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Abstract In geodesy, the geoid and the quasigeoid are used as a reference surface for

heights. Despite some similarities between these two concepts, the differences between the

geoid and the quasigeoid (i.e. the geoid-to-quasigeoid correction) have to be taken into

consideration in some specific applications which require a high accuracy. Over the

world’s oceans and marginal seas, the quasigeoid and the geoid are identical. Over the

continents, however, the geoid-to-quasigeoid correction could reach up to several metres

especially in the mountainous, polar and geologically complex regions. Various methods

have been developed and applied to compute this correction regionally in the spatial

domain using detailed gravity, terrain and crustal density data. These methods utilize the

gravimetric forward modelling of the topographic density structure and the direct/inverse

solutions to the boundary-value problems in physical geodesy. In this article, we provide a

brief summary of existing theoretical and numerical studies on the geoid-to-quasigeoid

correction. We then compare these methods with the newly developed procedure and

discuss some numerical and practical aspects of computing this correction. In global

applications, the geoid-to-quasigeoid correction can conveniently be computed in the

spectral domain. For this purpose, we derive and present also the spectral expressions for

computing this correction based on applying methods for a spherical harmonic analysis and

synthesis of global gravity, terrain and crustal structure models. We argue that the newly

developed procedure for the regional gravity-to-potential conversion, applied for
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computing the geoid-to-quasigeoid correction in the spatial domain, is numerically more

stable than the existing inverse models which utilize the gravity downward continuation.

Moreover, compared to existing spectral expressions, our definition in the spectral domain

takes not only the terrain geometry but also the mass density heterogeneities within the

whole Earth into consideration. In this way, the geoid-to-quasigeoid correction and the

respective geoid model could be determined more accurately.

Keywords Correction � Geoid � Gravity � Height � Quasigeoid

1 Introduction

The actual distance along the plumbline between the geoid and the topographic surface

defines the orthometric height. Since the geoid determination requires the knowledge of

mass density distribution within the topography, the mathematical approximation of the

Earth by the quasigeoid—free of any hypothetical assumptions on the topographic density

distribution—is often used as an alternative concept to the geoid for a definition of height

systems. In this case, the normal height is defined as the vertical displacement (along the

ellipsoidal normal) of the topographic surface from the quasigeoid. Normal and ortho-

metric heights are thus the most widely used types of heights for geodetic vertical datum

realization. These two types of heights can be used if height benchmarks were established

based on geodetic spirit levelling and gravity measurements along levelling lines. In some

countries, however, gravity values (along levelling lines) were calculated only approxi-

mately using normal gravity formulas. The vertical datum is then defined by the normal-

orthometric heights (e.g., Meyer et al. 2007).

Asserting that the topographic density and the actual vertical gravity gradient inside the

Earth’s masses could not be determined precisely, Molodensky (1945, 1948) formulated

the theory of normal heights (see also Molodensky et al. 1960). According to this concept

the mean gravity (along the plumbline) within the topography is replaced by the mean

normal gravity (along the ellipsoidal normal) between the reference ellipsoid and telluroid

(see also Heiskanen and Moritz 1967, Chap 4). For a practical realization of the geodetic

vertical datum, Helmert’s (1884, 1890) orthometric heights are also often used. This

method requires only a simple computation of mean gravity by means of applying Poin-

caré–Prey gravity reduction (e.g., Heiskanen and Moritz 1967, Chap 4-3) while assuming a

uniform topographic density distribution. To determine the orthometric heights in moun-

tainous regions with accuracy of a few centimetres or better, Helmert’s approximation is

not sufficient. Therefore, more accurate methods for the evaluation of mean gravity have to

be applied taking the effects of terrain and variable topographic density into consideration.

Moreover, mean gravity within the topography depends also on the gravitational effect of

mass density heterogeneities distributed below the geoid surface (Tenzer 2004; Tenzer

et al. 2005).

