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Abstract We present global and regional gravity field models to degree 130 based on the

GOCE kinematic orbit from the period 01 November 2009 to 11 January 2010. The gravity

field models are parameterized in terms of the Shannon and Kaula’s spherical radial basis

functions. The relation between the unknown expansion coefficients and the kinematic

orbit of the satellite is established by the acceleration approach. We show that our global

GOCE-only solutions free from prior information can compete with unconstrained

spherical harmonic models in terms of accuracy. Furthermore, we utilize our low-degree

global GOCE-based models to introduce prior information into the least-squares adjust-

ment. This procedure substantially improves the zonal and near-zonal spherical harmonic

coefficients, which are usually degraded due to the polar gap problem. As an unwanted side

effect, low-pass filtering of the geopotential may occur, but this can be adjusted by the

spectral content of the prior information. We show that the regional enhancement of the

global solutions reduces noise in the final model between degrees 70 and 130 by*10 % in

terms of RMS error. In general, our Shannon-based solutions systematically outperform the

Kaula-based ones. To validate our results, we use the EIGEN-6S model, which is superior

to the solutions from kinematic orbits at least by one order of magnitude. Both the global

and the regional models satisfy the GOCE-only strategy.
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1 Introduction

Kinematic orbits of low Earth orbiters proved to be a useful source of information about

the long-wavelength component of the geopotential. For instance, the orbit of the CHAMP

(CHAllenging Minisatellite Payload, Reigber et al. 2002) satellite enabled to gain accuracy

of the long-wavelength geopotential by one order of magnitude when compared with the

pre-CHAMP era (Reigber et al. 2003). In addition to the static gravity field, the very long-

wavelength time-variable gravity signal was also recovered from kinematic orbits (e.g.,

Weigelt et al. 2013). Recently, the need for the gravity information from satellite orbits

was demonstrated by the dedicated satellite gravity mission GOCE (Gravity field and

steady-state Ocean Circulation Explorer, ESA 1999). The key instrument on-board the

GOCE satellite was the gravity gradiometer, which measured the second-order derivatives

of the Earth’s gravitational potential. Due to the construction of the device, the low-degree

part of the gravitational potential (say below 30) cannot be accurately determined solely

from the gradiometric measurements (Pail et al. 2011). Within this spectral band, the

GOCE-only models have to rely almost exclusively on the gravity information contained in

the kinematic orbit of the satellite.

Regarding the current and the past satellite missions, the GOCE satellite seems to be an

appropriate candidate to invert its kinematic orbit into a gravity field model. The reason is

twofold. First, the satellite was orbiting the Earth at an extremely low altitude (*250 km

above the Earth surface), thus being more sensitive to the fine structures of the gravity

field. Second, it was equipped with a geodetic-quality GPS receiver enabling a precise

satellite-to-satellite tracking in the high–low mode (SST-hl). A typical feature of the

GOCE mission is the Sun-synchronous orbit inclined at 96.7�. Two spherical caps of the

radius *7� around the poles are therefore uncovered by the satellite ground tracks.

Gravity field models from satellite data are commonly produced on a global scale by

means of spherical harmonics. Previous studies showed, however, that additional infor-

mation may be extracted from these data when the gravity field is modelled on a regional

scale (e.g., Eicker 2008; Eicker et al. 2014; Schmidt et al. 2007). In our opinion, there

are two main reasons for this behaviour in the case of GOCE. The first reason is related

to the downward continuation of satellite data. In general, downward continuation is an

ill-posed inverse problem requiring a regularization to stabilize the solution. Spherical

harmonic estimations are commonly stabilized by a single regularization parameter

which may lead to an overall damping of the gravity signal (e.g., Eicker et al. 2014;

Mayer-Gürr et al. 2005). It is not straightforward to add some spatially localized features

to spherical harmonic approaches in order to properly account for the regionally varying

gravity field. This is because spherical harmonics do not posses any localization in the

space domain. Secondly, the lack of data within the polar caps results in a poor estimate

of zonal and near-zonal spherical harmonic coefficients of medium- and high-resolution

unconstrained GOCE-only models (Sneeuw and van Gelderen 1997). It seems to be

therefore reasonable to seek for alternative approaches to the gravity field determination

from the GOCE data. For instance, a regionally tailored stabilization technique, such as

the spherical cap regularization (Metzler and Pail 2005), can be incorporated into the

spherical harmonic approaches to mitigate the polar gap problem. Other regularization

techniques, not necessarily based on a regional feature, can be used as well (e.g., Ditmar

et al. 2003; Metzler and Pail 2005; Pail et al. 2011; Xiancai et al. 2011). Here we

parameterize the gravity field by means of spatially localized basis functions, namely by

spherical radial basis functions.
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A spherical radial basis function (SRBF) is a function on a reference sphere depending

only on the spherical distance between two points on this sphere. The harmonic upward

continuation of SRBFs from the reference sphere into its exterior is of particular impor-

tance for the gravity field modelling. It enables us to establish observation equations for

each relevant gravity field quantity taken on or above the Earth’s surface. Unlike spherical

harmonics, SRBFs offer a trade-off between localization in both the space and the fre-

quency domain; therefore, they can easily be regionally adapted.

In the context of the gravity field determination, theoretical studies on SRBFs go at least

back to Weightman (1967). Therein, the point-masses located within the Earth’s interior

are introduced as an alternative to spherical harmonics. Krarup (1969) developed the least-

squares collocation. Freeden et al. (1998) and Freeden and Schneider (1998) presented a

theory of wavelets on the unit sphere and of spherical harmonic wavelets, respectively.

Another technique based on spherical wavelets is investigated in Holschneider et al.

(2003). A typical feature of the wavelet-based methods is the decomposition of the signal

into different spectral bands. Eicker (2008) introduced and applied splines constructed

from the degree variances of the Earth’s gravitational potential and stabilized the esti-

mation process by means of a regionally adapted regularization technique based on mul-

tiple regularization parameters. Ellipsoidal harmonic wavelets were introduced in Schmidt

and Fabert (2008). Further references to other techniques based on SRBFs can be found,

e.g., in Eicker (2008), Eicker et al. (2014) or Wittwer (2009).

Spherical radial basis functions have been applied to real satellite data of three types: (1)

the SST in the high–low mode (e.g., Eicker 2008; Fengler et al. 2004; Schmidt et al. 2007);

(2) the SST in the low–low mode (SST-ll; e.g., Eicker 2008; Schmidt et al. 2006, 2007;

Wittwer 2009); (3) the satellite gravity gradiometry (SGG; e.g., Čunderlı́k 2013; Eicker et al.

2014; Lieb et al. 2013; Naeimi et al. 2015; Tscherning and Arabelos 2011; Yildiz 2012).

Furthermore, Schmidt et al. (2006, 2007) and Wittwer (2009) made an attempt at spatio-

temporal gravity field recovery from the GRACE (Gravity Recovery and Climate Experi-

ment, Tapley et al. 2004) SST-ll data. From numerous simulation studies, we mention, e.g.,

Arabelos and Tscherning (2009), Bentel et al. (2013), Naeimi (2013) and Schmidt et al.

(2005).

The aim of the present study is to deliver global and regional gravity field models from

real GOCE kinematic orbit via the acceleration approach modified by Bezděk et al. (2014).

We present two strategies of how to mitigate the impact of the polar gap problem, a global

one and a regional one. Both approaches are based on SRBFs. In the global strategy, we

stabilize the estimation of high-degree models (in our case of degree 130) by introducing

prior information. The prior information is derived from a long-wavelength geopotential,

e.g., up to degree 20, taken from our low-degree GOCE-based model estimated to degree

75. Such a low-degree model is only marginally affected by the polar gap problem;

therefore, it can serve as prior information to which the high-degree model is, in a way,

forced to be equal to. This significantly improves the zonal and near-zonal spherical

harmonic coefficients of the high-degree GOCE-only models. In the second strategy, we

apply the acceleration approach on a regional scale in a remove–compute–restore fashion,

utilizing the long-wavelength geopotential from our global GOCE-based models. Both the

global and the regional gravity field modelling, as presented in this paper, are based on the

same orbital data and methodology. The present paper thus provides a consistent approach

to gravity field determination from orbital data.

