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Abstract The Gravity Recovery and Climate Experiment (GRACE), along with other

relevant field and remote sensing datasets, was used to assess the performance of two land

surface models (LSMs: CLM4.5-SP and GLDAS-Noah) over the African continent and

improve the outputs of the CLM4.5-SP model. Spatial and temporal analysis of monthly

(January 2003–December 2010) Terrestrial Water Storage (TWS) estimates extracted from

GRACE (TWSGRACE), CLM4.5-SP (TWSCLM4.5), and GLDAS-Noah (TWSGLDAS) indi-

cates the following: (1) compared to GRACE, LSMs overestimate TWS in winter months

and underestimate them in summer months; (2) the amplitude of annual cycle (AAC) of

TWSGRACE is higher than that of TWSLSM (AAC: TWSGRACE[TWSGLDAS[
TWSCLM4.5); (3) higher, and statistically significant correlations were observed between

TWSGRACE and TWSGLDAS compared to those between TWSGRACE and TWSCLM4.5; (4)

differences in forcing precipitation and temperature datasets for GLDAS-Noah and

CLM4.5-SP models are unlikely to be the main cause for the observed discrepancies

between TWSGRACE and TWSLSM; and (5) the CLM4.5-SP model overestimates
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evapotranspiration (ET) values in summer months and underestimates them in winter

months compared to ET estimates extracted from field-based (FLUXNET-MTE) and

satellite-based (MOD16 and GLEAM) ET measurements. A first-order correction was

developed and applied to correct the CLM4.5-derived ET, soil moisture, groundwater, and

TWS. The corrections improved the correspondence (i.e., higher correlation and compa-

rable AAC) between TWSCLM4.5 and TWSGRACE over various climatic settings. Our

findings suggest that similar straightforward correction approaches could potentially be

developed and used to assess and improve the performance of a wide range of LSMs.

Keywords GRACE � GLDAS-Noah � CLM4.5-SP � TWS � Evapotranspiration � Africa

1 Introduction

The twin Gravity Recovery and Climate Experiment (GRACE) satellite mission is a joint

project between National Aeronautics and Space Administration (NASA) in the USA and

German Aerospace Center (DLR) in Germany. GRACE was launched on March 17, 2002,

to map: (1) the temporal variations in Earth’s global gravity field on a monthly basis with

unprecedented accuracy and (2) Earth’s static gravity field with orders of magnitude higher

accuracy than those obtained from previous satellite missions (Tapley et al. 2004). The

variability in gravity field solutions mapped by the GRACE satellite is directly related to

the redistribution of mass at or near the Earth’s surface. The largest signals observable in

the GRACE data are coming from spatial and temporal variations in terrestrial water

storage (TWS) (Wahr et al. 1998). TWS refers to the total vertically integrated water

content in an area regardless of the reservoir (surface water, groundwater, soil moisture and

permafrost, snow and ice, or wet biomass) in which it resides.

Recent applications of GRACE data have resulted in advances in various disciplines

(Wouters et al. 2014) including hydrology (Rodell et al. 2009; Ahmed et al. 2011, 2014;

Famiglietti et al. 2011; Sultan et al. 2013, 2015), oceanology (e.g., Jacob et al. 2012;

Gardner et al. 2013), cryosphere (e.g., Velicogna and Wahr 2013; Velicogna et al. 2014),

and solid Earth fields (e.g., Steffen and Wu 2011; Han et al. 2013). However, such

applications are hampered by the relatively low horizontal resolution of GRACE data and

by the fact that GRACE does not have vertical resolution (e.g., Wahr et al. 2004, 2006). In

other words, GRACE cannot distinguish between anomalies resulting from different

compartments (e.g., surface water, groundwater, soil moisture, snow, and biomass) of

TWS. The integration of land surface models (LSMs) outputs with GRACE-derived TWS

(TWSGRACE) data is now providing opportunities to: (1) extract individual components,

such as soil moisture and groundwater, from TWSGRACE estimates and (2) improve the

horizontal resolution of TWSGRACE data. Examples of efforts that utilized LSMs outputs to

improve the horizontal and vertical resolutions of TWSGRACE include the use of Global

Land Data Assimilation System (GLDAS) (Rodell et al. 2004), the Community Land

Model (CLM) (Lawrence et al. 2011), and the WaterGAP Hydrological Model (WGHM)

(Döll et al. 2003, 2014a, b).

Scaling techniques were recently used to extrapolate the TWSGRACE estimates from

their effective spatial resolution (a few hundred kilometers) to finer spatial scales

(*100 km); in this approach, GLDAS-derived (TWSGLDAS) and CLM-derived TWS

(TWSCLM) estimates were used to develop a multiplicative gain factors to rescale
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TWSGRACE (Landerer and Swenson 2012). Scaling factors results based on six (GLDAS-

Noah, GLDAS-Mosaic, GLDAS-VIC, GLDAS-CLM2, CLM4.0, and WGHM) LSMs were

compared over 60 watersheds; similarities over humid, sub-humid, and high-latitude

regions were observed, yet large differences were found over arid and semiarid basins and

intensively irrigated areas (Long et al. 2015).

Various attempts were made to use LSM outputs to improve the vertical resolution of

TWSGRACE. For example, GLDAS model was used to estimate the contributions of TWS

compartments (e.g., soil moisture and snow water equivalent) to TWSGRACE for the pur-

pose of quantifying modern recharge in the North-Western Sahara Aquifer System

(Gonçalvès et al. 2013) and estimating depletion rates of aquifer systems in the Middle

East (Voss et al. 2013), northern China (Feng et al. 2013), northern India (Rodell et al.

2009; Chen et al. 2014), California (Scanlon et al. 2012), and Turkey (Lenk 2013). Sim-

ilarly, the CLM model was used to estimate the contributions of soil moisture, canopy,

snow, and river channel storages to TWSGRACE and to quantify the depletion rates of

aquifer systems in northern India (Tiwari et al. 2009) and in the Middle East (Joodaki et al.

2014).

It is worth mentioning that the overwhelming majority of recent applications to improve

the vertical resolution of GRACE data over Africa utilized outputs of GLDAS-Noah and

CLMmodels (e.g., Gonçalvès et al. 2013). There are several problemswith such applications.

For instance, none of these LSMs (e.g., GLDAS and CLM) are calibrated against field

measurements and/or observations, nor can they account for anthropogenic contributions or

simulate dynamic lakes or reservoirs. Additional problems include: The GLDASmodel does

not simulate groundwater and river channel storages (Rodell et al. 2004), and the CLMmodel

overestimates evapotranspiration (ET) and does not adequately simulate the partitioning of

ET into soil evaporation, canopy evaporation, and transpiration (Schaefer et al. 2012;

Hudiburg et al. 2013; Tang and Riley 2013; Swenson and Lawrence 2014).

Given the fact that GRACE measures both natural (climatic) and anthropogenically

induced variations in TWS, one would expect a general correspondence between

TWSGRACE and LSM-derived TWS (TWSLSM) in hydrologic systems that are largely

controlled by natural variations. In a recent study, we investigated the nature (climatic and/

or human pressure-related) of the factors controlling the observed variations of TWSGRACE
across all the major hydrologic systems in Africa and identified the basins that are largely

controlled by natural factors (Ahmed et al. 2014).

