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Abstract Throughout the past decade, the Gravity Recovery and Climate Experiment
(GRACE) has given an unprecedented view on global variations in terrestrial water stor-
age. While an increasing number of case studies have provided a rich overview on regional
analyses, a global assessment on the dominant features of GRACE variability is still
lacking. To address this, we survey key features of temporal variability in the GRACE
record by decomposing gridded time series of monthly equivalent water height into linear
trends, inter-annual, seasonal, and subseasonal (intra-annual) components. We provide an
overview of the relative importance and spatial distribution of these components globally.
A correlation analysis with precipitation and temperature reveals that both the inter-annual
and subseasonal anomalies are tightly related to fluctuations in the atmospheric forcing. As
a novelty, we show that for large regions of the world high-frequency anomalies in the
monthly GRACE signal, which have been partly interpreted as noise, can be statistically
reconstructed from daily precipitation once an adequate averaging filter is applied. This
filter integrates the temporally decaying contribution of precipitation to the storage changes
in any given month, including earlier precipitation. Finally, we also survey extreme dry
anomalies in the GRACE record and relate them to documented drought events. This
global assessment sets regional studies in a broader context and reveals phenomena that
had not been documented so far.
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1 Introduction

Land water resources are essential for human society and are affected by climate variability
and human water use (Jiménez Cisneros et al. 2014). It is thus important to monitor
changes in land water storage, as well as the underlying processes leading to their varia-
tions in space and time. The Gravity Recovery and Climate Experiment (GRACE),
launched in 2002, constitutes an essential tool for such analyses, as was demonstrated in a
wealth of studies (Tapley et al. 2004a; Wahr et al. 2004; Rodell et al. 2004; Andersen et al.
2005; Velicogna and Wahr 2006; Giintner et al. 2007a; Ramillien et al. 2008; Zaitchik
et al. 2008; Rodell et al. 2009; Chen et al. 2010a; Houborg et al. 2012; Sasgen et al. 2012;
Gardner et al. 2013; Wouters et al. 2014; Reager et al. 2014; Famiglietti 2014; Chen et al.
2015; Wahr 2015). After more than a decade of observations, the GRACE mission has
resulted in an unprecedented view on global water storage variability, with a great diversity
in terms of temporal scales, ranging from long-term trends to short-lived deviations from
the seasonal cycle. These different scales of temporal variability often constitute a common
denominator between GRACE studies, either implicitly—as when the discussion focuses
on specific aspects like the seasonal cycle, trends or extremes—or explicitly—as when
water storage time series are decomposed into subseries. Since the earliest GRACE studies,
it has been, for instance, very common to refer to the phasing and amplitude of the seasonal
cycle when comparing GRACE terrestrial water storage with other datasets such as model
simulations (e.g., Tapley et al. 2004b; Wabhr et al. 2004). As the temporal coverage of the
GRACE record extended, more comprehensive studies also identified secular trends and
inter-annual anomalies by separating the GRACE signal into long-term trends, periodical
components and residual noise (Ramillien et al. 2005; Schmidt et al. 2008b; Steffen et al.
2009). However, there is still no global overview on the relative magnitude and distribution
of these features of temporal variability. In addition, while certain of these features (e.g.,
seasonal cycles and trends) are relatively well described, others (e.g., high-frequency
residuals and extremes) have typically attracted much less attention so far and remain more
difficult to interpret.

From a global perspective, terrestrial water storage anomalies derived from GRACE are
dominated by a seasonal signal in most parts of the world. Consequently, the earliest
studies comparing GRACE with hydrological models have primarily focused on the sea-
sonal component. Most often, the seasonal cycle in GRACE was shown to compare rel-
atively well with model simulations, both with respect to the signal’s amplitude and phase
(Wahr et al. 2004; Swenson and Milly 2006; Syed et al. 2008; Schmidt et al. 2008b; Déll
et al. 2014a). Reviews (Ramillien et al. 2008; Giintner 2008; Schmidt et al. 2008a) showed
that seasonal disagreement between GRACE and model data was usually attributed to
deficiencies in the modelling of water storage compartments and to errors in the precipi-
tation forcing, but also to signal leakage and inaccuracies of the GRACE data. Multiple
studies have shown that long-term variability in the GRACE record over land can be
related to long-term trends in groundwater (Rodell et al. 2009; Voss et al. 2013; Dol et al.
2014b; Chen et al. 2015; Richey et al. 2015a, b) and surface water (Swenson and Wahr
2009; Singh et al. 2012), teleconnections (Phillips et al. 2012) and mass variations in the
cryosphere (Sasgen et al. 2012; Velicogna and Wahr 2013). The hydrological signal
extracted from GRACE can also be contaminated by glacial isostatic adjustment (Wu et al.
2010) and crustal deformations caused by major earthquakes (Han et al. 2006, 2011, 2013).
While the seasonal cycle, long-term anomalies and secular trends are arguably well doc-
umented, fewer studies have focused on subseasonal variability and extreme events at a

@ Springer



Surv Geophys (2016) 37:357-395 359

global scale. So far only case studies have shown that major drought and flood events can
be observed in the GRACE record (e.g., Andersen et al. 2005; Seitz et al. 2008; Frappart
et al. 2012; Long et al. 2013; Abelen et al. 2015). Only recently, the potential of GRACE
for monitoring drought conditions (Houborg et al. 2012; Thomas et al. 2014) and pre-
dicting flood potential (Reager et al. 2014) was investigated globally. However, large
challenges remain since month-to-month variability in GRACE is highly contaminated
with outliers, measurement errors and uncertainties arising from data processing (Bonin
et al. 2012).

The overarching goal of this study is to provide a global and comprehensive survey of
the dominant features of temporal variability in terrestrial water storage observed from
GRACE. Our approach is to decompose the total signal at each grid point into (1) linear
trends, (2) inter-annual variability, (3) seasonal cycle and (4) subseasonal variability. We
first assess the contribution of each component to the total signal at the global scale
(Sect. 4.1). In Sect. 4.2, the magnitude and significance of the linear trends are discussed in
the context of previous regional studies. Subsequently, the decomposed subseries of ter-
restrial water storage are compared with decomposed precipitation and temperature fields.
Starting with the inter-annual anomalies, regions of high correlation between GRACE and
these atmospheric drivers are identified (Sect. 4.3). Section 4.4 provides global maps of the
maximum and minimum seasonal water storage and identifies phase shifts with respect to
the seasonal cycles of both precipitation and temperature (Sect. 4.4). In Sect. 4.5, we focus
on the subseasonal residuals and show that a careful averaging of the daily atmospheric
data to the monthly resolution reveals excellent correlations with the high-frequency
component of the GRACE signal. Finally, we use the decomposition approach to identify
and analyse drought events in the GRACE record (Sect. 4.6).

2 Data
2.1 GRACE Data

Monthly grids of terrestrial water storage anomalies used in this study are based on the
spherical harmonic coefficients (Release 05) provided by the Center for Space Research
(CSR), the Jet Propulsion Laboratory (JPL) and the GeoForschungsZentrum Potsdam
(GFZ) for the period April 2002—August 2015. For more information on the GRACE
mission, the gravity recovery process and the derivation of water storage anomalies from
the spherical harmonic coefficients, we refer the reader to the reviews from Wouters et al.
(2014) or Wahr (2015) and the references therein. The gridded product used in this study is
the GRACE Tellus dataset (available at http://grace.jpl.nasa.gov). This dataset provides
mass grids in units of equivalent water height for the three different sets of harmonic
coefficients mentioned above, at a temporal resolution of approximately 1 month and with
a grid resolution of 1°. It is worth noting that although 1° (or even finer) grids are
commonly used in global analyses of terrestrial water storage anomalies, this does not
reflect the actual spatial resolution of the GRACE measurements. Due to the truncation of
spherical harmonics, the effective spatial resolution is by construction limited to a few
hundreds of kilometres (Landerer and Swenson 2012). Additionally, postprocessing filters
that are used to reduce spatially correlated errors further degrade the spatial resolution of
the GRACE signal (Swenson and Wahr 2006; Duan et al. 2009; Longuevergne et al. 2010;
Frappart et al. 2011b; Wouters et al. 2014). This causes spatial autocorrelation in the
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gridded dataset, as can be seen in Fig. 1, which also provides a general overview of the
regions where hydrological variability, as detected by GRACE, has the largest magnitude.