The outline of the paper is as follows. The underlying theory of spherical radial basis

functions is briefly described in Sect. 2. In Sect. 3, we describe the modification of the

acceleration approach developed by Bezděk et al. (2014). Section 4 presents the used
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orbital data and background models. In Sect. 5, we evaluate our global and regional gravity

field models. Conclusions are drawn in Sect. 6.

2 Representation of the Gravity Field in Terms of Spherical Radial Basis
Functions

A spherical radial basis function defined on a reference sphere XR is rotationally symmetric

around the axis represented by the direction of the unit vector ri=jrij; ri 2 XR: Here, ri is a
nodal point at which the radial basis function is located and R is the radius of the sphere.

Satellite data are taken at the exterior of the reference sphere XR; which we shall denote as

Xext
R : The harmonic upward continuation of SRBFs into observational points is therefore of

fundamental importance. It ensures that we can establish a relation between SRBFs and a

gravity field quantity observed at a point r 2 Xext
R ; Xext

R ¼ XR [ Xext
R : In this section, the

gravity field modelling is understood in the global sense. The regional gravity field

modelling will naturally follow from the global approach with only minor modifications.

The gravitational potential V at a point r 2 Xext
R expanded in a series of band-limited

SRBFs reads (e.g., Freeden and Schneider 1998)

VðrÞ ¼
XI

i¼1

aðriÞU r; rið Þ; ð1Þ

where Uðr; riÞ is a band-limited SRBF located at the nodal point ri 2 XR; aðriÞ is the

expansion coefficient of the ith SRBF to be determined and I is the total number of SRBFs.

The gravitational potential V is to be understood as an approximation of the true gravi-

tational potential V true in the sense of the Runge–Krarup theorem (Krarup 1969; Freeden

and Schneider 1998).

The band-limited SRBF in Eq. (1) is given as (Freeden and Schneider 1998)

U r; rið Þ ¼
Xnmax

n¼nmin

2nþ 1

4pR2
/n

R2

jrj jrij

� �ðnþ1Þ
Pn

r

jrj �
ri
jrij

� �
; ð2Þ

where Pn is the (unnormalized) Legendre polynomial of degree n; /n are non-negative

shape coefficients defining the spatial and the spectral properties of the SRBF and, finally,

nmin and nmax are minimum and maximum degrees of the expansion, respectively. A SRBF

is band-limited if the shape coefficients /n are zero for each degree beyond the maximum

degree nmax: If the shape coefficients /n do not vanish for infinitely many degrees, the

spherical radial basis function is referred to as non-band-limited. For various types of band-

limited and non-band-limited SRBFs see, e.g., Freeden and Schneider (1998), Schmidt

et al. (2007) or Wittwer (2009).

In this study, we prefer to work with band-limited SRBFs, since they allow a recovery

of the geopotential signal in a given (finite) spectral band. In the corresponding bandwidth,

the SRBF solution can thus be directly compared with its spherical harmonic counterpart.

However, non-band-limited SRBFs can significantly reduce the computational load, owing

to their analytical expressions which are frequently known or may be derived (Wittwer

2009). The closed expressions for non-band-limited SRBFs enable to omit the computa-

tionally demanding summation in Eq. (2).

We use two band-limited SRBFs shown in Fig. 1:
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(1) The Shannon SRBF defined by the shape coefficients /n ¼ 1 for all n ¼
nmin; . . .; nmax: The Shannon SRBF is the reproducing kernel of the space spanned

by spherical harmonics of degrees nmin; . . .; nmax and all corresponding orders

(Freeden and Schneider 1998). It is not difficult to prove (e.g., Bentel et al. 2013)

that global gravity field modelling by means of the Shannon SRBF and of spherical

harmonics leads to identical results. Therefore, on a global scale, we expect their

comparable quality, but due to the reasons stated in Introduction, we anticipate a

better performance of the regional models. In Sect. 5, these statements are

confirmed by our results obtained from real orbital data.

(2) SRBF based on Kaula’s rule of thumb for the degree variances of the Earth’s

gravitational potential (Kaula 1966), in this paper referred to as Kaula’s SRBF. As

commonly assumed, an incorporation of Kaula’s rule into the determination of

models solely based on GOCE data does not contradict the GOCE-only strategy.

Frequently, it enters the estimation in the form of the Kaula regularization (e.g.,

Metzler and Pail 2005; Pail et al. 2011). Nevertheless, such a solution is not entirely

based on the data itself, as some prior knowledge of the gravity field is introduced,

although empirical and rough. Unlike the Shannon-based models, the solutions

based on Kaula’s SRBF are, to some extent, forced to follow the degree variances

prescribed by Kaula’s rule. In Sect. 5, we therefore investigate the performance of

both SRBFs. Here, all the shape coefficients /n of Kaula’s SRBF are normalized by

its coefficient /2:

Note that, in addition to Kaula’s rule, there are many other empirical rules by which

SRBFs can be defined (see, e.g., Rexer and Hirt 2015 and the references therein). Also, an

existing global gravity field model parameterized in spherical harmonics can readily be

used to derive the degree variances and subsequently a SRBF. In our study, we aim at the

GOCE-only gravity field modelling; therefore, we investigate only the performance of the

Shannon and Kaula’s SRBFs.
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Fig. 1 Spatial and spectral representations of the Shannon and Kaula’s SRBFs in the spectral bandwidth
n ¼ 70; . . .; 130: In Sect. 5.3, these radial basis functions are used for regional gravity field determination.
The slightly smaller oscillations of Kaula’s SRBF in the spatial domain are caused by the gradual
attenuation of the shape coefficients /n prescribed by Kaula’s rule of thumb. For a better mutual comparison
in the spatial domain, the spherical radial basis functions are normalized by their values at the spherical
distance of 0�
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2.1 Spatial Distribution of Nodal Points

The next important aspect is the total number of nodal points I and their spatial distribution

on the reference sphere XR: Roughly speaking, the expansion coefficients aðriÞ of the

gravitational potential V in Eq. (1) can be uniquely recovered provided that the nodal

points ri (or more precisely that some bounded linear functionals of the gravitational

potential taken at these points) form a fundamental (or at least an admissible) system

relative to the space spanned by all solid spherical harmonics of degrees n ¼ nmin; . . .; nmax:
A precise mathematical definition of fundamental and admissible systems can be found in

the Appendix or in the literature provided therein.

Although the existence of fundamental systems can be proved (Freeden et al. 1998; Freeden

and Schneider 1998), an algorithm generating positions of the points ri of such systems is not

available. In practice, we therefore work with admissible systems. An admissible system

contains more functionals at the points ri than the required minimum, but the uniqueness of

the recovered gravitational potential is guaranteed. In other words, linearly dependent SRBFs

occur in admissible systems. A drawback of admissible systems is that the designmatrix has a

rank deficiency, i.e. inversion of the resulting normal matrix is not defined.

There are many possible choices for the spatial distribution of the points ri 2 XR; e.g.,
Driscoll and Healy (1994), Eicker (2008), Freeden et al. (1998), Naeimi (2013), Reuter

(1982) and Wittwer (2009). Here we use the Reuter grid (e.g., Eicker 2008; Reuter 1982;

Wittwer 2009). For a given non-negative integer c; the algorithm generates a system of points

ri here denoted as Reuter(c). Fortunately, there is a simple empirical rule saying that the

functionals (forwhich the fundamental system exists) taken at the grid Reuter(nmax þ 1) form

an admissible system relative toHarm0;...;nmax
ðXext

R Þ (seeDefinition 1 in theAppendix). Due to

the nature of the algorithm, the number of points I in the grid Reuter(c) can only be estimated

by (Freeden et al. 1998)

I� 2þ 4

p
c2: ð3Þ

A fundamental system relative to Harm0;...;nmax
ðXext

R Þ with, say, nmax ¼ 130 contains I ¼
ðnmax þ 1Þ2 ¼ 17;161 functionals (see Appendix). By definition, this is also the total

number of spherical harmonic coefficients for nmax ¼ 130: The number of expansion

coefficients aðriÞ in an admissible system due to the grid Reuter(nmax þ 1) is I ¼ 21;780:
This shows that, in general, we deal with larger systems of linear equations compared to

the spherical harmonic case. This drawback is related to the global gravity field modelling.