In this paper, we select four of the previously investigated African hydrologic systems

(Niger, Okavango, Zambezi, and Limpopo basins) that are least affected by anthropogenic

practices and are largely controlled by natural factors. We first demonstrate that for those

four basins there are discrepancies between TWSGRACE and TWSLSM; then, we investigate

whether these observed discrepancies are largely related to differences in model forcing

inputs (e.g., precipitation and temperature) and/or due to differences in the adopted

algorithms, and finally, we apply first-order corrections to improve the outputs of LSMs

and the correspondence between TWSGRACE and TWSLSM. We also show that the adopted

corrections can improve the correspondence between TWSGRACE and TWSLSM across the

entire African continent. By improving the outputs of the LSMs and applying approaches

similar to those listed above (e.g., Tiwari et al. 2009; Landerer and Swenson 2012; Joodaki

et al. 2014), one can better refine the vertical and horizontal resolution of TWSGRACE.

Unlike many of the previous and ongoing attempts (e.g., Reichle et al. 2002;Walker et al.

2003; Niu and Yang 2006; Moradkhani 2008; Zaitchik et al. 2008; Werth et al. 2009; Werth

and Güntner 2009; Widiastuti 2009; Oleson et al. 2010; Su et al. 2010; Gent et al. 2011;

Forman et al. 2012; Houborg et al. 2012; Lawrence et al. 2012; Li et al. 2012; Awange et al.
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2014; Eicker et al. 2014; Swenson and Lawrence 2014) that utilize TWSGRACE data to assess

and improve the performance and/or the outputs of LSMs, our approach does not require

access to extensive computational resources required to simulate LSMs’ outputs.

2 Data and Methodology

In this section, we briefly describe the GRACE and LSM datasets, procedures used to

derive TWSGRACE, TWSLSM and related products, and the independent ET datasets that

were used to assess and improve the performance of LSM simulations. All of the data used

in this exercise are monthly datasets and were acquired throughout the time period of

January 2003–December 2010.

2.1 GRACE-Derived TWS Data (TWSGRACE)

We analyzed level 2 GRACE gravity field solutions [Release 05 (RL05)] from the GRACE

database provided by the University of Texas Center for Space Research (available at ftp://

podaac.jpl.nasa.gov/allData/grace/L2/CSR/RL05; last access: October 2015). These solu-

tions are represented in terms of fully normalized spherical harmonic decompositions up to

degree and order of 60. The time-variable component of the gravity field was obtained by

removing the long-term mean of the Stokes coefficients from each of the monthly values.

Generally, errors in the GRACE-derived gravity field coefficients are categorized as sys-

tematic and random errors. The systematic errors, which are correlated within a particular

spectral order, were reduced by applying destriping filters developed by Swenson and

Wahr (2006). The random errors, which increase as a function of spherical harmonic

spectral degree (Wahr et al. 2006), were minimized by applying a Gaussian filter with a

half-width corresponding to 200 km (Wahr et al. 1998). The spherical harmonic coeffi-

cients were then converted to mass (TWSGRACE) grids (1� 9 1�) of equivalent water

thickness following the procedures described by Wahr et al. (1998). The temporal gaps in

TWSGRACE data, associated with battery-related power limitations, were filled using linear

interpolation techniques of the previous and the following months.

The peak-to-peak amplitude of annual cycle (AAC) image was generated by simultane-

ously fitting an annual and semiannual sine and cosine, mean, and linear trend for each grid

point in the TWSGRACE time series. The seasonality differences in TWSGRACE data were

examined by calculating the difference between the TWSGRACE of the boreal spring months

(March, April, and May) and the boreal fall months (September, October, and November).

The uncertainty (1-sigma) associated with TWSGRACE estimates, averaged over a basin,

was calculated by: (1) simultaneously fitting and removing an annual and semiannual sine

and cosine, mean, and linear trend to estimate monthly TWSGRACE residuals and (2)

calculating the standard deviation of the monthly TWSGRACE residuals. The calculated

uncertainty is conservative, given that the variabilities from the short-time and inter-annual

periods were included; by including those non-normally distributed variabilities, the

uncertainty could be overestimated (Wahr et al. 2006; Klees et al. 2007). The calculated

uncertainty was used to examine the statistical significance of the differences between the

TWSGRACE and TWSLSM; if the difference between the TWSGRACE and TWSLSM for any

month was larger than the value of 1-sigma, we can be 68.3 % confident that difference is

statistically significant and that the value of the TWSLSM need to be corrected (Wahr 2007;

Swenson and Lawrence 2014).
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The Nash–Sutcliffe efficiency (NSE) coefficient was used to calculate the degree of

statistical agreement between the TWSGRACE and the TWSLSM. NSE is a normalized

statistical approach that indicates how well the plot of observed versus simulated data fits

the 1:1 line relationship (Nash and Sutcliffe 1970). The NSE coefficient is calculated using

the following equation:

NSE ¼ 1�
Pn

i¼1 Oi � Sið Þ2
Pn

i¼1 Oi � �Oð Þ2
ð1Þ

where Oi is the observed value (TWSGRACE), Si is the simulated value (TWSLSM), n is the

number of measurements, and �O is the average of Oi over the entire period (January 2003–

December 2010). The optimal value for the NSE is equal to 1.0. The NSE coefficient was

used to examine the correspondence between temporal datasets other than GRACE such as

precipitation, temperature, and ET.

2.2 Land Surface Models TWS Outputs (TWSLSM)

The outputs of two LSMs were used in this study: the TWS outputs of the GLDAS-Noah

and the CLM4.5-SP models. To unify the spatial resolution of TWSGRACE and TWSLSM,

the LSM grids were converted to spherical harmonics coefficient (degree/order of 60), the

long-term mean was removed, and residuals were filtered using filters (destriping and

Gaussian) applied to GRACE data and then converted to mass grids. The AAC and the

seasonality difference images of the TWSLSM were calculated using the procedures

described for TWSGRACE. As described above, TWSGRACE was compared to TWSLSM.

2.2.1 GLDAS Model TWS Outputs (TWSGLDAS)

The GLDAS is a NASA land surface modeling system that integrates the global satellite-

based measurements to drive advanced simulations for climatic and hydrologic investi-

gations (Rodell et al. 2004). The GLDAS forcing precipitation data are extracted from the

National Oceanic and Atmospheric Administration (NOAA) and Climate Prediction Center

(CPC) Merged Analysis of Precipitation (CMAP) (Xie and Arkin 1997). GLDAS simulates

TWS as the summation of soil moistures, snow, and canopy storages through four main

land surface models: VIC (Liang et al. 1996), Noah (Koren et al. 1999), MOSAIC (Koster

and Suarez 1996), and CLM (Dai et al. 2003). The TWSGLDAS was extracted from the

GLDAS version 1 Noah model (spatial resolution: 1� 9 1�; available at: ftp://hydro1.sci.

gsfc.nasa.gov; last access: October 2015).

2.2.2 CLM Model TWS Outputs (TWSCLM)

CLM is the land component of the Community Earth System Model (CESM) (Gent et al.

2011; Lawrence et al. 2011; Hurrell et al. 2013). CLM simulates the partitioning of mass

and energy from the atmosphere and the redistribution of mass and energy within the land

surface. The CLM [version 4.5 satellite phenology (SP)] simulations used in this study are

forced with atmospheric conditions for the period 1850–2010 extracted from the Climate

Research Unit, National Centers for Environmental Prediction (CRUNCEP) (Viovy and

Ciais 2015) datasets. Components of TWS outputs from the CLM4.5 model (spatial res-

olution: 1.25� longitude 9 0.9� latitude) include soil moisture, snow, vegetation canopy
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storage, channel storage in rivers, and unconfined aquifer storage. CLM4.5 products are

available at: https://www.earthsystemgrid.org (last access: October 2015).

