
t ;

ð4Þ

gðr0Þmnt ¼ �aG

ZZZ

H

xmrr
1

R

� �
dv� bG

ZZZ

H

ynrr
1

R

� �
dv� cG

ZZZ

H

ztrr
1

R

� �
dv

¼ �aGgxm � bGgyn � cGgzt ;

ð5Þ

where /x
m, /

y
n and /

z
t denote the gravity potential contributed from mass distributions along

the x-, y- and z-axes, respectively. Similar definitions apply for the three components gxm, g
y
n

and gzt of the gravity field.

In Eqs. (2) and (3), when R ! 0, a weak singularity of order O(1/R) occurs for the

gravity potential, and a strong singularity of order Oð1=R2Þ needs to be handled in the

computation of the gravitational acceleration. To start with, we deal with the x-component

/x
m of the weakly singular gravity potential. By introducing an unit vector x̂ ¼ f1; 0; 0g

along the x-direction, we find that

rrR ¼ r� r0

R
; ð6Þ

x̂ � rrR ¼ x

R
; ð7Þ

xm�1x̂ � rrR ¼ xm

R
; ð8Þ

where the assumption r0 ¼ ð0; 0; 0Þ is used. Then, integrating the above Eq. (8) over the

entire polyhedral body H, we have

ZZZ

H

ðxm�1x̂ � rrRÞdv ¼
ZZZ

H

xm

R
dv: ð9Þ

Considering the definition of /x
m in Eq. (4), we get
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/x
m ¼

ZZZ

H

ðxm�1x̂ � rrRÞdv: ð10Þ

Similarly, we have the following expressions for /y
n and /z

t :

/y
n ¼

ZZZ

H

ðyn�1ŷ � rrRÞdv; ð11Þ

/z
t ¼

ZZZ

H

ðzt�1ẑ � rrRÞdv; ð12Þ

where ŷ ¼ f0; 1; 0g and ẑ ¼ f0; 0; 1g are the unit vectors along the y-axis and the z-axis,

respectively.

Now, using these unit vectors x̂, ŷ and ẑ, Eqs. (10)–(12) can be further simplified by

using the following vector identity:

vW � rRþ Rr � ðvWÞ ¼ r � ðRvWÞ: ð13Þ

Setting W ¼ x̂ and v ¼ xm�1, W ¼ ŷ and v ¼ yn�1, and W ¼ ẑ and v ¼ zt�1 in Eq. (13),

and using the notation of r ¼ rr, we have

xm�1x̂ � rRþ Rr � ðxm�1x̂Þ ¼ r � ðRxm�1x̂Þ; ð14Þ

yn�1ŷ � rRþ Rr � ðyn�1ŷÞ ¼ r � ðRyn�1ŷÞ; ð15Þ

zt�1ẑ � rRþ Rr � ðzt�1ẑÞ ¼ r � ðRzt�1ẑÞ: ð16Þ

The surface oH of a polyhedral body is composed of N polygons, that is, oH ¼
PN

i¼1 oHi.

Substituting Eqs. (14), (15) and (16) into Eqs. (10), (11) and (12), respectively, and using

the divergence theorem (Jin 2002), we get

/x
m ¼

XN
i¼1

½n̂i � x̂�
ZZ

oHi

Rxm�1ds� ðm� 1Þ
ZZZ

H

xm�2Rdv; ð17Þ

/y
n ¼

XN
i¼1

½n̂i � ŷ�
ZZ

oHi

Ryn�1ds� ðn� 1Þ
ZZZ

H

yn�2Rdv; ð18Þ

/z
t ¼

XN
i¼1

½n̂i � ẑ�
ZZ

oHi

Rzt�1ds� ðt � 1Þ
ZZZ

H

zt�2Rdv; ð19Þ

in which ni is the normal vector on polygon oHi, ½n̂i � x̂�, ½n̂i � ŷ� and ½n̂i � ẑ� are constant

over polygon oHi. We now deal with the above volume integral (note r0 ¼ ð0; 0; 0Þ):
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Hm�2;x;R ¼
ZZZ

H

xm�2Rdv

¼
ZZZ

H

xm�2 1

4
rr � ½ðr� r0ÞR�dv

¼
ZZZ

H

rr � ½xm�2 1

4
ðr� r0ÞR�dv�

ZZZ

H

ðr� r0ÞR � rrð
1

4
xm�2Þdv

¼
ZZ
�
oH

Rxm�2

4
½ðr� r0Þ � n�ds� ðm� 2Þ

4

ZZZ

H

xm�2Rdv

¼
XN
i¼1

�hi

4

ZZ

oHi

xm�2Rds� m� 2

4
Hm�2;x;R:

ð20Þ

Here, hi is defined as hi ¼ ½ðr0 � rÞ � ni�, which is constant over the polygon oHi, and ni is
the normal vector on polygon oHi. Therefore, we have

Hm�2;x;R ¼ � 1

mþ 2

XN
i¼1

hi

ZZ

oHi

xm�2Rds: ð21Þ

Similar results can be obtained for Hn�2;y;R and Ht�2;z;R in Eqs. (18) and (19), respectively.

Now, we observe that the original expression for the total gravity potential/ in Eq. (4) with a

weak singularity ofO(1 / R) was successfully transformed to regular surface integrals of the

form O(R) in Eqs. (17)–(19). This means that even when no analytic formulae exist for the

gravity potential /mnt ¼ �Gða/x
m þ b/y

n þ c/z
t Þwith high orders, standard quadrature rules

can still be easily adopted to evaluate the gravity potential with high accuracy.