When the gravity field is modelled on a regional scale, the number of expansion coeffi-

cients is usually greatly reduced, depending on the size of the recovery area. We prefer to

work with Reuter grids for two reasons: (1) because of the simple empirical rule; (2)

because the number of points in the Reuter grids increases quadratically with respect to the

parameter c; see Eq. (3). The latter rule is roughly in accordance with the rule ðnmax þ 1Þ2
that holds for spherical harmonic coefficients.

3 Acceleration Approach

Several methods have been developed to invert SST-hl data into a gravity field model: (1)

the energy balance approach, (2) the celestial mechanics approach, (3) the short-arc

approach and (4) the acceleration approach. An overview and a comparison of these
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methods applied to the same GOCE orbital data are given in Baur et al. (2014), where also

many references to these methods are listed. From these, we make use of the acceleration

approach modified according to Bezděk et al. (2014). Other modifications can be found,

e.g., in Baur et al. (2012), Ditmar and van der Sluijs (2004), Ditmar et al. (2006), Reubelt

et al. (2003, 2014) and Weigelt et al. (2013).

The acceleration approach, which is based on Newton’s law of motion, links the

unknown expansion coefficients to the accelerations acting on the satellite. The transition

from kinematic orbit to accelerations domain is performed in an inertial reference frame by

applying a second-order derivative filter to the kinematic orbit. The satellite is not, how-

ever, subject solely to the gravitational force generated by the Earth. In reality, its motion is

also affected by perturbing forces that need to be properly accounted for. After removing

all the perturbing accelerations that can be measured on-board (non-gravitational accel-

erations) or modelled (direct lunisolar perturbations, accelerations due to solid Earth and

ocean tides, and correction due to general relativity), the resulting accelerations acting on

the spacecraft are identified with the ones caused by the geopotential.

The gravitational vector g is obtained by applying the gradient operator to the series

expansion in Eq. (1),

gðrÞ ¼ rVðrÞ ¼
XI

i¼1

aðriÞrU r; rið Þ: ð4Þ

After introducing random observation errors into Eq. (4), the following linear Gauss–

Markov model can be established

y ¼ Axþ e; Efeg ¼ 0; D yf g ¼ r2 P�1; ð5Þ

where y is the N � 1 observation vector, A is the design matrix of dimensions N � I; x is

the I � 1 vector of unknown expansion coefficients, e is the N � 1 vector of stochastic

observation errors, r2 is the (unknown) variance factor, P is the N � N weight matrix of

the observation vector y and, finally, E and D denote the expectation and the dispersion

operators, respectively.

Due to the action of the second-order derivative filter on kinematic orbits which contain

random errors, the errors in the obtained accelerations become autocorrelated. The cor-

relation of the accelerations is reflected by a non-diagonal weight matrix P; which has a

Toeplitz structure. The Toeplitz structure stems from the assumption that, in the linear

model (5), the noise in kinematic orbits is stationary and uncorrelated in time.1 The

elements of P are defined by the coefficients of the derivative filter. By means of the

transformation matrix W ¼ T�1 obtained from the Cholesky decomposition of the matrix

P�1 ¼ TT>; we linearly transform the model (5) into a new one

y1 ¼ A1 xþ e1; E e1f g ¼ 0; Dfy1g ¼ r21 I ð6Þ

with y1 ¼ Wy; A1 ¼ WA; e1 ¼ We and with I being the N � N identity matrix. The

models (5) and (6) lead to the same estimate of x: Further details can be found in Bezděk

(2010) and Bezděk et al. (2014).

If the shape coefficients /n of the SRBF U in Eqs. (1) and (4) are nonzero only for

n ¼ nmin; . . .; nmax; i.e. U 2 Harmnmin;...;nmax
ðXext

R Þ; and if the functionals taken at the points ri

1 In reality, this assumption is not fulfilled. To account for the time correlation, we shall later introduce a
second linear transformation (Eq. 10).
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form an admissible system relative to Harmnmin;...;nmax
ðXext

R Þ; then the design matrices A and

A1 have a rank deficiency of I � ððnmax þ 1Þ2 � n2minÞ; see Fig. 2. The number ðnmax þ
1Þ2 � n2min is derived from the dimension of the space Harmnmin;...;nmax

ðXext
R Þ; i.e. from the

maximum number of linearly independent functions belonging to that space. In such a

case, a unique least-squares solution minimizing the functional kA1 x̂� y1k22 does not

exist. In other words, the rank deficiency of the design matrix results in a non-invertible

normal matrix N ¼ 1
r2
1

A>
1 A1: In order to find a unique least-squares solution of the system

of linear equations (6), we can add some prior information to the model or an additional

constraint to the functional to be minimized. For instance, instead of minimizing kA1 x̂�
y1k22; we can minimize the functional kA1 x̂� y1k22 þ kx̂k22 which means that the system is

regularized. It can be shown (Aster et al. 2005) that, under this condition, a unique least-

square solution can be found, e.g., by means of the truncated singular value decomposition

(ibid.). Our experiments (not shown in the paper) with real GOCE SST-hl data revealed,

however, that a better solution can be obtained by the variance components estimation

(Koch and Kusche 2002). In the context of SRBFs, this approach is applied, e.g., in Eicker

(2008), Eicker et al. (2014), Schmidt et al. (2007) and Wittwer (2009). Another techniques

can be found, e.g., in Naeimi (2013).

Following the variance components estimation, we extend the linear model (6) by prior

information on the unknown parameters. We thus obtain the linear model

y1

l

� �
¼

A1

I

� �
xþ

e1

el

� �
; E

e1

el

� �� �
¼ 0; D

y1

l

� �� �
¼

r21 I 0

0 r2l P
�1
l

 !
;

ð7Þ

where l is the I � 1 vector of prior information on the vector of unknown parameters, Pl is

its I � I weight matrix known up to a variance factor r2l; el is the I � 1 error vector of

prior information and I denotes the identity matrices of corresponding dimensions.
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Fig. 2 Singular values of the design matrices set up for all the three components of the gravitational vector
in the satellite-fixed frame [along-track (A-T), cross-track (C-T) and radial (RAD), see Sect. 3.2]. Used is
real GOCE kinematic orbit from the period 01 November 2009 to 11 January 2010. The minimum and the
maximum degrees of the series expansion are 2 and 50, respectively. The SRBFs are located at the grid
Reuter(51), yielding 3282 nodal points which is also the total number of the singular values. The extremely

small singular values beyond the index i ¼ ðnmax þ 1Þ2 � n2min ¼ 2597 indicate a linear dependence of

3282� 2597 ¼ 685 columns of the design matrices. These singular values are different from zero, which is
the value they should take by definition, due to the round-off errors. The linear dependence leads to a non-
invertible normal matrix with the rank deficiency of 685. For a better scaling of the singular values, in this

experiment we multiplied the design matrices by the factor of R2; see the denominator in Eq. (2)
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The least-squares estimator of the model (7) reads

x̂ ¼ 1

r21
A>

1 A1 þ
1

r2l
Pl

 !�1
1

r21
A>

1 y1 þ
1

r2l
Pl l

 !

¼ A>
1 A1 þ k1 Pl

� ��1
A>

1 y1 þ k1 Pl l
� �

ð8Þ

with k1 ¼ r21=r
2
l: The covariance matrix of the estimate x̂ is given as

Dfx̂g ¼ A>
1 A1 þ k1 Pl

� ��1
: ð9Þ

The expansion coefficients x̂ and the unknown variance factors r̂21 and r̂2l are estimated

iteratively using the variance components estimation (Koch and Kusche 2002). Equa-

tion (8) can be considered as a combined least-squares estimation based on the prior

information l or as a biased estimation (Metzler and Pail 2005). In the latter case, the

parameter k1 is interpreted as a regularization parameter. Furthermore, if l ¼ 0; then the

estimator (8) is identical to the Tikhonov regularization (Koch and Kusche 2002). Eicker

(2008) derived the elements of Pl from inner products of SRBFs and compared such

obtained solution with a simple case when Pl ¼ I: This led to a conclusion that no

significant loss of accuracy is produced by this simplified scenario. Therefore, we shall use

Pl ¼ I (e.g., Eicker et al. 2014; Schmidt et al. 2007; Wittwer 2009). The final solution is,

however, sensitive to the choice of the parameter k1: The discussion on the choice of the

prior information l is postponed to Sect. 5.

