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Abstract Global forward modelling of the Earth’s gravitational potential, a classical

problem in geophysics and geodesy, is relevant for a range of applications such as gravity

interpretation, isostatic hypothesis testing or combined gravity field modelling with high

and ultra-high resolution. This study presents spectral forward modelling with volumetric

mass layers to degree 2190 for the first time based on two different levels of approxi-

mation. In spherical approximation, the mass layers are referred to a sphere, yielding the

spherical topographic potential. In ellipsoidal approximation where an ellipsoid of revo-

lution provides the reference, the ellipsoidal topographic potential (ETP) is obtained. For

both types of approximation, we derive a mass layer concept and study it with layered data

from the Earth2014 topography model at 5-arc-min resolution. We show that the layer

concept can be applied with either actual layer density or density contrasts w.r.t. a refer-

ence density, without discernible differences in the computed gravity functionals. To avoid

aliasing and truncation errors, we carefully account for increased sampling requirements

due to the exponentiation of the boundary functions and consider all numerically relevant
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terms of the involved binominal series expansions. The main outcome of our work is a set

of new spectral models of the Earth’s topographic potential relying on mass layer mod-

elling in spherical and in ellipsoidal approximation. We compare both levels of approxi-

mations geometrically, spectrally and numerically and quantify the benefits over the

frequently used rock-equivalent topography (RET) method. We show that by using the

ETP it is possible to avoid any displacement of masses and quantify also the benefit of

mapping-free modelling. The layer-based forward modelling is corroborated by GOCE

satellite gradiometry, by in-situ gravity observations from recently released Antarctic

gravity anomaly grids and degree correlations with spectral models of the Earth’s observed

geopotential. As the main conclusion of this work, the mass layer approach allows more

accurate modelling of the topographic potential because it avoids 10–20-mGal approxi-

mation errors associated with RET techniques. The spherical approximation is suited for a

range of geophysical applications, while the ellipsoidal approximation is preferable for

applications requiring high accuracy or high resolution.

Keywords Gravity forward modelling � Ellipsoidal topographic potential � Harmonic

combination method � Spherical harmonics � Spherical approximation � Ellipsoidal

approximation � Layer concept � Earth2014

1 Introduction

1.1 Motivation and Related Work

Global modelling of the Earth’s gravitational potential from its underlying mass distri-

bution in spherical harmonics is a classical problem in geophysics and geodesy (e.g.,

Balmino et al. 1973; Rapp 1982; Rummel et al. 1988; Wieczorek 2007, 2015). The

solution to this problem can be used for testing of topographic/isostatic hypothesis

(Rummel et al. 1988; Göttl and Rummel 2009; Hirt et al. 2012; Grombein et al. 2014),

modelling of Bouguer gravity (Balmino et al. 2012; Wieczorek 2015; Rexer et al. 2015),

smoothing or reduction of the Earth’s gravity field and its observations [as, for example,

needed for Stokes’ geodetic boundary value problem or improved interpolation/prediction

with remove-compute-restore techniques (Grombein et al. 2014)], computation of fill-in

gravity for combined gravity field models (Pavlis et al. 2007, 2012; Fecher et al. 2013),

omission error modelling (Hirt et al. 2011; Rexer and Hirt 2015a) and the evaluation of

digital elevation models (Rexer et al. 2015).

For some of the listed applications, a forward model that is as close as possible to the

actual gravity field is desirable. Aiming at such a ‘‘perfect’’ synthetic gravitational model,

an accurate mass model of the Earth is required. Mass models deliver information about

the physical geometry of Earth along with density information about its interior. A perfect

mass model would be able to describe the masses in terms of infinitesimal small bodies

(such as rectangular prisms or tesseroids) at all 3D positions of Earth. Together with an

adequate implementation of Newton’s law of gravitation, which means numerical inte-

gration over all masses (see, for example, Kuhn and Seitz 2005; Grombein et al. 2014), this

mass model would allow to accurately determine the gravitational potential of Earth.

However, such a mass model in reality is not practicable as the computational requirements

are very challenging, and more prohibitively, because the required density and geometric

information is neither available globally nor in 3D with adequate resolution. Today,
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globally consistent physical surface information (usually provided in terms of digital

elevation models) at best is given with a resolution of � 12 m [TanDEM-X satellite

mission: Bartusch et al. 2008] and a vertical accuracy of � 4 m (Rexer and Hirt 2016). At

short scales ð� 10 km or less), it is mainly the masses of the crust—the upper part of the

lithosphere—and hydrosphere that cause substantial anomalous gravitational signals. The

anomalous potential that originates from the Earth’s interior (upper mantle or below) has

long-wavelength character. Satellite-borne and terrestrial observation techniques result in

complete (global) high-resolution models of the topographic elevation and to some extent

also of the bathymetric depth, water bodies and ice sheets (Hirt and Rexer 2015), making

forward modelling of short-scale (=crustal) gravity signals possible to ultra-high resolu-

tion, e.g., up to � 2 km scale (Balmino et al. 2012) and up to � 200 m scale (Hirt et al.

2013).

In contrast, available density information for the lithosphere (crust and upper mantle,

down to about 30 km depth) is limited to a lateral resolution of about 110 km [CRUST1.0

(Laske et al. 2012) and LITHO1.0 (Pasyanos et al. 2014)]. Considering the density profile

(vertical resolution), which is derived mainly from seismic tomography, presently avail-

able models only distinguish between 8 and 10 different layers, assuming that the density is

not varying vertically within each layer. This short review of mass models already suggests

that it is convenient and practicable to model Earth’s masses in terms of layers since layers

are a natural way to describe the structure of the physical Earth.

Forward modelling can either be conducted by Newtonian integration over Earth’s

masses in the space domain, e.g., by using rigorous analytical integration formulas for

rectangular prisms (Nagy et al. 2000, 2002) or tesseroids (Grombein et al. 2013; Heck and

Seitz 2007), or in the spectral domain, by using relations among surface spherical harmonic

coefficients of the geometric boundary surfaces. Historically (Lee and Kaula 1967; Bal-

mino et al. 1973; Rummel et al. 1988) and recently (Wieczorek 2007, 2015; Forsberg and

Jensen 2015; Hirt et al. 2015) forward modelling approaches were often used in combi-

nation with ‘‘single-density’’ mass models, also known as rock-equivalent topography

(RET) models. RET modelling involves a compression of all masses to a layer of constant

(rock) density, resulting in approximation errors in the order of several dozens of mGal;

see, for example, Grombein et al. (2016) and Kuhn and Hirt (2016). Therefore, it is very

useful to have forward modelling approaches that are adapted to rigorous modelling of

mass layers. These are available for spatial domain modelling in spherical (Kuhn and Seitz

2005) and ellipsoidal (Grombein et al. 2014) approximation. In spherical approximation,

the topographic masses are forward modelled relative to a mass sphere. Correspondingly,

in ellipsoidal approximation, a mass ellipsoid as a much closer approximation of the real

Earth is used to provide the reference for the forward modelling. For spectral domain

modelling a layer-based approach only was formulated in spherical approximation (Pavlis

and Rapp 1990; Tenzer et al. 2010, 2015; Root et al. 2016). The spectral approach has

mainly been used to create low resolution models, e.g., in

• Pavlis and Rapp (1990): to d/o 360, distinguishing between 6 different terrain types

corresponding to the explicit modelling of 4 layers—topography, ocean, ice sheets/

glaciers and lake water—as represented by the OSUJAN89 topographic database

• Tenzer et al. (2010): to d/o 90, only ice layer based on the CRUST2.0 model and the

surface heights in GTOPO30 (US Geological Survey, released 1996)

• Tenzer et al. (2015): to d/o 180 based on the CRUST1.0 model as contained in the 9

layers—topography, ocean, polar ice sheets, sediments (3 layers) and consolidated

crust (3 layers)—of Earth’s spectral crustal model (ESCM180: Chen and Tenzer 2014)
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• Tenzer et al. (2016): to d/o 360 based on 4 layers—topography, ocean, inland lakes/

seas and ice sheets– of the Earth2014 model (Hirt and Rexer 2015)

• Root et al. (2016): to d/o 1800 based on 2 layers—topography and ocean—of

GTOPO30

and also for ultra-high-resolution modelling [Balmino et al. (2012): d/o 10800 based on

four layers—topography, ocean, inland lakes/seas and ice sheets—of the ETOPO1 model

(Amante and Eakins 2009)]. Note that in the work of Balmino et al. (2012), Tenzer et al.

(2010) and Root et al. (2016) the integration is facilitated using a binominal series. In these

cited works, the series expansion is evaluated only up to the third-order term resulting in

(unknown) truncation errors (see Sect. 2.3), while Pavlis and Rapp (1990) present a rig-

orous integration which is more accurate but computationally more demanding, especially

for high resolutions.

Recently, Claessens and Hirt (2013) have developed a spherical harmonic technique to

model the Earth’s gravitational potential in ellipsoidal approximation, i.e. with respect to a

reference ellipsoid. In contrast to the spherical concepts of Rummel et al. (1988); Pavlis

and Rapp (1990); Balmino et al. (2012); Wieczorek (2015); Tenzer et al. (2015)—where

the topograpdhic masses are considered relative to a reference sphere—the Harmonic

Combination Method (HCM) (Claessens and Hirt 2013) models the topographic masses

considered relative to a reference ellipsoid. Thus, the HCM provides the gravity spectrum

to the same level of approximation (w.r.t. the same reference) as most spherical harmonic

gravity field models based on observations available at IAG’s International Center for

Global Earth Models (ICGEM: http://icgem.gfz-potsdam.de/ICGEM/). This, as will be

shown, is a major advantage especially when it comes to combining and comparing the

forward models with satellite data or other terrestrial data.

We may thus define—because of the underlying ellipsoidal approximation—Claessens

and Hirt (2013) to provide a solution to the ellipsoidal topographic potential (ETP) while

the methods based on a spherical approximation of the Earth’s masses provide a solution to

the spherical topographic potential (STP).

Tenzer et al. (2015) and Root et al. (2016) provide the framework for layer-based

modelling of the STP. For the ETP, such a framework is still missing. The HCM as

formulated in Claessens and Hirt (2013) is designed for a single-density mass model, but it

can be reformulated to adopt layer-based mass models, as will be shown in this

contribution.