2.3 Evapotranspiration (ET) Data

Three main independent ET datasets were used in this study: two satellite-based ET

estimates [the Moderate Resolution Imaging Spectroradiometer (MODIS-MOD16) and the

Global Land Evaporation Amsterdam Methodology (GLEAM)] and one field-based ET

estimate [FLUXNET-Model Tree Ensembles (MTE)]. The term ‘‘measurement-based ET

(ETmeasured)’’ was used throughout this study to denote both satellite-based and field-based

ET estimates. ETmeasured values were used to validate the LSM-derived ET (ETLSM)

estimates and to correct the bias in them, if any. ET datasets were gridded at 0.5� 9 0.5� to
unify the spatial resolution of different ET products. The AAC images and the uncertainty

bounds were calculated using the procedures described above for TWSGRACE. As in the

case of the TWSGRACE and TWSLSM, the NSE coefficients were calculated between the

ETmeasured estimates and the model-based ET estimates (ETLSM).

2.3.1 MODIS-MOD16 ET Data (ETMOD16)

The MOD16 algorithm computes global potential and actual ET for vegetated land areas at

a spatial resolution of one square kilometer and at varying temporal resolutions (8 days,

monthly, annual intervals) (Mu et al. 2007). MOD16 uses MODIS land cover, albedo, Leaf

Area Index, an enhanced vegetation index, and a daily meteorological reanalysis data set

from NASA’s Global Modeling and Assimilation Office (GMAO) as inputs for regional

and global evaporation estimation applying the Penman–Monteith method (Mu et al.

2011). The MOD16 data used in this study are available at ftp://ftp.ntsg.umt.edu/pub/

MODIS/NTSG_Products/MOD16 (last access: October 2015).

2.3.2 Global Land Evaporation Amsterdam Methodology (GLEAM) ET Data
(ETGLEAM)

GLEAM is a set of algorithms driven by satellite observations that estimates different

components of ET (transpiration, interception loss, bare soil evaporation, snow sublima-

tion, and open water evaporation) (Miralles et al. 2011b). GLEAM provides global daily

estimates of ET with a spatial resolution of 0.25� 9 0.25�. GLEAM version 2B, used in

this study (available at: http://foofoo.ugent.be/satex/GLEAM/; last access: October 2015),

is forced by CPC MORPHing technique (CMORPH) precipitation data, WAter Cycle

Multi-mission Observation Strategy-Climate Change Initiative (WACMOS-CCI) surface

soil moisture data, NASA Land Parameter Retrieval Model (NASA-LPRM) vegetation

optical depth data, Clouds and Earth’s Radiant Energy System-SYNoptic radiative fluxes

and clouds version 1 (CERES-SYN1) degradation flux data, Atmospheric Infrared

Sounder (AIRS) version 7 air temperature data, and Global Snow Monitoring for Climate

Research (GlobSnow) snow water equivalents data (Miralles et al. 2011a, b). GLEAM

uses a modified Priestley and Taylor model in combination with an evaporative stress

module and a Gash analytical model of rainfall interception to derive evaporation

(Miralles et al. 2010).
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2.3.3 FLUXNET-MTE ET Data (ETFLUXNET)

The FLUXNET network of eddy covariance towers applies the MTE approach to provide

global, gridded (0.5� 9 0.5�), monthly (starting from January 1982) estimates of sensible

and latent heat and carbon fluxes (available at: https://www.bgc-jena.mpg.de/geodb/

projects/Home.php; last access: October 2015). FLUXNET-MTE uses a machine-learning

algorithm to estimate the surface–atmosphere fluxes from a suite of explanatory variables

describing meteorological and land surface conditions (Jung et al. 2011). The MTE was

trained using eddy covariance observations from individual FLUXNET facilities (number

of flux towers in 2014: 683) and then applied at the global scale. In this study, ET values

were extracted from FLUXNET-MTE latent heat flux estimates by multiplying these

estimates by the inverse of the latent heat of vaporization.

2.4 Model Forcing Rainfall (R) and Temperature (T) Data

To check whether differences between TWSGRACE and TWSLSM if any are related to

differences in LSM input data, the forcing data for the LSMs were compared spatially in a

Geographic Information System (GIS) environment and temporally (time series analyses)

to one another. Precipitation and temperature were found to be the primary forcing

parameters over most of the African continent, while specific humidity, wind speed, sur-

face pressure, and solar radiation played a secondary role (e.g., Bucchignani et al. 2015). In

this study, the primary LSM forcing parameters (precipitation and temperature) were

investigated. If we were to observe large variations in the degree to which TWSGRACE
corresponds to each of TWSGLDAS and TWSCLM4.5 and if these variations were related to

differences in model inputs, one would expect to observe large variations in these inputs.

For time series analysis, the temporal mean was removed from each of the forcing datasets.

The uncertainty bounds were calculated using the procedures described above for

TWSGRACE. As in the case of the TWSGRACE and TWSLSM, the NSE coefficients were

calculated between CLM4.5 and GLDAS forcing precipitation and temperature

measurements.

3 Assessing the Performance of LSMs

3.1 LSMs-Derived TWS

Figure 1 shows the peak-to-peak AAC over the African continent that was generated from

GLDAS (TWSGLDAS; Fig. 1a), GRACE (TWSGRACE; Fig. 1b), and CLM4.5 (TWSCLM4.5;

Fig. 1c) TWS data over the investigated period of January 2003–December 2010.

Examination of Fig. 1 shows that the highest annual amplitude of TWS over Africa occurs

over areas affected by the Intertropical Convergence Zone (ITCZ). The ITCZ (latitude

domain: 23.4�N to 23.4�S) is characterized by low pressure, trade wind convergence and

confluence, increased cloudiness, high surface temperature, and high rainfall. The January

and July locations of the ITCZ are shown in Fig. 1. Inspection of the AAC images over the

African continent shows similarities in patterns between TWS estimates extracted from

GRACE, GLDAS, and CLM4.5, but differences in magnitude (AAC: TWSGRACE[
TWSGLDAS[TWSCLM4.5). Those differences are maximized in areas experiencing the

highest annual amplitude of TWS, the areas affected by ITCZ (Fig. 1).
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Examination of Fig. 1 and Table 1 reveals that the CLM4.5 model underestimates the

amplitude of the seasonal cycle of TWS compared to that extracted from GLDAS and

GRACE. In the Niger Basin, the AAC for TWSGRACE, TWSGLDAS, and TWSCLM4.5 is

estimated at 181 ± 10, 135, and 130 mm, respectively; in the Zambezi Basin, they are

310 ± 42, 266, and 213 mm, respectively. In the Limpopo and Okavango basins, the AAC

of TWSGRACE is twice as large as that of the TWSCLM4.5 (Limpopo Basin: GRACE:

71 ± 26 mm; GLDAS: 69 mm; CLM4.5: 29 mm; Okavango Basin: GRACE:

134 ± 21 mm; GLDAS: 126 mm; CLM4.5: 57 mm).

Figure 2 compares the seasonality differences in TWSGRACE and TWSLSM. Examina-

tion of Fig. 2 shows dipolar patterns across the equator, negative, and positive polarities in

the northern and southern hemispheres, respectively. Those patterns are largely controlled

by ITCZ-related migration of monsoonal winds from south of the equator in boreal winter

to north of the equator in boreal summer (Gent et al. 2011). The dipolar features of

TWSGRACE, TWSGLDAS, and TWSCLM4.5 are similar in patterns, but differ in magnitude

(seasonality difference: TWSGRACE[TWSGLDAS[TWSCLM4.5).