When dealing with real data, analyses of the least-squares residuals ê1; see Eq. (6),

systematically imply a presence of strong correlation in time. This behaviour can be

explained by the fact that the constellation of high orbiting satellites does not change

much between two consecutive positions of the low orbiting satellite (for GOCE the

interval is 1 s). This leads to similar measurement conditions and thus to a correlation

of the errors in time. Therefore, by means of an autoregressive model (Brockwell and

Davis 2002), we estimate an empirical covariance matrix of the least-squares residuals

ê1: Analogously, we compute the second linear transformation matrix W1 from the

Cholesky factorization of this empirical covariance matrix and thus obtain a new linear

model

y2

l

� �
¼

A2

I

� �
xþ

e2

el

� �
; E

e2

el

� �� �
¼ 0; D

y2

l

� �� �
¼

r22 I 0

0 r2l P
�1
l

 !

ð10Þ

with y2 ¼ W1 y1; A2 ¼ W1 A1; e2 ¼ W1 e1: Again, this twice-transformed linear model is

solved by means of the variance components estimation. Both the first and the second

linear transformations are described in detail in Bezděk (2010) and Bezděk et al. (2014).

In the linear models (5), (6), (7) and (10), we neglect correlations between the individual

components of the gravitational vector. For each direction, we separately establish a linear

model, obtaining three independent solutions accompanied by their full covariance

matrices. As mentioned in Ditmar et al. (2007), the impact of such an approximation on the

final solution can be neglected. The three individual solutions along with their full

covariance matrices are combined together in the least-squares sense, yielding a final

solution. For further details, see Section 3.2 of Bezděk et al. (2014).
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3.1 Regionally Tailored Regularization in Terms of SRBFs

A regionally tailored regularization in terms of SRBFs seems to be natural due to their

localization in both the space and the frequency domain. In Eq. (8), we can easily account

for the regionally varying gravity field by splitting up the weight matrix Pl into several

matrices Pl; j; j ¼ 1; . . .; J: Furthermore, each matrix Pl; j has its own individual regular-

ization parameter estimated by means of the variance components estimation (Eicker 2008;

Eicker et al. 2014).

First, the area in which the expansion coefficients aðriÞ are to be estimated is divided

into J areas. Subsequently, the corresponding diagonal elements of the weight matrix Pl; j

are set to 1 if the points ri belong to the jth area. The rest of the elements of the weight

matrix Pl; j is set to zero (the diagonal as well as the off-diagonal ones). Clearly,PJ
j¼1 Pl; j ¼ I: Equation (8) can thus be rewritten as

x̂ ¼ A>
1 A1 þ

XJ

j¼1

k1; j Pl; j

 !�1

A>
1 y1 þ

XJ

j¼1

k1; j Pl; j l

 !
ð11Þ

with k1; j ¼ r21=r
2
l; j: A formally similar estimator is obtained for the linear model (10).

In this way, the regularization parameters k1; j can easily be regionally adapted allowing

for the spatially varying structures of the gravity field. An optimum relative weighting of

the variance factors r2l; j is obtained by the variance components estimation. A similar

regional feature cannot be so straightforwardly introduced into spherical harmonic

approaches, as spherical harmonics do not possess any localization in the space domain.

3.2 A Few Remarks on the Numerical Implementation

To approximate the second-order derivative of kinematic orbits, we use the Savitzky–

Golay smoothing filters (Press et al. 1997). These filters are characterized by the length of

the filter w and by the polynomial order k. Roughly speaking, the higher the order k, the

higher the frequencies of the signal can be preserved, but with a less reduction of noise

level; therefore, a compromise between the two has to be found. We tested the behaviour of

many pairs of w’s and k’s when applied to the 1 s GOCE kinematic orbit. In all the

experiments presented in this paper, we use the pair w ¼ 25 and k ¼ 4: Using this pair, we

systematically obtain slightly superior results compared to the preliminary pair w ¼
19; k ¼ 4 used in Bezděk et al. (2014). Further discussion on the choice of the parameters

w and k can be found in Bezděk et al. (2014).

In Eq. (4), we compute the partial derivatives of SRBFs in the local north-oriented

frame (LNOF). The least-squares adjustment is performed in the satellite-fixed frame onto

which they are rotated along with the gravitational vector (for the reasons, see Section 3.2

of Bezděk et al. 2014). We build the design matrix block-wise due to its enormous

dimensions (see, e.g., Baur et al. 2012; Bezděk et al. 2014), setting the block size to a tenth

of the orbital period. We work with band-limited SRBFs given by the Legendre series in

Eq. (2), which can efficiently be computed by means of the Clenshaw summation (Press

et al. 1997, Chapter 5.5). There are numerous applications of the Clenshaw summation in

geodesy (see, e.g., Fantino and Casotto 2009 and the references therein). In order to assess

its efficiency, we applied the Clenshaw summation to a test computation of a design

matrix. The design matrix was built for the X-direction in the LNOF using nmax ¼ 130 (i.e.

21,780 unknowns) and 43,200 points (one half of a day of GOCE data). Compared to the
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direct evaluation, we observed a speed-up factor of 4.5 in terms of the CPU time. Keeping

the same settings, but computing only a block of the design matrix comprising 500

kinematic positions, we found the speed-up factor to be 2.1.

We solve the linear models (7) and (10) iteratively following the variance components

estimation approach. The computation of the residuals2 ê ¼ A x̂� y is the most time-

consuming operation of the iterations. The problem lies in the huge size of the design

matrix A and in the computation of the product A x̂: The following approach is based on

the fact that A x̂ is nothing but a SRBF synthesis of the gravitational vector from the

coefficients x̂: First, we transform the expansion coefficients into the spherical harmonic

coefficients (see the second paragraph in Sect. 5). After this transformation, we make use

of the spherical harmonic coefficients to compute the product A x̂; now, however, via the

efficient spherical harmonic synthesis with Hotine’s equations (Sebera et al. 2013).

Besides the expansion coefficients, we co-estimate empirical parameters (biases) in all

three directions. In the global gravity field modelling, these parameters are estimated once

per day. In the regional gravity field modelling, we systematically obtain slightly better

results with the biases modelled once per block of the design matrix. These settings were

found by trial and error.

4 Data

Global and regional gravity field models to be presented in Sect. 5 are based on the GOCE

kinematic orbit covering the period 01 November 2009 to 11 January 2010. Besides the

two official ESA solutions, the time-wise and the space-wise (Pail et al. 2011), there is a

number of other models derived over this period from the GOCE kinematic orbit (e.g.,

Baur et al. 2012, 2014; Bezděk et al. 2014; Jäggi et al. 2015).

Table 1 specifies the data and the background models that we employ. Furthermore, we

assume that the non-gravitational accelerations in the along-track direction are to a large

extent compensated by the drag-free control system. The non-gravitational accelerations in

the cross-track and the radial directions are modelled, see Bezděk et al. (2014).

For the validation of our results, we made use of the EIGEN-6S model (Förste et al.

2011). It is based on a combination of (1) 6.5 years of the LAGEOS SLR (satellite laser

ranging) data spanning the period 01 January 2003 to 30 June 2009, (2) the GRACE

SST-hl and SST-ll data covering the same period (3) and 6.7 months of the GOCE SGG

data (the diagonal components of the gravitational tensor) from 01 November 2009 till

30 June 2010. To account for the temporal variations of the gravity field, the model

includes time-variable parameters for the spherical harmonic coefficients up to degree

50. In our validations, we utilize these coefficients due to the sensitivity of the SST-hl

data to the very long-wavelength time-variable gravity field (e.g., Weigelt et al. 2013).

As the epoch for the time-variable parameters, we use the mid-epoch of our data period.

The EIGEN-6S model is expected to be superior to our models at least by one order of

magnitude; therefore, we use it as a high-quality reference model. In fact, any recent

model based on the GRACE SST-ll data from a sufficiently long time period might serve

well for this purpose.

2 Here it is not necessary to distinguish between the residuals ê1 (Eq. 7) and ê2 (Eq. 10), as the problem is
related to both linear models.
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5 Results

As is common in the global gravity field determination, the series expansion in Eq. (2)

starts at degree nmin ¼ 2: The maximum degrees of our global models vary from nmax ¼ 75

to nmax ¼ 130: On the one hand, the low-degree solutions with nmax ¼ 75 are only slightly

affected by the absence of data within the polar areas. But, on the other hand, the fre-

quencies beyond that degree, which are present in the signal but not modelled, cause a

severe aliasing (here aliasing is understood as defined in Sneeuw and van Gelderen 1997).