1.2 This Work: Contributions to Spectral Forward Modelling

In this contribution, we formulate a new spherical harmonic approach to compute the ETP

from arbitrary volumetric layers having laterally varying density. The approach is based on

the Harmonic Combination Method (Claessens and Hirt 2013) and allows the layers to be

referenced to the surface of some reference ellipsoid. The new approach is then validated

by modelling the Earth’s gravitational potential as implied by the masses of layers of the

solid crust, ocean water, lake water and ice sheets up to spherical harmonic degree 2190

ð� 10 kmÞ.
First, we recapitulate known expressions for layer-based spherical harmonic modelling

of the STP (with layers referenced to the sphere) (Sect. 2.1). In the next step, we make the

transition from the spherical to the ellipsoidal case and formulate new expressions for

layer-based spherical harmonic modelling of the ETP (with layers referenced to the

ellipsoid) (Sect. 2.2). Then, a layer concept based on the layers of the Earth2014 (Hirt and
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Rexer 2015) data set (Sect. 3) and two ways of applying it within the previously introduced

forward modelling approaches are defined (Sect. 3.1 and 3.2). The gravitational spectra

and signals of the layer-based ETP are computed with 10-km spatial resolution (Sect. 4.1)

and validated using GOCE satellite gradiometry (Sect. 4.2), other gravity field models

(Sect. 4.3) and terrestrial observations (Sect. 4.4). Finally, differences between the ETP

and the STP are elaborated in detail (Sect. 4.5) and conclusions are drawn (Sect. 5).

2 Spectral Forward Modelling of the Gravitational Potential Based
on Volumetric Layers of Laterally Varying Density

Let V(P) be the gravitational potential at a point P exterior to the Earth’s body B. Fol-

lowing Newton’s law of gravitation and neglecting the presence of atmospheric masses, it

may be written as the integral over the Earth’s mass distribution (see, for example,

Heiskanen and Moritz 1967; Sanso and Sideris 2013)

VðPÞ ¼ G

Z
B

qðQÞ
lPQ

dB ð1Þ

where G is the Newtonian gravitational constant, qð[ 0Þ is the density value associated

with the infinitesimal volume element dB ¼ r2
B sin hdrdhdk at Q with Q 2 B and lPQ being

the Euclidean distance between P and the respective mass element at Q. In order to get

Eq. 1 in a spherical coordinate system (P and Q are then defined by the coordinate triplet:

geocentric distance r, longitude k, co-latitude h), the reciprocal distance 1=lPQ has to be

replaced by its spherical harmonic expansion. Rummel et al. (1988) show that Eq. 1 can

then be represented as spherical harmonic series of the form

VðPÞ ¼GM

R

X1
n¼0

Xn
m¼�m

R

rp

� �nþ1

� 1

Mð2nþ 1Þ

Z
B

rQ

R

� �n
qðQÞYnmðhQ; kQÞdB

� �
YnmðhP; kPÞ

ð2Þ

with the mass of Earth M, its mean radius R, the geocentric radii of the computation point

rP and the source point rQ, the spherical harmonic degree n and order m. Ynm denote the

well-known set of fully normalised Laplace’s surface spherical harmonic functions

Ynmðh; kÞ ¼ Pnm cos hð Þ
cosðmkÞ form� 0

sinðmkÞ form[ 0

�
ð3Þ

with Pnm being the fully normalised (4p-normalised) associated Legendre functions of the

first kind. The term in curly brackets in Eq. 2 now contains the integration over the Earth’s

mass distribution and can alternatively be represented as a set of dimensionless fully

normalised coefficients

Vnm ¼ 3

qR3ð2nþ 1Þ
1

4p

Z
B

rQ

R

� �n
qðQÞYnmðhQ; kQÞdB; ð4Þ

that can be subdivided into their cosine- and sine-assigned equivalents, Cnm and Snm,

according to Eq. 3, where M is replaced by 4
3
pqR3 and with q being the mean density of

Earth. Then, Eq. 2 can be rewritten conveniently as
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VðPÞ ¼ GM

R

X1
n

Xn
m¼�m

R

rp

� �nþ1

VnmYnmðhP; kPÞ: ð5Þ

Now, let’s consider an Earth that is subdivided into a set of volumetric mass layers Xx

ðx ¼ ½1; 2; . . .;xmax�Þ fulfilling the following requirements:

(i) q varying only in the lateral direction in each layer (qðXxÞ is radially invariant:

qðXxÞðh; kÞ),
(ii) each layer having a defined upper bound (UB) and lower bound (LB)

r
ðXxÞ
LB � r

ðXxÞ
UB

� �
,

(iii) the layer’s boundaries being entirely inside Earth’s body r
ðXxÞ
UB � rB

� �
(iv) the layers being uniquely separated by their boundaries Xx \ Xxþ1 � 0ð Þ
(v) and the set of layers (including the remaining volumetric body inside the lower

most layer boundary) forms a complete subset of Earth’s body
P

x Xx � B
� 	

.

Then, the gravitational potential V(P) in Eq. 5 may be written as a sum of the gravitational

potential of each layer VðPÞðXxÞ

VðPÞ ¼
X
x

VðPÞðXxÞ ¼ GM

R

X1
n

Xn
m¼�m

R

rp

� �nþ1

V
ðX1Þ
nm YnmðhP; kPÞ

þ GM

R

X1
n

Xn
m¼�m

R

rp

� �nþ1

V
ðX2Þ
nm YnmðhP; kPÞ

þ � � � þ GM

R

X1
n

Xn
m¼�m

R

rp

� �nþ1

V
ðXmaxÞ
nm YnmðhP; kPÞ

¼GM

R

X1
n

Xn
m¼�m

R

rp

� �nþ1X
x

V
ðXxÞ
nm YnmðhP; kPÞ:

ð6Þ

Thus, the fully normalised coefficients in Eqs. 4 and 9 are the sum of the respective

coefficients of all layers

Vnm ¼
X
x

V
ðXxÞ
nm ð7Þ

The fully normalised potential coefficients of a layer V
ðXxÞ
nm are given by the global radial

integration of the layer’s masses

V
ðXxÞ
nm ¼ 3

qR3ð2nþ 1Þ
1

4p

Z
Xx

rQ

R

� �n
qðXxÞðhQ; kQÞYnmðhQ; kQÞdXx

¼ 3

qR3ð2nþ 1Þ
1

4p

Z 2p

k¼0

Z p

h¼0

Z r
ðXxÞ
UB

r
ðXxÞ
LB

rQ

R

� �n

� qðXxÞðhQ; kQÞYnmðhQ; kQÞr2
Q sin hdrdhdk

ð8Þ

where qðXxÞ denotes the layers density distribution. With moving the reference radius

outside the integrals, we then write (see Rummel et al. 1988)
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V
ðXxÞ
nm ¼ 3

qRð2nþ 1Þ
1

4p

Z 2p

k¼0

Z p

h¼0

XðxÞYnmðhQ; kQÞ sin hdhdk ð9Þ

where XðxÞ denotes the radial integration of the layer’s masses

XðxÞ ¼
Z r

ðXxÞ
UB

r
ðXxÞ
LB

rQ

R

� �nþ2

qðXxÞðhQ; kQÞdr: ð10Þ

Since qðXxÞ is assumed to be a function of k and h only (and thus constant in radial

direction within each layer), the solution of the integral in Eq. 10 yields

XðxÞ ¼ qðXxÞðhQ; kQÞ
R

nþ 3

r
ðXxÞ
UB

R

 !nþ3

� r
ðXxÞ
LB

R

 !nþ3
2
4

3
5: ð11Þ

Then, consider that the integral in Eq. 10 can also be defined with respect to the ellipsoidal

radius by two separate integrals, e.g., by

XðxÞ ¼
Z re

r¼r
ðXxÞ
LB

rQ

R

� �nþ2

qðXxÞðhQ; kQÞdr þ
Z r

ðXxÞ
UB

r¼re

rQ

R

� �nþ2

qðXxÞðhQ; kQÞdr: ð12Þ

The above (split) integral solution holds for all possible vertical arrangements of layer

boundaries (where all, none or only a part of the masses of a layer are located within the

reference ellipsoid), as shown in Claessens and Hirt (2013) for single-layer modelling.

Then, with qðXxÞ being radially invariant, the solution to the integral in Eq. 12 becomes

XðxÞ ¼qðXxÞðhQ; kQÞ
R

nþ 3

� r
ðXxÞ
UB

R

 !nþ3

� re

R

� �nþ3

2
4

3
5� r

ðXxÞ
LB

R

 !nþ3

� re

R

� �nþ3

2
4

3
5

0
@

1
A;

ð13Þ

which essentially is the same as Eq. 11, since re
R

� 	nþ3
cancels out in Eq. 13. Starting from

this solution to the radial integral of the masses within a layer Xx—which will turn out to

be of mathematically convenient form—we will derive the potential VðPÞðXxÞ of a volu-

metric layer in spherical approximation in Sect. 2.1 and in ellipsoidal approximation in

Sect. 2.2.

2.1 Layer-Based Modelling with Respect to a Reference Sphere

The potential based on volumetric layers of laterally variable density as given by Eq. 6

modelled with respect to a reference sphere means—in simple words—a spherical

approximation of Earth’s masses and yields the spherical topographic potential VSTP. A

solution to the layer-based STP was given already by Pavlis and Rapp (1990), Tenzer et al.

(2015) and other works (see Sect. 1) and is recapitulated in own notation here.

The first spherical approximation that is introduced is setting

re ¼ R ð14Þ

in Eq. 13, which yields the spherical approximated mass of the layer
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XðSTP;xÞ ¼ qðXxÞðhQ; kQÞ
R

nþ 3

r
ðXxÞ
UB

R

 !nþ3

�1

2
4

3
5� r

ðXxÞ
LB

R

 !nþ3

�1

2
4

3
5

0
@

1
A: ð15Þ

The second spherical approximation is made by describing the layer’s boundaries with

respect to the reference sphere as

r
ðXxÞ
UB ¼Rþ H

ðXxÞ
UB

r
ðXxÞ
LB ¼Rþ H

ðXxÞ
LB

ð16Þ

where H
ðXxÞ
UB and H

ðXxÞ
LB denote the orthometric height of the upper and the lower boundary

of Xx, respectively. We may then introduce the well-known binominal expansion for both

terms in square brackets in Eq. 15 (see Rummel et al. 1988)

r
ðXxÞ
UB

R

 !nþ3

�1 ¼
Xnþ3

k¼1

nþ 3

k

� �
H

ðXxÞ
UB

R

 !k

¼
Xnþ3

k¼1

1

k!