Time series for the selected watersheds are displayed in Fig. 3. In Fig. 3a–d, the cor-

respondence between the TWSGRACE and TWSCLM (NSE: GRACE/CLM4.5) and between

TWSGRACE and TWSGLDAS (NSE: GRACE/GLDAS) values are displayed in the upper

right (blue text) and the lower right (red text) corners, respectively. Inspection of Fig. 3

shows varying degrees of correspondence in patterns, phases, and magnitudes between the

measured (TWSGRACE) and modeled (TWSLSM) estimates of TWS. Figure 3 shows that

the CLM4.5 model overestimates TWS in winter months and underestimates them in

summer months compared to TWSGRACE. For the Niger (Fig. 3a) and the Zambezi

(Fig. 3b) basins, the patterns and phases are quite similar, yet the difference between each

of the TWSLSM and the TWSGRACE exceeds TWSGRACE uncertainty bounds. The corre-

spondence between the TWSGRACE and TWSLSM for the Niger and Zambezi basins are

reflected in the NSE values (NSE: GRACE/GLDAS Niger: 0.82; Zambezi: 0.66; NSE:

GRACE/CLM4.5 Niger: 0.80, Zambezi: 0.56). In the Okavango (Fig. 3c) and Limpopo

(Fig. 3d) basins, TWSGLDAS and TWSGRACE show similarities in their patterns, but

Fig. 1 Peak-to-peak amplitude of annual cycle (AAC: in mm) from a TWSGLDAS, b TWSGRACE, and
c TWSCLM4.5 over the African continent during the period from January 2003 to December 2010. Also
shown are the January and July positions of the ITCZ (Levin et al. 2009) and the spatial distribution of the
investigated watersheds
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Table 1 AAC and NSE for estimates of TWS, rainfall, temperature, and ET over the Niger, Zambezi,
Okavango, and Limpopo basins

Parameter Niger Zambezi Okavango Limpopo

TWS (mm)

AAC

GRACE 181 ± 10 310 ± 40 134 ± 21 71 ± 26

GLDAS 135 266 126 69

CLM4.5 130 213 57 29

CLM4.5-MOD16-based 191 237 164 95

CLM4.5-FLUXNET-based 178 278 127 73

CLM4.5-GLEAM-based 180 260 113 71

NSE

GRACE/GLDAS 0.82 0.66 0.41 0.47

GRACE/CLM4.5 0.80 0.56 0.29 0.34

GRACE/CLM4.5-MOD16-based 0.86 0.56 0.44 0.47

GRACE/CLM4.5-FLUXNET-based 0.88 0.61 0.50 0.51

GRACE/CLM4.5-GLEAM-based 0.88 0.59 0.48 0.51

Rainfall (mm/month)

AAC

GLDAS 152 ± 15 220 ± 28 134 ± 23 99 ± 23

CLM4.5 158 ± 12 220 ± 23 135 ± 10 104 ± 18

NSE

GLDAS/CLM4.5 0.93 0.83 0.80 0.75

Temperature (�K)
AAC

CLM4.5 11 ± 0.9 7 ± 0.8 10 ± 0.8 10 ± 0.9

GLDAS 10 ± 0.9 9 ± 0.8 12 ± 1.0 10 ± 1.0

NSE

GLDAS/CLM4.5 0.94 0.81 0.91 0.94

ET (mm/month)

AAC

CLM4.5 77 112 104 96

GLDAS 58 80 65 64

MOD16 45 ± 2 94 ± 7 46 ± 7 54 ± 10

GLEAM 51 ± 3 80 ± 5 75 ± 6 72 ± 7

FLUXNET 54 ± 2 70 ± 4 67 ± 5 68 ± 6

CLM4.5-MOD16-based 46 92 48 56

CLM4.5-GLEAM-based 53 79 74 69

CLM4.5-FLUXNET-based 54 70 67 68

NSE

MOD16/CLM4.5 0.46 0.77 -0.88 -0.15

MOD16/GLDAS 0.79 0.89 0.49 0.68

GLEAM/CLM4.5 0.70 0.78 0.71 0.66

GLEAM/GLDAS 0.93 0.91 0.84 0.93

FLUXNET/CLM4.5 0.79 0.60 0.61 0.64

FLUXNET/GLDAS 0.88 0.77 0.86 0.90
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differences in their amplitude which exceed TWSGRACE uncertainty bounds (NSE:

GRACE/GLDAS Okavango: 0.41, Limpopo: 0.47), whereas the TWSCLM4.5 patterns and

amplitude are quite different from those of TWSGRACE (NSE: GRACE/CLM4.5 Oka-

vango: 0.29, Limpopo: 0.34). For all of the examined basins, it is worth mentioning that the

correspondence reflected in NSE values between the TWSGRACE and TWSGLDAS values is

higher than that of TWSGRACE and TWSCLM4.5.

Results indicate that the CLM4.5 model underestimates the TWS amplitude of the

seasonal cycle compared to modeled (TWSGLDAS) and measured (TWSGRACE) TWS

estimates. Next, we investigate whether the observed differences in AAC, seasonality, and

time series between the TWSGRACE and TWSLSM are related to differences in the LSMs

input forcing data and/or differences in calculation schemes such as those used to estimate

ET.

3.2 LSMs Forcing Precipitation (R) and Temperature (T) Data

Figure 4 shows the average annual rainfall extracted from GLDAS (RGLDAS; Fig. 4a) and

CLM4.5 (RCLM4.5; Fig. 4b) forcing rainfall data over Africa. Over the African continent,

areas receiving the highest amount of precipitations are those within the ITCZ (Fig. 4). The

amounts and patterns of rainfall data extracted from the GLDAS and the CLM4.5 are in

good agreement (Fig. 4), and so is the AAC (Table 1). For example, over the Okavango

Basin the amplitude of annual cycle of rainfall (AAC) from RGLDAS and RCLM4.5 is

estimated at 134 ± 23 and 135 ± 10 mm/month, respectively. Similar observations were

reported for the Niger (RGLDAS: 152 ± 15 mm/month; RCLM4.5: 158 ± 12 mm/month),

Zambezi (RGLDAS: 220 ± 28 mm/month; RCLM4.5: 220 ± 23 mm/month), and Limpopo

(RGLDAS: 99 ± 23 mm/month; RCLM4.5: 104 ± 18 mm/month) basins.

The rainfall time series for the selected basins are displayed in Fig. 5. The NSE for the

rainfall values extracted from RGLDAS and RCLM4.5 is displayed in the upper right corner in

Fig. 5a–d. Examination of Fig. 5a–d shows an excellent agreement between the ampli-

tudes, phases, and frequencies of RGLDAS and RCLM4.5; the observed differences over each

of the selected basins lie mostly within the 1-sigma uncertainty limits of each estimate. The

Fig. 2 Average difference in TWS (in mm) between boreal spring (March, April, May) and boreal fall
(September, October, November) months extracted from a TWSGLDAS, b TWSGRACE, and c TWSCLM4.5

over the African continent during the period from January 2003 to December 2010
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correspondence between the RCLM4.5 and RGLDAS for the investigated basins is reflected in

the NSE values (Niger: 0.93; Zambezi: 0.83; Okavango: 0.80; Limpopo: 0.75; Fig. 5).