In an attempt to improve the accuracy of Helmert’s definition, Niethammer (1932,

1939) took the terrain effect into consideration while assuming only a uniform topographic

density. According to his method, the mean value of the planar terrain correction is

evaluated as a simple average of values computed at the finite number of points along the

plumbline within the topography. Mader (1954) estimated a difference between the Hel-

mert and Niethammer methods of *6 cm for Hochtor (2504 m) in the European Alps (see
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also Heiskanen and Moritz 1967, Chap. 4-6). Mader (1954) and Ledersteger (1968) also

presupposed that the terrain correction varies linearly with depth. Based on this assump-

tion, the mean terrain correction is averaged from values computed at the topographic

surface and at the geoid. Flury and Rummel (2009), however, demonstrated that nonlinear

changes of the terrain correction could not be disregarded. Hence, the mean terrain cor-

rection should be computed according to Niethammer. Wirth (1990) modified Nietham-

mer’s method by means of computing the topographic gravity potential (instead of the

terrain correction) at points at the topographic surface and the geoid. The topographic

density variation can cause changes of the geoid (and consequently the orthometric

heights) up to several decimetres (see Vanı́ček et al. 1995; Vanı́ček and Kingdon 2012).

The correction to Helmert’s orthometric height due to lateral variation of topographic

density can be evaluated using a simple formula in which the change of the orthometric

height is in a linear relation to the anomalous lateral topographic density (Heiskanen and

Moritz 1967). Adopting this relation, the effect of the anomalous topographic density to

Helmert’s orthometric heights was investigated, for instance, by Allister and Featherstone

(2001) and Tenzer and Vanı́ček (2003). In these approximate definitions of the orthometric

height, the vertical gravity gradient generated by mass density heterogeneities distributed

below the geoid surface is approximated by the linear normal gravity gradient while

disregarding the change of the normal gravity gradient with depth. Hwang and Hsiao

(2003) estimated that the errors due to disregarding a nonlinear change of the normal

gravity gradient can reach several centimetres in mountainous regions. Tenzer and Vanı́ček

(2003) applied analytical downward continuation of observed gravity in the evaluation of

mean gravity based on assuming the lateral topographic density distribution. They then

formulated the relation between Poincaré–Prey gravity gradient and the analytical down-

ward continuation of gravity. Kingdon et al. (2009) used the density interfaces as different

layers to model the topographic effect in gravimetric geoid determination.

An accurate method for a determination of the integral mean of gravity along the

plumbline within the topography was introduced by Tenzer (2004). Following this concept,

Tenzer et al. (2005) applied the decomposition of mean gravity into mean normal gravity,

the mean no-topography gravity disturbance (generated by the mass density heterogeneities

below the geoid surface) and the mean values of the gravitational attraction of topographic

and atmospheric masses. Mean normal gravity is then evaluated according to Somigliana–

Pizzetti theory of the normal gravity field (Pizzetti 1911; Somigliana 1929). The mean

topography-generated gravitational attraction is defined in terms of the difference between

gravitational potentials reckoned at the geoid and the topographic surface, multiplied by

the reciprocal of the orthometric height. The same principle is applied for a definition of

the mean atmosphere-generated gravitational attraction. The mean no-topography gravity

disturbance along the plumbline between the geoid and the topographic surface is calcu-

lated from the no-topography gravity disturbances at the geoid by applying Poisson’s

integral. Prior to this numerical step, the no-topography gravity disturbances at the topo-

graphic surface have to be downward continued to the geoid by solving the inverse to

Dirichlet’s boundary-value problem. Santos et al. (2006) compared the differences between

various orthometric height definitions. In addition to the above theoretical developments,

numerous empirical studies were published on the orthometric height definition (e.g.,

Ledersteger 1955; Rapp 1961; Krakiwsky 1965; Strange 1982; Sünkel 1986; Kao et al.

2000; Drewes et al. 2002; Dennis and Featherstone 2003; Featherstone and Kuhn 2006).

In recent years, a considerable effort has been undertaken to unify a large number of

existing vertical datum realizations around the world. The vertical datum unification

typically requires the joint adjustment of interconnected levelling networks and/or the
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estimation of the vertical datum offset with respect to the World Height System (WHS)

which is defined by the geoidal geopotential value W0 (cf. Burša et al. 1997, 1999). The

estimated values of W0 were reported by Burša et al. (1997, 2007), Sanchez (2007) and

Dayoub et al. (2012). Alternatively, vertical datum unification can be realized though the

gravimetric determination of the global geoid/quasigeoid model with a high accuracy and

spatial resolution. Since the geodetic vertical controls worldwide are defined using dif-

ferent types of heights and every country has adopted their own height system specifica-

tions, the precise conversion between different height systems is inevitable.