Yk
i¼1

ðnþ 4 � iÞ H
ðXxÞ
UB

R

 !k

r
ðXxÞ
LB

R

 !nþ3

�1 ¼
Xnþ3

k¼1

nþ 3

k

� �
H

ðXxÞ
LB

R

 !k

¼
Xnþ3

k¼1

1

k!

Yk
i¼1

ðnþ 4 � iÞ H
ðXxÞ
LB

R

 !k
ð17Þ

and yield

XðSTP;xÞ ¼qðXxÞðhQ; kQÞ
R

nþ 3

Xnþ3

k¼1

nþ 3

k

� �
H

ðXxÞ
UB

R

 !k

�
Xnþ3

k¼1

nþ 3

k

� �
H

ðXxÞ
LB

R

 !k
0
@

1
A

¼qðXxÞðhQ; kQÞ
R

nþ 3

Xnþ3

k¼1

nþ 3

k

� �
H

ðXxÞ
UB

R

 !k

� H
ðXxÞ
LB

R

 !k
0
@

1
A:

ð18Þ

Inserting Eq. 18 into Eq. 9 gives, after moving the double integral into the binominal

series, the solution to the layer’s spherical topographic potential

V
ðSTP;XxÞ
nm ¼ 3

qð2nþ 1Þðnþ 3Þ
Xnþ3

k¼1

nþ 3

k

� �
1

4p

Z 2p

k¼0

Z p

h¼0

qðXxÞðhQ; kQÞ

� H
ðXxÞ
UB

R

 !k

� H
ðXxÞ
LB

R

 !k
0
@

1
AYnmðhQ; kQÞ sin hdhdk

ð19Þ

where the height function (HF) to the power k within the double integral, scaled by the

density qðXxÞðhQ; kQÞ in each cell, can be expressed as a series of (fully normalised) surface

spherical harmonic coefficients of the layer’s height density function (HDF)

HDF
ðSTP;XxÞ
knm ¼ 1

4p

Z 2p

k¼0

Z p

h¼0

qðXxÞðhQ; kQÞ

� H
ðXxÞ
UB

R

 !k

� H
ðXxÞ
LB

R

 !k
0
@

1
AYnmðhQ; kQÞ sin hdhdk:

ð20Þ
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Then, we arrive at a concise expression of the layer’s spherical topographic potential

V
ðSTP;XxÞ
nm ¼ 3

qð2nþ 1Þðnþ 3Þ
Xnþ3

k¼1

nþ 3

k

� �
HDF

ðSTP;XxÞ
knm : ð21Þ

Note that the radial integration (Eq. 10) can also be done rigorously (without using

binominal series expansions), as shown, for example, by Pavlis and Rapp (1990). However,

the rigorous integration is much less efficient compared to an integration based on

binominal series expansions (Rummel et al. 1988). Therefore, especially for large nmax, the

rigorous approach may become excessively computationally demanding. The rigorous

expressions in our notation are found in Appendix 1.

2.2 Layer-Based Modelling with Respect to a Reference Ellipsoid

Next, the potential based on volumetric layers of laterally variable density as given by

Eq. 6 is modelled with respect to a reference ellipsoid. This procedure yields the ellip-

soidal topographic potential VETP. In contrast to the spherical variant described in

Sect. 2.1, this modelling technique defines the layered masses with respect to a reference

ellipsoid. The Earth is thus not approximated by a sphere and the true physical shape of

Earth can be preserved.

The solution to the layer-based ETP discussed next is based on the HC method derived

in Claessens and Hirt (2013), who applied the HC method only to compute the ETP from a

single-density (RET) model.

The starting point is Eq. 13 that is a solution to the radial integral of a layer’s masses

(Eq. 10) with respect to an ellipsoid, which can also be written as follows:

XðETP;xÞ ¼qðXxÞðhQ; kQÞ
R

nþ 3

re

R

� �nþ3 r
ðXxÞ
UB

re

 !nþ3

�1

2
4

3
5� r

ðXxÞ
LB

re

 !nþ3

�1

2
4

3
5

0
@

1
A: ð22Þ

The layer’s boundaries in the ellipsoidal case may be described by their pseudo-ellipsoidal

heights h0
ðXxÞ
UB and h0

ðXxÞ
LB following

r
ðXxÞ
UB ¼ r0e þ h0

ðXxÞ
UB

r
ðXxÞ
LB ¼ r0e þ h0

ðXxÞ
LB

ð23Þ

measured along the direction towards the origin of the ellipsoid, akin to the geocentric

coordinates needed for spherical harmonics [denoted approximate ellipsoidal height in

Claessens and Hirt (2013)]. In approximation, the layer’s boundaries may be described by

d
ðXxÞ
UB and d

ðXxÞ
LB denoting the ellipsoidal height h taken in the direction towards the geo-

center and thus yields

r
ðXxÞ
UB ¼ re þ d

ðXxÞ
UB

r
ðXxÞ
LB ¼ re þ d

ðXxÞ
LB :

ð24Þ

The error of this ellipsoidal approximation, when d
ðXxÞ
UB and d

ðXxÞ
LB are used instead h0

ðXxÞ
UB

and h0
ðXxÞ
LB , is investigated in Sect. 4.5.

Both square brackets terms in Eq. 22 can—equivalent to the spherical case (Eq. 17)—

be expressed by the binominal series expansions
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ð25Þ

Inserting Eq. 25 and Eq. 22 into Eq. 9 gives a preliminary solution to the ETP of a layer

V
ðETP;XxÞ
nm ¼ 3

qð2nþ 1Þðnþ 3Þ
Xnþ3

k¼1

nþ 3

k

� �

� 1

4p

Z 2p

k¼0

Z p

h¼0

re

R

� �nþ3

qðXxÞðhQ; kQÞ
d
ðXxÞ
UB

re

 !k

� d
ðXxÞ
LB

re

 !k
0
@

1
A

� YnmðhQ; kQÞ sin hdhdk:

ð26Þ

In order to get a practicable solution for the ETP that is independent of any term with

degree n in the exponent, Claessens and Hirt (2013) have introduced a second (infinite)

binominal series for re
R

� 	nþ3
that has been derived in Claessens (2006):

re

R

� �nþ3

¼ b

R

� �nþ3

1 � e2 sin2 h
� 	 �nþ3

2ð Þ¼ b

R

� �nþ3X1
j¼0

�1ð Þj � nþ 3

2
j

0
@

1
Ae2j sin2j h ð27Þ

where b is the semi-minor axis of the ellipsoid and e2 is the squared first numerical

eccentricity. With the help of fully normalised sinusoidal Legendre weight functions K
2i;2j
nm

[see, for example, Appendix 1 in Claessens and Hirt (2013) for more details on the

recursion relations], it is evident that

sin2j hYnm ¼
Xj

i¼�j

K
2i;2j
nm Ynþ2i;m: ð28Þ

Inserting Eqs. 28 and 27 in 26 yields coefficients of the ellipsoidal topographic potential

V
ðETP;XxÞ
nm of the layer Xx:

V
ðETP;XxÞ
nm ¼ 3

qð2nþ 1Þðnþ 3Þ
b

R

� �nþ3Xnþ3

k¼1

nþ 3

k

� �X1
j¼0

�1ð Þj � nþ 3

2
j

0
@

1
Ae2j

Xj

i¼�j

K
2i;2j
nm

� 1

4p

Z 2p

k¼0

Z p

h¼0

qðXxÞðhQ; kQÞ
d
ðXxÞ
UB

re

 !k

� d
ðXxÞ
LB

re

 !k
0
@

1
A

Ynþ2i;mðhQ; kQÞ sin hdhdk

ð29Þ

Again, the term within the double integral, scaled by the density qðhQ; kQÞ in each cell, can

be expressed as a series of (fully normalised) surface spherical harmonic coefficients of the

layer’s (ellipsoidal) height density function
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HDF
ðETP;XxÞ
klm ¼ 1

4p

Z 2p

k¼0

Z p

h¼0

qðXxÞðhQ; kQÞ
d
ðXxÞ
UB

re

 !k

� d
ðXxÞ
LB

re

 !k
0
@

1
A

� Y lmðhQ; kQÞ sin hdhdk

ð30Þ

where l ¼ nþ 2i and we arrive at a compact expression for the layer’s ellipsoidally

approximated potential

V
ðETP;XxÞ
nm ¼ 3

qð2nþ 1Þðnþ 3Þ
b

R

� �nþ3Xkmax

k¼1

nþ 3

k

� �Xjmax

j¼0

�1ð Þj � nþ 3

2
j

0
@

1
Ae2j

�
Xj

i¼�j

K
2i;2j
nm HDF

ðETP;XxÞ
klm

ð31Þ

where kmax � nþ 3 and jmax\1 denote the maximum orders of the binominal series

expansions. While kmax and jmax are much smaller than the maximum harmonic degree of

the model nmax, generally, the number of binominal terms that are required to avoid

truncation errors for different modelling parameters (e.g. spatial resolution) is discussed

next. The rigorous expressions for the ETP of mass layers (devoid of binominal series

expansions) are given in Appendix A.

2.3 Convergence of Binominal Series Expansions

As shown above, Eq. 31 contains two binominal series expansions, one incrementing by k

and one by j. The convergence of the first series (Eq. 25), which is also found in the

solution of the STP for re ¼ R (Eq. 17), has been thoroughly studied, for example, by Sun

and Sjöberg (2001) for various resolutions. Commonly, kmax ¼ 7 is considered sufficient

for degree 2160. We have studied the relative amplitudes in Eq. 17 since the series

additionally depends on re in case of the ETP. However, for a ¼ 6;378;137 m and b ¼
6;356;752 m (where a	 re 	 b), an identical number of terms were found to be required

for different re. Our investigations show kmax ¼ 10 is needed to achieve convergence at the

1% level (i.e. less than 1% truncation error) at degree 2160 (Table 1). Note that Root et al.

(2016) showed that the convergence may be problematic for deep layers (e.g., upper mantle

layers), with the boundaries’ lower bound 
 R. According to Root et al. (2016), the

problem can be overcome by reducing the reference radius R during the forward modelling

of the affected layer and a subsequent rescaling of the computed coefficients.