Figure 6 shows the average annual air temperature extracted from GLDAS (TGLDAS;

Fig. 6a) and CLM4.5 (TCLM4.5; Fig. 6b) forcing temperature data over the entire African

continent. Areas affected by ITCZ are witnessing high surface temperature and excessive

convection due to the heating of the Earth near the equatorial areas. In those areas,

divergence currents circulate hot air away from the equator, resulting in lower surface air

temperatures toward the mid-latitudes in both hemispheres (Nguyen et al. 2013). The

magnitudes and patterns of air temperature data extracted from TGLDAS and TCLM4.5 are in

Fig. 3 Time series showing the temporal variations in monthly TWS (in mm) estimates from TWSGRACE
(black line), TWSGLDAS (red line), and TWSCLM4.5 (blue line) for the a Niger Basin, b Zambezi Basin,
c Okavango Basin, and d Limpopo Basin. Gray shading indicates 1-sigma uncertainty limits calculated for
TWSGRACE data. The NSE values are displayed in the upper right (TWSGRACE/TWSCLM4.5; blue text) and
the lower right (TWSGRACE/TWSGLDAS; red text) corners
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good agreement (Fig. 6), and so is the AAC (Table 1) over the Limpopo (TCLM4.5:

10 ± 0.9 �K; TGLDAS: 10 ± 1.0 �K), the Zambezi (TCLM4.5: 7 ± 0.8 �K; TGLDAS:

9 ± 0.8 �K), the Okavango (TCLM4.5: 10 ± 0.8 �K; TGLDAS: 12 ± 1.0 �K), and the Niger

(TCLM4.5: 11 ± 0.9 �K; TGLDAS: 10 ± 0.9 �K) basins.
The air temperature time series for the selected basins is displayed in Fig. 7. The NSE

for the temperature values extracted from TGLDAS and TCLM4.5 is displayed in the upper

right corner in Fig. 7a–d. Inspection of Fig. 7 shows an excellent agreement between the

amplitudes, patterns, and phases of the air temperature data extracted from TGLDAS and

TCLM4.5 that is reflected in the high NSE values (Niger: 0.94; Zambezi: 0.81; Okavango:

0.91; Limpopo: 0.94; Fig. 7).

Analysis of rainfall and temperature data suggests that the differences in forcing pre-

cipitation and temperature data are unlikely to be the main cause for the observed dis-

crepancies between TWSGLDAS and TWSCLM4.5 and hence between TWSGRACE and

TWSLSM. In the next section, we show that the differences in calculation schemes for some

variables such as ET could be largely responsible for observed disagreements between

TWSGRACE and TWSLSM.

3.3 LSMs-Derived ET

Figure 8 shows the AAC of the ET data over the African continent that was generated from

the CLM4.5 (ETCLM4.5; Fig. 8a), GLDAS (ETGLDAS; Fig. 8b), FLUXNET-MTE

(ETFLUXNET; Fig. 8c), GLEAM (ETGLEAM; Fig. 8d), and MOD16 (ETMOD16; Fig. 8e)

datasets. Inspection of Fig. 8 indicates that in general higher (lower) monthly ET values

occur in wet (dry) seasons; areas witnessing higher amplitude and variability in ET are

Fig. 4 Average annual rainfall (in mm/month) over the African continent extracted from a RGLDAS and
b RCLM4.5 forcing rainfall data during the period from January 2003 to December 2010
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those affected by ITCZ, whereas low ET values are observed over desert regions in

northern and southern Africa. Examination of Fig. 8 demonstrates that the CLM4.5

overestimates AAC of ET values compared to AAC values extracted from the other

modeled (ETGLDAS) and measured (ETFLUXNET, ETGLEAM, and ETMOD16) estimates of ET.

This could be related to differences in meteorological input data types or in retrieval

algorithms and associated uncertainties used in calculating ET. The performance of a

number of these methods varies from one climatic condition to another. For example, the

MOD16 ET algorithm performs well over forested areas but is less adequate over arid and

semiarid regions where it underestimates ET (Kim et al. 2012; Trambauer et al. 2014). It is

Fig. 5 Time series showing the temporal variations in monthly rainfall (in mm/month) estimates from
RGLDAS (red line) and RCLM4.5 (blue line) forcing precipitation data for the a Niger Basin, b Zambezi Basin,
c Okavango Basin, and d Limpopo Basin. Blue and red shading indicates 1-sigma uncertainty limits
calculated for RCLM4.5 and RGLDAS data, respectively. The NSE (RGLDAS/RCLM4.5) values are displayed in
the upper right corner
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reasonable to assume that ETFLUXNET provides the better overall estimates for ET over

Africa given that: (1) it is based on field measurements (flux tower; refer to Fig. 8c for

locations), (2) ETFLUXNET has been traditionally used by researchers to evaluate and/or

calibrate remote sensing- and LSM-based ET estimates (e.g., Fisher et al. 2008; Wanner

et al. 2008; Jung et al. 2009, 2010, 2011; Beer et al. 2010; Bonan et al. 2011; Ershadi et al.

2014; Swenson and Lawrence 2014), and (3) the wide variations in climatic conditions

encountered over Africa make it unlikely that any of the other ETmeasured approaches

perform equally well over the entire spectrum of climatic zones within Africa.

Similar findings (CLM4.5 overestimates the AAC of ET) are observed over the

investigated watersheds (Fig. 9; Table 1). In the Niger Basin, the AAC for ET from

CLM4.5, GLDAS, FLUXNET, GLEAM, and MOD16 is estimated at 77, 58, 54 ± 2,

51 ± 3, and 45 ± 2 mm/month, respectively; for the Zambezi Basin they are 112, 80,

70 ± 4, 80 ± 5, and 94 ± 7 mm/month, respectively. Similarly, in the Limpopo Basin,

the CLM4.5 estimates for ET are high (96 mm/month) compared to those extracted from

GLDAS (64 mm/month), FLUXNET (68 ± 6 mm/month), GLEAM (72 ± 7 mm/month),

and MOD16 (54 ± 10 mm/month). Comparable findings were observed over the Oka-

vango Basin (CLM4.5: 104 mm/month, GLDAS: 65 mm/month, FLUXNET:

67 ± 5 m/month, GLEAM: 75 ± 6 mm/month, and MOD16: 46 ± 7 mm/month).

Examination of Fig. 9 shows a general agreement between the patterns and phases of

ETCLM4.5 and the remaining ET estimates; however, the CLM4.5 model overestimates ET in

the summer and underestimates its values in winter months, resulting in: (1) a difference in

amplitude between ETCLM4.5 and each of the remaining ET values that exceeds the uncer-

tainty bounds and (2) a reduction in the correspondence between the ETCLM4.5 and each of the

measured ET estimates. For example, in the Niger Basin the correspondence between

Fig. 6 Average annual air temperature (in �K) over the African continent extracted from a TGLDAS and
b TCLM4.5 forcing temperature data during the period from January 2003 to December 2010
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ETCLM4.5 and each of ETMOD16, ETGLEAM, andETFLUXNET is low (NSE: 0.46, 0.70, and 0.79,

respectively) compared to the correspondence of ETGLDAS with the ETmeasured estimates

(NSE: 0.79, 0.93, and 0.88, respectively). Similar findings were observed over the Zambezi

(Fig. 9b), Okavango (Fig. 9c), and Limpopo (Fig. 9d) basins (Table 1).