2.1.2 Gravitational Acceleration

Now, we proceed to the gravity field terms gxm, g
y
n and gzt with strong singularities of order

Oð1=R2Þ. Since most gravimeters can only measure the vertical component of the gravity

field, here, we only discuss the formula to compute the vertical component of the gravity

field along the positive z-axis. The formulae to compute the other components along the

horizontal x- and y-axes can be derived in a similar way. For simplicity, we use the scalar

symbols gxm, g
y
n and g

z
t to denote the vertical components of gxm, g

y
n and g

z
t . The first step is to

transform the strong singularities into weak ones of order O(1 / R) by using the vector

identity of Eq. (13) where we assign the unit z-axis vector ẑ to the arbitrary vector W, set

v ¼ xm; yn; zt, and replace R by 1
R
:

xmẑ � r 1

R
þ 1

R
r � ðxmẑÞ ¼ r � xmẑ

1

R

� �
; ð22Þ

ynẑ � r 1

R
þ 1

R
r � ðynẑÞ ¼ r � ynẑ

1

R

� �
; ð23Þ

ztẑ � r 1

R
þ 1

R
r � ðztẑÞ ¼ r � ztẑ

1

R

� �
: ð24Þ

This yields
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gxm ¼
ZZZ

H

xmẑ � r 1

R
dv ¼

ZZZ

H

r � ðxm 1

R
ẑÞdv�

ZZZ

H

1

R
r � ðxmẑÞdv; ð25Þ

gyn ¼
ZZZ

H

ynẑ � r 1

R
dv ¼

ZZZ

H

r � ðyn 1
R
ẑÞdv�

ZZZ

H

1

R
r � ðynẑÞdv; ð26Þ

gzt ¼
ZZZ

H

ztẑ � r 1

R
dv ¼

ZZZ

H

r � ðzt 1
R
ẑÞdv�

ZZZ

H

1

R
r � ðztẑÞdv: ð27Þ

Using the divergence theorem (Jin 2002), we get

gxm ¼
XN
i¼1

½ẑ � ni�
ZZ

oHi

xm

R
ds; ð28Þ

gyn ¼
XN
i¼1

½ẑ � ni�
ZZ

oHi

yn

R
ds; ð29Þ

gzt ¼
XN
i¼1

½ẑ � ni�
ZZ

oHi

zt

R
ds� t/z

t�1; ð30Þ

in which ni is the normal vector on polygon oHi, ½ẑ � n̂i� is constant over polygon oHi, and

/z
t�1 is the gravity potential caused by a depth-dependent mass density contrast of order

kðrÞ ¼ zt�1 (see Eq. 4 for its definition). In the above equations, the original strong sin-

gularity of Oð1=R2Þ in the vertical gravity field gmnt ¼ �Gðagxm þ bgyn þ cgzt Þ was reduced
by one order to a weak singularity of form O(1 / R).

Fig. 1 Illustration of the
geometrical relationship between
the observation site r0 and an
edge Cj of a polygon oHi. The

point o is the projection point of
r0 onto the polygon oHi
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2.2 Closed-form Solutions for Surface Integrals and Final Singularity
Removal

In Eqs. (17)–(19) and (28)–(30), we need to evaluate surface integrals of the formRR
oHi

f kRqds where f is either x, y or z, k is an integer, and q ¼ �1; 1. If q ¼ �1 and R ! 0,

the surface integral has a singular integrand.

To remove the possible singularity, we set up a local polar coordinate system (q;/) on
the polygon oHi. As shown in Fig. 1, we first project the observation site r0 onto the plane

oHi with the projection point denoted by point o. The extent angle at point o is

bðoÞ ¼
P

j bðoÞj, where bðoÞj is the angular extent of the arc edge Cj or the solid angle

(Wilton et al. 1984; Werner 1994), the tangential vector of edge Cj is denoted by êj and m̂j

is the normal vector of edge Cj, n̂i is the normal vector of polygon oHi, and m̂j � êj ¼ n̂i.

hi is the height of the site r0 above the polygon oHi, i.e., hi ¼ ðr0 � rÞ � n̂i. Edge Cj is

parametrized by a single variable s, s ¼ ðr� oÞ � êj, s0 and s1 are the parametrized coor-

dinates of two vertices v0 and v1 of edge Cj, R0 and R1 are the distances from point r0 to the
vertices v0 and v1, respectively. The distance from the source point r 2 oHi to the coor-

dinate center o is q ¼ jr� oj. Hence, the distance from the site r0 to the source point r

becomes R ¼ jr0 � rj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðh2i þ q2Þ

p
. The term f k could be a complicated function over the

polygon; in this study, we derived closed forms only for cases of k ¼ 0;�1.

First, we have the following identity:

Rq ¼ rs �
1

qþ 2

Rqþ2

q2
ðr� oÞ; ð31Þ

in which rs denotes the surface divergence operation in the local coordinates of the plane.

Proof Instead of using the local polar coordinate system, here a local 2D Cartesian

coordinate system (u, v) is used. Then, assuming u and v are the local coordinates of point

r, (0, 0) is the 2D local coordinate center o, R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðu2 þ v2 þ h2i Þ

p
, and q ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ v2

p
, we

have

rs �
1

qþ 2

Rqþ2

q2
ðr� oÞ ¼ 1

qþ 2

o

ou

Rqþ2

q2
u

� �
þ o

ov

Rqþ2

q2
v

� �� �

¼ 1

qþ 2

ðqþ 2ÞRqþ1 u
R
q2 � Rqþ22q u

q

q4
u

(

þ
ðqþ 2ÞRqþ1 v

R
q2 � Rqþ22q v

q

q4
vþ 2

Rqþ2

q2

)

¼ 1

qþ 2

qþ 2

q4
Rqq4 � 2Rqþ2

q4
q2 þ 2

Rqþ2

q2

� �

¼ Rq:

ð32Þ

h
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Second, to deal with the weak singularity occurring for R ! 0, the surface oHi

is divided into two regions, one circular region �� centered at point o with an

infinitely small radius � ! 0, and the remaining region oHi ���. Hence, for the case

k ¼ 0,

IRq ¼
ZZ

oHi

Rqds ¼ 1

qþ 2

ZZ

oHi���

rs �
Rqþ2

q2
r� oð Þ

� �
dsþ

ZZ

��

Rqds

¼ 1

qþ 2

XM
j¼1

mj

Z
Cj

Rqþ2

q2
dl� 1

qþ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2i þ �2

p� �qþ2

�

Z
o��

dl

þ
Z bðoÞ

0

Z �

0

qð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2i þ q2

q
Þqdqd/

¼ 1

qþ 2

XM
j¼1

mj

Z
Cj

Rqþ2

q2
dl� 1

qþ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2i þ �2

p� �qþ2

�
�

Z bðoÞ

0

d/

þ bðoÞ
qþ 2

ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2i þ q2

q
Þqþ2j�o

¼ 1

qþ 2

XM
j¼1

mj

Z
Cj

Rqþ2

q2
dl

� bðoÞ
qþ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2i þ �2

q� �qþ2

þ bðoÞ
qþ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2i þ �2

q� �qþ2

� bðoÞ
qþ 2

jhijqþ2

¼ 1

qþ 2

XM
j¼1

mj

Z
Cj

Rqþ2

q2
dl� bðoÞ

qþ 2
jhijqþ2

¼ 1

qþ 2

XM
j¼1

B
qþ2
j � bðoÞ

qþ 2
jhijqþ2;

ð33Þ

where, referring to Fig. 1, mj ¼ ðr� oÞ � m̂j is constant over edge Cj, m̂j is the normal

vector on edge Cj, and bðoÞ is the solid angle of �� centered at point o in the plane

oHi (see Eq. 48 in the ‘‘Appendix’’ for its calculation). We also note that when point o
is located at a corner or on an edge, the respective distance term mj vanishes. In the

above, we defined a new term B
qþ2
j ¼ mj

R
Cj

Rqþ2

q2 dl which will be considered in the

‘‘Appendix’’.

Third, for the surface integrals of form
RR

oHi
f kRqds in Eqs. (17)–(19) and (28)–(30) and

k ¼ 1, we retrieve
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IrRq
¼

ZZ

oHi

rRqds ¼ ðo� r0Þ
ZZ

oHi

Rqdsþ
ZZ

oHi

ðr� oÞRqds

¼ ðo� r0ÞIRq þ
ZZ

oHi���

rs

Rqþ2

qþ 2

� �
dsþ

ZZ

��

ðr� oÞRqds

¼ ðo� r0ÞIRq þ 1

qþ 2

XM
j¼1

m̂j

Z
Cj

Rqþ2dl

þ ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2 þ �2

p
Þqþ2

qþ 2

ZZ
�
o��

m̂jdlþ
Z bðoÞ

0

Z �

0

q̂q2Rqdqd/

¼�!0ðo� r0ÞIRq þ 1

qþ 2

XM
j¼1

m̂j

Z
Cj

Rqþ2dl

¼ ðo� r0ÞIRq þ 1

qþ 2

XM
j¼1

Bqþ2
j ;

ð34Þ

where the term m̂j

R
Cj
Rqþ2dl is denoted by a new variable Bqþ2

j and q̂ is a unit vector

pointing from point o to point r. Note that we have used

r ¼ ðx; y; zÞ ¼ r� r0 ¼ r� oþ o� r0, where the assumption r0 ¼ ð0; 0; 0Þ is used. The

term IRq is given in Eq. (33), and the following identity is used:

ðr� oÞRq ¼ rs

Rqþ2

qþ 2

� �
:

To compute the gravity potential and the gravity field, we only have to deal with the cases

of q ¼ �1; 1. Note, analytic formulae for the scalar term B
qþ2
j and the vector term Bqþ2

j in

Eqs. (33) and (34), respectively, are given in the ‘‘Appendix’’ for the cases q ¼ �1 and

q ¼ 1.

2.3 Special Cases

2.3.1 Zeroth-Order Density Variation

For m ¼ n ¼ t ¼ 0, i.e., spatially homogeneous density, Eq. (4) simplifies to

/x
0 ¼ /y

0 ¼ /z
0 ¼

ZZZ

H

1

R
dv: ð35Þ

Substituting the vector identity (Hamayun and Tenzer 2009)

1

R
¼ 1

2
rr �

r� r0

R

into Eq. (35) gives

/000 ¼
Gðaþ bþ cÞ

2

ZZZ

H

rr �
r� r0

R
dv ¼ �Gðaþ bþ cÞ

2

XN
i¼1

hi

ZZ

oHi

1

R
ds; ð36Þ
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where the divergence theorem (Jin 2002) was used. The term hi ¼ ðr0 � rÞ � n̂i for r 2 oHi

is the normal distance from the observation site r0 to the surface oHi along the direction of

n̂i, here n̂i is the outgoing surface normal vector (Fig. 1). Setting m ¼ n ¼ t ¼ 0 in

Eqs. (28)–(30), we have

g000 ¼ �G
XN
i¼1

fðaþ bþ cÞ½n̂i � ẑ�g
ZZ

oHi

1

R
ds: ð37Þ

Therefore, by setting q ¼ �1 in Eq. (33), singularity-free analytic expressions for the

gravity potential and the gravity field of a homogeneous polyhedral body are developed.