At the time of writing, the GRACE Tellus product is obtained through the following
processing: the degree one harmonic coefficients (Earth’s geocenter) are estimated from
Swenson et al. (2008), the coefficients of degree-order 2—0 (related to Earth oblateness) are
replaced with more reliable solutions from Satellite Laser Ranging (Cheng et al. 2011) and
correction for glacial isostatic adjustment is applied following Geruo et al. (2013). A
known issue is that GRACE maps are heavily contaminated with correlated noise; hence,
several spatial filtering techniques have been proposed that aim at restoring the geophysical
signal (Kusche 2007; Ramillien et al. 2008; Werth et al. 2009; Frappart and Ramillien
2012). In the Tellus product, the destriping filter of Swenson and Wahr (20006) is applied to
correct for North—South oriented stripes in GRACE maps and a 300 km Gaussian filter is
additionally applied to the data to reduce residual noise. Finally, it is worth mentioning that
GRACE time series are not evenly spaced in time. GRACE “months” most often do not
correspond to calendar months due to instrument issues and solutions for several months
can be missing, in particular after 2011. Instead, GRACE months represent approximately
1 month long periods with varying numbers of days.

Sources of errors in GRACE include measurement errors, aliasing errors originating
from the inaccurate correction of atmospheric and oceanic mass redistribution, and spatial
leakage (Seo et al. 2006). Spatial leakage is caused both by the truncation of spherical
harmonics and the postprocessing filters applied to the data (Chen et al. 2007a; Landerer
and Swenson 2012). Since there are no other large-scale observations of terrestrial water
storage that could be used as ground truth, estimating errors and confidence intervals for
GRACE data is a major challenge (Giintner 2008). One possibility to reduce uncertainty in
the GRACE data is to use the ensemble mean of the solutions obtained by different
processing centres (Werth et al. 2009; Sakumura et al. 2014). In this study, we use the
mean of the three solutions from CSR, JPL and GFZ provided in the GRACE Tellus
dataset.

In order to correct for the amplitude attenuation caused by the postprocessing filters
applied to the GRACE data, the Tellus dataset also provides the scaling factors proposed

April 2002 - August 2015
s A

Equivalent Water Height
Standard Deviation [mm] 50 100 150 200 250 300

Fig. 1 Standard deviation of equivalent water height from the ensemble mean of GRACE Tellus CSR, JPL
and GFZ solutions (mm)
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by Landerer and Swenson (2012). These scaling factors are derived by first applying the
complete GRACE processing to modelled estimates of terrestrial water storage and sub-
sequently comparing the agreement between the original and processed model data. A
disadvantage of these scaling factors is that they can depend on the hydrological model
used as a reference, especially in semi-arid and arid regions as well as over irrigated areas
(Long et al. 2015). Long et al. (2015) also mention that scaling factors found in some
regions should be interpreted carefully. For these reasons, scaling factors were not applied
to the GRACE data in this study.

2.2 Filtered Grids of Atmospheric Reanalysis

The atmospheric reanalysis ERA-Interim, from the European Centre for Medium-Range
Weather Forecasts (ECMWEF), is used to derive daily fields of mean 2 m air temperature
and precipitation totals (Dee et al. 2011; available at http://apps.ecmwf.int/datasets/data/
interim-full-daily/). This dataset is obtained at a 0.25° resolution and averaged to the 1°
resolution of the GRACE Tellus dataset. However, the effective spatial resolution of the
hydrological signal observed in GRACE is still coarser than 1°, due to the resolution of the
GRACE measurements (see Sect. 2.1). For the Tellus product, this effective spatial res-
olution is approximately 300 km (3° at the equator). In order to make the atmospheric data
comparable with GRACE, we apply a 300 km Gaussian filter to the atmospheric grids.
Without this filter, the atmospheric fields would show much more detailed patterns than the
GRACE data. It is important to note that when GRACE solutions are compared with
modelled estimates of terrestrial water storage, a common practice is to apply the whole
GRACE processing to the model data, including an expansion of the modelled mass
distribution into spherical harmonics and the subsequent postprocessing (e.g., Wahr et al.
2004; Schmidt et al. 2006; Swenson and Milly 2006; Syed et al. 2008). However, this latter
approach cannot be applied to global fields of temperature and precipitation, which is why
we only apply a Gaussian filter. We also note that the correlations between GRACE and
filtered atmospheric fields are expected to increase as a consequence of this filtering. This
effect has already been documented in a similar setting by Abelen and Seitz (2013) when
comparing GRACE results with both modelled and remotely sensed soil moisture.

3 Methods
3.1 Signal Decomposition
3.1.1 Background and Previous Approaches

Decomposition of the GRACE hydrological signal is common practice in the recent lit-
erature, and different methods have been used to address different objectives. One pos-
sibility is to aim at isolating the contribution of specific water storage compartments such
as groundwater, soil moisture or snow mass to the total GRACE signal. This leads to
highly underdetermined inversion problems of blind signal separation and gives rise to
non-unique solutions as the contributing geophysical signals are most often not statistically
independent. To account for this, inversion methods have been proposed that can use
higher-order statistical information derived from model data to decompose the total signal
(Ramillien et al. 2004, 2005; Frappart et al. 2006; Schmeer et al. 2012). Assimilation of
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GRACE data into a land surface scheme could also be seen as another approach relating
GRACE variability to water storage compartments that are already partitioned in a model
structure (Zaitchik et al. 2008; Eicker et al. 2014). In groundwater studies, a common
strategy is to directly subtract model estimates of snow storage, soil moisture and surface
water from the total GRACE signal and use the remainder as an estimate of groundwater
changes (Rodell and Famiglietti 2002; Rodell et al. 2007, 2009; Chen et al. 2015). Another
decomposition approach is based on extracting the dominant spatio-temporal patterns of
long-term trends and periodic GRACE signals by means of dimensionality reduction
methods. This has been done, for instance, with principal component analysis (Schrama
et al. 2007; Rangelova et al. 2007; Schmidt et al. 2008b), independent component analysis
(Forootan and Kusche 2012; Frappart et al. 2011b) or multichannel singular spectrum
analysis (Rangelova et al. 2010). A last option is based on extracting temporal components
(i.e. at each grid cell) using time series decomposition techniques. This approach has been
used to assess the properties and the relative importance of the resulting features of
temporal variability (Barletta et al. 2012; Frappart et al. 2013). Occasionally, the employed
decomposition also assumes that the data follows a predefined pattern, as, for instance,
when the seasonal cycle is represented by fitted harmonic functions (Steffen et al. 2009). In
this paper, we aim at a temporal decomposition of the time series, making as few
assumptions as possible and accounting for the irregular spacing of the GRACE “months”.
This additive decomposition is summarized in Eq. 1, where the original signal (Xio,) is
represented as the sum of a long-term component (Xiong), a seasonal cycle (Xs,s) and the
remaining subseasonal residuals (Xg,). These high-frequency residuals are expected to be
a combination of both a real signal representing subseasonal water storage variability and
the noise that is present in the GRACE data. The long-term component (Xion,) is further
divided into linear trends (Xj;,) and the anomalies with respect to this linear trend, being
here referred to as inter-annual variability (Xiner)-

Xeot = Xlong +Xseas + Xsub (1)
——

Xiin+Xinter

3.1.2 Seasonal Trend Decomposition Using Loess (STL)

The Seasonal Trend Decomposition using Loess procedure (STL) introduced by Cleveland
et al. (1990) is a robust decomposition method that is used to extract the mean seasonal
cycle and to separate the remaining deseasonalized signal into a low- and a high-frequency
component, where the low-frequency component should contain only periodicities larger
than 12 months. This procedure was already used with GRACE data by Baur (2012) and
Hassan and Jin (2014) as a method to derive the long-term component, in Bergmann et al.
(2012) to robustly deseasonalize GRACE time series, and in Frappart et al. (2013) to
compare terrestrial water storage with monthly rainfall time series in the Amazon basin. It
has also been successfully applied, for instance, in a hydro-climatological setting (Gud-
mundsson et al. 2011) or to extract temperature trends (Dufresne et al. 2013). The STL
procedure is based on locally weighted smoothing of the deseasonalized time series in
which the smoothing parameters are analytically optimized to minimize spectral leakage
between the high- and the low-frequency components. We introduce here an adaptation of
the original algorithm allowing us to apply this method to unevenly spaced time series,
accounting for the irregular temporal spacing of the GRACE data. The STL procedure
consists of passes of different smoothing filters and includes the calculation of robustness
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Fig. 2 Example of signal decomposition (see Eq. 1) at a grid cell located in California

weights in order to account for the possible influence of outliers in the time series. A
detailed description of the modified algorithm is presented in Appendix 1.

The STL procedure decomposes the time series into the three components: Xgeas, Xsub
and Xjone (Eq. 1). The latter component Xjq,, is the long-term (or low-frequency) com-
ponent of the time series and is further decomposed into the components Xj;, and Xjneer
(Eq. 1). The linear trend Xj;, is first estimated from the long-term component (Xjong) using
the Theil-Sen estimator (Sen 1968), and Xj, is computed as the deviation from this linear
trend (Xjner = Xiong — Xiin). Compared to classical linear regression, using the Theil-Sen
slope provides an estimate of the trend that is more robust and less sensitive to large
anomalies occurring near the beginning or the end of the time series. This procedure is
applied to each grid cell of both the monthly GRACE data and the daily atmospheric
forcing so that we obtain decomposed time series for each of these datasets. In Fig. 2, we
illustrate how the presented approach decomposes the GRACE signal into the different
subcomponents for the case of a specific grid cell located in California.