Our findings suggest that the ET calculation schemes for the CLM4.5 model could be

largely responsible for the observed discrepancies between the ETCLM4.5 and the measured

(ETFLUXNET, ETGLEAM, and ETMOD16) and modeled (ETGLDAS) ET estimates. This might

be largely due to the poor estimates of evaporation from the soil and transpiration from the

canopy. This could result from uncertainties in parameter values; these include exposed

Fig. 7 Time series shows the temporal variations in monthly air temperature (in �K) estimates from TGLDAS

(red line) and TCLM4.5 (blue line) forcing air surface temperature for the a Niger Basin, b Zambezi Basin,
c Okavango Basin, and d Limpopo Basin. Blue and red shading indicates 1-sigma uncertainty limits
calculated for TCLM4.5 and TGLDAS data, respectively. The NSE (TGLDAS/TCLM4.5) values are shown in the
upper right corner
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leaf and stem area indices, wet fraction of leaf and stems, and soil layer thickness. The

discrepancies between ETmeasured and ETCLM4.5 estimates could also be related to poor

representation of physical process. For example, the incorporation of a dry surface soil

layer to control the diffusion rate of water vapors from the soil improved the CLM4.5

outputs in semiarid region (Swenson and Lawrence 2014). Other secondary and indirect

reasons for the observed disagreements between ETmeasured and ETCLM4.5 could be related

to poor model estimates of base flow, root hydraulic redistribution, and surface flow (e.g.,

Swenson and Lawrence 2015; Tang et al. 2015). Our findings support earlier studies that

indicate that the CLM model overestimates ET and poorly simulates the partitioning of ET

into soil evaporation, canopy evaporation, and transpiration (e.g., Schaefer et al. 2012;

Hudiburg et al. 2013; Tang and Riley 2013; Swenson and Lawrence 2014). Next, we

develop and apply first-order correction techniques to correct the bias in ETCLM4.5 and

show how those corrections can effectively adjust the TWSLSM. For demonstration pur-

poses, we apply the developed methodology to the CLM4.5-SP model outputs given the

higher deviation (compared to GLDAS-Noah) from the measured TWSGRACE.

4 Improving the Outputs of the CLM4.5 Model

We demonstrated that the CLM4.5 model overestimates ET in summer months and under-

estimates it inwintermonths compared to ETmeasured, which in turn affects theCLM4.5-based

estimates for soil moisture (SMCLM4.5), groundwater (GWCLM4.5), and TWS (TWSCLM4.5).

Fig. 8 Peak-to-peak AAC of ET (in mm/month) from a ETCLM4.5, b ETGLDAS, c ETFLUXNET, d ETGLEAM,
and e ETMOD16 data over the African continent during the period from January 2003 to December 2010.
Also shown are the locations of FLUXNET stations across Africa (c)
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The optimum approach to address this issue is to modify the algorithm by which the CLM4.5

calculates ET. Recently, Swenson and Lawrence (2014) were able to adjust the portioning

between soil evaporation and plant transpiration estimates in the CLM4.5 model over semi-

arid regions in theMiddle East. They attributed the bias in CLM4.5 estimates of TWS and ET

to fictitious excessive soil evaporation in areas where canopy is sparse or absent, which is

reducing themodel estimates for moisture input into the ground. Such an approach is a step in

the right direction, yet additional work is needed to refine andmodify existing ET algorithms

Fig. 9 Time series showing the temporal variations in monthly ET (in mm/month) estimates from ETCLM4.5

(blue line), ETGLDAS (red line), ETMOD16 (green line), ETGLEAM (magenta line), and ETFLUXNET (black
line) for the a Niger Basin, b Zambezi Basin, c Okavango Basin, and d Limpopo Basin. Green, magenta,
and gray shading indicate 1-sigma uncertainty limits calculated for ETMOD16, ETGLEAM, and ETFLUXNET

data, respectively. The NSE (ETCLM4.5/ETmeasured; red text) and (ETGLDAS/ETmeasured; blue text) values are
displayed in the upper right and lower right corners, respectively
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to minimize the bias observed in all of the remaining climatological settings and environ-

ments (e.g., temperate, tropical, and subtropical; see Sect. 5). In this study, a first-order

correction technique for theTWSCLM4.5was developed and applied to awide range of settings

and environments across the African continent.

The adopted approach corrects ETCLM4.5 using ETmeasured and redistributes the overesti-

mated or underestimated amounts in ETCLM4.5 to SMCLM4.5 and GWCLM4.5 estimates on

Fig. 10 Time series showing the temporal variations in monthly ET (in mm/month) estimates from MOD16
(green line), GLEAM (purple line), and FLUXNET (black line) data along with the corrected ETCLM4.5

estimates based on MOD16 (green line with circles), GLEAM (purple line with circles), and FLUXNET
(black line with circles) for the a Niger Basin, b Zambezi Basin, c Okavango Basin, and d Limpopo Basin.
Green, purple, and gray shading indicate 1-sigma uncertainty limits calculated for MOD16, GLEAM, and
FLUXNET evapotranspiration data, respectively
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monthly basis. Our approach improves SMCLM4.5 and GWCLM4.5 estimates and related pro-

cesses andmaintains an overall water balancewithin the land surface system.However, it does

not estimate, nor further corrects for, potential feedbacks from the global climate model that

are related to the applied ET corrections and its associated near-surface climate processes.

The following steps were conducted to remove the bias in the CLM4.5 estimates of the

partitioning of precipitation into its major components: (1) ETCLM4.5 estimates were cor-

rected against ETmeasured estimates, (2) the difference between the original and corrected

ETCLM4.5 (hereafter referred to as excess water) was used to correct the SMCLM4.5 and

Fig. 11 Time series showing the temporal variations in monthly TWS (in mm) estimates from TWSGRACE
(black line) along with those estimated from the corrected TWSCLM4.5 based on ETMOD16 (green line),
ETGLEAM (red line), and ETFLUXNET (blue line) for the a Niger Basin, b Zambezi Basin, c Okavango Basin,
and d Limpopo Basin. Gray shading indicates 1-sigma uncertainty limits calculated for TWSGRACE. The
NSE (TWSGRACE/corrected TWSCLM4.5) values are shown in the lower right corner in green (MOD16-
based correction), red (GLEAM-based correction), and blue (FLUXNET-based correction) text
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GWCLM4.5 by redistributing the excess water based on the ratio h ¼ SMCLM4:5

GWCLM4:5

� �
; and (3) the

TWSCLM4.5 was recalculated using corrected SMCLM4.5 and GWCLM4.5.

Using ratios of the observed to projected standard deviations dx
dET

� �
; the range of the

projected ETCLM4.5 monthly estimates was rescaled to match those of the ETmeasured. The

correction is implemented by applying the following equation:

ET tð Þ ¼ ET tð Þ þ dx
dET

� �

� ETo tð Þ � ET tð Þ
� �

ð2Þ

where ETo tð Þ and ET tð Þ are the raw and the corrected ETCLM4.5 at a given time (t),

respectively, ET tð Þ is the average of the ETCLM4.5 estimates over the investigated period of

January 2003 to December 2010, and dx and dET are the standard deviation of the

ETmeasured and ETCLM4.5 estimates, respectively, over the investigated period. The

ETCLM4.5 estimates were corrected using each of the ETmeasured estimates one at a time.