In addition to last, say, 3 or 4 degrees, aliasing noticeably deteriorates even the rest of the

spectrum. To reduce this effect, we increase the maximum degree up to nmax ¼ 130: A
poor recover of zonal and near-zonal spherical harmonic coefficients is inherent to

unconstrained GOCE-only solutions of such a high degree (Sneeuw and van Gelderen

1997). Therefore, one of our goals is to derive GOCE-only models complete to degree 130

retaining the high quality of zonal and near-zonal coefficients from the low-degree

solutions.

We evaluate our global SRBF models in both the spatial and the spectral domain, as

they provide a mutually complementary information. For the analyses in the spectral

domain, we make use of spherical harmonics. The spherical harmonic representation of a

global SRBF solution is obtained via the transformation developed by Driscoll and Healy

(1994). This quadrature provides an exact transformation of a properly sampled band-

limited signal into spherical harmonic coefficients. The signal from our SRBF solutions is

band-limited, see Sect. 2. All the results presented in Sects. 5.1 and 5.2 are based only on

the Shannon SRBF which will be discussed at the end of Sect. 5.1.

In the regional gravity field determination, we locally refine global models in the

spectral band 70–130, where we anticipate a superior performance of the regional

approach. The gravity field up to degree 69 is taken from our global models, thus following

the GOCE-only strategy even on the regional scale.

5.1 Global Solutions Free from Prior Information

In this section, we show that our global SRBF models can compete with unconstrained

GOCE-only models based on spherical harmonics. The global models shown in this section

are developed with prior information l; see Eq. (8), derived from the �CGRS80
2;0 coefficient of

the GRS80 reference ellipsoid (Moritz 2000). A similar step is common in global gravity

field modelling (e.g., Metzler and Pail 2005); therefore, we shall use the label free from

Table 1 Data and background models

Kinematic orbits SST_PSO_2 EGG-C (2010)

Rotation between the inertial and the
terrestrial reference frames

IERS Conventions 2010 Petit and Luzum (2010)

Rotation between the inertial and the
satellite-fixed reference frames

EGG_IAQ_2c EGG-C (2010)

Solid Earth tides Anelastic Earth McCarthy (1996)

Ocean tides FES 2004 Lyard et al. (2006)

Lunar and solar ephemerides JPL DE405 http://ssd.jpl.nasa.gov/

Neutral thermospheric density DTM-2000 Bruinsma et al. (2003)

Relativistic correction McCarthy (1996)
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prior information. We use the �CGRS80
2;0 coefficient to compute the (normal) gravitational

potential on the reference sphere R at the grid Reuter(nmax þ 1). Here the normal gravi-

tational potential plays the role of pseudo-observations. The vector l is obtained by solving

the established system of linear equations using the truncated singular value decomposi-

tion. This method is well-suited for the computation of l; since we work with noise-free

data and the number of linearly independent columns of the design matrix is known prior to

the estimation, see the caption to Fig. 2. The rationale of the incorporation of the normal

field is to reduce the total number of iterations needed to obtain a solution via the variance

components estimation.

In Fig. 3, we show the difference degree amplitudes (the thick lines; see, e.g., Bezděk

et al. 2014) of our global SRBF models recovered up to maximum degrees nmax ¼ 75; 100
and 130. Also, we show their modification (the thin lines) excluding the zonal and near-

zonal coefficients according to the rule of thumb proposed by Sneeuw and van Gelderen

(1997). We shall refer to these as the modified difference degree amplitudes. The highly

degraded zonal and near-zonal spherical harmonic coefficients can be seen from the tri-

angular scheme shown in Fig. 4. The inferiority of these coefficients significantly affects

the difference degree amplitudes. The modified version therefore better reveals the quality

of the coefficients that are almost unaffected by the polar gap problem. It is, however,

emphasized that the modified version is shown only as a complementary information on

the performance of our models. In most practical applications, all the coefficients are

employed.

0 20 40 60 80 100 120

10
−3

10
−2

10
−1

10
0

Spherical harmonic degree

G
eo

id
 h

ei
gh

t (
m

)

EIGEN−6S
n

max
 = 130

n
max

 = 100

n
max

 = 75

Fig. 3 Difference degree amplitudes (thick lines) and modified difference degree amplitudes (thin lines) of
the global models complete to degrees nmax ¼ 75; 100 and 130. In the modified difference degree
amplitudes, the zonal and near-zonal spherical harmonic coefficients are excluded according to the rule of
thumb provided by Sneeuw and van Gelderen (1997). It is emphasized that this is done only to show the
quality of the coefficients that are (almost) unaffected by the polar gap problem. Except for the modified
difference degree amplitudes, we employ all the spherical harmonic coefficients throughout the paper.
Reference model: EIGEN-6S
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From Figs. 3 and 4, it is clear that the quality of zonal and near-zonal spherical har-

monic coefficients gradually decreases with increasing maximum degree. However, at the

same time, we can see an improvement in the rest of the spectrum, especially in the

sectorial and near-sectorial coefficients. This is because the input accelerations possess

spectral energy even beyond degrees 75 and 100, mainly due to the low altitude of the

satellite. Omission of these high frequencies from the estimation process leads to a serious

aliasing. The suppression of aliasing by increasing the maximum degree is also demon-

strated by the reduced jump at the last, say, 3 or 4 degrees of the degree amplitudes. This

effect is also seen in Fig. 4. Figures 3 and 4 (bottom right panel) further reveal that the

degree-2 coefficients are determined weakly. We attribute this to the replacement of the

real non-gravitational accelerations by the simulated ones, see Sect. 4. Such a behaviour is

not surprising. A discussion on neglecting the non-gravitational accelerations acting on the

GOCE satellite can be found in Section 7 of Baur et al. (2014).

In Fig. 5, we evaluate the SRBF solution complete to degree 130 in terms of geoid

height differences. The overall larger discrepancies over the southern hemisphere are

caused by the orbit configuration of the GOCE satellite (Pail et al. 2011). The altitude of

the satellite is higher over this region, thus making it more difficult to recover the fine

structures of the gravity field.

As a next assessment strategy, we validate our SRBF solutions against the traditional

spherical harmonic approaches. We computed a solution complete to degree 75 using the

same orbital data and the methodology, but parameterizing the gravity field by spherical

harmonics (Bezděk et al. 2014). We found both the ordinary and the modified difference

degree amplitudes of these solutions to be in a very good agreement. The degree ampli-

tudes of the spherical harmonic solution are not shown in the paper, as at this scale, they
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Fig. 4 Differences in spherical harmonic coefficients related to the solutions from Fig. 3: nmax ¼ 75 (upper
left panel), nmax ¼ 100 (upper right panel) and nmax ¼ 130 (bottom left panel). The bottom right panel
provides a detail on the low-degree and order differences of the degree-130 solution. The colorbar is in a
logarithmic scale. Reference model: EIGEN-6S
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virtually overlap the curves for the SRBF solution. This supports the statement from

Sect. 2 that global gravity field modelling in terms of the Shannon SRBF and of spherical

harmonics should provide the same results.