Height conversion has been addressed extensively in geodetic literature. An approxi-

mate formula relating the (Molodensky) normal and (Helmert) orthometric heights was

given, for instance, in Heiskanen and Moritz (1967, Eq. 8–103). According to this formula,

the geoid-to-quasigeoid correction is defined as a function of the simple planar Bouguer

gravity anomaly and the topographic height. Sjöberg (1995) slightly improved the classical

definition by adding a small term related to the vertical derivative of the gravity anomaly.

Rapp (1997) formulated the computation of the geoid-to-quasigeoid correction in spherical

harmonics and applied the approach with the Earth’s gravitational models (EGMs). Tenzer

et al. (2005) presented numerical procedures for a rigorous computation of the orthometric

height and formulated an accurate relation between the (rigorous) orthometric and normal

heights. An alternative method of computing the geoid-to-quasigeoid correction was given

by Tenzer et al. (2006). They derived this correction by comparing the geoidal height and

the height anomaly, both defined by Bruns’s (1878) theorem. It is important to note that the

height anomaly is defined as the vertical displacement (along the ellipsoidal normal)

between the telluroid and the topographic surface. Consequently, the vertical displacement

between the ellipsoid and the telluroid defines the normal height (e.g., Heiskanen and

Moritz 1967, Chap 8–3). Since this theoretical definition is not convenient for practical

purposes, the normal height is formally considered as the vertical distance between the

quasigeoid and the topographic surface and the quasigeoidal height is measured from the

ellipsoid surface (see Fig. 1). Obviously, the quasigeoidal height and the height anomaly

are equal. A very similar expression for computing the geoid-to-quasigeoid correction was

given by Sjöberg (2006). The definitions of the geoid-to-quasigeoid correction presented

Fig. 1 Height systems: the normal height HN, the orthometric height HO, the geodetic (ellipsoidal) height h,
the geoidal height N, the height anomaly 1, and the quasigeoidal height 10. The plumbline and ellipsoidal
normal are denoted as t and n respectively
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by Tenzer et al. (2005, 2006) and Sjöberg (2006) incorporated information on the terrain

geometry, variable topographic density and mass density heterogeneities distributed below

the geoid surface. Flury and Rummel (2009) demonstrated that the consideration of terrain

significantly reduces the values of the geoid-to-quasigeoid correction computed using the

classical definition in which the topography is approximated by the Bouguer plate. The

results of Flury and Rummel (2009) were in a good agreement with previous results over a

larger area in the European Alps presented by Marti (2005) and Sünkel et al. (1987), see

also Hofmann-Wellenhof and Moritz (2005, Chap 4). Following the work of Flury and

Rummel (2009), Sjöberg (2010) derived a slightly more accurate expression for the geoid-

to-quasigeoid correction, consistent with a definition of the boundary condition of physical

geodesy. He, however, also stated that his more refined expression could improve the

accuracy not more than *1 cm compared to the expression given by Flury and Rummel

(2009). Later, Sjöberg (2012) applied an arbitrary compensation model in computing the

topographic correction term. In particular, he recommended using either the Helmert or

isostatic types of reductions, which provide smaller and smoother components, more

suitable for interpolation and calculation, than the Bouguer reduction. Hirt (2012) refined

parts of Rapp’s (1997) computational approach by introducing higher-order terms in the

harmonic synthesis which are relevant for the computation of the geoid-to-quasigeoid

correction from high-degree EGMs.

It is worth mentioning that some authors developed and applied methods for the con-

version of the normal-orthometric to normal heights. Filmer et al. (2010), for instance,

applied the cumulative normal to normal-orthometric height correction in the Australian

Height Datum. They used the EGM2008 (Pavlis et al. 2012) to reconstruct observed

gravity data at levelling benchmarks of the Australian National Levelling Network.

According to their method, the normal to normal-orthometric height correction along

levelling lines was calculated cumulatively as a sum of the product of the levelled height

differences and the surface values of the gravity disturbances. Tenzer et al. (2011a, 2011b)

defined this correction more rigorously as a function of gravity anomalies instead of

gravity disturbances, because the normal gravity at the topographic surface (in the defi-

nition of the normal potential number) is calculated for the levelled heights (and not for the

geodetic heights). They applied this correction in the (experimental) unification of the local

vertical controls (LVDs) at the North and South Islands of New Zealand.