The second series (Eq. 27), a function of degree n and the co-latitude H, occurs in the

ETP only. Despite its infinite summations, it was shown to always converge (Claessens

2006). Looking at the amplitudes of the series’s terms in a relative manner, at least

jmax ¼ 18 should be used to achieve convergence at the 1% level for degree 2160 and

h 2 0; p
2


 �
(Table 2).

2.4 Sampling Requirements of Height Density Functions

Special attention is required for the harmonic analysis of the layer’s height density func-

tions [e.g., by means of quadrature (Rexer and Hirt 2015b)] that is needed to derive the

surface spherical harmonic coefficients HDF
ðSTP;XxÞ
knm or HDF

ðETP;XxÞ
klm . Due to the expo-

nentiation of the height function by k, the bandwidth (expressed by the maximum degree N
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of the original height function) increases proportionally with k, following Hirt and Kuhn

(2014),

NðkÞ ¼ kN: ð32Þ

Importantly, Eq. 32 implies that the gridded height functions need to be sampled according

to kmax (see Sect. 2.3) in order to avoid any aliasing effects. Computing the STP to degree

2160 with kmax ¼ 7 in an experiment (not shown here), with the grid sampling limiting the

maximum degree to degree 2700, yields aliasing errors of up to � 20 mGal and a global

root mean square (RMS) of 0:17 mGal. In all computations in this contribution, the

increased sampling requirements are thus fully taken into account. A more detailed study

of the aliasing effect is outside the scope of this paper.

3 Layer Concept Based on Earth2014

The mass layer concept using the STP and ETP framework presented in Sect. 2 can be

applied with the four (geophysical) volumetric layers

X1: Ice

X1: Lakes

X1: Ocean

X1: Crust (solid rock)

Table 1 Order of truncation kmax of the first binominal series (Eq. 25) at various resolutions (harmonic
degree n) and locations of the layer boundary required to reduce the relative error below the 1%-level,
where a ¼ 6;378;137 m	 re 	 b ¼ 6;356;752 m

n Distance to reference surface (H or d)

�9 km �4:5 km �1 km

10 2 2 2

360 4 4 3

2160 10 7 4

2190 10 7 4

5400 17 11 5

10,800 29 17 7

Table 2 Order of truncation jmax of the second binominal series (Eq. 27) at various resolutions (harmonic
degree n) and co-latitude h required to reduce the relative error below the 1%-level, where b ¼ 6;356;752 m
and R ¼ 6;378;137 m

n H ¼ 0� H ¼ 10� H ¼ 30� H ¼ 45� H ¼ 60� H ¼ 80� H ¼ 90�

10 1 2 3 3 3 3 3

360 1 3 4 5 6 7 7

2160 1 4 8 12 15 18 18

2190 1 4 8 12 15 18 18

5400 1 5 13 21 27 33 34

10,800 1 7 21 34 46 56 57
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while different rock types or sediment layers shall not be considered. It is of course

possible to include more layers, but relevant global data sets at resolutions \111 km are

not available (see Sect. 1.1). Note that vertical density functions (e.g., given by some

polynomial) for the integration of ocean water columns (Tenzer et al. 2015) or radially

varying mass density distributions in general (Root et al. 2016) were not integrated into the

layer concept (although possible), as this is not the scope of this paper.

The layer’s boundaries are generated from the Earth2014 data set (Hirt and Rexer 2015)

that provides a suite of self-consistent surface layers and masks which can be used to

distinguish between ice, lake, ocean and solid Earth surface at 10 resolution ð� 2 kmÞ.
Earth2014 is a freely available composite model combining up-to-date digital elevation

data with other gridded surface data products from different sources in terms of mean-sea-

level heights. As such Earth2014 can be considered an up-to-date, higher resolution and

more detailed version of the OSUJAN89 (Pavlis and Rapp 1990), DTM2002 (Saleh and

Pavlis 2002) and ETOPO1 (Amante and Eakins 2009) topographic databases that in

principle provide the same terrain types (see, for example, Fig. 1 in Pavlis and Rapp 1990).

We refer to Hirt and Rexer (2015) for a full account on Earth2014 data.

In Fig. 1, a scheme of the layer concept is given based on Earth2014 layers: bedrock

layer (BED) describing the boundary of solid rock (green lines), surface layer (SUR)

which is defined as the boundary between atmosphere and Earth (red lines) and the ice

thickness layer (ICE). The difference between SUR and ICE describes an Earth free of ice

cover/sheets and is indicated by the orange lines. Here, a total of ten different cases (A)–

(J) are given showing the most common arrangement of layers w.r.t. mean sea level

(MSL). Those cases and examples for occurrences on Earth are described in Table 3. Note

that in both above described approaches the layer’s boundaries are subject to approxi-

mation since they are defined by the orthometric height w.r.t. the respective reference

surface in a spherical harmonic frame. Effectively, thus, the geoid height is neglected and

the reference surface conforms with the MSL line in Fig. 1. The geometry and approxi-

mation error due to height assumptions is further discussed in Sect. 4.5.

Two different possibilities exist for the choice of the densities, leading to the following

two different approaches for layer-based forward modelling

Fig. 1 Simplified scheme of the four geophysical layers extracted from the Earth2014 data set
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1. LCA: layer correction approach with actual layer densities (c.f. Table 4)

2. LRA: layer reduction approach with density contrasts (c.f. Table 5)

which are described in the following.

3.1 Layer Correction Approach (LCA)

In this approach, the gravitational potential generated by each mass layer is modelled with

its actual density. Each layer thus makes a (positive) contribution to the final model, i.e. the

total topographic potential, that can be thought of as a correction in geodetic sense. Then,

the total topographic potential is the sum of the potential contributions of all layers. In the

LCA, the layer boundaries and densities for the four layers are selected from the Earth2014

database as listed in Table 4. The LCA can be best understood as bottom-up approach as

Table 3 Cases of layer arrangements shown in Fig. 1 and their occurrences on Earth

Case Type Occurrence

A Dry land—bedrock below MSL e.g., Death Valley

B Dry land—bedrock above MSL Most continental areas

C Ocean All open oceans

D Lake—bedrock and lake surface above MSL e.g., shallow parts of Great Lakes and Lake
Baikal

E Lake—bedrock below MSL, lake surface above
MSL

e.g., deep parts of Great Lakes and Lake Baikal

F Lake—bedrock and lake surface below MSL e.g., Caspian Sea

G Ice shelf—ice above ocean e.g., shorelines of Antarctica and Greenland

H Ice-/snow-covered bedrock above MSL e.g., continental glaciers, Antarctica, Greenland

I Ice-/snow-covered bedrock below MSL e.g., Antarctica

J Ice-/snow-covered lake e.g., Lake Vostok

Table 4 Description of layer boundaries and densities in the LCA approach using Earth2014 data

Layer name Density

ðkg=m3Þ
Layer boundary
type

Over land Over ocean
and shelf
ice

Over lakes Over ice

Ice layer 917 UB SUR SUR SUR SUR

LB SUR–ICE SUR–ICE SUR–ICE SUR–ICE

Lakes layer 1000 UB SUR–ICE SUR–ICE SUR–ICE SUR–ICE

LB SUR–ICE SUR–ICE BED SUR–ICE

Ocean layer 1030 UB SUR–ICE SUR–ICE SUR–ICE SUR–ICE

LB SUR–ICE BED SUR–ICE SUR–ICE

Crust layer 2670 UB BED BED BED BED

LB REF REF REF REF

Cases (c.f. Fig. 1) A, B C, G D, E, F, J H, I

SUR, Earth2014 surface layer; ICE, Earth2014 ice thickness layer; BED, Earth2014 bedrock layer;
ICE-SUR, Earth2014 surface removed for ice sheets (see yellow lines in Fig. 1); REF, reference surface
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each layer from the reference surface to the surface of Earth is modelled one after another.

This is different from the approach described next.

3.2 Layer Reduction Approach (LRA)

One can best imagine the LRA approach as a top-down approach: the crustal potential is

modelled using the uppermost boundary layer (the physical surface of Earth) and is then

reduced for the effect of mass density anomalies expressed by density contrasts (w.r.t. the

assumed crustal density) that exist in each layer beneath the surface, down to the reference

surface. The layer boundaries and density contrasts in the LRA approach are listed in

Table 5. When using negative density contrasts for the layers, the total topographic

potential is the sum of the gravitational effects of each layer.

3.3 LRA Versus LCA

Theoretically, both approaches should yield the same potential and neither of the

approaches is preferable in terms of computational expense. However, practically small

differences may remain between the approaches, mainly due to spherical harmonic rep-

resentation errors as will be shown (see Sect. 4.1). In the literature, often only the LRA

approach based on density contrasts is considered. In Tenzer et al. (2015), for example, so-

called striping corrections to the topographic correction are computed based on density

contrasts, so their procedure corresponds to the LRA approach.

The cross-validation of the results of both approaches is a valuable tool for detecting

inconsistencies of the used mass models. For example, consider

(a) a layer A intersecting with another layer B (Fig. 2a)—then, the overlapping space

would be modelled twice in the LCA approach and in the LRA approach, leading to

different potentials: in case of LCA, the overlapping space would be corrected using

both layers’ densities; in case of LRA, the overlapping space would be reduced for

both layers’ density contrasts. In general, the error � associated with this kind of

inconsistency depends on qB if UBB is wrong and on qA if LBA is wrong. However,

Table 5 Description of layer boundaries and densities in the LRA approach using Earth2014 data

Layer name Density/
-contrast

ðkg=m3Þ

Layer
boundary
type

Over land Over ocean
and shelf ice

Over
lakes

Over ice

Crust layer 2670 UB SUR SUR SUR SUR

LB REF REF REF REF

Ice layer -1753 UB SUR SUR SUR SUR

LB SUR–ICE SUR–ICE SUR–ICE SUR–ICE

Lakes layer -1670 UB SUR–ICE SUR–ICE SUR–ICE SUR–ICE

LB SUR–ICE SUR–ICE BED SUR–ICE

Ocean layer -1640 UB SUR–ICE SUR–ICE SUR–ICE SUR–ICE

LB SUR–ICE BED SUR–ICE SUR–ICE

Cases (c.f. Fig. 1) A,B C,G D,E,F,J H,I

SUR, Earth2014 surface layer; ICE: Earth2014 ice thickness layer; BED, Earth2014 bedrock layer; ICE–
SUR, Earth2014 surface removed for ice sheets (see yellow lines in Fig. 1); REF, reference surface
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no error will occur in case of the LRA if UBB is wrong and layer B happens to be the

crustal layer ðqB ¼ qcrustÞ.
(b) a not modelled (volumetric) empty space between two layers A and B (Fig. 2b)—

then, this space is not accounted for in the LCA approach at all, while the space is

implicitly filled and modelled with crustal density in the LRA approach. Again, no

error will occur in case of the LRA if UBB is wrong and layer B happens to be the

crustal layer ðqB ¼ qcrustÞ.
Note that it is likewise possible (and associated with less computational costs) to detect

inconsistencies in the mass models by applying the (purely) geometric conditions listed

under (ii) to (v) in Sect. 2.