Next, we show a comparison between the SRBF solution complete to degree 130 and

the models by Baur et al. (2014), kindly provided by Oliver Baur. These models are based

on the same GOCE SST-hl data as we used, but rely on the spherical harmonic parame-

terization. The models are obtained by: (1) the celestial mechanics approach, (2) the short-

arc approach, (3) the point-wise acceleration approach, (4) the averaged acceleration

approach and (5) the energy balance approach. A detailed description as well as references

to these methods can be found in Baur et al. (2014). All these models are complete to

degree 130, except for the energy balance approach solution, which is estimated to degree

100. The degree amplitudes of all the models, including our SRBF solution, are shown in

Fig. 6. The presence of the ‘‘zig-zag pattern’’ in the difference degree amplitudes, which is

typical for GOCE-only models, is the strongest in our SRBF solution. In the spectral band

2–60, the even degrees are determined most weakly in the SRBF solution, while its odd

degrees outperform the rest of the models nearly over all the frequencies. We assign this

behaviour to the particular modification of the acceleration approach and not to the

parameterization by SRBFs. The comparable quality of both parameterizations has already

been pointed out. It is, however, acknowledged that the incorporation of the prior infor-

mation from the �CGRS80
2;0 coefficient (i.e. the regularization) may also play some role,

especially at the high frequencies. It is known that regularization may act as a low-pass

filter suppressing errors and even signal at high frequencies. More importantly, the mod-

ified difference degree amplitudes imply that our SRBF approach is able to deliver global

gravity field models of comparable quality with respect to the rest of the spherical har-

monic approaches. This conclusion is supported by numerous other investigations (not
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−90˚
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−4 −3 −2 −1 0 1 2 3 4

Fig. 5 Geoid height difference (m) between the SRBF solution complete to degree 130 and the EIGEN-6S.
The differences are computed with the grid step of 0.1� in both directions. Statistics of the whole data set:
min ¼ �38:179m; max ¼ 83:391m; mean ¼ 0:778m; RMS ¼ 8:314m: Statistics of the data excluding
the polar caps (10� radius): min ¼ �5:317m; max ¼ 5:176m; mean ¼ 0:001m; RMS ¼ 0:938m: The red
rectangles bound the areas in which the regional gravity field modelling in Sect. 5.3 is performed
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shown in the paper) that we performed with real and with simulated orbits of the CHAMP,

GRACE and GOCE satellites. In these experiments, we again found a very good agreement

between both parameterizations.

We experimented with a global gravity field recovery using three regularization

parameters, see Sect. 3.1, two for the polar gaps and one for the rest of the globe. In

contrast to the regional gravity field determination, this resulted in a worse solution.

Finally, we mention that the global gravity field determination with Kaula’s SRBF is not

shown in the paper, as it led to unsatisfactory results. Our global Kaula-based solutions are

inferior to the Shannon-based solutions over the entire spectral band. Without attempting to

draw general conclusions, it seems that Kaula’s SRBF pushes the gravity signal power

towards the zero for degrees beyond *60. This behaviour might be assigned to the fact

that the degree variances derived from Kaula’s rule underestimate the power of the

geopotential signal between degrees *60 and 130 (we did not perform investigations

beyond degree 130).

5.2 Global Solutions Based on Prior Information Pre-Computed from GOCE

In this section, we attempt to prevent the deterioration of zonal and near-zonal spherical

harmonic coefficients of GOCE-only solutions. To this end, we derive the prior infor-

mation l from our global GOCE-only model complete to degree 75 (see Sect. 5.1). Thanks

to the low resolution of this model, its deterioration due to the polar gap problem is minor.

It is therefore a suitable choice to stabilize the estimation of high-degree models. In a

similar manner as in the previous section, we computed the prior information l from this
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Fig. 6 Difference degree amplitudes (thick lines) and modified difference degree amplitudes (thin lines) of
the SRBF model to degree 130 and of the spherical harmonic models derived by: the celestial mechanics
approach (CMA), the short-arc approach (SAA), the point-wise acceleration approach (PAA), the averaged
acceleration approach (AAA) and the energy balance approach (EBA). Reference model: EIGEN-6S
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model taking its coefficients up to degrees nmax;l ¼ 10; 20, 30 and 70. Note that all the

spherical harmonic coefficients up to the degree nmax;l are used in these computations, not

only the zonal and near-zonal ones.

Figure 7 shows the ordinary and the modified difference degree amplitudes of solutions

complete to degree 100 obtained with nmax;l ¼ 10; 20, 30 and 70. It is seen that the quality

of the model, especially of the zonal and near-zonal spherical harmonic coefficients, highly

depends on the choice of the cut-off degree nmax;l: We observe the best results for nmax;l ¼
30: The two solutions with the smaller values of nmax;l are characterized by a better, but

still relatively weak recovery of low-order spherical harmonic coefficients. On the other

hand, increasing nmax;l beyond degree 30 gradually leads to a stronger damping of the

recovered gravity field oscillations. This is demonstrated by the abrupt jump in the dif-

ference degree amplitudes of the solution with nmax;l ¼ 70: The jump starts around degree

70 where the spectral content of the prior information ends. Around that degree, the signal

power starts to attenuate. This implies that the prior information with a high cut-off degree

nmax;l leads to a low-pass filtering of the geopotential. This is not surprising, given that the

prior information l plays the role of an individual observation group. A high value of the

cut-off degree results in dominant prior information to which the solution is highly biased.

This is supported by further computations that we performed with nmax;l ¼ 25 and 40. The

impact of the cut-off degree nmax;l on the rest of the spectrum seems to be negligible

(except for the extreme case when nmax;l ¼ 70). This is indicated by the virtually untou-

ched modified difference degree amplitudes in Fig. 7 and also by an inspection of the

triangle spectra similar to those in Fig. 4 (not shown in the paper).

Table 2 helps to further understand the impact of prior information on the final solution.

For all three components of the gravitational vector, the variance factors r2l decrease with

increasing nmax;lwhich is expected, since the prior information gradually better approximates
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Fig. 7 Difference degree amplitudes (thick lines) and modified difference degree amplitudes (thin lines) of
the SRBF solutions complete to degree 100 with various prior information. Reference model: EIGEN-6S
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the unknown estimating parameters. As a consequence, in the least-squares adjustment the

weight of the prior information increases at the expense of the gravitational accelerations (in a

relative sense), and the solution is biased to it. Or, in other words, the gravitational accel-

erations are down-weighted with respect to the prior information and, as a result, the high-

frequency gravity field information, present only in the gravitational accelerations, is

dampened.

Figures 8 and 9 evaluate solutions complete to degree 130 with incorporated prior

information to degrees nmax;l ¼ 10; 20 and 30. As a key finding of this section, we observe

Table 2 Normalized variance factors of the prior information r2l=r
2
l;ref (unitless) related to the solutions

from Fig. 7

Prior information A–T C–T RAD

No prior information 1 1 1

nmax;l ¼ 10 1:73� 10�2 1:78� 10�2 1:74� 10�2

nmax;l ¼ 20 6:03� 10�3 6:31� 10�3 6:17� 10�3

nmax;l ¼ 30 3:64� 10�3 3:79� 10�3 3:74� 10�3

nmax;l ¼ 70 5:14� 10�4 5:36� 10�4 4:94� 10�4

The values r2l are obtained from the least-squares adjustment of the twice-transformed linear model (see

Eq. 10). The reference values r2l;ref are due to the solution free from prior information. The variance factors

r22 practically do not change with varying cut-off degree nmax;l; thus are not shown here

A–T along-track direction, C–T cross-track direction, RAD radial direction
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Fig. 8 Difference degree amplitudes (thick lines) and signal amplitudes (thin lines) of the SRBF solutions
complete to degree 130 with various prior information. In the bottom part of the spectrum, the red and the
purple curves virtually overlap each other. Similarly, the red and the green curves closely follow each other
for degrees beyond *80. The bottom right plot shows a detail on the spectral band 90–130. Reference
model: EIGEN-6S
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that the zonal and near-zonal spherical harmonic coefficients are distinctly superior to the

solution free from prior information. Similarly as in the previous experiments, the cut-off

degree nmax;l noticeably influences the final solution. Its impact seems to be, however,

slightly different as in the case of nmax ¼ 100: The ‘‘zig-zag pattern’’ is to a large extent

suppressed even with nmax;l ¼ 10 and 20. But again, the solution with nmax;l ¼ 30 shows

the smallest difference degree amplitudes. This is achieved, however, at the cost of

unintended low-pass filtering of the geopotential starting near degree 80. This effect can be

seen from the thin green curve (the signal from the solution with nmax;l ¼ 30) running

below the black one (the signal from the EIGEN-6S reference model). It is known that

regularization might suppress both signal and noise. This happens especially in that part of

the spectrum where noise starts to dominate over signal (the signal-to-noise ratio is close to

one). A similar behaviour can be seen in Fig. 8. Immediately as the noise (the thick green

curve) approaches the signal (the thin green curve), the signal starts to attenuate and the

noise curve is getting flat. As expected, the smoothing effect decreases with decreasing the

cut-off degree nmax;l: This statement is supported by Table 3, particularly by the statistics

for the data excluding the polar gaps. While the RMS errors decrease with increasing

nmax;l; the minimum and the maximum discrepancies show the opposite. The observed

behaviour implies a presence of the low-pass filtering of the geopotential signal. This

conclusion is supported by analyses of graphical representations of the discrepancies (not

shown in the paper). For this particular case, we therefore consider the cut-off degree

nmax;l ¼ 10 as a proper choice. We expect that to obtain optimum results with GOCE

orbital data from a shorter/longer time period, a slightly different value of nmax;l might be

required.