2.3.2 First-Order Density Variation

Now we consider the linear case of kðrÞ ¼ A � r, A ¼ ða; b; cÞ and r ¼ ðx; y; zÞ. Setting
m ¼ n ¼ t ¼ 1 in Eqs. (17), (18) and (19), we have

/111 ¼
XN
i¼1

fa½n̂i � x̂� þ b½n̂i � ŷ� þ c½n̂i � ẑ�g
ZZ

oHi

Rds: ð38Þ

Similarly, setting m ¼ n ¼ t ¼ 1 in Eqs. (28)–(30) yields

g111 ¼ �G
XN
i¼1

½n̂i � ẑ�A �
ZZ

oHi

rR�1dsþ cG/z
0: ð39Þ

Setting q ¼ 1 in Eq. (33) and q ¼ �1 in Eq. (34), the singularity-free analytic expressions

for /111 and g111 are obtained.

2.3.3 Second-Order Density Variation

Setting m ¼ 2; n ¼ 2; t ¼ 2, the terms for the gravitational potential in Eqs. (17)–(21)

simplify to integrals of the forms
RR

oHi
rRds and

RR
oHi

Rds. These expressions can be

analytically integrated using q ¼ 1 in Eqs. (33) and (34), and hence, the gravity potential /
has closed forms. However, for the gravity field, closed forms cannot be derived using the

formulae in Eqs. (33) and (34).

2.3.4 Comparison of Available Solutions for Zeroth- to Second-Order Density
Variations

In Table 1, we have listed the currently available closed-form solutions for a general

polyhedral mass body with constant, linear or quadratic polynomial mass density.

Recently, D’Urso (2013, 2014a) has used the distribution theory to derive closed-form

solutions for a constant polyhedron and have discussed a way of eliminating singularities.

Subsequently, D’Urso (2014b) extended the distribution theory on a general polyhedron

with linear mass polynomials. Conway (2015) has employed a vector potential technique to

derive closed-form solutions for a constant polyhedron. Compared to these techniques, our

approaches have adopted a simple generalized framework to deal with constant and linear

cases. To our best knowledge, our new equations are the first to deliver closed-form
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solutions for the gravitational potential of a general polyhedral body with quadratic density

contrast varying in all spatial directions.

2.3.5 A Regular Prismatic Body

The surface of a prismatic body is composed of six rectangular surfaces ei, that is,

oH ¼
P6

i¼1 ei. In a 3D Cartesian coordinate system with the positive z-axis downward, we

arrange the rectangular surfaces as follows: (1) e1 and e2 are the two rectangular surfaces

perpendicular to the x-axis where the x-coordinate of planee1 is less than that of planee2;

(2) e3 and e4 are the two rectangular surfaces perpendicular to the y-axis where the y-

coordinate of plane e3 is less than that of plane e4; and (3) e5 and e6 are the two

rectangular surfaces perpendicular to the z-axis where the z-coordinate of plane e5 is less

than that of plane e6. With this choice, the terms of the gravity potential in Eqs. (17)–(21)

become

/x
m ¼

X2
i¼1

ð�1Þixm�1
ei

ZZ

ei

Rdsþ m� 1

mþ 2

X6
i¼1

hi

ZZ

ei

xm�2Rds; ð40Þ

Table 1 Comparison of our closed-form solution to other available closed-form solutions for a general
polyhedral mass body

General 3D polyhedra

Density contrast Singularity-free Components References

Constant – gz Paul (1974)

Constant – gz, / Barnett (1976)

Constant – r/, rr/ Okabe (1979)

Constant
p

/ Waldvogel (1979)

Constant
p r/ Pohanka (1988)

Constant
p rr/ Kwok (1991)

Constant
p r/ Holstein and Ketteridge (1996)

Constant
p

/, r/, rr/ D’Urso (2013, 2014a)

Constant
p r/ Conway (2015)

Linear
p r/ Hansen (1999)

Linear
p

/, r/, rr/ Holstein (2003)

Linear
p

/ Hamayun and Tenzer (2009)

Linear
p

/, r/, rr/ D’Urso (2014b)

Constant
p

/, r/ Our approach

Linear
p

/, r/ Our approach

Quadratic
p

/ Our approach

Symbols
p

and – indicate the availability and non-availability of a singularity-free analytic formula.
Symbol / denotes the gravitational potential, r/ denotes the gravitational field and rr/ denotes the
gravity gradient tensor (e.g., Beiki and Pedersen 2010; Abtahi et al. 2016)
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/y
n ¼

X4
i¼3

ð�1Þiyn�1
ei

ZZ

ei

Rdsþ n� 1

nþ 2

X6
i¼1

hi

ZZ

ei

yn�2Rds; ð41Þ

/z
t ¼

X6
i¼5

ð�1Þizt�1
ei

ZZ

ei

Rdsþ t � 1

t þ 2

X6
i¼1

hi

ZZ

ei

zt�2Rds; ð42Þ

and the vertical gravity field in Eqs. (28)–(30) consists of the terms

gxm ¼
X6
i¼5

ð�1Þi
ZZ

ei

xm

R
ds; ð43Þ

gyn ¼
X6
i¼5

ð�1Þi
ZZ

ei

yn

R
ds; ð44Þ

gzt ¼
X6
i¼5

ð�1Þiztei

ZZ

ei

1

R
ds� t/z

t�1: ð45Þ

Considering Eqs. (40)–(42) and (33)–(34), and the results discussed in the above special

cases, we find that, when m� 3; n� 3; t� 3, all three terms of the gravity potential have

analytic expressions. However, based on the results given in Eqs. (33)–(34), closed forms

can be derived only if m� 1; n� 1 for the gxm and gyn terms of the gravity field. Since /z
t�1

has closed forms in the case of t � 1� 3, gzt has closed forms if t� 4. These results for a

prismatic body are shown in Table 2 for reference.

As shown in Table 2, for a prismatic body with constant, linear, quadratic and cubic

density contrasts varying in both horizontal and vertical directions, our approach can

deliver closed-form solutions for the gravitational potential. For the gravitational field,

closed-form solutions exist in the cases of constant and linear density contrasts. Compared

to previously published methods (Nagy et al. 2000; Rao 1990; Garcı́a-Abdeslem 2005),

one novelty of our approach is that our closed-form solutions are singularity-free which

means the observation sites can be outside, inside and on the boundary (edges, corners,

faces) of the mass prismatic body.