4 Results

This section presents a numerical study based on the ellipsoidal layer-based forward

modelling technique (Sect. 2.2) using the volumetric layers defined in Sect. 3. It also

shows the results of the layer-based forward modelling in spherical approximation

(Sect. 2.1) for comparison purposes.

4.1 Global Gravitational Potential from Volumetric Layers in Ellipsoidal
Approximation

The above presented techniques allow modelling the topographic gravitational potential of

a single layer as well as the combined (total) effect of several layers via corrections or

reductions. For the sake of clarity, an overview on the computed potential fields together

with their approximation level and acronyms is given in Table 6.

The dimensionless degree variances

cn ¼
Xn
m¼�n

V
2

nm ð33Þ

of the ETP of all layers computed using the constants given in Table 7 are shown in Fig. 3.

While the single layers’ potentials (coloured lines) are different (by a constant scale factor)

for the LRA and the LCA approach, the sum of all layer’s potentials (black lines) yields

similar spectra for both approaches. The difference is at least five orders of magnitude

below the signal (Fig. 4, left plot), corresponding to a root mean square (RMS) of

Fig. 2 Scheme and associated error of (a) intersecting layers or (b) empty space between layers in the LCA
and the LRA approach
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� 0:001 mGal in terms of gravity disturbances evaluated at the surface of Earth (Fig. 5).

The largest differences are found above the inland lakes, which are accompanied by error

patterns distributed approximately along great arcs. We believe those differences stem

from spherical harmonic representation errors (Gibbs effect) that occur over small areas

with large variations in height/depth (e.g., Lake Baikal). The corresponding coefficient

differences are given in Fig. 4 (right plot).

We have computed a 5’ global grid of gravity disturbances from the new dV_EL-

L_Earth2014_lca model in spectral band of degrees 0 to 2190 at the Earth’s surface as

represented by the Earth2014 SUR layer. This was done by using the isGrafLab software

(Bucha and Janák 2014) along with the gradient approach for 3D harmonic synthesis (Hirt

2012). In Fig. 6, the gravity disturbances from the dV_ELL_Earth2014_LCA model vary

approximately between -802 and 624 mGal with an average signal strength (RMS) of

� 350 mGal.

The area of Antarctica has been selected to show the gravitational contribution of each

layer to the total gravitational effect of the Earth2014 based mass model (Fig. 7), as each

layer has a significant contribution over that region. The largest contributions are given by

the crust layer and ocean layer, while the ice layer and lake layer have smaller (but still)

significant contributions. Note especially that, for example, the ocean layer has significant

Table 6 Acronyms of computed potential models in the numerical study together with used layers, type of
approximation, layer approach and maximum spherical harmonic degree

Acronym Approximation Layer Layer approach Max. degree

dV_ELL_Earth2014_lca Ellipsoidal/ETP All LCA 2190

dV_ELL_Earth2014_lra Ellipsoidal/ETP All LRA 2190

dV_ELL_ICE2014_lca Ellipsoidal/ETP Ice layer LCA 2190

dV_ELL_ICE2014_lra Ellipsoidal/ETP Ice layer LRA 2190

dV_ELL_LAKES2014_lca Ellipsoidal/ETP Lakes layer LCA 2190

dV_ELL_LAKES2014_lra Ellipsoidal/ETP Lakes layer LRA 2190

dV_ELL_OCEAN2014_lca Ellipsoidal/ETP Ocean layer LCA 2190

dV_ELL_OCEAN2014_lra Ellipsoidal/ETP Ocean layer LRA 2190

dV_ELL_CRUST2014_lca Ellipsoidal/ETP Crust layer LCA 2190

dV_ELL_CRUST2014_lra Ellipsoidal/ETP Crust layer LRA 2190

dV_ELL_RET2014 Ellipsoidal/ETP All RET 2190

dV_SPH_Earth2014_lca Spherical/STP All LCA 2160

dV_SPH_Earth2014_lra Spherical/STP All LRA 2160

dV_SPH_ICE2014_lca Spherical/STP Ice layer LCA 2160

dV_SPH_ICE2014_lra Spherical/STP Ice layer LRA 2160

dV_SPH_LAKES2014_lca Spherical/STP Lakes layer LCA 2160

dV_SPH_LAKES2014_lra Spherical/STP Lakes layer LRA 2160

dV_SPH_OCEAN2014_lca Spherical/STP Ocean layer LCA 2160

dV_SPH_OCEAN2014_lra Spherical/STP Ocean layer LRA 2160

dV_SPH_CRUST2014_lca Spherical/STP Crust layer LCA 2160

dV_SPH_CRUST2014_lra Spherical/STP Crust layer LRA 2160

dV_SPH_RET2014 Spherical/STP All RET 2160

ETP, ellipsoidal topographic potential; STP, spherical topographic potential; LCA, layer correction
approach; LRA, layer reduction approach; RET, rock-equivalent topography (=single-density modelling)
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contributions over continental Antarctica (and over other continents) which underlines the

importance of explicitly modelling the ocean’s masses in order to retrieve a good

approximation of the gravitational potential over land.

The benefit of layer-based modelling, as done here, compared to RET-based (single-

density models) modelling obviously is largest over ice- and water-covered parts of Earth

where discrepancies are of the order of � 10�20 mGal (Fig. 8). Especially over the mid-

oceanic ridges and deep ocean trenches (but also over many other areas), notable differ-

ences are present which all can safely be interpreted as RET approximation errors (see

Table 7 Constants and modelling parameters used for the numerical study

Symbol Description LCA LRA

qðX1Þ Ice layer density/contrast 917 kg=m3 -1753 kg=m3

qðX2Þ Lakes layer density/contrast 1000 kg=m3 -1670 kg=m3

qðX3Þ Ocean layer density/contrast 1030 kg=m3 -1640 kg=m3

qðX4Þ Crust layer density/contrast 2670 kg=m3 2670 kg=m3

q Earth’s mean density 5495:30635355977 kg=m3

R Reference radius 6;378;137:0 m

a Semi-major axis of GRS80 6;378;137:0 m

e2 Square of first eccentricity of GRS80 0.00669438002290

M Earth’s mass 5:972581 � 1024 kg

GM Mass � Gravitational constant 3:986005 � m3=s�2

kmax Maximum power 12

jmax Maximum summation index 30

nmax Maximum degree STP:2160; ETP:2190

nmax;DEM maximum degree of input Earth2014 DEM 2160

resolution/sampling of input Earth2014 DEM 25’’

Fig. 3 Degree variances of the ellipsoidal topographic potential models and their layers using the LCA
approach (left) and the LRA approach (right)
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Sect. 4.2). The discrepancies shown in Fig. 8 are in good agreement with the findings by

Grombein et al. (2016) and Kuhn and Hirt (2016).

4.2 Validation of Layer-Based Modelling Using GOCE Satellite Gradiometry

The successful operation of a gradiometer on board of ESA satellite Gravity Field and

steady-state Ocean Circulation Explorer (GOCE) resulted in global gravity gradient

observations which currently are the most consistent and accurate source for Earth’s

gravity at scales up to � 70�80 km. Its observations as incorporated in the GOCE-only

gravity field model GO_CONS_GCF_2_TIM_R5 (EGM_TIM_R5) (Brockmann et al.

2014) are totally independent of any of the computed topographic potential models in this

Fig. 4 LCA versus LRA approach: difference between the respective spectra of layer-based ETP in terms
of degree variances (left) and dimensionless coefficient differences (right)

Fig. 5 LCA versus LRA approach: difference of layer-based ETP (dV_ELL_Earth2014_lca -
dV_ELL_Earth2014_lra) in terms of gravity disturbances evaluated at the surface of the Earth, d/o
0..2190 (unit is in mGal). RMS ¼ 0:001 mGal; min ¼ �0:06 mGal; max ¼ 0:07 mGal; mean ¼ 0:00 mGal
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work and can therefore be used to quantify the benefits of layer-based modelling over

RET-based modelling, thus corroborating our spectral layer approach. In this regard, we

compute regional reduction rates (RR) (Hirt et al. 2012) from 1� � 1� blocks of band-

limited gravity disturbances dg globally at the reference ellipsoid following

RRlayer ¼100 � 1 � RMS dgdV ELL Earth2014 � dgEGM TIM R5ð Þ
RMS dgEGM TIM R5ð Þ

� �

RRRET ¼100 � 1 � RMS dgdV ELL RET2014 � dgEGM TIM R5ð Þ
RMS dgEGM TIM R5ð Þ

� � ð34Þ

and investigate their differences RRlayer � RRRET (Fig. 9). The limitation of the investi-

gation to the spectral band n ¼ 160. . .250 is reasoned as follows: the GOCE gravity model

contains the effects of isostatic compensation that are not modelled in this work. Since

isostatic effects are predominantly of long-wavelength character, we exclude all degrees

n\160. We further exclude all degrees n[ 250 since Brockmann et al. (2014) showed

that this is where the signal-to-noise ratio of the gradiometer observations becomes 1. RMS

denotes the root mean square operator, applied on the respective gravity disturbances. The

RR visualise to what extend the forward modelled gravity in the ETP models can be

reduced (i.e. explained) by the satellite’s observations. Blue areas in Fig. 9 thus are areas

where the layer modelling—in simple words—agrees better with GOCE observations than

RET-based modelling. Moreover, it is interesting to see that above the continents—pre-

dominantly above near-coastal land areas—significant improvement through the layer-

based modelling was achieved, although the mass model over the continents is the same

(except of lakes) in the case of RET-based and layer-based modelling. The reason for this

behaviour of course is that the gravitational signal of a bounded density contrast (which in

this case is the ocean) leaks over its physical boundaries.