3.2 Monthly Averaging of the Daily Decomposed Forcing Time Series

The decomposed daily atmospheric forcing data need to be averaged to monthly values in
order to enable a comparison with the GRACE time series. The common approach for this
is to use the monthly arithmetic mean (e.g., Frappart et al. 2013; Forootan et al. 2014a;
Ahmed et al. 2014). As a reference method, we use the arithmetic mean of the days exactly
covered by each GRACE monthly solution. We thus obtain monthly series for each
component of the atmospheric daily series. In addition, we present hereafter a more
sophisticated averaging method that accounts for storage processes that specifically
influence the high-frequency component (Xg,).

3.2.1 Limitations of the Arithmetic Mean for the Comparison of High-Frequency
Anomalies

When comparing averaged time series of water storage with precipitation, some systematic

errors are introduced simply because of the arbitrarily chosen averaging intervals (e.g.,
monthly intervals in the present case). As water storage is a state and precipitation a flux
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variable, temporal averages can at times cause a mismatch of the two monthly time series,
especially in the case of high-frequency anomalies. A typical example is when a very large
precipitation event occurs just at the end of a given month: this extreme event will have a
large effect on the precipitation average of the given month but its influence on water
storage will be most relevant for the subsequent months. Such artefacts are often falsely
attributed to observational errors. In order to address this issue, we propose an alternative
to the arithmetic mean that takes the effect of earlier precipitation into account.

3.2.2 Comparing Flux and State Variables at Different Temporal Resolutions

Hereafter, precipitation anomalies correspond to a time-dependent flux variable, denoted
f(t) where t = {#1,...,t;,...,1,} is an evenly spaced time vector of length n, with units of
days. Similarly, daily water storage anomalies correspond to a time-dependent state
variable denoted s(¢). In our case, the state variable s(¢) is not observed at the daily time
scale; however, the GRACE product provides average values of s(t) for arbitrary time
intervals which approximately correspond to a month. We define this new averaged time

series as s* ("), where * = {IT, Y PR tj;l} is an unevenly spaced time vector of length
m corresponding to the GRACE “months”. The relation between s(¢) and s*(#*) can be
represented by the arithmetic mean (see Fig. 3 for a schematic illustration of the presented

relations):
s (tf) :l. Z s(t;) (2)
t,‘e[ajﬁh,]

where a; and b; correspond to the edges of the jth time interval (e.g., of the jth GRACE
month) and #; is the number of days falling within this interval (n; = b; — a;).

Our main concern is now to determine the relation between f(¢) and f*(r*). As men-
tioned above, a common approach is to compute the mean of the daily values over the
given time intervals. Analogously to Eq. 2, this simply corresponds to:

)= Y 0

J t,-e[a,ybj]

Here, we suggest the use of a weighted mean of f(¢) as an alternative approach:

o e t; th
s(t) :paityTws  [[[[[T[TTITT[TITITIT]  f(2): Daily forcing
5 R A : L Ea3ors
s* (t*) : Monthly TWS | 7 | f;‘ | t | f * (t*) : Monthly forcing
aj b

Fig. 3 Schematic representation of the correspondence between daily time series and the irregular—quasi-
monthly—temporal resolution of the GRACE time series. For daily time steps, 7 = {t;,...,4,...,1,} going
from the Ist to the nth day. For quasi-monthly time steps, t* = {t}‘, T SR t,’;} going from the Ist to the
mth month, a; and b; denoting the first and last days of a given month
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7 () = oW (50) -0 @

where the normalized weights W(t;, ti) , which will be defined in the next section, depend

both on #; and 7; and have the property that:
> W(t;f, t,-) =1 (5)
i=1

3.2.3 Weights Based on Integrated Exponential Decay Functions

A simple way to represent the effect of a short-term precipitation anomaly (e.g., a daily
precipitation event) on the subsequent state of water storage is the exponential decay
function. This is equivalent to assuming linear storage components (bucket models), which
is common practice in conceptual hydrological modelling (Beven 2012). Here, we assume
that the influence of a flux anomaly (e.g., a precipitation event) on the state variable (e.g.,
water storage) will decrease exponentially with time. Formally, we define w(z, ;) as the
influence of a given flux anomaly f(#;) observed at time #; on the subsequent values of the
state variable s(f) at time 7 > ;.

0, if r<i
sty ={ R, )

I

where 1 is a free parameter controlling the rate of exponential decay and is expressed in
units of time (e.g., in days). The influence of the given flux anomaly f(7;) on the earlier
values of the state variable (i.e. when ¢ <t;) is of course zero.

However, w(z, ;) only represents the influence of f(#;) on the subsequent daily values of
s(t), but we are in fact interested in the influence of f(#;) on the values of s*(r*)—the
monthly values. For a given ¢/, summing w(t,#;) over the corresponding time interval

i
1 € [aj,b;] yields:

W)= 3 witn) (7

1€[a; b

For illustrative purposes, this summation is shown in Fig. 4. The two examples cor-
respond to the case of a flux anomaly f(#) occurring either before (Fig. 4a) or during
(Fig. 4b) the given time interval [aj, bj]. The last step is to ensure that the property set by
Eq. 5 is fulfilled by normalizing the weights (Eq. 8):

R W(t;‘, t,-)
W) - ®)
n *
2ict W(tj?tl)
When this is done with a fixed 7 and for all values of 7;, we obtain the averaging filter
illustrated in Fig. 5 for different values of 7—the free parameter controlling the rate of the

exponential decay. From this figure, we see that weights are assigned to flux anomalies
including to those occurring before the time interval 7. Additionally, we provide a more
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Fig. 4 Illustration of Egs. 6
(red) and 7 (blue). The red curve
depicts the exponentially
decaying influence of a given
daily flux anomaly (precipitation)
occurring at time #; on the state
variable (water storage) at
subsequent time steps. The
summation of this influence over
the interval covered by a given
GRACE month corresponds to
the relative weight (blue area)
assigned to the flux at time #;. See
the text for a description of the
different symbols

0 it <t

w(t,t;) = \
v R {oi”“/‘ if >t

practical formulation of this weighting function obtained after integrating and normalizing
Eq. 6 analytically (Appendix 2):

3.2.4 Shape and Properties of the Weighting Function

e%(’l_a) —

= 1 _ e%(f,‘—b)

0

if a<t;<b

if aZt,-

if b<t

The parameter t controls the rate of exponential decay and will hereafter be referred to as
the decay time scale of the weighting function. Inverting Eq. 6 for t shows that t corre-
sponds to the number of time steps (e.g., days) after which the influence of a given flux

anomaly f(#;) will have reduced to 1/e

37 % of its initial influence at time ;.

An interesting property is that when t tends to small values (see Fig. 5 for T = 1),

W(t;, t,») converges very quickly to a weighting function that is almost equivalent to the

arithmetic mean performed over the interval [aj,bj} (i.e. Eq. 3). Small values of 7
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Fig. 5 Illustration of the shape
of the weighting function (Eq. 9)
for different values of the decay
time scale 7. The y-axis
corresponds to the normalized
weight (W) that is applied to the
daily flux time series when it is
averaged to the approximately
monthly GRACE resolution

1w (.0)

U
L 0.030 ;

=100 days

=10 days

Weights applied to the daily forcing

330 300 270 240 210 180 150 120 90 60 3O_T 0

Days preceding the end GRACE month f’]‘
of a GRACE month (b; —t;)

correspond to small decay time scales, indicating that a single flux anomaly will not have a
prolonged effect on the state variable. A hydrological interpretation of this feature suggests
a short mean residence time of the water store. Inversely, large values of t imply longer
residence times and, therefore, more weight is given to anomalies occurring before the time
interval of interest. In such a case, it is interesting to note that anomalies occurring near the
end of the given time interval are assigned small weights. Hence, the difference between
the presented weighting scheme and an arithmetic mean becomes more important for larger
7. Since the value of 7 at each grid cell is unknown in our application, it needs to be
estimated from the data. Here, we optimize the agreement between the monthly averaged
subseasonal forcing (i.e. Xy of f(¢)) and the subseasonal monthly GRACE (i.e. Xy, of
s*(¢*)) by maximizing the squared product-moment correlation coefficient. In the pre-
sented study, this weighting function is used for the analysis of the subseasonal component
only (Sect. 4.5).