It is worth mentioning that, in general, the entire spectrum is influenced by the intro-

duction of prior information, even though its spectral content is limited to degree nmax;l:
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From Fig. 9 it can be seen, however, that the prior information mostly affects the prob-

lematic coefficients of poor quality, i.e. the (near-)zonal ones and nearly all the coefficients

beyond degree *80. The remaining high-quality part of the spectrum stays almost

untouched.

As far as the difference degree amplitudes are concerned, in the middle part of the

spectrum, all these solutions outperform the models in Fig. 6 almost by one order of

magnitude. Not shown in Fig. 8 for the sake of clarity, but within this spectral band, the

modified difference degree amplitudes remain practically unchanged. The benefit of this

approach is that the ratio between removing the ‘‘zig-zag pattern’’ and low-pass filtering

of the geopotential can be well-controlled by the choice of the cut-off degree nmax;l: In

order to better understand the impact of prior information on the gravity field solutions

from non-polar satellite orbits, further investigations should be carried out, especially

under various conditions using synthetic data. This, however, is beyond the scope of the

present paper.

Similarly as in the previous section, we attempted to derive a global solution to degree

100 with three regularization parameters. Despite using prior information this time

(nmax;l ¼ 30), again, the solution was of poor quality over the entire spectrum. The zonal

and near-zonal coefficients were degraded by *1 order of magnitude when compared with

the solution free from prior information. Furthermore, in the triangular scheme, we noticed

blurred vertical strips, a few spherical harmonic orders wide, with coefficients of weaker

quality. The strips were equally present for both the sine and the cosine coefficients and

occurred each*16 orders. We also derived a global solution to maximum degree 100 with

prior information based on the global model (nmax;l ¼ 30) in the polar areas and on the
�CGRS80
2;0 coefficient elsewhere. Again, the performance of such solution was unsatisfactory.

Its quality was close to the ones shown in Fig. 7 (the prior information to degrees 10 and

20), except for the even zonal coefficients, which were, in fact, even worse than in the

solution free from prior information (the same figure).

We expect that this approach based on the prior information might also be applicable in

spherical harmonic approaches. In fact, a similar method in terms of spherical harmonics

was successfully applied to simulated GOCE gradients in Xiancai et al. (2011). It should

be, however, mentioned that, on the global scale, the GOCE-only gravity field modelling

will never yield optimal results, simply because of the polar gaps. Regional approaches

seem to be therefore a suitable alternative.

Table 3 Differences in terms of geoid heights between the SRBF solutions complete to degree 130 with
various prior information and the EIGEN-6S

Prior information Polar areas included Polar areas excluded

Min Max Mean RMS Min Max Mean RMS

No prior
information

-38.179 83.391 0.778 8.314 -5.317 5.176 0.001 0.938

nmax;l ¼ 10 -8.823 5.200 0.043 0.731 -3.286 3.406 0.001 0.521

nmax;l ¼ 20 -6.189 4.662 0.041 0.608 -4.304 4.575 0.000 0.432

nmax;l ¼ 30 -5.097 5.170 0.027 0.525 -4.722 5.170 0.000 0.415

The differences are computed with the grid step of 0.1� in both directions. The radius of the polar caps is
10�. All values are in metres
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5.3 Regional Solutions

In the regional gravity field modelling, we neglect all the points in kinematic orbit with

ground tracks outside a given region (the data area). We aim at a regional refinement of the

global models over the bandwidth 70–130. We chose two study areas, depicted in Figs. 5

and 10, where the geoid features the strongest variations between positive and negative

values. We anticipate that the regionally tailored gravity field recovery method might

outperform the global approach and extract some additional information about the gravity

field (i.e. reduce the noise). To prevent edge effects, the data areas are extended by 10� in
each direction with respect to the study areas. The placing of the SRBFs is defined by the

grid Reuter(nmax þ 1), nmax ¼ 130; considering only the points that fall inside the study

areas extended by 20�. The long-wavelength gravity signal (degrees 0–69) is taken from

our global model complete to degree 100 with nmax;l ¼ 30; see Fig. 7. As the prior

information, we always use the zero vector, i.e. l ¼ 0; which is common in regional

gravity field recovery (e.g., Eicker 2008; Eicker et al. 2014; Koch and Kusche 2002;

Schmidt and Fabert 2008; Wittwer 2009).

Evaluations of the regional solutions are provided in Fig. 11 and Table 4. The differ-

ences for the Kaula-based solutions (not depicted here) show virtually the same behaviour.

We observe that the use of multiple regularization parameters noticeably improves

the results. In particular, the RMS errors decreased by about 8–11 %. Importantly, in

addition to the RMS errors, all the minimum and the maximum differences also dropped

by about 10–25 %. This implies that instead of the smoothing effect achieved in Table 3,

this time we observe an overall improvement. The regionally tailored regularization

technique therefore indeed outperforms the use of a single regularization parameter. The

slightly increased discrepancies in the north-west part of the Andes area (Fig. 11, right

−20˚

0˚

20˚

40˚

−6 −4 −2 0 2 4 6

80˚ 100˚ 120˚ 140˚ 160˚ −100˚ −80˚ −60˚
−40˚

−20˚

0˚

20˚

Fig. 10 Geoid undulations (m) over two regions to be regionally refined, here called Indonesia (left panel)
and the Andes (right panel). Indonesia: min ¼ �12:069 m, max ¼ 9:447 m; The Andes: min ¼ �6:916 m,
max ¼ 8:629 m. The geoid undulations are synthesized from the EIGEN-6S reference model in the spectral
band 70–130 with the grid step of 0.1� in both directions. The red lines bound the areas where separate
regularization parameters will be used
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panels) indicate that a separate regularization parameter should be adapted for this

subregion.

In our experiments, the Shannon-based results systematically turn out to be slightly

superior to the Kaula-based ones. Similarly as in Sect. 5.1, Kaula’s SRBF acts as a low-

pass filter (note the larger minimum and maximum differences). This is not surprising, as

Kaula’s rule itself suppresses certain frequencies of the gravity signal due to the under-

powered geopotential within some spectral bands. Naturally, the smoothing effect mostly

affects the high frequencies of the geopotential signal. This, however, contradicts one of

the basic ideas upon which the regional gravity field modelling is based. That is, to

regionally extract additional high-frequency gravity field features that may be difficult to

detect on the global scale (see also Naeimi 2013; Naeimi et al. 2015). We therefore prefer

−20˚

0˚

20˚

40˚

80˚ 100˚ 120˚ 140˚ 160˚ −100˚ −80˚ −60˚
−40˚

−20˚
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−40˚

−20˚

0˚

20˚

Fig. 11 Geoid height differences (m) between the regional Shannon-based SRBF solutions and the EIGEN-
6S in the spectral band 70–130. Upper row regional solutions with a single regularization parameter; bottom
row regional solutions with multiple regularization parameters
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the Shannon SRBF, which is free from prior assumptions on the behaviour of the degree

variances of the geopotential.

A mutual comparison of the signal (Fig. 10) with the discrepancies (Fig. 11) indicates a

smoothing even in the Shannon-based differences. To a large extent, we attribute this

behaviour to the prior information l ¼ 0: At first glance, this choice is natural, as the

global residual gravity signal has a zero mean. But in this case, the impact of l ¼ 0 seems

to be significant which results in a pushing the gravity signal towards the zero, i.e. the

smoothing. A similar behaviour was observed in Sect. 5.2, where we used various values

of the cut-off degree nmax;l: The smoothing effect could be avoided or suppressed, e.g., by

(1) using orbital data from a longer time period; (2) lowering the maximum degree nmax;

(3) choosing the prior information l more carefully. As for the last option, the prior

information over the study area can be based, up to some cut-off degree nmax;l; on the

global solutions presented in Sects. 5.1 and 5.2. In this way, the very crude prior infor-

mation l ¼ 0 can be replaced by a better initial approximation of the unknown expansion

coefficients. If one is willing to give up the GOCE-only strategy, some other global gravity

field models can be used as well. Nevertheless, a study of this topic is needed to verify

whether regional solutions can actually benefit from this step.