Fig. 6 Gravity of layer-based ETP (dV_ELL_Earth2014_lca) in terms of gravity disturbances evaluated at
the surface of the Earth, d/o 0..2190 (unit is in mGal). RMS ¼ 349:45 mGal; min ¼ �802:07 mGal;
max ¼ 623:63 mGal; mean ¼ �283:58 mGal
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4.3 Corroboration of Layer-Based Modelling Using Other GGMs

Any existing global gravitational model (GGM) may be used to investigate the quality of

the suggested layer-based forward modelling. We restrict our investigations to two models

which are

Fig. 7 Gravity contribution in terms of gravity disturbances (mGal) of the single layers, their combined
effect and the difference between LCA and LRA approach over the area of Antarctica
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1. EGM2008: the Earth Gravitational Model 2008 (Pavlis et al. 2012) which is a

combined GGM using satellite observations, terrestrial observations and residual

terrain fill-in gravity complete up to degree and order (d/o) 2190. EGM2008

incorporates the most complete (and up-to-date) set of terrestrial gravity observations

of any available GGM and is therefore the best candidate to investigate the layer-based

modelling at short scales with real observations.

Fig. 8 Layer-based modelling versus RET-based (single-density) modelling: difference between the layer-
based ETP and the RET-based ETP in terms of gravity disturbances evaluated at the reference ellipsoid (unit
is in mGal). RMS ¼ 1:79 mGal; min ¼ �45:67 mGal; max ¼ 65:91 mGal; mean ¼ �0:05 mGal

Fig. 9 Layer-based modelling versus RET-based (single-density) modelling: reduction rate differences
(Eq. 34) in 1� � 1� blocks using gravity from the GOCE-only model GO_CONS_GCF_2_TIM_R5 in the
band from degree 160 to 250. Positive values denote a better agreement between layer-based modelling and
GOCE observations (unit is in percent). RMS ¼ þ5:47%; average ¼ þ3:25%
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2. RWI_TOPO_2015: the Rock–Water-Ice topographic model 2015 (Grombein et al.

2016) is a forward model based on layers of solid rock, water and ice derived from the

same data set (Earth2014) as used for the layer-based ETP models in this work.

Contrary to this work RWI_TOPO_2015 has been generated from an integration in the

space domain using a tesseroid approach (see Grombein et al. 2013) and was

transformed into the spectral domain by a subsequent spherical harmonic analysis. The

model is also complete up to d/o 2190 and is perfectly suited for a cross-validation

with the suggested spectral approach in this work.

Consequently, the comparison with EGM2008 will allow us to judge how closely the

computed models approximate the observable gravity field at short scales while the

comparison to RWI_TOPO_2015 will provide independent feedback on the modelling

technique as such. The degree correlation (DC) yn (see, for example, Wieczorek 2007) of a

GGM w.r.t. EGM2008 is given by

yn ¼
cxnðEGM2008;GGMÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cnðEGM2008Þ � cnðGGMÞ

p ð35Þ

and indicates the degree of correlation ð �1; 1½ �Þ between the signal contained in coeffi-

cients of equal degree of EGM2008 and the GGM under evaluation, where cxn is the cross-

degree variance

cxnðEGM2008;GGMÞ ¼
Xn
m¼�n

VnmðEGM2008Þ � VnmðGGMÞ: ð36Þ

As expected, the computed layer-based ETP models (dV_ELL_Earth2014_lca/lra) and

RWI_TOPO_2015 show a higher correlation with EGM2008 than the RET-based model

(Figs. 10, 11). However, the degree correlation computed from the (original) spherical

harmonic models reaches a maximum correlation of 0.93 near degree � 1000, after which

the correlations decrease again (and stay above 0.8). This is against all expectations, since

the short-scale signals of the gravity field are driven by the topographic masses. Hence, an

increase in the correlation is to be expected. The reason for this behaviour is that spherical

harmonic models in ellipsoidal approximation (like EGM2008 and most other models

found at ICGEM) cannot be used in small bands (band limited) because of dependencies

Fig. 10 Degree correlation w.r.t. EGM2008 in terms of spherical harmonic models (left panel) and in terms
of their ellipsoidal harmonic equivalents (right panel)
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among the coefficients that effect the ellipsoidal approximation. For instance, EGM2008

and other such models constructed in ellipsoidal approximation have to be synthesised up

to degree 2190 to avoid erroneous striations increasing with latitude (also see Hirt et al.

(2015), Fig. 13 ibid). However, by transforming the spherical harmonic models into truly

ellipsoidal harmonic models using Jekeli’s transform (Jekeli 1988), a band-limited

investigation of the GGMs becomes possible. Then, the degree correlations stay at a high

level ð� 0:92Þ even beyond degree � 1000 (c.f. Fig. 10, right panel), indicating that the

computed layer-based ETP models agree well with the short-scale gravity as contained in

EGM2008.

The difference of respective DCs reveals that the computed layer-based ETP models of

this work show an increasingly higher correlation beyond degree 800 or so (up to 2% near

degree 2160) compared to the RWI_TOPO_2015 model (Fig. 11). Note that a higher

correlation with EGM2008 is not necessarily a valid indicator for a better quality since

EGM2008 itself (a) has incomplete observations over some areas (e.g., it contains only

GRACE over Antarctica) and contains fill-in gravity and (b) is not error-free. However, we

find the degree correlations in Fig. 10 together with the findings in the previous Sect. (4.2)

to corroborate the layer-based modelling approach in this work, since the agreement with

EGM2008 is at least as good as that of RWI_TOPO_2015.

4.4 Combination with Satellite Data and Validation over Antarctica

For external validation with ground truth data, we have computed combination models

with GOCE and GRACE gravity observation data. A combination is necessary to be able to

directly compare the computed layer-based forward models (see Table 6) with ground truth

data, particularly at short scales. Also, because isostatic effects have rather long-wave-

length character (c.f. Grombein et al. 2014) and were not taken into account in the forward

Fig. 11 Differences between the (spherical harmonic) degree correlation w.r.t. EGM2008 of
RWI_TOPO_2015 (blue) and dV_ELL_RET2014 (black) versus the degree correlation of the layer model
computed in this work (dV_ELL_Earth2014_lca) in per cent. Positive values denote a higher correlation of
dV_ELL_Earth2014_lca
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modelling, satellite observations are used here as an accurate source of such information. We

use precomputed normal equation matrices for GRACE [ITG-Grace2010: Mayer-Gürr et al.

(2010)] and GOCE [fifth release of time-wise method: Brockmann et al. (2014)] along with

the combination strategy described in Hirt et al. (2015) (Eqs. 5–8) to create a combined

model of (1) a layer-based ETP model and (2) GRACE and GOCE information that is optimal

over the area of Antarctica (and to be used with care outside this area, since the ETP is likely to

possess a too strong weight in some spectral bands there). The combination in principle means

a regularisation of (non-regularised) GOCE and GRACE normal equations using ETP

coefficients with empirically designed regularisation weights. We choose the weighting

scheme A in Hirt et al. (2015), which was found superior especially within the polar gap

region of GOCE. The combination of GRACE and GOCE with the model dV_ELL_

RET2014 and dV_ELL_Earth2014_lca is named SatGravRet2014 and SatGravEarth2014,

respectively. Importantly, a combination of this kind is not possible with spherically

approximated (STP) models, since the levels of approximation of the satellite component and

the topography component would not be consistent (see Sect. 4.5).

We compared the combined models with gravity observations as contained in the newly

released Antarctic gravity anomaly grids (AGAG) (Scheinert et al. 2016). The AGAG data

set is based on 13 million observations and covers an area of 1 � 107 km2, corresponding

to 73% of the Antarctic continent (Fig. 12). We therefore synthesise the gravity anomaly

at each AGAG point of height h above the reference surface from both combination models

up to their maximum degree of resolution (d/o 2190). We also compute the gravity

anomaly from the model EGM2008 (Pavlis et al. 2012) and the satellite-only model

GOCO05s (Pail et al. 2011; Mayer-Gürr et al. 2015). The residuals—the differences

between the AGAG data and the synthesised gravity—are taken here as an indicator of

how close the observed potential (via AGAG) is represented by the different modelling

variants. In case of the combination models, the differences between the AGAG gravity

and modelled gravity can also be interpreted as short-scale Bouguer gravity: the AGAG

observations are (more or less) completely reduced by the observed satellite gravity in the

long wavelengths; in the short wavelengths, the AGAG gravity is reduced for the gravi-

tational effect of the visible topographic masses (=Bouguer gravity).

For the entire AGAG data set (181,443 grid points) and a subset of the most accurate

grid points (24,315 grid points with standard deviation ðSTD\2 mGalÞ the residuals

reveal that the herein created combination model based on the layer approach (Sat-

GravEarth2014) performs better than the other models under investigation (Table 8). The

improvement in SatGravEarth2014 w.r.t. EGM2008 is 15% using all AGAG points and

25% using the more accurate subset of points, while it improves over GOCO05s with 8%
using all points and 18:5% in the subset. The improvement in layer-based modelling w.r.t.

RET modelling is about 2% over both areas in Antarctica, which corresponds to an RMS/

STD of � 0:3 mGal. The improvement is not very large in absolute terms but still

indicative, given the differences between SatGravRet2014 and SatGravEarth2014 gravity

at the AGAG points (Fig. 12) have an RMS of � 1 mGal only. Further, the positive effect

of layer-based modelling is more notable over the ocean ð5% improvementÞ than over

land/continental Antarctica ð1% improvementÞ. Globally, this tendency is shown already

in Fig. 9. Note that EGM2008 shows a better performance over the ocean than the other

investigated models. This is to be expected and reflects that AGAG data and EGM2008 are

observation based down to short scales. EGM2008 has DTU altimetry data included over

the oceans while AGAG over the oceans presumably relies on ship-track-based observa-

tions; hence, both data sets are observation based and thus in closer agreement than the
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AGAG observations with forward models. Also, this finding reveals limitations in cur-

rently available Antarctic bathymetry data.