3.3 Significance Testing and Correlation Analysis
3.3.1 Linear Trends

A common nonparametric test for detecting monotonic trends in hydro-meteorological
time series is the Mann—Kendall rank-based test. However, serial correlation (autocorre-
lation) in time series has been shown to heavily influence the power of this test (Yue et al.
2002), and several methods have been proposed to address this issue (Hamed and Rao
1998; Yue and Wang 2004; Hamed 2009). Here, we use the modified Mann—Kendall trend
test described by Yue and Wang (2004) on deseasonalized GRACE time series
(Xiot — Xseas)- In this test, the autocorrelation estimated from the deseasonalized and
detrended time series is used to compute an effective sample size, which is then used to
correct the Mann—Kendall statistic. In addition, as the trend test is performed locally (i.e.
at each grid cell) and due to the high spatial autocorrelation of the GRACE data, there is
an increased probability that the null hypothesis is falsely rejected (Wilks 2011). Hence,
we additionally control this false discovery rate (FDR) using the approach described by
Benjamini and Hochberg (1995), which has shown good performance when applied to
climate data (Ventura et al. 2004; Wilks 2006; Gudmundsson and Seneviratne 2015). The
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trends are considered statistically significant when the p value falls below a critical value
(p <0.01).

3.3.2 Inter-Annual Anomalies

Regarding the inter-annual anomalies (X, ), the degree of linear association between
GRACE and the atmospheric forcing is quantified with the product-moment correlation
coefficient. As the inter-annual anomalies correspond to the low-frequency component of
the GRACE signal, they exhibit important serial correlation, which prevents the use of
conventional hypothesis testing techniques (e.g., ¢ test). Here, we use moving block
bootstrapping in order to estimate the null distribution of the correlation coefficient at each
grid point (Mudelsee 2014). Although there is no standard recommendation on the
selection of an optimal block length, a good starting point is to use a block length larger
than the decorrelation time (i.e. the number of time steps after which the serial correlation
is not significant anymore). Based on this criterion, we find that a block length of
20 months is sufficient for our application. We perform 10,000 bootstrap replications at
each grid point and estimate the 95 % confidence intervals from this null distribution. A
correlation coefficient is declared significant when it does not belong to the range of the
local confidence interval.

3.3.3 Seasonal Cycle

Previous studies have shown that there is often a temporal lag between the seasonal cycle of
precipitation and terrestrial water storage (e.g., Papa et al. 2008; Ahmed et al. 2011; Frappart
et al. 2013). It is also known that water storage and surface temperature are related through
evapotranspiration and snow melt; however, differences in the phasing of GRACE versus
these atmospheric variables were, to our knowledge, never surveyed at a global scale. We
define the phase shift as the lag (in months) minimizing the residual sum of squares between
the standardized seasonal cycles of both GRACE and the atmospheric forcing. When these
paired seasonal cycles strongly differ in shape, this procedure can sometimes lead to
meaningless lag values. A t-test of the Pearson product-moment correlation between the
time—lagged seasonal cycles is used to filter out these potentially misleading values
(p < 0.01). We additionally control the FDR following Benjamini and Hochberg (1995).

3.3.4 Subseasonal Residuals

Similarly as for the inter-annual anomalies, the product-moment correlation coefficient is
used to quantify the degree of linear association between GRACE and the atmospheric
forcing data. The subseasonal residuals (Xg,p,) correspond to the high-frequency component
and are thus the least affected by serial correlation. However, we found that these time
series still contain minor but significant serial correlation (not shown). For consistency, we
thus use an identical significance testing setting as for the inter-annual anomalies (i.e. a
moving block bootstrapping).

3.4 Identifying Droughts in the GRACE Record

Here we investigate the average storage deficit during drought events identified using an
approach based on Thomas et al. (2014). This approach defines 1) storage deficit as a
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negative departure (in mm) from the seasonal cycle and 2) drought duration as the number
of months with continuous deficits. The average storage deficit simply corresponds to the
arithmetic mean of the storage deficit observed during a given drought event and is used as
a measure of average drought intensity. Here two differences compared to Thomas et al.
(2014) are introduced.

First, we remove the linear trends from the time series prior to drought identification.
The reason is that strong linear trends can result in one end of the time series being
systematically above/below the seasonal cycle. In such a case, the proposed method would
have a tendency to underestimate/overestimate the magnitude of dry events. Hence for the
purpose of this study, linear trends are removed prior to the analysis and potential decadal
drying trends are discussed in a separate section. Our analysis is thus based on the sum of
the inter-annual and subseasonal components only (Xjner + Xsub, also see Fig. 2). Occa-
sionally, drought events occurring at the end or the beginning of the time series can be
large enough to influence the trend estimate itself, even when using the Theil-Senn slope
to reduce this effect. Hence, it is important to note that, in some cases, removing the linear
trends may cause an underestimation of the drought intensity.

Second, the minimum duration for considering a drought event is defined as a period of
three consecutive months with water storage deficit. Unlike Thomas et al. (2014), we apply
this criterion only to the inter-annual component X, (see Fig. 2) and not to the sum of the
inter-annual and subseasonal components (Xjner + Xsup)- The reason is that, compared to
the basin-scale assessment of Thomas et al. (2014), subseasonal variability (Xs,p) is larger
at the grid level and including it would otherwise considerably reduce the probability of
observing long periods with consecutive deficits.

4 Global Hydrological Variability in the GRACE Data
4.1 Distribution of GRACE Variance Among Temporal Components
The relative magnitude of the three components extracted from the STL procedure (Xjong,

Xseas and X)) can be evaluated by comparing each component’s variance to that of the
total signal. As shown in Fig. 6, the relative magnitude of each of the different components

Xlong vs Xseas vs Xsu

Subseasonal

Fig. 6 Distribution of the total GRACE variance among the long-term (green), seasonal (blue) and
subseasonal (red) components, expressed in per cent of the total variance, indicating the dominant modes of
temporal variability in terrestrial water storage for different regions
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is subject to high spatial variability across the world. To ease the interpretation, Fig. 6 can
also be compared to the standard deviation of the total signal in Fig. 1. As already iden-
tified in early studies (Wahr et al. 2004), the seasonal cycle is dominant in many tropical
regions like the Amazon basin, Central Africa and India. A notable exception is the Indo-
Australian archipelago where the GRACE signal is heavily perturbed by signal leakage
from the ocean as well as gravity anomalies consecutive to the 2004 Sumatra earthquake.
The seasonal cycle is also dominant at higher latitudes, particularly in Siberia and in north-
western America, although these regions do not have the largest variance in absolute terms.

Subseasonal variability (Xg,,) is dominant in regions where the GRACE signal has
already a relatively low variance (Fig. 1) and is most likely dominated by noise such as in
the Sahara desert. Although we do not further investigate this matter, it is interesting to
note that Arctic coastal regions such as the coasts of Northeast Siberia and Canada seem to
be mostly affected by subseasonal variability.

We also observe that many regions of the world are dominated by inter-annual vari-
ability (Xjong). The signal found in Greenland and Antarctica, parts of Alaska and the
Hudson Bay is the result of the interplay between ice mass loss, other water storage
changes and glacial isostatic adjustment. As a result, these regions require a specific
treatment before conclusions can be drawn concerning the dominant features of hydro-
logical variability (Velicogna et al. 2014). Other regions particularly dominated by long-
term variability include the south-western Central USA as well as the Middle East, some of
which are already documented in the literature as being influenced by decadal droughts and
long-term trends in groundwater storage (Long et al. 2013; Voss et al. 2013; Forootan et al.
2014b). Other interesting features include the Lake Victoria and the Aral Sea where long-
term surface water variations can be related to both human activities and climate variability
(Swenson and Wahr 2009; Singh et al. 2012). Finally, some regions in the southern
hemisphere like Australia and Argentina were also shown to exhibit an important inter-
annual variability that can be related to the El-Nifio Southern Oscillation (ENSO) (Garcia-
Garcia et al. 2011; Abelen et al. 2015).

4.2 Linear Trends

In this section, we will assess in further detail the relative importance of linear trends (Xj;,)
versus nonlinear inter-annual variability (Xj,.,) by looking at the magnitude of each of
these two components in the long-term variability (Xjong):

2 2

oy 0
_ lin __ inter
Rlin/long =" - - o2 (10)
long long

This formulation is also equivalent to the coefficient of determination of the linear trend as
estimated by the Theil-Sen slope with respect to the long-term component. The colour
scale in Fig. 7a represents the ratio of the linear trend variance to that of the whole long-
term component (Eq. 10) and shows how the long-term component (Xj,ng) Variance is
partitioned between linear (Xj;;,) and nonlinear trends (Xjn.;). The sign, magnitude and
significance (p < 0.01) of the linear trends are shown in Fig. 7b. Note the truncated colour
scale for negative trends beyond —30 mm/year.