Table 2 Lookup table for the availability of analytic formulae of the gravity potential (terms /x
m, /

y
n, /

z
t in

Eqs. 40–42) and the vertical gravity field (terms gxm, g
y
n, g

z
t in Eqs. 43–45) for a prismatic body

Order /x
m /y

n /z
t gxm gyn gzt

0
p p p p p p

1
p p p p p p

2
p p p p

3
p p p p

4
p

Symbol
p

indicates the existences of an analytic formula
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3 Verification

Two synthetic models (as shown in Fig. 2) are used to verify the accuracies of our closed-

form solutions. The global Cartesian coordinate system is used to describe the geometries

of these two models and locations of testing sites and profiles. Our closed-form formulae

use the assumption that the observation site is located at the coordinate origin. Therefore,

to compute the gravity signals in these two synthetic models, a coordinate transform from

the global Cartesian coordinate system to the local Cartesian coordinate system is needed

at each observation site by our closed-form formulae to guarantee that it is at the local

coordinate origin.

3.1 A Prismatic Body with Vertically Varying Density Contrast

To validate our new singularity-free analytic formulae, first the popular prismatic model is

tested. Four different depth-dependent polynomial density contrasts are examined, which

are the constant, linear, quadratic and cubic variations. A Cartesian coordinate system is

defined in a way that the positive z-axis is downward. The dimension of the prismatic body

is x ¼ ½10 km; 20 km�, y ¼ ½10 km; 20 km� and z ¼ ½0 km; 8 km� (Fig. 2a). The density

contrast function, which is taken from a previous work (Garcı́a-Abdeslem 2005), is given

as:

kðrÞ ¼ �747:7þ 203:435z� 26:764z2 þ 1:4247z3 ð46Þ

where density is in kg/m3 and z is in km. When the observation site approaches the prism,

i.e., the edges, surfaces or corners of the prism, the gravity potential and the gravity field

become singular. In the previous work (Garcı́a-Abdeslem 2005), analytic formulae for

depth-dependent density contrasts up to third order were derived. However, these analytic

formulae are singular when the observation sites are located on edges or corners.

First, a short measuring profile with three observation sites is arranged on the top

surface of the prism, which is perpendicular to an edge with x ¼ 10 km; z ¼ 0 km. When

the profile is slightly more elevated (with z ¼ �0:15m), the singularity disappears so that

we can compare the accuracies of our analytic solutions against the closed-form solutions,

which were recomputed by the formula offered by Garcı́a-Abdeslem (2005). This accuracy

comparison for the regular case is shown in Table 3, and an excellent agreement is

obtained between these two different closed-form solutions. A slight difference appears at

the 14-th significant digit, which is close to the machine precision limitations of the

computer. When setting z ¼ 0 km for the profile as shown in Table 4, a singularity in

Fig. 2 Garcı́a-Abdeslem’s (2005) prism model (a). A triangular prism model (b) is constructed from
Garcı́a-Abdeslem’s (2005) prism model with half the volume. Black dots represent observation sites
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Garcı́a-Abdeslem’s (2005) formulae at the edge (at x ¼ 10 km) impedes computation of a

solution [indicated by symbol (–)]. Instead, a smooth solution is obtained by our singu-

larity-free analytic formulae. As observed from Table 4, the smooth transition of our

computed vertical gravity field g00t across the edge implies the correctness of the solution

when the observation sites are located on the edge.

Table 3 Comparison of the vertical gravity field (g00t) computed by our analytic solutions and Garcı́a-
Abdeslem’s (2005) closed-form solutions for the prism model shown in Fig. 2a

Order g00t along profile (z ¼ �0:15m; y ¼ 15 km)

x (km) Our closed-form solutions (mGal) Garcı́a-Abdeslem’s solutions (mGal)

Constant (t ¼ 0) 9.99995 �7.00101521434592Eþ001 �7.00101521434591Eþ001

10 �7.00153407823801Eþ001 �7.00153407823800Eþ001

10.00005 �7.00641689787295Eþ001 �7.00641689787295Eþ001

Linear (t ¼ 1) 9.99995 5.97357825457560Eþ001 5.97357825457560Eþ001

10 5.97365628358933Eþ001 5.97365628358932Eþ001

10.00005 5.97443654585579Eþ001 5.97443654585579Eþ001

Quadratic (t ¼ 2) 9.99995 �3.69173288088277Eþ001 �3.69173288088277Eþ001

10 �3.69176741955519Eþ001 �3.69176741955519Eþ001

10.00005 �3.69211280340700Eþ001 �3.69211280340700Eþ001

Cubic (t ¼ 3) 9.99995 1.09299348988834Eþ001 1.09299348988833Eþ001

10 1.09300234258250Eþ001 1.09300234258250Eþ001

10.00005 1.09309086860681Eþ001 1.09309086860681Eþ001

The measuring profile has a vertical coordinate of z ¼ �0:15m and approaches the edge (x ¼ 10 km,
z ¼ 0 km) of the prism. Differences between the solutions are shown in bold face

Table 4 Comparison of the vertical gravity field (g00t) between our analytic solutions and Garcı́a-Ab-
deslem’s (2005) closed-form solutions for the prism model shown in Fig. 2a

Order g00t along profile (z ¼ 0 km; y ¼ 15 km)

x (km) Our closed-form solutions (mGal) Garcı́a-Abdeslem’s solution (mGal)