The sum of (1) GOCO05s taken (from n ¼ 0) up to degree 280 and (2) ETP model

(dV_ELL_RET2014 or dV_ELL_Earth2014) taken in the band 281� n� 2190 shows less

agreement with AGAG data (� 1 mGal more in terms of RMS/STD, see Table 8) than the

Fig. 12 Antarctic gravity anomaly grid (upper left plot) and residuals with gravity anomalies synthesised
from various GGMs (unit is in mGal)
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combination models that also comprise gravity from GRACE, GOCE and ETP model (Sat-

GravRET2014 and SatGravEarth2014). Thus, a quite simple combination of the ETP and

observed gravity, e.g., as done here by means of a regularisation, is better than omission error

modelling, since the latter leads to higher residuals. Omission error modelling means the

estimation of short-scale gravity signals that are not contained in a GGM (i.e. signals beyond

the maximum degree N of the model) by band-limited information that can, for example, be

computed from a residual terrain model (RTM modelling, c.f. Forsberg 1984) or taken from a

(abrupt) truncation of a topographic potential model, as done here.

4.5 Modelling Differences Between the Spherical and Ellipsoidal Approach

The spherically approximated (see Sect. 2.1) and ellipsoidally approximated (see Sect. 2.2)

layer-based forward modelling of the potential in spherical harmonics—leading to solu-

tions of the STP and ETP, respectively—is to be treated and interpreted differently. The

STP and ETP are inherently different regarding the spectral and spatial domain charac-

teristics as will be shown next.

4.5.1 Geometric Differences and Mapping of the Layer Boundaries

Essentially, both STP and ETP are different representations of the (same) potential that is

generated by the same masses which are defined by volumetric layers (see Sects. 2, 3). The

spherical approach assumes the boundaries of the layers to be referenced to some reference

Table 9 Definition of heights and their usage in this work (see also Fig. 13)

Symbol Term Direction Meaning Use in this work

N Geoid height Normal to
ellipsoid

Diff. between
h and H

None

~H Mean-sea-level
height

Appr. normal to
geoid

Distance: MSL
to Ps

Given by DEMs and used for H

H Orthometric height Normal to geoid Distance: geoid
to Ps

Used to approximate the heights
in STP and ETP modelling

h Ellipsoidal height Normal to
ellipsoid

Distance:
ellipsoid to Ps

Unusable in the modelling
because of direction

d Mapped ellipsoidal
height

Direction to
geocenter

Distance:
ellipsoid to Pm

In ETP modelling under
ellipsoidal approximation

h’ Pseudo-ellipsoidal
height

Direction to
geocenter

Distance:
ellipsoid to Ps

Can be used in ETP modelling to
avoid mapping

Dsph Mapped spherical
height

Direction to
geocenter

Distance: sphere
to Pm

In STP modelling under spherical
approximation

Hsph Spherical height Direction to
geocenter

Distance: sphere
to Ps

In STP modelling (theoretically)

Ps, surface point; Pm, mapped surface point; MSL, mean sea level

bFig. 13 Scheme of mapping of the Earth’s physical surface in the investigated modelling techniques:
mapping situation in STP modelling in spherical approximation (a), mapping situation in ETP modelling in
ellipsoidal approximation (b) and mapping-free situation in ETP modelling without approximation by using
pseudo-ellipsoidal heights h0 at their respective latitudes u0 (c); u: geocentric latitude; B: geodetic latitude;
re: ellipsoidal radius to Po; r0e: ellipsoidal radius to P0

o; a, b: semi-major/minor axis of ellipsoid; R: spherical

radius; H: orthometric height; h: ellipsoidal height; Dsph: mapped spherical height; d:mapped ellipsoidal

height; Ps: surface point; Pm: mapped surface point; tsm: distance PsPm

Surv Geophys (2016) 37:1035–1074 1063

123



1064 Surv Geophys (2016) 37:1035–1074

123



sphere. This is accomplished with the orthometric height serving as an approximation for

the distance between sphere and surface point (referred to as mapped spherical height). The

ellipsoidal approach assumes the layers to be referenced to some reference ellipsoid using

the orthometric height as approximation for the distance between ellipsoid and surface

point (referred to as mapped ellipsoidal height). See also Table 9 for an overview of the

used heights, their definitions and use. Neither of the approaches thus takes into account

the geoid–ellipsoid separation (i.e. the geoid height), which shall not be further looked at

here, nor the fact that orthometric heights are not measured along the direction to the

geocenter, which is implicitly assumed in the spherical harmonic framework.

The result of the latter is a displacement (often referred to as mapping) of the Earth’s

physical surface and of all layer boundaries (Fig. 13). In case of the spherical approxi-

mation (STP), the approximation error introduced by the mapping is hard to be determined/

interpreted, since the masses and computation point PS are rearranged w.r.t. a spherical

reference (Fig. 13a) and there is no workaround to avoid a displacement of masses. In case

of the ellipsoidal approximation (ETP), the displacement due to mapping is largest at mid-

latitudes and becomes zero at the poles and the equator (Fig. 13 B and Fig. 14). These

displacements are also a part of the mapping within the STP, but (additionally) projected

onto the sphere. At maximum, consider a point Ps with extreme elevation of h ¼ 9 km

above or h ¼ �10 km below the ellipsoid and at a latitude of B ¼ 45�, the displacement

given by the distance tsm ¼ PsPm between surface point Ps and its mapped equivalent Pm

becomes � 30 m or 33 m, respectively (i.e. u� u0 � 0:900 and h� h0 � 5 cm). This con-

firms similar the findings by Balmino et al. (2012). In view of 10-km resolution models as

computed in this model, mass displacements of this order hardly play a role. Nevertheless,

in case of the ETP, displacement can be avoided by working with what we denote pseudo-

ellipsoidal heights h0 (c.f. Appendix 1 for their computation). They are given at their

respective geocentric latitudes u0 that are defined along the direction towards the geocenter

(Fig. 13c). Working with the pseudo-ellipsoidal heights instead of mapped ellipsoidal

heights within layer-based modelling to degree 2190 yields differences in the order of

�3 mGal or RMS=0.04 mGal (see Fig. 14). Accounting for the mapping is thus only

required for applications of high accuracy or high resolution.

4.5.2 Differences in the Spectral Domain

The spherical harmonic coefficients of STP and ETP differ notably as can be seen from

their degree variances (Fig. 15). The degree variances of the STP (dV_SPH_Earth

2014_lca/lra) follow Kaula’s rule (Kaula 1966) closely, which itself is close to the truly

ellipsoidal harmonic spectrum of the gravity field (Rexer and Hirt 2015a). The degree

variances of the ETP (dV_ELL_Earth2014_lca/lra) run below those of STP. They are

comparable to commonly used gravity field models (e.g., those listed at ICGEM). This has

already been found by Rexer and Hirt (2015a), who empirically derived an approximate

rule of thumb that allows to transform degree variances from a spherically approximated

model (STP) into their ellipsoidally approximated equivalents (ETP) (and vice versa). All

spherical harmonic GGMs ðof N[ 2000Þ that (implicitly) assume an ellipsoidal Earth are

accompanied by a ‘‘tail’’ of 30 degrees (from degree 2160 to 2190) with rapidly decreasing

bFig. 14 Mapping effects in the ETP in terms of height differences h� h0 (in metres, upper plot), latitude

differences u� u0 (in arc-seconds, middle plot) and the resulting gravity disturbance differences dg � d0g (in

mGal, lower plot) of both geometric effects. Note, the effects are also contained in the mapping within the
STP, but projected onto the sphere
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energy, which are needed for a proper representation of the potential. This is the very

reason why band-limited investigation is not possible with this kind of models (see

Sect. 4.3) without suffering from erroneous striations increasing with latitude (see also

Claessens and Hirt 2013; Pavlis et al. 2012). Spherical harmonic models in spherical

approximation allow band-limited investigations akin to truly ellipsoidal harmonic models

(see Sect. 4.3).

4.5.3 Differences in the Space Domain

In the space domain, rather long-wavelength differences appear between the STP and the

ETP at the level of few mGals (Fig. 16). Note that for a comparison of ETP and STP in the

space domain, the ETP was evaluated on the surface of the reference ellipsoid while the

STP was evaluated on the surface of the reference sphere. Similar differences were already

found to reflect different mass arrangements between ETP and STP by Claessens and Hirt

(2013) (ibid. Fig. 6a) who applied the HC method to a single-density mass model. At the

Earth’s surface, the effect is almost of the same dimension with marginally smaller

amplitudes and similar RMS (Fig. 17). The differences in Figs. 16 and 17 also contain the

effect of mapping discussed above ðh vs. h0 and u vs. u0Þ, but they are dominated by the

additional mapping of the masses from the ellipsoid onto the sphere.

The differences notably differ from the ellipsoidal correction (Fig. 12 in Balmino et al.

2012) which is thought to correct a STP model for the difference between integrating

Earth’s masses w.r.t. spherical instead of an ellipsoidal reference. The range of the ellip-

soidal correction in Balmino et al. (2012) is much smaller ð� 0:005

mGal vs. � 8 mGalÞ—even when investigating the differences in Fig. 16 in the same

spectral band ð0� n� 120Þ—and is predominated by a zonal J2 effect. Possibly, their

correction, which is only computed to the second order, is a part of the true difference

between a topographic forward model in spherical and ellipsoidal approximation.

Fig. 15 Spectral characteristics of the spherically (dV_SPH_Earth2014_lca/lra) and the ellipsoidally
(dV_ELL_Earth2014_lca/lra) approximated potential models in terms of degree variances, together with
those of EGM2008 and Kaula’s rule of thumb
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5 Conclusions and Outlook

We presented spectral forward modelling based on volumetric mass layers to d/o 2190 at

two different levels of approximation (spherical and ellipsoidal) and took full account of

increased sampling requirements and all relevant terms of the involved binominal series

expansions, avoiding aliasing and truncation errors due to early truncation of the series.

Fig. 16 Gravity difference between the spherically (dV_SPH_Earth2014_lca/lra) and the ellipsoidally
(dV_ELL_Earth2014_lca/lra) approximated potential models in terms of gravity disturbances evaluated at the
respective reference surface (sphere and ellipsoid, respectively); RMS ¼ 0:35 mGal; min ¼ �4:66 mGal;
max ¼ 2:84 mGal; mean ¼ �0:08 mGal (unit is in mGal)

Fig. 17 Gravity difference between the spherically (dV_SPH_Earth2014_lca/lra) and the ellipsoidally (dV_
ELL_Earth2014_lca/lra) approximated potential models in terms of gravity disturbances evaluated at the Earth’s
surface; RMS ¼ 0:36 mGal; min ¼ �2:89 mGal; max ¼ 2:11 mGal; mean ¼ �0:08 mGal (unit is in mGal)
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Based on the HCM method, we derived a new spherical harmonic approach that allows

us to rigorously and efficiently compute the ellipsoidally approximated topographic

potential based on volumetric layers of laterally varying density that are referenced to an

ellipsoid. A layer concept has been established with the layers’ boundaries taken from the

Earth2014 model, separating the masses of ice sheets, water in inland lakes/seas, ocean

water and solid rock with 10 resolution. Applying the layer concept in two ways—in a

correction approach with actual densities or in a reduction approach with density con-

trasts—leads to equivalent potentials, with negligible differences ðRMS� 0:001 mGalÞ
that are caused by the spherical harmonic representation of the respective layer boundaries.