We observe that the long-term variability in large areas of Greenland and Antarctica is
dominated by a linear trend. This can be related to ice mass loss once glacial isostatic
adjustment has been accounted for (Ramillien et al. 2006; Velicogna and Wahr 2006; Chen
et al. 2006b; Wouters et al. 2008; Velicogna 2009; Velicogna and Wahr 2013). Examples
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(a) Partition of the long-term component (Xlong) into
linear trends (Xlin) and inter-annual variability (Xinter)

non-lincar [N ] linear
0% 25% 50% 75% 100%

(b) — Linear trends

HEENTT. == TN o/year
-30 -20 -10 0 +10 +20 +30

Fig. 7 a Fraction of the long-term variability that corresponds to a linear trend, expressed in per cent of the
long-term variance. Large values (yellow) indicate that most of the long-term variability corresponds to a
linear trend. Small values (blue) indicate that (non-linear) inter-annual variability is dominating. Stippling
indicates regions where the long-term variability represents less than 20 % of the total GRACE variance
(see also Fig. 6). b Magnitude of linear trends in the GRACE signal (expressed in mm/year). Stippling
indicates regions with non-significant trends (p < 0.01). Note that the colour scale is truncated for negative
trends beyond —30 mm/year

of other regions of the cryosphere concerned with documented linear trends include
Alaskan mountain glacier melting (Chen et al. 2006a; Arendt et al. 2013; Larsen et al.
2015) and icefield melting in Patagonia (Chen et al. 2007b; Ivins et al. 2011). Strong linear
trends located close to the Hudson Bay have been related to glacial isostatic adjustment
(Tamisiea et al. 2007), and recent studies focusing on Arctic regions showed that both
isostatic and hydrological trends contribute to the observed signals (Frappart et al. 2011a;
Wang et al. 2013).

Many pronounced negative trends can also be observed in other regions of the world.
One of the most recognized drying trends occurs in north-west India and is related to
groundwater depletion (Rodell et al. 2009; Chen et al. 2014). Most of the long-term signal
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that is dominating GRACE variability over the Middle East, the Caspian Sea and the Aral
Sea can be attributed to a drying trend partly due to anthropogenic water abstraction (Singh
et al. 2012; Voss et al. 2013; Joodaki et al. 2014; Forootan et al. 2014a). On the contrary,
the region of Lake Victoria is dominated by nonlinear variations in the long-term com-
ponent, which have been related to hydropower dam operations, precipitation anomalies
and ENSO (Awange et al. 2008; Swenson and Wahr 2009; Becker et al. 2010; Hassan and
Jin 2014). Another important drying trend can be found in Argentina, especially in the
southern part of the La Plata basin (Chen et al. 2010b; Abelen et al. 2015). Finally, the
drying trend documented by Crowley et al. (2006) in the Congo river basin for the period
2002-2006 is found to be insignificant based on the current analysis.

The significance analysis also identified regions with trends which have not been
identified yet or have only drawn little attention so far. For instance, the extended drying
trends located to the North of both the Black Sea and the Caspian Sea could be potentially
investigated in more detail. Interestingly, small but statistically significant drying trends
(—3 mm/year) can also be found over large portions of the Sahara desert. So far, little
attention has been devoted to GRACE variability in this region as most of the signal is
contaminated by noise. Nevertheless, these drying trends have been partly documented
(Ahmed et al. 2014; Ramillien et al. 2014) and to some extent attributed to groundwater
extraction from fossil aquifers in the Sahara region.

Significant positive trends can also be found in southern Africa, near the Upper Zambezi
and Okavango river basins as well as in the Sahel and the Niger basin, and these trends
have already been well documented (Ramillien et al. 2014). In a comparison with rainfall
observations from different sources, Ahmed et al. (2014) have found that the increasing
trend in the Niger basin could be related to an increase in precipitation; however, this was
not the case for the Upper Zambezi and the Okavango basins. Although Ahmed et al.
(2014) suggest that this could be due to longer residence times in these watersheds, we feel
that more investigation is still required to explain the very strong positive trend in this
region. A positive trend is also found in the Amazon basin and has been described, for
instance, in Chen et al. (2010a) and could, to a certain extent, be related to precipitation
anomalies based on an analysis of the period 2003-2008 by Xavier et al. (2010).

The linear trends derived over north-western China raise some concerns with respect to
a possibly spurious origin. The alternating bipolar patterns of positive and negative trends,
oriented along the meridian 100°E, could be due to some accidental disturbance originating
in the processing of the GRACE data. A very similar pattern could already be found in
Fig. 8 of Frappart et al. (2011b), which compared trends derived after different postpro-
cessing methods for the period 2003-2008. It is possible that these trends found over China
are specific to the destriping algorithm of Swenson and Wahr (2006) since they are not
reproduced by the other postprocessing methods investigated by Frappart et al. (2011b).
However, Feng et al. (2013) were also able to relate drying trends in the Beijing region to
groundwater observations. Consequently, special care should be taken when interpreting
trends from the current GRACE Tellus estimates in that region.

4.3 Inter-Annual Anomalies

The inter-annual anomalies correspond to the nonlinear part of the long-term component
(Eg. 1). In this section, we assess the degree to which the inter-annual anomalies derived
from the GRACE time series can be correlated with the inter-annual anomalies of the
atmospheric forcing. Figure 8a depicts the correlation between the inter-annual water
storage and precipitation anomalies. We observe moderately high positive correlations
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Fig. 8 Correlation between the inter-annual variability of water storage and a precipitation, b temperature.
Stippling indicates regions with non-significant correlation coefficients (p < 0.05)

(>0.6) between these two components for parts of Europe, Russia and North America,
which indicate a positive effect of precipitation on terrestrial water storage. Correlations
are more erratic over subtropical and equatorial regions, possibly resulting from defi-
ciencies in the ERA-Interim precipitation forcing, which are known to be more pro-
nounced, for instance, over Africa and South America (Simmons et al. 2010). In these
regions, other precipitation datasets based either on ground measurements or satellite
observations may give different results. For example, we find relatively low correlations
between inter-annual water storage and precipitation over the region of the African Great
Lakes; however, Becker et al. (2010) found a seemingly good agreement with GRACE
when using monthly precipitation data from the Global Precipitation Climatology Project
(GPCP). For Africa and South America, Morishita and Heki (2008) found that mass
changes from GRACE could be related to precipitation anomaly patterns extracted from
the Climate Prediction Center Merged Analysis of Precipitation (CMAP). Over the
Amazon, Chen et al. (2010a) related inter-annual water storage change to precipitation
anomalies (from GPCP) and ENSO indices, while Frappart et al. (2013) found that the
inter-annual variability of water storage was in reasonable agreement with precipitation
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from the Tropical Rainfall Measuring Mission (TRMM). Although correlation coefficients
are mostly positive, significant negative correlations can occasionally be found but seem
either accidentally caused by perturbations of the long-term gravimetric signal by large
earthquakes (e.g., Sumatra region) or would need to be confirmed in a regional investi-
gation (Caspian Sea area).

The same analysis was performed with ERA-Interim 2 m temperature (Fig. 8b). We
find that the correlation between inter-annual water storage and temperature is negative in
most cases. Correlations are moderately strong over parts of North America, South
America, southern Africa, India and Australia. Such a negative relationship is usually
expected not only since temperature is an important driver for evaporative demand but also
because low moisture availability can result in higher temperatures (Seneviratne et al.
2010; Mueller and Seneviratne 2012). However, correlations found in the southern
hemisphere could also be related to confounding factors such as atmospheric circulation
patterns (e.g., ENSO) and hence do not necessarily indicate a direct link between tem-
perature and terrestrial water storage. In addition, significant positive correlations between
long-term temperature and water storage anomalies can be found over parts of Siberia.
Long-term water storage anomalies in this region may be related to interactions with
permafrost although such relationships are still unclear at this stage (Velicogna et al. 2012;
Vey et al. 2013).

Non-significant correlations can be due either to other unidentified sources of long-term
variability in the GRACE data or errors and biases in the long-term variability of the ERA-
Interim atmospheric forcing. However, the absence of correlation with either precipitation
or temperature in some regions could also indicate that long-term variability in the
atmospheric forcing is not controlling or controlled by terrestrial water storage, i.e. that
there is no obvious relationship between these variables at the inter-annual time scale. In
addition, the literature covered in the section on linear trends already showed that
anthropogenic groundwater withdrawal and dam operations could be responsible for long-
term changes in the terrestrial water storage variations retrieved from GRACE. Finally, we
note that a very large number of locations exhibit moderate correlations (between 0.3 and
0.5 in absolute value), which are actually not significant once serial correlation is taken
into account in hypothesis testing (using bootstrapping). This is also an indication that
analyses of the inter-annual variability of water storage would greatly benefit from the
longer record length that may be provided in the future by the GRACE Follow-On mission
scheduled for launch in 2017.