The SMCLM4.5 and GWCLM4.5 estimates were then adjusted applying the following

equations:

at t ¼ 1:

SM tð Þ ¼ SMo tð Þ þ h tð Þ
1þ h tð Þ

� �

� ETo tð Þ � ET tð Þð Þ
ð3Þ

GW tð Þ ¼ GWo tð Þ þ 1

1þ h tð Þ

� �

� ETo tð Þ � ET tð Þð Þ ð4Þ

at t�2:

SM tð Þ¼ h tð Þ
h t�1ð Þ�

1þh t�1ð Þ
1þh tð Þ

� �

�SM t�1ð Þþ h tð Þ
1þh tð Þ

� �

� R tð Þ�Q tð Þ�ET tð Þð Þ ð5Þ

Fig. 12 Normalized difference in the AAC of a ETMOD16, b ETFLUXNET, and c ETGLEAM over the African
continent during the period from January 2003 to December 2010. Pixels with values\-1 were masked
(white polygons)

548 Surv Geophys (2016) 37:529–556

123



GW tð Þ ¼ 1þ h t � 1ð Þ
1þ h tð Þ

� �

� GW t � 1ð Þ þ 1

1þ h tð Þ

� �

� R tð Þ � Q tð Þ � ET tð Þð Þ ð6Þ

where SM tð Þ and GW tð Þ are the corrected soil moisture and groundwater estimates of the

CLM4.5 model at time (t), respectively, SMo tð Þ and GWo tð Þ are the CLM4.5 soil moisture

and groundwater estimates at t ¼ 1; respectively, h is the ratio between SMCLM4.5 and

GWCLM4.5 estimates h ¼ SMCLM4:5

GWCLM4:5

� �
, and R tð Þ and Q tð Þ are the rainfall and runoff estimates

of the CLM4.5 model, respectively. In this approach, the SMo tð Þ and GWo tð Þ values were
adjusted to redistribute excess monthly water to the soil moisture SM tð Þð Þ and groundwater
GW tð Þð Þ components in proportion to the h value.

The corrected TWSCLM4.5 was calculated by summing the corrected SMCLM4.5 and

GWCLM4.5, snow, canopy storage, and channel storage in rivers for each of the examined

basins. The SMCLM4.5, GWCLM4.5, and TWSCLM4.5 estimates were corrected using each of

the ETmeasured estimates one at a time.

The corrected ETCLM4.5 displays patterns similar to, and fall within the 1-sigma

uncertainty bounds of, the ETmeasured estimates for all of the four examined watersheds

(Fig. 10). For example, the ACC of the corrected ETCLM4.5 for the Niger Basin (MOD16-

based: 46 mm/month, GLEAM-based: 53 mm/month, and FLUXNET-based:

54 mm/month; Fig. 10a; Table 1) is very close to those estimated by ETmeasured estimates

(ETMOD16: 45 ± 2 mm/month, ETGLEAM: 51 ± 3 mm/month, and ETFLUXNET:

Fig. 13 Time series showing the temporal variations in monthly TWS (in mm) estimates from
a TWSGRACE (black line) and TWSCLM4.5 (magenta line), and b the corrected TWSCLM4.5 using MOD16
(green line), GLEAM (red line), and FLUXNET (blue line) ET estimates for the entire African continent.
Gray shading indicates 1-sigma uncertainty limits calculated for TWSGRACE. The NSE (TWSGRACE,
TWSCLM4.5) value is shown in the lower right corner of a in magenta text. The NSE (TWSGRACE, corrected
TWSCLM4.5) is shown in the lower right corner in green (MOD16-based), red (GLEAM-based), and blue
(FLUXNET-based) text
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54 ± 2 mm/month; Table 1). Similar findings are observed over the Zambezi (Fig. 10b),

Okavango (Fig. 10c), and Limpopo (Fig. 10d) basins (Table 1).

The excess water that resulted from the ET correction was redistributed between the

SMCLM4.5 and GWCLM4.5, given that these two components represent the bulk (in volume)

of the TWS components when compared to the remaining CLM4.5 components (river

channel storage, snow storages, and canopy storage); the redistribution was conducted on a

monthly basis using model-based h values for the individual months. For the investigated

watersheds, the h values were found to be \30 % (Zambezi: 0.22 ± 0.01; Limpopo:

0.26 ± 0.01; Okavango: 0.15 ± 0.01, and Niger: 0.19 ± 0.01), and their variations were

found to be small (standard deviation\5 % of mean h).
Inspection of Figs. 3a–d and 11a–d shows that the AAC of the corrected TWSCLM4.5 for

the investigated basins exceeds that of the uncorrected TWSCLM4.5. The AAC of the

corrected TWSCLM4.5 also shows good correspondence with, and falls within the 1-sigma

uncertainty range of, TWSGRACE. For example, over the Limpopo Basin (Fig. 11d), the

AAC of the corrected TWSCLM4.5 increased from 29 to 95 mm (MOD16-based), 71 mm

(GLEAM-based), and 73 mm (FLUXNET-based) and matches that of the TWSGRACE
(71 ± 26 mm; Table 1). Similar findings were observed for the Niger (Fig. 11a), Zambezi

(Fig. 11b), and Okavango (Fig. 11c) basins (Table 1).

The degree to which the correction enhanced TWSCLM4.5 estimates could be evaluated

by examining the correspondence between TWSGRACE and each of the uncorrected and

corrected TWSCLM4.5. If the correction resulted in higher NSE values, then this will

indicate that the correspondence was enhanced and the correction was successful. In

general, the corrected TWSCLM4.5 estimates generated by using the ETFLUXNET in cor-

recting ETCLM4.5 estimates are in a better agreement (higher NSE values) with TWSGRACE.

This is consistent with our earlier assumption that ETFLUXNET provides the better overall

estimates for ET over Africa. For example, in the Limpopo Basin (Fig. 11d; Table 1), the

NSE increased from 0.34 (TWSGRACE/TWSCLM4.5) to 0.47 (TWSGRACE/TWSMOD16-based),

0.51 (TWSGRACE/TWSGLEAM-based), and 0.51 (TWSGRACE/TWSFLUXNET-based). Similar

observations were observed for the Okavango Basin (Fig. 11c; Table 1). Similar (but of

less magnitude) improvements were observed over the Niger (Fig. 11a) and Zambezi

(Fig. 11b) basins (Table 1).

5 Applications and Regional Implications

Figure 12 shows the normalized difference in the AAC between ETCLM4.5 and ETMODIS

([ETCLM4.5 - ETMOD16]/ETMOD16; Fig. 12a), ETFLUXNET ([ETCLM4.5 - ETFLUXNET]/

ETFLUXNET; Fig. 12b), and ETGLEAM ([TWSCLM4.5 - TWSGLEAM]/ETGLEAM; Fig. 12c).

Examination of Fig. 12 shows that the CLM4.5 model overestimates the AAC of ET

(compared to ETmeasured) for most ([85 %) of the African continent and that the degree to

which the model overestimates the ET varies across the continent. For example, over the

arid zones in northern and southern Africa, the CLM4.5 model overestimates ET by

80–100 % compared to ETMOD16 (Fig. 12a) and by *50–60 % compared to both

ETFLUXNET (Fig. 12b) and ETGLEAM (Fig. 12c). Over the areas affected by the ITCZ, the

CLM4.5 model overestimates the ET by *40–50 % compared to ETMOD16 (Fig. 12a),

ETFLUXNET (Fig. 12b) and ETGLEAM (Fig. 12c). These observations indicate that ETCLM4.5

are inaccurate over a wide range of varying climatic and hydrologic settings across the
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African continent and should be adjusted so that more precise values for SMCLM4.5,

GWCLM4.5, and TWSCLM4.5 could be extracted.

We demonstrated that the adopted correction mechanism improves the correspondence

between TWSCLM4.5 and TWSGRACE over the investigated watersheds (see Sect. 4). The

question of whether the adopted algorithm can produce similar results over the entire

African continent with its varied climatic settings was addressed by examining the cor-

respondence between the TWSGRACE and TWSCLM4.5 time series before and after applying

the correction.