Constant (t ¼ 0) 9.99995 �7.00108086223439Eþ001 �7.00108086223439Eþ001

10 �7.00170532866468Eþ001 –

10.00005 �7.00680113760199Eþ001 �7.00680113760199Eþ001

Linear (t ¼ 1) 9.99995 5.97372496760186Eþ001 5.97372496760185Eþ001

10 5.97380301857833Eþ001 –

10.00005 5.97458347641883Eþ001 5.97458347641883Eþ001

Quadratic (t ¼ 2) 9.99995 �3.69182233831518Eþ001 �3.69182233831518Eþ001

10 �3.69185687923601Eþ001 –

10.00005 �3.69220228557056Eþ001 �3.69220228557055Eþ001

Cubic (t ¼ 3) 9.99995 1.09301961657224Eþ001 1.09301961657224Eþ001

10 1.09302846973961Eþ001 –

10.00005 1.09311700049598Eþ001 1.09311700049598Eþ001

The measuring profile crosses the edge (x ¼ 10 km, z ¼ 0 km) of the prism. Symbol (–) indicates no solution
available. Differences between the solutions are shown in bold face
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Secondly, we performed another test, where the observation site is located at one of the

corners on the top surface of the prism. Due to the model symmetry, the gravity anomalies

at the four top corners have the same values. Therefore, only the case of one corner

(x ¼ 20 km; y ¼ 10 km; z ¼ 0 km) is considered. Similar to the above test, a location at

slightly higher elevation (with z ¼ �0:15m) is required for Garcı́a-Abdeslem’s (2005)

analytic expressions. The comparison between our solutions and Garcı́a-Abdeslem’s

solutions is shown in Table 5. Apparently, these two different solutions are identical up to

the 14-th significant digit. In the singular case (see Table 6) where the observation site is

coincident with the corner, our solutions still show smooth results with respect to the above

solutions with a slightly more elevated observation site, implying the correctness of our

formulae.

3.2 A Polyhedral Body with Constant Density Contrast

To test the performance of our closed-form approach in the case of arbitrary polyhedral

bodies, a complicated triangular prism is selected as shown in Fig. 2b. The triangular prism

has half the volume of the prism (cutting in halves the original prism along diagonals of the

top and bottom surfaces) and has a mass density of 2670 kg=m3
; only the vertical gravity

fields are computed. The triangular surface has a size of 1
2
� 10 km� 10 km. Three

observation sites are located on the top triangular surface of the anomaly, one at a vertex,

one at the mid point of an edge and one at the center of the surface. Hence, singularities

might exist.

When the observation site is located at the diagonal edge as shown in Fig. 2b, the

vertical gravity field caused by the triangular prism has half the value of that caused by the

prismatic body, due to geometrical symmetries. Therefore, half the value of the well-

established Gbox solution (Blakely 1996) can be used as reference. Additionally, the

analytic solutions with linear integrals for arbitrary polyhedral bodies from Tsoulis (2012)

are also taken as references. The test results are given in Table 7; they show that, using our

closed-form formula, the computed gz of the triangular prism is exactly a factor of 0.5 of gz
caused by the prismatic body. Our closed-form solution has an excellent agreement with

that computed by the Gbox code (up to the 15-th significant digit). There is a negligible

difference (after the 7-th significant digit) between our closed-form solution and Tsoulis’s

(2012) solution. Similar deviations also are observed for the cases that the observation sites

Table 5 Comparison of the vertical gravity field (g00t) between our analytic solutions and Garcı́a-Ab-
deslem’s (2005) closed-form solutions for the prism model shown in Fig. 2a

Order g00t at point (x ¼ 20 km; y ¼ 10 km; z ¼ �0:15m)

Our closed-form solutions (mGal) Garcı́a-Abdeslem’s solution (mGal)

Constant (t ¼ 0) �4.25105387729770Eþ001 �4.25105387729770Eþ001

Linear (t ¼ 1) 3.95707907656690Eþ001 3.95707907656692Eþ001

Quadratic (t ¼ 2) �2.55689100895767Eþ001 �2.55689100895767Eþ001

Cubic (t ¼ 3) 7.76642695050040Eþ000 7.76642695050040Eþ000

The measuring point is located at a point very close to the top corner of the prism. The vertical coordinate of
the considered top corner is x ¼ 20 km; y ¼ 10 km; z ¼ 0 km. Differences between the solutions are shown
in bold face
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are located at the vertex and the center of the surface. The differences between the different

solutions are well below instrumental accuracy (0.002–0.010 mGal), demonstrating the

generally high accuracy of the compared algorithms.

3.3 A Prismatic Body with Quartic Density Contrast

Additionally, we calculate the gravity acceleration for a prismatic body with a quartic

density contrast which is

kðrÞ ¼ z4: ð47Þ

The profile is along the top surface of the prismatic body (y ¼ 5 km and z ¼ 0 km) as

shown in Fig. 2a. The reference solutions are calculated by the high-order Gaussian

quadrature rule with 512� 512� 512 quadrature points. As the quadrature points are

located inside the prismatic body, solutions of the Gaussian quadrature rule are reasonably

well approximating to the solutions. Our closed-form solutions and those of the Gaussian

quadrature rule are listed in Table 8. As shown in Table 8, excellent agreements are

obtained again and differences occur only at the 11-th significant digit. The testing plat-

form is a personal computer with an Intel core i3 CPU 2.4GHz and 4GB RAM. For 31

observation sites, our closed-form formula takes 0.0055 s and the high-order Gaussian

Table 6 Comparison of the vertical gravity field (g00t) between our analytic solutions and Garcı́a-Ab-
deslem’s (2005) closed-form solutions for the prism model shown in Fig. 2a

Order g00t at corner (x ¼ 20 km; y ¼ 10 km; z ¼ 0 km)

Our closed-form solutions (mGal) Garcı́a-Abdeslem’s solution (mGal)