4.4 Seasonal Cycle

The STL decomposition provides a data-driven way of estimating the seasonal cycle
which, in contrast to the common practice, does not rely on harmonic models (fitted sines
and cosines, e.g., Wahr et al. 2004; Hinderer et al. 2006; Schmidt et al. 2008b). Here we
characterize GRACE seasonality by mapping the months with the maximum and the
minimum of the seasonal cycle of water storage and show that they generally follow
latitudinal bands (Fig. 9a, b). In the Northern Hemisphere, the peak in terrestrial water
storage generally occurs in spring for the cold and temperate regions and in autumn for the
subtropical regions (and vice versa in the Southern Hemisphere). The minimum water
storage occurs in autumn for the cold and temperate regions and in spring for the sub-
tropical regions (and oppositely in the Southern Hemisphere). In subarctic regions, there is
a clear latitudinal trend towards a later maximum, likely corresponding to the delayed
response of snow melt to temperature at higher latitudes. Interestingly, the seasonal
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Fig. 9 a Month with the maximum of the seasonal cycle of water storage. b Month with minimum seasonal
water storage. Stippling indicates regions where the seasonal variability represents <20 % of the total
GRACE variance

maximum appears to be also delayed near large inland reservoirs (e.g., the Great Lakes and
the Caspian Sea), which potentially reflects the influence of run-off and storage processes
and could be subject to further investigations. In most regions, the months with maximum
and minimum terrestrial water storage are spaced by an interval of 6 & 1 months. How-
ever, this is not always the case: in northern India, the maximum terrestrial water storage
occurs in September and the minimum in May, which is consistent with the effect of the
June—September monsoon. These maps can, for instance, be directly compared with
hydrological models (see Fig. 6 in Giintner et al. 2007b for an example with a closely
resembling colour scale). In addition, it is worth mentioning that the seasonal cycle of
water storage over African regions located close to the equator (e.g., the Congo basin, Lake
Victoria) exhibits a strong secondary peak, which likely corresponds to the oscillation of
the inter-tropical convergence zone (not shown). This secondary peak is also present—
although less pronounced—over Ecuador, southern India and Indonesia but is completely
absent over the Amazon basin (not shown).

The phase shift between GRACE and the seasonal cycles of precipitation and tem-
perature is shown in Fig. 10a, b. Over most tropical and subtropical regions, the seasonal
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(a) Phase shift: GRACE vs Precipitation
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Fig. 10 Phase shift (in months) between the seasonal cycle of water storage and the seasonal cycle of
a precipitation and b temperature. Small phase shifts (=1, O or —11(41) months) indicate that the
atmospheric forcing is nearly in phase with water storage, whereas large phase shifts (—7, —6 or
—5 months) indicate that they are out of phase. Stippling indicates regions where the correlation between
optimally phase shifted seasonal cycles is not significant (p < 0.05)

peak of precipitation typically occurs 1-2 months earlier than the peak in water storage,
likely due to the effect of storage processes. Very similar lags have been found for the
Amazon subbasins (see Table 3 in Frappart et al. 2013), for selected regions over central
Africa (see Fig. 3 in Ahmed et al. 2011) as well as by Rieser et al. (2010) over Australia
(all three studies used satellite precipitation data from TRMM). On the contrary, subarctic
and inland temperate regions experience the highest precipitation during the warmer
summer months, approximately 3—5 months later than the spring maximum in water
storage. For coastal subarctic areas, the precipitation maximum tends to occur in autumn
due to greater temperature differences between the ocean and land, resulting in a 5- to
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7-month phase shift between water storage and precipitation (e.g., Alaska, British
Columbia and Scandinavia). More details concerning the phasing of GRACE with snow
storage and discharge measurements can be found in Frappart et al. (2011a).

The seasonal cycle of temperature is generally out of phase with respect to the seasonal
cycle of water storage (Fig. 10b). In most temperate and subarctic regions, the peak
temperature typically occurs in summer, 2-3 months earlier than the autumn minimum in
water storage. Over tropical regions, the seasonal cycle of temperature is completely
opposed to the water storage cycle, with corresponding phase shifts of 4—7 months. This
anti-phasing between water storage and temperature is likely related to the effects of both
temperature and radiation on evapotranspiration. Over equatorial regions, the seasonality
of temperature is much less pronounced but still lagging the water storage cycle by
3—4 months. The southern part of China exhibits a very specific pattern, with maximum
temperatures occurring in summer and seasonal water storage peaking in late summer,
resulting in an almost perfect phasing between water storage and temperature.

4.5 Subseasonal Residuals

Figure 11a shows the correlation between the high-frequency components of GRACE and
precipitation averaged with the new averaging scheme presented in Sect. 3.2. Significant
positive correlations are found over many regions of the world, indicating that a large
fraction of high-frequency GRACE variability can be statistically related to short-term
anomalies of the precipitation forcing. Interestingly, significant correlations can also be
found over large portions of Indonesia, although the GRACE signal in this region is usually
believed to be strongly deteriorated by signal leakage from the ocean. A possible expla-
nation might be that short-term precipitation variability in this tropical monsoon region is
large enough to overcome the higher errors associated with coastal and insular regions. A
notable exception to the global pattern is the Congo river basin where no significant
correlations can be found. This area corresponds to a major convective region for the
global climate system which is still poorly represented by atmospheric reanalyses in
comparison with other regions (Washington et al. 2013). Many extremely arid regions also
show non-significant correlations (Sahara, Atacama, Taklamakan and Gobi deserts), con-
firming the view that high-frequency GRACE variability in these regions is dominated by
noise.

In order to assess the influence of the new averaging method, we can visually compare
the correlations shown in Fig. 11a to the correlations obtained with a simple monthly
arithmetic mean of the daily residuals (Fig. 11b). The exponential decay approach
enhances the correlations over most regions of the world, with an average increase of +0.3
(excluding regions which exhibit non-significant correlations in Fig. 11a). Figure 12a
enables an even more direct comparison between the distributions of the correlations
shown in Fig. 11a, b. This illustrates the value of the proposed weighting scheme and
reveals that using monthly arithmetic averages of precipitation may have resulted in
underestimating the relation with water storage on the subseasonal time scale. This finding
is of particular interest for studies comparing GRACE data to monthly precipitation time
series (e.g., Forootan et al. 2014a) which typically make use of monthly precipitation
averages.

Values of the calibrated decay parameter 7 used to compute the monthly averages from
the daily precipitation data are shown in Fig. 11c. Overall, decay time scales exhibit
systematic spatial variability that could potentially be related to many different factors,
including climatic conditions as well as soil and vegetation characteristics. The probability
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Fig. 11 a Correlation between the subseasonal variability of water storage and precipitation averaged with
the weighting function introduced in Sect. 3.2 (Eq. 9). b Correlation between the subseasonal variability of
water storage and precipitation averaged using the arithmetic mean (Eq. 3). ¢ Value of the calibrated decay
parameter (t) with units of days. Stippling indicates regions with non-significant correlation coefficients
(p <0.05)
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Fig. 12 a Distribution of the correlation coefficients obtained with a simple average of the precipitation
forcing (grey surface) versus the distribution of the correlation coefficients obtained with the newly
introduced weighting function (hatched surface). The part of significant correlation coefficients (p < 0.05)
is indicated using a darker colour or double hatching. b Distribution of the calibrated decay parameters used
in the weighting function. Note the base 10 logarithmic scale of the x-axis

density distribution of this parameter is also shown in Fig. 12b, and we find that significant
values generally range between 10 and 200 days with a median value of approximately
50 days. Based on the weighting function (Eq. 9), it can be calculated that for the median
value of 7 = 50 days, the precipitation residuals of the first 100 days preceding the
beginning of a GRACE month account for 65 % of the monthly average. On the contrary,
days covered by the time interval of a given GRACE month account for only 25 % of the
monthly average. This shows that, on the subseasonal time scale, precipitation preceding a
GRACE month usually has a higher impact on correlations with terrestrial water storage
than the precipitation of the coinciding month. This is due to the fact that the influence of
high-frequency precipitation anomalies on regional hydrology tends to decay with time so
that precipitation events occurring just before or at the very beginning of a GRACE month
have a higher impact on the average water storage of a given month. Conversely, pre-
cipitation anomalies occurring during or at the very end of a GRACE month have a lower
impact on the water storage anomalies, or may even occur after the latest GRACE
overpass.

Figure 13a shows the results of the same analysis performed with the temperature data.
It reveals regions where the integrated effect of antecedent temperatures can be statistically
related to water storage anomalies. Temperature is one of the main controls for evaporative
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Fig. 13 a Correlation between the subseasonal variability of water storage and temperature averaged with
the weighting function introduced in Sect. 3.2 (Eq. 9). b Correlation between the subseasonal variability of
water storage and temperature averaged using the arithmetic mean (Eq. 3). ¢ Value of the calibrated decay

parameter (t) with units of days. Stippling indicates regions with non-significant correlation coefficients
(p <0.05)
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demand, and hence, negative correlations are expected and can indeed be found over many
regions of the world, especially over South America, South Africa, the region of the
African Great Lakes, India, Indonesia and northern Australia. As for precipitation, the use
of the exponential decay approach leads to enhanced correlations when compared to the
arithmetic mean (Fig. 13b). However, improvements are less important than for precipi-
tation and are often concentrated in regions where a significant relationship can already be
found with the simple mean. Decay time scales over these regions (Fig. 13c) generally fall
between 1 to 3 months, yielding a data-driven first-order estimate of how long temperature
anomalies can significantly impact the subsequent state of terrestrial water storage. Positive
and significant correlations can occasionally be found over some areas, notably over
Siberia, Scandinavia and Antarctica. For these regions, we hypothesize that these positive
correlations could reflect the tendency of warm winters to be more humid in comparison
with cold winters. On the other hand, warm summers are also expected to increase snow
melt so that we cannot come to a definitive conclusion for these regions based on the
presented results.