One would expect to observe a decline in the differences in AAC values between

TWSGRACE and the corrected TWSCLM4.5 and an improvement in NSE values if the

correction was effective; inspection of Fig. 13a, b and Table 1 shows that this is indeed the

case. Figure 13a, b shows time series for the TWSGRACE and TWSCLM4.5 over the entire

African continent before and after correction, respectively. The AAC for TWSGRACE
(21 ± 9 mm) exceeds that extracted from TWSCLM4.5 (16 mm) but is similar in patterns to

the one extracted from the corrected TWSCLM4.5. The AAC of the corrected TWSCLM4.5

increased from 16 to 24 mm (MOD16-based, GLEAM-based, and FLUXNET-based) and

approached that of the TWSGRACE (21 ± 9 mm). The enhancement in the correspondence

between the corrected TWSCLM4.5 and the TWSGRACE is reflected in the NSE values. Over

the entire African continent, the NSE increased from 0.34 (TWSGRACE/TWSCLM4.5) to 0.60

(TWSGRACE/TWSMOD16), 0.61 (TWSGRACE/TWSGLEAM), and 0.61 (TWSGRACE/

TWSFLUXNET).

A one-to-one correspondence between the TWSGRACE and the corrected TWSCLM4.5

time series over the entire African continent is not to be expected. Some of the observed

differences displayed in Fig. 13b could be related to the fact that the CLM4.5 model is not

simulating the anthropogenic contributions while GRACE is measuring both the climatic

and anthropogenic effects in a given system (e.g., Lee et al. 2011; Ahmed et al. 2014;

Forootan et al. 2014). Nevertheless, we demonstrated that the corrected TWSCLM4.5 esti-

mates over the entire African continent improved the correspondence of TWSCLM4.5 with

TWSGRACE data.

The adopted approach encompassed a wide range of climatic zones including arid and

hyper-arid areas in Saharan Africa, the Namibian and Kalahari deserts, semi-arid areas in

the Sahel, and tropical and subtropical areas in the ITCZ zone. In the majority of these

areas, it was assumed that excess water was largely partitioned in the soil moisture and

groundwater storage, and not in the surface water, snow, and biomass storage compart-

ments. While these are reasonable assumptions in the investigated areas, they are not in

temperate and Arctic regions, where large portions of the hydrologic systems in these areas

can be tied as snow accumulations. Similarly, in regions where river systems are prevalent,

the runoff could constitute a large portion of the water budget. In such cases and settings,

the correction mechanism presented in this study should be modified so that the excess

water is distributed between all the significant water compartments (e.g., snow and runoff)

in the investigated systems. Thus, caution should be exercised in generalizing the appli-

cation of the reported correction mechanisms across all climatic and hydrologic settings.

The correction algorithms (Eqs. 2–6) should be modified in accordance with the specifics

of the investigated hydrologic systems.

The adopted approach has not been tested on the grid-size scale (e.g., 1� 9 1� fully

distributed), yet it is here suggested that the bias applications on the basin scale remains a

better option, given the added uncertainties in TWSGRACE estimates (e.g., Wahr et al.

2006) and the potential for a larger anthropogenic effect on TWSGRACE at these finer scales

(e.g., Ahmed et al. 2014).
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In this study, we concentrated our efforts on providing a demonstration for the use of

TWSGRACE and field measured ET for the assessment of LSMs outputs and provided

straightforward techniques by which these outputs could be improved. We used the

CLM4.5-SP and GLDAS-Noah models as two examples, given that they are widely used

by the scientific community over the African continent. It is beyond the scope of this study

to apply these methodologies to the outputs of the many other available LSMs and/or their

various versions. However, our findings suggest that such efforts and applications should

be conducted as they could potentially yield effective methodologies for the assessment

and improvement of a wide range of LSMs outputs.

There is a growing interest in the applications of TWSGRACE data to assess and improve

the performance of LSMs via application of assimilation routines (e.g., Reichle et al. 2002;

Walker et al. 2003; Moradkhani 2008; Zaitchik et al. 2008; Houborg et al. 2012; Eicker

et al. 2014). The adopted approach should not be considered as a substitute to these efforts,

yet could represent a viable alternative for the many researchers who do not have access to

extensive computational resources that are needed for the assimilation of TWSGRACE data

into LSMs.

We use TWSGRACE data to evaluate and correct outputs of LSM; the corrected

TWSLSM, in bulk, or separate compartments, could then be used to refine the horizontal

and vertical resolution of TWSGRACE. Our approach is different from those that apply

scaling factors to improve the horizontal resolution of TWSGRACE (e.g., Landerer and

Swenson 2012). The latter involves converting the TWSLSM into spherical harmonic

coefficients, applying the filters used in TWSGRACE data processing (e.g., destriping and

Gaussian), extracting scaling factors that minimize the difference between the filtered and

unfiltered TWSLSM estimates, and applying these factors, in a multiplicative manner, to

improve the horizontal resolution of TWSGRACE (Landerer and Swenson 2012).

6 Summary

Researchers are currently taking advantage of the high vertical and spatial resolution of

LSMs outputs to address the limitations in GRACE data, namely the absence of vertical

resolution and its poor horizontal resolution. Such applications are compromised by the

apparent inadequacies in the outputs of popular LSMs, such as the CLM4.5 model. In this

study, a straightforward correction approach was developed and adopted to enhance the

accuracy of the outputs of the CLM4.5 model over the entire African continent, an

extensive area encompassing various climatic settings (e.g., arid, semi-arid, tropical,

subtropical, Mediterranean).

Our findings indicate that the ET calculation schemes, and not the model inputs,

are largely responsible for the observed discrepancies between the ETCLM4.5 and the

ETmeasured. These findings are based on the following observations: (1) forcing parameters

for number of LSMs were found to be similar and (2) the CLM4.5 model overestimates ET

values in summer months and underestimates them in winter months compared to ET

estimates extracted from field-/satellite-based ET estimates. The apparent discrepancy in

ETCLM4.5 affects the accuracy of other model outputs (GWCLM4.5, SMCLM4.5, and TWS

CLM4.5).

We developed and applied a straightforward correction mechanism using temporal

TWSGRACE measurements and field-/satellite-based ET measurements. The corrected

ETCLM4.5 estimates were then used to correct the SMCLM4.5, GWCLM4.5, and TWSCLM4.5
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values. The corrected TWSCLM4.5 estimates show a better agreement (higher correlation

and comparable AAC) with TWSGRACE. Efforts are underway to utilize data assimilation

algorithms of field- and satellite-based observations (e.g., TWSGRACE and ETFLUXNET) to

improve the LSMs performance. These methods are effective, yet require computational

resources that are not readily available for all researchers. The adopted correction approach

could provide a viable, cost-effective, alternative for researchers that lack these resources.

Our findings demonstrate the utility of TWSGRACE data to calibrate the TWSLSM outputs,

which could in turn be used to improve the vertical and horizontal resolution of the

GRACE data. Although not demonstrated in this manuscript, it is suggested that the use of

corrected LSM outputs will provide more accurate results when these outputs are used to

refine the vertical and horizontal resolution of TWSGRACE. The launch of the GRACE-FO

and GRACE-II missions will enable researchers to pursue these research directions.
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Döll P, Fritsche M, Eicker A, Müller Schmied H (2014a) Seasonal water storage variations as impacted by
water abstractions: comparing the output of a global hydrological model with GRACE and GPS
observations. Surv Geophys 35:1311–1331. doi:10.1007/s10712-014-9282-2
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