Constant (t ¼ 0) �4.25112235972466Eþ001 –

Linear (t ¼ 1) 3.95714574971360Eþ001 –

Quadratic (t ¼ 2) �2.55693475942219Eþ001 –

Cubic (t ¼ 3) 7.76656065625613Eþ000 –

The observation point is located at the top corner of the prism. Symbol (–) indicates no solution available

Table 7 Comparisons of the vertical gravity field computed by our closed-form formula to other
approaches for the triangular prism model as shown in Fig. 2b

Locations Methods gz (mGal)

Middle edge Our formula 2.142578084292794Eþ002

Tsoulis (2012)’s formula 2.142578361848591Eþ002

1
2
� GBOX’s formula for prism 2.142578084292798Eþ002

1
2
� Our formula for prism 2.142578084292794Eþ002

Vertices Our formula 1.302013719579445Eþ002

Tsoulis (2012)’s formula 1.302013874827574Eþ002

Face centre Our formula 3.255085457339834Eþ002

Tsoulis (2012)’s formula 3.255085967044333Eþ002

Differences between the solutions are shown in bold face
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method using 512� 512� 512 quadrature points takes 171.9481 s. The low-order Gaus-

sian quadrature solution using 5� 5� 5 quadrature points is also shown in Table 8 which

takes 0.0005540 s computation time for 31 observation sites. Although the computational

speed of the low-order Gaussian quadrature rule is ten times faster than that of our analytic

formula, it has 0.1–0.2% relative errors at observation sites approaching to the center of the

top surface. Compared to our closed-form solution, the low-order Gaussian quadrature rule

has 0.001–0.039 mGal differences for the vertical gravity field. As these differences are

already larger than instrumental accuracy (0.002–0.010 mGal), solutions computed by this

low-order Gaussian quadrature rule are undesired.

4 Discussion and Conclusions

In comparison with previously published work, our approaches of computing the gravi-

tational potential and acceleration due to arbitrary polyhedral bodies have adopted a

generalized singularity-free framework. This allowed to derive closed-form solutions of

the gravitational potential and acceleration for the cases of constant and linear variations in

mass density. We are the first to present closed-form solutions of the gravitational potential

for a general polyhedral body with quadratic density contrast varying in all directions (x,

y and z).

For a prismatic body with density contrasts varying in both horizontal and vertical

directions, our approach can deliver closed-form solutions of the gravity potential caused

Table 8 Lists of the vertical gravity field computed using our analytic solution and solutions by the
Gaussian quadrature rules with 512� 512� 512 points and 5� 5� 5 points for the prism model shown in

Fig. 2a with kðrÞ ¼ z4

x (km) Gaussian quadrature solutions (mGal)
with 512� 512� 512 points

our analytic solution
(mGal)

Gaussian quadrature solutions
(mGal) with 5� 5� 5 points

0 7.12219101489056 7.12219101489085 7.1221888320710950993

1 8.48056770614467 8.48056770614382 8.4805617391125540649

2 10.1696894406181 10.1696894406191 10.169676418630798409

3 12.2782706524876 12.2782706524853 12.278247766243397976

4 14.9143130178865 14.9143130178878 14.914288054727569133

5 18.2021319910864 18.2021319910878 18.202160056789619347

6 22.2702667632913 22.2702667632900 22.27054518097238045

7 27.2226356973335 27.2226356973329 27.223663649822459121

8 33.0839167397600 33.0839167397592 33.086832035778186878

9 39.7152373831687 39.7152373831755 39.724588628867728346

10 46.7187463141761 46.7187463141865 46.746050499737350492

11 53.4225546453986 53.4225546453996 53.461645509154095635

12 59.1380804111197 59.1380804111283 59.215084132472277645

13 63.4175287134867 63.4175287134972 63.441261544998837962

14 66.0399955350939 66.0399955350872 66.068292518952773662

15 66.9207406119316 66.9207406119341 67.047071844908117555

The observation point is located at the top surface of the prism
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by constant, linear, quadratic and cubic density contrasts. For the gravitational acceleration

of a prismatic body, we have shown that closed-form solutions exist in the case of constant

and linear variations in density contrast. To our best knowledge, we deliver the first closed-

form solutions of the gravitational acceleration for a prismatic body with quartic density

contrast, if the density contrast only varies along the z-axis.

In summary, we find:

1. For an arbitrarily polyhedral body, analytic formulae of the gravity potential and the

gravity field are available in the case of m� 1, n� 1 and t� 1. For the gravity

potential, an analytic formula is also available in the case of m ¼ 2, n ¼ 2 and t ¼ 2.

2. For a prismatic body, an analytic formula exists in the case of m� 3, n� 3 and t� 3

for the gravity potential. For the gravity field, closed-form solutions are available only

in the case of m� 1, n� 1 and t� 4.

Since simulation results from closed-form solutions for complicated polyhedral and

spatial variations of density contrasts were not available in the literature, a simple prismatic

model with a purely depth-dependent polynomial density contrast and a polyhedral body in

form of a triangular prism with constant density contrasts had to be considered to verify our

new analytic formulae. Excellent agreement between the results of the published analytic

formulae and our results is demonstrated, verifying the accuracies of our new analytic

expressions of the gravity anomaly.

Due to its ability for dealing with cases of locating observation sites at corners, on edges

or on surfaces of a polyhedral body, our new analytic formula is a useful tool to compute

the gravity anomaly in the immediate vicinity of the mass source body. It should have high

potential in aiding interpretation of gravity data for gravity modeling problems where high

accuracy is required, such as terrain correction and borehole gravity problems or in near

field computation in associated fast multipole method acceleration techniques.

An interesting aspect of the new formulae is that they allow representing a density

distribution with relatively few parameters, since the density is allowed to vary within a

single polyhedron. This is an interesting aspect, when it comes to inversion, because these

will reduce some of the ambiguities and may require less regularization.