4.6 Droughts

In Fig. 14a, we show the maximum average storage deficit (see Sect. 3.4) ever observed
for all drought events identified in the GRACE record. The year corresponding to this
maximum is depicted in Fig. 14b for events with a magnitude larger than 30 mm. This
threshold was chosen to mask out smaller features which are difficult to interpret in a
global assessment but may still be relevant in a regional context. Many droughts that have
previously been documented in the GRACE literature can be identified, notably the 2010
Amazon drought, which is additionally illustrated in Fig. 15a. Drought events in the
Amazon basin were shown to be related to precipitation deficits and ENSO (Davidson et al.
2012; Frappart et al. 2013). A multi-year drought is also found for the period 2004-2008
(Fig. 15a) and likely corresponds to the multiple consecutive dry years identified, for
instance, by Frappart et al. (2012) and Thomas et al. (2014). Note that this is related to the
chosen drought metric, which might not capture all relevant aspects. The ongoing drought
in the Central Valley of California is also identified in Fig. 14b, and the time series of the
average storage deficit (Fig. 15b) shows that this region also suffered from multiple dry
episodes in previous years. This was already identified in previous studies which related
these recurrent drought events to severe groundwater depletion (Famiglietti et al. 2011;
Famiglietti 2014; Chen et al. 2015). Other documented events identified in Fig. 14b
include the 2008-2009 drought in the La Plata basin (Abelen et al. 2015), the 2010-2013
drought in Texas (Long et al. 2013), the 2007-2009 drought in the south-eastern USA
(Houborg et al. 2012) and the 2012-2015 North American drought (Chew and Small 2014;
Hoerling et al. 2013). We also identify the 2006-2007 dry conditions over Lake Victoria
(Swenson and Wahr 2009) and the African Great lakes (Becker et al. 2010) and the
2006-2008 drought in the Zambezi basin (Thomas et al. 2014), which are, in this analysis,
captured together as a large-scale and spatially contiguous event. Drought conditions can
also be found in northern India for the period 2009-2010 even though the linear trend due
to groundwater depletion has been removed from the data prior to drought identification.
The year 2009 was indeed shown to be the driest year of the decade for this region in terms
of precipitation (Chen et al. 2014) and resulted in higher groundwater abstraction rates.
Our analysis shows that the average storage deficit was consecutively maximal in 2010.
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Fig. 14 a Maximum value of the average storage deficit observed in the period April 2002-August 2015,
expressed in mm of equivalent water height. b Year corresponding to the maximum value of the average
storage deficit, showing only regions with a deficit larger than 30 mm. Letters A-C correspond to the
location of the time series in Fig. 15

The Sumatra region also exhibits an important “deficit” which, as confirmed by a local
investigation, is probably an artefact caused by the 2004 earthquake. In Australia, multi-
year droughts have been related to precipitation deficits (Garcia-Garcia et al. 2011).
However, due to the long duration of these decadal drought events, the average storage
deficit is lower. Our results also reveal undocumented features found in the GRACE
record, such as a dry event from 2012 to 2014 over south-eastern Europe (Figs. 14b, 15¢)
as well as a severe drought in the Sao Paulo region and a moderate drought over North
Korea in 2015 (both still ongoing at the time of writing). A dry period can also be identified
during 2010-2011 to the North of the Caspian Sea and is likely associated with the 2010
Russian heatwave. Many other events can also be found over central Russia and were, to
our knowledge, never identified using GRACE data.
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Fig. 15 Time series of average water storage deficit for grid cells (see location in Fig. 14b) in a Amazon
(63.5°W/4.5°S), b California (121.5°W/38.5°N), ¢ Romania (27.5°E/45.5°N)

5 Conclusions

In this study, we have decomposed the GRACE time series into (1) linear trends, (2)
nonlinear inter-annual anomalies, (3) seasonal cycles and (4) subseasonal residuals. The
relative importance of each of these components with respect to the original GRACE
signal has been evaluated, allowing for a global assessment of the dominant features of
temporal variability in terrestrial water storage. In most cases, the GRACE signal is
dominated by seasonal or/and long-term variability, while subseasonal variability gen-
erally accounts for a small fraction of the total signal variance. Partitioning the long-
term variability into linear trends and nonlinear components reveals that some regions
are dominated by linear trends, while nonlinear inter-annual variability is prevalent in
others. The magnitudes of the linear trends have been quantified using the robust
Theil-Sen estimator, reproducing many already documented trends but also revealing
some features that had not been identified previously. In addition, the significance of
the trends was evaluated using statistical hypothesis testing techniques which take serial
correlation (autocorrelation) into account, contrasting the common practice in the
GRACE literature.

In a more detailed analysis, each component of temporal variability (except linear
trends) has been compared with equivalent components extracted from daily precipitation
and temperature time series of the atmospheric reanalysis ERA-Interim:

e [nter-annual variability We have found that the inter-annual variability of GRACE can
be only partly related to anomalies in precipitation and temperature, confirming the
results of previous regional studies. Although limitations of the considered atmospheric
reanalysis may alter the results at the regional level, this suggests that the inter-annual
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variability of GRACE is only partly related to the investigated atmospheric drivers,
potentially highlighting the role of human water use as additional driver.

e Seasonal variability We have provided a comprehensive overview on the seasonality of
terrestrial water storage and related it to the seasonal cycles of both precipitation and
temperature. In tropical and equatorial regions, the seasonal cycle of precipitation was
generally found to precede terrestrial water storage with a temporal lag of one to
2 months, while the seasonal cycle of temperature would typically be phase shifted by
6 months with respect to water storage. However, this was clearly not the case in
temperate and cold regions, which is probably due to the more complex interplay
between precipitation, storage processes, snow dynamics and temperature.

e Subseasonal variability We have shown that high-frequency variability of the GRACE
record can be reconstructed from precipitation anomalies once an adequate averaging
filter is applied to the daily precipitation forcing. This filter was designed to explicitly
take the effect of earlier precipitation into account when comparing daily precipitation
series with monthly GRACE data. This new method yields substantially better results
compared to the classical approach based on monthly arithmetic means, providing a
new perspective on the hydrological value of subseasonal (month to month)
fluctuations of the GRACE signal, which have partly been interpreted as noise in
previous studies.

e Droughts Finally, we have surveyed extreme dry events in the GRACE time series. The
most important anomalies in terms of water storage deficits were documented on a
global scale and related to droughts already described in the existing literature.
Undocumented features were also identified using this global approach and will be
subject to further investigation.

In summary, we have surveyed key features of temporal variability in the GRACE
record and related them to the dominant atmospheric drivers, in contrast to the common
practice of comparing GRACE terrestrial water storage to hydrological model simulations.
We have related our results to physical interpretations from the rich body of regional
GRACE studies, resulting in a comprehensive overview which will both contribute to a
general understanding of terrestrial water storage and provide a global observation-based
reference for hydrologists and climate scientists. As a novelty, we have shown that high-
frequency (month to month) fluctuations of the GRACE signal contain a meaningful
hydrological signal, which can be reconstructed from daily precipitation forcing. These
findings have important implications for the assessment of GRACE uncertainties as well as
for comparisons with hydrological model simulations.
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Appendix 1: STL for Unevenly Spaced Time Series

STL was introduced by Cleveland et al. (1990) for evenly spaced time series. In this
appendix, we present a summary of a simplified STL procedure that includes a modifi-
cation of the original algorithm for unevenly spaced time series. An important difference
with the original STL authored by Cleveland et al. is that the seasonal cycle is defined as
constant, i.e. it is not allowed to vary in shape or amplitude over time. We also introduce a
modification in the computation of robustness weights that accounts for time series
exhibiting large differences in variance (heteroskedasticity) between seasons.

Our focus is to decompose the total signal of a given time series X = {xj,...,x;,...,X,}
associated with a time vector T = {¢#,...,#,...,%,} into a constantly repeating seasonal
component X, a long-term trend component Xj,,, and the remaining subseasonal
residuals Xgp.

The STL procedure consists of an inner loop and an outer loop. In the inner loop,
seasonal and trend components are estimated from the time series using several passes of
smoothing filters. In the outer loop, robustness weights are estimated to reduce the influ-
ence of outliers in the time series and are used in the next iteration of the inner loop. This
procedure stops once some user-defined stability criterion has been reached.