Over the Indonesia and the Andes regions, Fig. 12 and Table 5 evaluate the global

solutions complete to degree 130 shown in Sect. 5.2. The four global models are developed

with varying level of smoothing, from essentially un-smoothed (free from prior informa-

tion) to significantly smoothed (nmax;l ¼ 30), see Fig. 8. From a cross-comparison of

Tables 4 and 5, it is seen that the regional Shannon-based solutions with multiple regu-

larization parameters provide the smallest RMS errors. Moreover, these regional solutions

yield the second smallest minimum and maximum discrepancies. The results we obtained

indirectly confirm the assumptions stated in the third paragraph of Introduction. We

therefore believe that, at high frequencies, regional Shannon-based solutions may out-

perform global spherical harmonic models. Here, we again emphasize the superiority of the

EIGEN-6S reference model, which provides us with a high-quality benchmark to reliably

validate our gravity field models.

Table 4 Differences in terms of geoid heights between the regional SRBF solutions and the EIGEN-6S in
the spectral band 70–130
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Fig. 12 Geoid height differences (m) between the global Shannon-based SRBF solutions and the EIGEN-
6S in the spectral band 70–130. Upper row global solution with nmax ¼ 130 and nmax;l ¼ 10; bottom row

global solution with nmax ¼ 130 and nmax;l ¼ 30

Table 5 Differences in terms of geoid heights between the global Shannon-based SRBF solutions (Figs. 8,
9) and the EIGEN-6S in the spectral band 70–130

Prior information Indonesia The Andes

Min Max Mean RMS Min Max Mean RMS

No prior
information

-5.018 4.989 0.006 1.123 -5.292 5.167 0.003 1.224

nmax;l ¼ 10 -3.350 3.362 0.000 0.629 -2.475 2.897 0.000 0.647

nmax;l ¼ 20 -4.382 4.513 -0.001 0.606 -3.219 3.742 0.000 0.584

nmax;l ¼ 30 -4.819 5.092 -0.002 0.633 -3.669 4.171 0.000 0.594

The differences are computed with the grid step of 0.1� in both directions. All values are in metres
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6 Summary, Conclusions and Discussion

We have presented an approach to deliver both global and regional static gravity field

models from kinematic orbit analysis. The core of the technique lies in the expansion of the

gravity field in terms of band-limited spherical radial basis functions. We have demon-

strated the comparable quality of our global GOCE-based models with respect to other

spherical harmonic models derived from the same GOCE data. A key outcome of our

global gravity field modelling is the approach improving the poor quality of zonal and

near-zonal spherical harmonic coefficients of GOCE-only models. These coefficients tend

to be degraded due to the inclined orbit of the GOCE satellite. Though so far not supported

by numerical experiments, we expect that a similar improvement may also be achieved

when applied to spherical harmonics. The present paper thus contributes to the wide variety

of studies related to the polar gap issue (e.g., Albertella et al. 1999; Baur and Sneeuw

2007; Korte and Holme 2003; Metzler and Pail 2005; Pail et al. 2001; Rummel et al. 1993;

Simons and Dahlen 2006; Sneeuw and van Gelderen 1997; Wieczorek and Simons 2005;

Xiancai et al. 2011).

In addition to the static gravity field, its very long-wavelength temporal variations (up to

degree *10) can also be revealed from kinematic orbits. For a certain time period,

kinematic orbits may become the only source of information about the time-variable

gravity, given that the operational lifetime of the GRACE satellites might reach its end

prior to the launch of the GRACE Follow-On mission. The results we achieved on the

global scale imply that, in addition to spherical harmonics, temporal variations can also be

studied in terms of SRBFs. It is, however, the opinion of the authors that, in this case,

spherical harmonics are undoubtedly still the best choice.

Our experience implies that the fine high-frequency gravity information present in

kinematic orbits can be better retrieved on a regional rather than on the global scale.

Similar studies may turn out to be especially useful due to the possible gap between the

GRACE and the GRACE Follow-On missions. In that case, non-dedicated gravity satellites

equipped with a geodetic-quality GPS receiver might be the only source of information

about the long-wavelength geopotential. The improvements we achieved on the regional

scale agree well with recent studies coping with the regional gravity field refinement from

satellite data (e.g., Eicker 2008; Eicker et al. 2014; Schmidt et al. 2007). Similarly as in

these studies, we found the technique based on multiple regularization parameters to be

one of the key ingredients to reach these improvements. We have also shown that the

regional gravity field modelling from kinematic orbits is feasible without any need for

using spherical harmonics. Although we obtained the prior information with the aid of

spherical harmonics, they can easily be avoided by multi-resolution analysis (e.g., Freeden

and Schneider 1998).

Some topics and issues still remain open and may be addressed in the future to achieve

further improvements. (1) In this study, we relied on simulated non-gravitational accel-

erations. We expect that the non-gravitational accelerations measured on-board could

improve our global models, in particular the low frequencies (mostly the degree-2 coef-

ficients) (Baur et al. 2014). (2) We used the identity matrix to weight the prior information,

but other choices are possible. For instance, when the prior information is derived from an

existing gravity field model, its covariance matrix can be incorporated if available. (3) If

deriving a SRBF from an empirical rule for the degree variances, different rules from

Kaula’s could be examined (see, e.g., Rexer and Hirt 2015). This might reduce the low-

pass filtering of the geopotential that we observed in the Kaula-based solutions. (4) In the
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regional gravity field modelling, we noticed a smoothing effect with both the Shannon and

Kaula’s SRBF. To mitigate this issue, the regional prior information can be derived from a

global SRBF solution up to a certain cut-off degree nmax;l: In general, we expect a minor

smoothing effect, but simultaneously a growth of the RMS error. But similarly as in the

global solutions, a compromise may be found, leading to an overall better solution. (5)

Regionally refined solutions covering the whole globe can be merged together and

transformed into the traditional spherical harmonics as shown in Eicker (2008). Such a

global solution may benefit from the regional refinement technique and may improve the

high-frequency part of our global gravity field models.
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Appendix: Fundamental and Admissible Systems

In order to formulate the conditions on the spatial distribution of nodal points, we borrow a

few definitions from Freeden and Schneider (1998) and Freeden et al. (1998), where

further details can be found.

Let fYnmgn¼0;1;...;m¼�n;...;n be an orthonormal system of surface spherical harmonics on

the unit sphere. Furthermore, let fHnmgn¼0;1;...;m¼�n;...;n be their harmonic continuation into

the exterior of the unit sphere, called the solid spherical harmonics.

Definition 1 The span of all solid spherical harmonics of degrees nmin; . . .; nmax defines

the space Harmnmin;...;nmax
ðXext

R Þ;

Harmnmin;...;nmax
ðXext

R Þ ¼ span Hnm j n ¼ nmin; . . .; nmax; m ¼ �n; . . .; nf g: ð12Þ

The dimension of the space Harmnmin;...;nmax
ðXext

R Þ is
Pnmax

n¼nmin
ð2nþ 1Þ:

Definition 2 A set fLigi¼1;...;M; M ¼
Pnmax

n¼nmin
ð2nþ 1Þ; of M linearly independent boun-

ded linear functionals on Harmnmin;...;nmax
ðXext

R Þ is called a fundamental system relative to

Harmnmin;...;nmax
ðXext

R Þ if the matrix

L1Hnmin;�nmin
. . . LMHnmin;�nmin

..

. . .
. ..

.

L1Hnmax;nmax
. . . LMHnmax;nmax

0
BB@

1
CCA ð13Þ

is regular.

Definition 3 A set fLigi¼1;...;P; P[M ¼
Pnmax

n¼nmin
ð2nþ 1Þ; of P bounded linear func-

tionals on Harmnmin;...;nmax
ðXext

R Þ is called an admissible system relative to
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Harmnmin;...;nmax
ðXext

R Þ if it contains a fundamental system relative to Harmnmin;...;nmax
ðXext

R Þ:

Some geodetically relevant fundamental and admissible systems are described in

Freeden and Schneider (1998).
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