The layer-based modelling approach reaches over 90% correlation with EGM2008 in the

band 900� n� 2150 with significantly higher correlations compared to single-density

(RET) modelling. Further, it was shown to be at least equivalent to state-of-the-art layer-

based forward modelling in the space domain. A validation with ground truth gravity data

over Antarctica shows that layer-based modelling improves over single-density modelling

by � 2%, with the improvement being largest over the ocean ð� 5%Þ. The latter was also

confirmed globally by computing reduction rates with GOCE satellite observations as

contained in GO_CONS_GCF_2_TIM_R5. For the validation, we computed a combination

model, combining computed spherical harmonic coefficients in ellipsoidal approximation

with satellite observations from GOCE and GRACE satellite, which is necessary in order

to mitigate the problem of isostatically uncompensated masses in the forward models. The

combination was done by means of an empirical regularisation of GOCE and GRACE

normal equations. Using solely the most accurate ground truth observations

ðSTD\2 mGalÞ available, the combination model was found superior to EGM2008 and

the satellite-only model GOCO05s (by � 25 and � 8% in terms of RMS). The comparison

with ground truth data also showed that a combination of satellite data with the topographic

potential, e.g., by means of a regularisation, is to be preferred compared to omission error

modelling in general.

Depending on the level of approximation—spherical or ellipsoidal—we provided the

framework to the spherical topographic potential (STP) or the ellipsoidal topographic

potential (ETP), which were found to have substantially different spectral characteristics,

yet rather small differences in the space domain. Evaluated at the respective reference

surface or at surface of Earth, the STP and ETP show differences at the level of � �
5 mGal ðRMS ¼ 0:4 mGalÞ that mainly stem from a different arrangement of masses

(mapping) due to different geometric assumptions in the approaches. In ellipsoidal

approximation, the mapping, which was found to cause a rearrangement of masses by 30 m

at maximum, can completely be avoided by using pseudo-ellipsoidal heights that are

measured towards the geocenter. The error introduced by the mapping is in the order of

mGal and should be taken into account in applications requiring ultra-high-resolution or

high accuracy topographic gravity.

In the spectral domain, the STP shows substantially larger energy at short scales

(comparable to that predicted by Kaula’s rule of thumb or to the truly ellipsoidal harmonic

spectrum of EGM2008) than the ETP. The ETP shows short-scale energy comparable to

other spherical harmonic GGMs that make an (implicit) ellipsoidal assumption of Earth,

e.g., EGM2008. This feature makes the ETP coefficients suitable for a combination with

satellite data, e.g., as done in this work. The dependencies among the spherical harmonic

coefficients in ellipsoidal approximation prevent application of the harmonic models in a

band-limited manner (i.e. no truncations at n\2190). In contrast, spherical harmonic

models in spherical approximation and truly ellipsoidal harmonic models are free of such

dependencies and may be used in band-limited form (i.e. truncated at n\2190).

1068 Surv Geophys (2016) 37:1035–1074

123



In conclusion, the choice between spherical and ellipsoidal approximation in spectral

forward modelling depends on the application of the final models. While STP models may

be good enough for a wide range of geophysical applications, ETP models are more

accurate and needed for high-resolution applications. Current observation-based gravita-

tional models conform spectrally with the ellipsoidal topographic potential which is

inevitable for geodetic applications, such as a combination with satellite and terrestrial data

by means of regularisation. The herein computed models are available at: http://ddfe.

curtin.edu.au/models/Earth2014/potential_model/.
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Appendix 1: Rigorous Expressions—Direct Solution to the Radial Integral
in Modelling of the ETP and the STP

In contrast to the above presented solutions to the STP (Sect. 2.1) and ETP (Sect. 2.2) that

rely on a binominal series expansion for the solution of the radial integral (Eq. 17), and in

case of the ETP also on the binominal series expansion in Eq. 27, here the rigorous

expressions are given.

The direct (rigorous) solution to the radial integral over the masses in a layer (Eq. 10)

was given already in Eq. 11 or (in more generalised form) in Eq. 13, respectively.

Rigorous Solution to the STP of a Volumetric Mass Layer

In case of the STP, the direct integral solution to the radial integral from the lower to the

upper layer bound in spherical approximation reads

XðSTP;xÞ ¼ qðXxÞðhQ; kQÞ
R

nþ 3

Rþ H
ðXxÞ
UB

R

 !nþ3

� Rþ H
ðXxÞ
LB

R

 !nþ3
0
@

1
A: ð37Þ

Inserting Eq. 37 into Eq. 9 the rigorous expression of the STP of a volumetric mass layer is

V̂
ðSTP;XxÞ
nm ¼ 3

qð2nþ 1Þðnþ 3Þ �
1

4p

Z 2p

k¼0

Z p

h¼0

qðXxÞðhQ; kQÞ

� Rþ H
ðXxÞ
UB

R

 !nþ3

� Rþ H
ðXxÞ
LB

R

 !nþ3
0
@

1
AYnmðhQ; kQÞ sin hdhdk; ð38Þ

and with
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HDF
ðSTP;XxÞ
nnm ¼ 1

4p

Z 2p

k¼0

Z p

h¼0

qðXxÞðhQ; kQÞ
Rþ H

ðXxÞ
UB

R

 !nþ3

� Rþ H
ðXxÞ
LB

R

 !nþ3
0
@

1
A

YnmðhQ; kQÞ sin hdhdk:

ð39Þ

we arrive at the more concise form

V̂
ðSTP;XxÞ
nm ¼ 3

qð2nþ 1Þðnþ 3ÞHDF
ðSTP;XxÞ
nnm : ð40Þ

As mentioned above, rigorous expressions for the STP of a layer in principle are known

already in different notation, e.g., by Pavlis and Rapp (1990). The disadvantage of the

rigorous expression in Eq. 40 is that it needs nmax spherical harmonic analyses of the

surface function HDF
ðSTP;XxÞ
nnm , while the expression relying on a binominal series expan-

sion (Eq. 21) only needs kmax analyses, where kmax 
 nmax in general (see Sect. 2.3 for

convergency behaviour of the binominal series).

Rigorous Solution to the ETP of a Volumetric Mass Layer

In case of the ETP, the direct integral solution to the radial integral from the lower to the

upper layer bound in ellipsoidal approximation reads

XðETP;xÞ ¼ qðXxÞðhQ; kQÞ
R

nþ 3

re

R

� �nþ3 re þ d
ðXxÞ
UB

re

 !nþ3

� re þ d
ðXxÞ
LB

re

 !nþ3
0
@

1
A: ð41Þ

Inserting Eq. 41 into Eq. 9, the rigorous expression of the ETP of a volumetric mass layer

is

V̂
ðETP;XxÞ
nm ¼ 3

qð2nþ 1Þðnþ 3Þ

� 1

4p

Z 2p

k¼0

Z p

h¼0

qðXxÞðhQ; kQÞ
re

R

� �nþ3 re þ d
ðXxÞ
UB

re

 !nþ3

� re þ d
ðXxÞ
LB

re

 !nþ3
0
@

1
A

� YnmðhQ; kQÞ sin hdhdk;

ð42Þ

and with

HDF
ðETP;XxÞ
nnm ¼ 1

4p

Z 2p

k¼0

Z p

h¼0

qðXxÞðhQ; kQÞ
re

R

� �nþ3

� re þ d
ðXxÞ
UB

re

 !nþ3

� re þ d
ðXxÞ
LB

re

 !nþ3
0
@

1
AYnmðhQ; kQÞ sin hdhdk:

ð43Þ

we arrive at the more concise form

V̂
ðETP;XxÞ
nm ¼ 3

qð2nþ 1Þðnþ 3ÞHDF
ðETP;XxÞ
nnm : ð44Þ
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The disadvantage of the rigorous expression in Eq. 44 is that it needs nmax spherical

harmonic analyses of the surface function HDF
ðETP;XxÞ
nnm , while the expression relying on

binominal series expansions (Eq. 31) only needs kmax analyses, where kmax 
 nmax in

general (see Sect. 2.3 for convergency behaviour of the binominal series).

Appendix 2: Computation of the Pseudo-Ellipsoidal Height h0 and Its
Latitude u0 of the Surface Point PS

Given a surface point PS with ellipsoidal height h, geodetic latitude B and geocentric

distance r defined by

r2 ¼ ðr0e þ h0Þ2 ð45Þ

the pseudo-ellipsoidal height h0 that is running along the direction towards the geocenter

(Fig. 18) can be computed using the cosine rules

r2 ¼ c2 þ ððN � e2NÞ þ hÞ2 � 2cððN � e2NÞ þ hÞ � cos ðp� BÞ ð46Þ

where

c ¼e2N cosB; ð47Þ

N ¼ affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � e2 � sin2 B

p ð48Þ

and

r
02
e ¼ a2 1 � e2

1 � e2 � cos2 u0 : ð49Þ

Fig. 18 Ellipsoidal height h and
pseudo-ellipsoidal height h0
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The (geocentric) latitude u0 can be computed using the sine rule

sinu0 ¼ ððN � e2NÞ þ hÞ � sin ðp� BÞ
r

� �
: ð50Þ

Then, the pseudo-ellipsoidal height is retrieved with

h0 ¼ r � r0e: ð51Þ
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Mayer-Gürr T, Kurtenbach E, Eicker A (2010) ITG-Grace2010 gravity field model. http://www.igg.uni-
bonn.de/apmg/index.php?id=itg-grace2010

Mayer-Gürr T, Pail R, Gruber T, Fecher T, Rexer M, Schuh WD, Kusche J, Brockmann JM, Rieser D,
Zehentner N, Kvas A, Klinger B, Baur O, Höck E, Krauss S, Jäggi A (2015) The combined satellite
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