Locally Weighted Regression (Loess)

Since the algorithm involves multiple passes of a smoothing filter based on locally
weighted regression (Loess), we first present a generic formulation for this smoothing
filter. The Loess estimator of x at time 7, is denoted g(z,) and is given by a weighted
polynomial fit of degree d to the values of X that are in the vicinity of z, and are given some
weights w. This vicinity is restricted in time by a maximum time-lag parameter A. The
weights w; associated with each values of X that are in the vicinity of ¢, are given by the
tricube function (Eq. 11).

0, if |D(t,1,)] > A
Wi = {_(mr;,rm”, it D(1)| <4 ()

where D(t;,t,) is a function of the distance in time between the two points. The values of X
closest to ¢, will thus have the highest weights. Hence, for each prediction point 7, X is
associated with a vector of weights W that depends on 7,, A and the nature of the distance
function D:

W(t;, A, D) = {wi,...,wn} (12)

The degree of the polynomial fit g(z,) that is fitted at each 7, has to be chosen by the user
depending on the application (usually a degree 1 or 2 polynomial is sufficient). Once this is
performed for every time step in T, we obtain G = {g(#),...,g(t,)}, the so-called local
regression of the original time series.

We introduce two different metrics for the distance D(1;,t,) between two points in time.
The first one is simply an absolute distance in time and is given by:

Dabs(tia [-) =t —1 (13)

Z
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The second one is the periodic distance and depends on the length p of the chosen
periodicity, for instance, suppose the time vector T is in units of days, then p will be equal
to 365.25 days for a seasonal periodicity. The periodic distance is given by:

Dper(ty 1) = [ (1= 1. +5) modp| =2 (14)
where mod is the modulo operator. Thus, time points spaced from #, by multiples of exactly
p days are assigned a null distance, and then, the distance linearly increases until the time
points spaced by multiples of p/2 days are assigned the maximum distance. Note that these
distance metrics are used not only for the calculation of weights but also as the input vector
of the polynomial fit g(z,) to the values of X.

Inner Loop

The inner loop of the STL procedure aims at estimating the seasonal and long-term
components of the time series X through the following steps.

Step 1 Compute the detrended time series X* On the very first pass of the inner loop, the
long-term trend Xjon, Will not be known yet so that X* is simply the original time series
X. Otherwise, X, is subtracted from X, yielding the detrended time series X*.

Step 2 Compute the seasonal cycle Xq.,s The seasonal cycle is estimated at all points in
T from X* using Loess with Dy and a free parameter Ay, that defines the vicinity in terms
of periodic distance. The weight vector used in the local polynomial regression is denoted
Woer:

per

Wper(tz) = W(tza ;“peerper) (15)

Note: after the first iteration of the inner and outer loops, Wy, is used in combination with
the robustness weights Wipug. The weights simply correspond to the product of Wy, and
Wrobust~

Step 3 Compute deseasonalized time series X° A deseasonalized time series X° is
obtained by subtracting the seasonal cycle X,.,s from the original time series X.

Step 4 Compute the long-term trend Xions The long-term trend is estimated after applying
Loess to the deseasonalized time series XP with the distance function D, and parameter
Jiong Which defines the associated weight vector Wigng.

Wlong(tz) = W(tm AlongaDabs) (16)
As in step 2, these weights are used in combination with the robustness weights Wiopus
after the first iteration of the inner and the outer loop.

Outer Loop

Once an initial run of the inner loop has been carried out, the original time series can be
decomposed into X = Xjong + Xoeas + Xresia» Where Xiegiq corresponds to the residuals.
Following Cleveland et al. (1990), extremely large residuals are assumed to correspond to
outliers and are assigned a small or a zero weight. These weights are defined using the
bisquare function:
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07 ) if ‘xresid| >h
. ) 2
Wrobust = |:1 _ (%ﬂ) :| s if ‘xresidl < h (]7)
where 4 is:
h=6- median(|Xresid|) (18)

However, a problem arises when time series exhibit seasonal heteroskedasticity because
the value of & would change when different seasons of the time series are considered. A
typical case of seasonal heteroskedasticity is when precipitation totals are very low during
the dry season but exhibit high variability during the wet season. If we followed the
approach of Cleveland et al., relatively small outliers in the dry season would be unlikely
detected, whereas large but still realistic variations during the wet season would be more
likely detected as outliers. This problem can be avoided by introducing seasonally varying
estimates of /. This is done by calculating / at each prediction point ¢, using a weighted
median with the weights W, computed from the periodic distance (step 2):

h(t.) = 6 - median (|[Xresial, Wper (1)) (19)

Choosing the Parameters

The following parameters need to be defined: p the length of each cycle of the seasonal
component; d the degree of the weighted polynomial regression; nj,,.. the number of
passes through the inner loop; noyer the number of iterations of the outer loop; Auer the
maximum time lag for the computation of the seasonal component; Ajopg the maximum
time lag for the computation of the long-term component

Parameter p is obviously determined by the nature of the investigated time series (here,
p = 365.25). We chose a polynomial of degree d = 2 in order to hinder smoothing of the
low and high peaks of the seasonal cycle. For the trend component, a polynomial of degree
d =1 is sufficient. The number of passes and iterations was chosen so that the resulting
decomposition reaches stability. For the number of passes of the inner loop, Cleveland
et al. recommend nj,,., = 2. Regarding ngue, We experimentally determined that
Nouter = 3 Was sufficient for our application.

The parameter A, determines the smoothness of the seasonal cycle, with larger values,
resulting in a smoother estimate of the seasonal cycle. On the other hand, smaller values of
Jper Will reduce the number of points actually used in the local regression so that the
resulting seasonal cycle is more likely to be affected by outliers or sudden changes arising
from the uneven spacing of the time series. Hence, the choice of Ay is a balanced
consideration between accuracy and robustness in the representation of the seasonal cycle.
In this paper, a good compromise was experimentally found with A, = 60 days.

The parameter /j,yg controls the degree of leakage of the long-term component into the
residuals. Larger values of the parameter will result in a smoother estimate of the trend but
also cause some of the long-term signal to be incorporated into the residuals. Vice versa,
smaller values of this parameter will make the long-term component more sensitive to
high-frequency variability. In this application, we followed the recommendations from
Cleveland et al. who showed that Jjon, = 1.5 X p provides a good compromise in most
cases.

@ Springer



388 Surv Geophys (2016) 37:357-395

Appendix 2
Analytical Integration of the Weighting Function

Integrating Eq. 6 over the interval [aj, bj] associated with the monthly interval 7; must be
done with care since the function w(z,#;) is discontinuous. In total, three cases can be
considered: (1) the continuous case where a; >1; (Fig. 4a), (2) the discontinuous case
where a; <t; < b; (Fig. 4b) and (3) the continuous case where b; <t;. For convenience, we
note a; = a and b; = b:

b
W(tj*,ti) = /w(t, t;)de

b
Jw(t,1;)de if a>¢
a
t[, b
= ‘{ w(t, t;)dr + tf w(t, t;)dr if a<t;<b (20)
b
Jw(t, 1;)de if b<t
—te 01 4 geelah) if a>y
= —zeb-) 4 ¢ if a<t;<b

0 if b<y

The normalized version of W(t;‘7 t,-) is given by (equivalently to Eq. 8):

g B W(tj,ti)
W(tj,l,-) 7% (21)

The denominator has to be decomposed into three continuous parts:
+00 a b +00

/ W(tj*,t,«)dz,-: / W(tj’.‘,ti)dti+/W(tjf‘,t,-)dtl~+/ W(t;‘,ti)dti (22)

—o0 —00 a b

The first part yields:

/ W(t;’ t,»)dt,»: (Tze—%(b—a) _ Tze—g(a—a)) _ (Tze_g(bm) _ Tze—{(a+oo))

—00

(23)
_ rze‘%(b_“) _ 2

The second part yields:
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b
/ w (t/’f, t,«) dt;

(rze’%(””’) + rb) - (rze’%(b’”) + m)

(24)
=4 th—1le ) _1q
And the third part is:
+o0
/ W (tj, ti) ;=0 (25)
b
Thus after combining equations 23, 24 and 25, equation 22 can be rewritten as:
+00
/ W(t?*7 t,-) dt;= 2eib—a) _ 2 +2+1h— o0 _ 14 +0
! (26)
—00
=1(b—a)
which is then injected in Eq. 21, yielding the normalized weighting function (Eq. 9):
—1(b—1;) —t(a—t;)
er T ter if a>y
A W(tj’f7 fi) b—a
W(ﬁ, t,») =7/ = e—sb—1) 4 1
J fj’oo: W(t;7ti)dti ﬁ if a<t[§b
0 if b<y
(27)
e{(z,fa) _ erlti=b)
h—a if a>¢
= 1 — etlti=b)
© if a<t<b
b—a
0 if b<yg
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