Acknowledgements This study was supported by Grants from the National Basic Research Program of
China (973-2015CB060200), the Project of Innovation-driven Plan in Central South University
(2016CX005), the National Science Fundation of China (41574120, 41474103, 41204082), the State High-
Tech Development Plan of China (2014AA06A602), and an award for outstanding young scientists by
Central South University (Lieying program 2013).

Appendix: Closed Forms for Edge Integrals

We begin to derive the closed forms for edge integrals B
qþ2
j and Bqþ2

j . In Fig. 1, given the

edge Cj 2 oHi with two ordered vertices v0 and v1, the unit tangential vector of edge Cj is

êj ¼ ðv1 � v0Þ=jv1 � v0j. Edge Cj is parametrized by a single variable s, s ¼ ðr� oÞ � êj.
Furthermore, R ¼ jr0 � rj ¼ ðh2i þ m2

j þ s2Þ1=2, ðr� oÞ ¼ qq̂, and q̂ is a unit vector

pointing from point o to point r. The solid angle in Eqs. (33) and (34) is calculated as

(Wilton et al. 1984)

bðoÞ ¼
XM
j¼1

bðoÞj ¼
XM
j¼1

m̂j � q̂?j arctan
s1

jmjj
� arctan

s0

jmjj

� �
: ð48Þ
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Here q̂j
? is the unit vector from point o to point r?. At point r?, s ¼ 0. When point o is

inside the polygon oHi, bðoÞ ¼ 2p; bðoÞ ¼ p when point o is on an edge of polygon oHi;

bðoÞ ¼ H when point o is at a corner of polygon oHi with the corner angle H; bðoÞ ¼ 0

when point o is outside of polygon oHi.

Using the integral tables from Gradshteyn and Ryzhik (1994, equation (2.260.2)), we

get

Bqþ2
j ¼ m̂j

Z
Cj

Rqþ2dl ¼ m̂j

Z s1

s0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2i þ m2

j þ s2
q� �qþ2

ds

¼ m̂j

qþ 3
sRqþ2 js1s0 þm̂j

qþ 2

qþ 3
ðh2i þ m2

j Þ
Z
Cj

Rqdl;

ð49Þ

where s0 and s1 are the parametrized coordinates of the vertices v0 and v1, respectively. To

compute the gravity field (with q ¼ �1; 1), we only need to calculate terms
R
Cj
Rdl andR

Cj
R3dl which are regular even if the observation site r0 is located on an edge Cj. The

initial value for the recursive algorithm given by Eq. (49) is

Z
Cj

Rdl ¼ 1

2
fðh2i þ m2

j Þ ln
s1 þ R1

s0 þ R0

þ s1R1 � s0R0g; ð50Þ

where R1 and R0 are the distances from the point r0 to the vertices v0 and v1, respectively.

When the observation site r0 is located on an edge Cj, we simply set ðh2i þ m2
j Þ ¼ 0 which

eliminates the possible logarithmic singularity in expression (50).

Now, we deal with term B
qþ2
j ¼

R
Cj

Rqþ2

q2 dl (q ¼ �1; 1) in Eq. (34). When q ¼ �1, we

have,

B1
j ¼ mj

Z
Cj

R

q2
dl ¼ mj

Z s1

s0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2i þ m2

j þ s2
q

m2
j þ s2

ds

¼ mj

jhij arctanðjhijsmjR
Þ

mj

þ lnðsþ RÞ

0
@

1
Ajs1s0

¼ jhij arctan
jhijs1
mjR1

� arctan
jhijs0
mjR0

� �
þ mj ln

s1 þ R1

s0 þ R0

:

ð51Þ

When q ¼ 1, we have,

B3
j ¼ mj

Z
Cj

R3

q2
dl ¼ mj

Z s1

s0

ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2i þ m2

j þ s2
q

Þ3

m2
j þ s2

ds

¼ mj

jhij3 arctanðjhi jsmjR
Þ

mj

þ 1

2
ð3h2i þ m2

j Þ lnðsþ RÞ þ 1

2
sR

2
4

3
5js1s0

¼ jhij3 arctan
jhijs1
mjR1

� arctan
jhijs0
mjR0

� �

þ 1

2
mjð3h2i þ m2

j Þ ln
s1 þ R1

s0 þ R0

þ 1

2
mjðs1R1 � s0R0Þ

ð52Þ

In the above two equations, mj ¼ ðr� oÞ � m̂j for r 2 Cj, therefore mj can take both
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positive and negative values. When the observation site r0 is located on an edge Cj of the

plane oHi, that is, mj ¼ 0 and hi ¼ 0, the above two integrals are free of singularities as we

simply have B1
j ¼ 0 and B3

j ¼ 0. In Eq. (52), as
arctan 1=mj

mj
is an even function with respect to

mj, the sign of mj does not affect the value of the function.
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mineral exploration: a case study in the Quadrilátero Ferrı́fero, Brazil. Geophysics 78(1):B1–B11.
doi:10.1190/geo2012-0106.1

Moorkamp M, Heincke B, Jegen M, Roberts AW, Hobbs RW (2011) A framework for 3-D joint inversion of
MT, gravity and seismic refraction data. Geophys J Int 184(1):477–493

Nagy D (1966) The gravitational attraction of a right rectangular prism. Geophysics 31(2):362–371. doi:10.
1190/1.1439779

Nagy D, Papp G, Benedek J (2000) The gravitational potential and its derivatives for the prism. J Geod
74(7–8):552–560. doi:10.1007/s001900000116

Okabe M (1979) Analytical expressions for gravity anomalies due to homogeneous polyhedral bodies and
translations into magnetic anomalies. Geophysics 44(4):730–741. doi:10.1190/1.1440973

Paul MK (1974) The gravity effect of a homogeneous polyhedron for three-dimensional interpretation. Pure
Appl Geophys 112(3):553–561. doi:10.1007/BF00877292
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