Although numerous studies have been addressing theoretical and practical aspects of the

geoid and quasigeoid determination, the differences between them are often disregarded.

One example can be given in geophysical applications where the EGM coefficients are

used to compute the geoid model globally. Since the EGMs describe the external gravi-

tational field of the Earth, the ‘‘true’’ geoid can directly be recovered from EGMs only over

the world’s oceans and marginal seas and possibly also over low-elevated continental

regions where the differences between the geoid and the quasigeoid are negligible or below

the accuracy required for a particular application. In the mountainous, polar and geolog-

ically complex regions, however, the geoid could only be determined realistically if

additional information on the terrain geometry is taken into consideration. Moreover,

mantle density heterogeneities, continental polar ice sheets and large continental sedi-

mentary basins significantly affect the long-to-medium wavelengths of the Earth’s

equipotential geometry and consequently also the respective long-wavelength harmonic

spectrum of the geoid-to-quasigeoid correction.

In this study, we address these aspects and present the complete numerical methods for

computing the geoid-to-quasigeoid correction in the spatial and spectral domains. For this

purpose, we first derive a rigorous formula for the geoid-to-quasigeoid correction in
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Sect. 2. We then present numerical procedures for an accurate computation of the geoid-to-

quasigeoid correction in the spatial domain and compare these procedures with published

methods in Sect. 3. These numerical procedures are suitable especially for local or regional

applications. In global applications, the computation of this correction is typically realized

in a frequency domain to a certain degree of spectral resolution. The expressions for

computing this correction in the spectral domain are derived and presented in Sect. 4.

Some practical aspects of computing the geoid-to-quasigeoid correction are discussed in

Sect. 5. The summary and concluding remarks are given in Sect. 6. The focus of our study

is on the derivation of computational formalisms, while the application of these numerical

methods on synthetic or real data is out of the scope of this study.

2 Geoid-to-Quasigeoid Correction

The geoidal height N is defined by (e.g., Heiskanen and Moritz 1967, Eq. 2–144)

N Xð Þ ¼
T rg;X
� �

c0 /ð Þ ; ð1Þ

where the disturbing potential T (i.e. the difference between the actual and normal gravity

potentials) is stipulated at the geoid surface (rg, X) of which the geocentric radius is rg, and
X = (/, k) is the spherical direction with the spherical latitude / and longitude k. The
normal gravity c0 in Eq. (1) is evaluated at the reference ellipsoid typically according to the
Geodetic Reference System 1980 (GRS80) parameters (Moritz 2000).

Molodensky (1945, 1948) defined the height anomaly 1 as follows (see also Molo-

densky et al. 1960; Heiskanen and Moritz 1967, Eqs. 8–10)

1 Xð Þ ¼ T rt;Xð Þ
c HN ;/ð Þ ; ð2Þ

where the disturbing potential T is in this case stipulated at the topographic surface (rt, X)
of which the geocentric radius is denoted as rt. The normal gravity c in Eq. (2) is evaluated

at the telluroid (HN, /) which is vertically displaced from the reference ellipsoid by the

normal height HN.

From Eqs. (1) and (2), the geoid-to-quasigeoid correction v is obtained in the following

form

v Xð Þ ¼ N Xð Þ � 1 Xð Þ ¼
T rg;X
� �

c0 /ð Þ � T rt;Xð Þ
c HN ;/ð Þ : ð3Þ

Errors due to disregarding the nonlinear terms in definitions of the geoidal height and the

height anomaly in Eqs. (1) and (2) by means of applying Bruns’s theorem cause uncer-

tainties in the geoid-to-quasigeoid correction in Eq. (3) not more than 1.5 mm (cf. Sjöberg

2006).

After some algebra, Eq. (3) is rewritten as

v Xð Þ ¼ 1

c0 /ð Þ T rg;X
� �

� T rt;Xð Þ
� �

þ T rt;Xð Þ
c HN ;/ð Þ

c HN ;/ð Þ
c0 /ð Þ � 1

� �

¼ 1

c0 /ð Þ T rg;X
� �

� T rt;Xð Þ
� �

þ 1 Xð Þ c HN ;/ð Þ � c0 /ð Þ
c0 /ð Þ :

ð4Þ
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The geoid-to-quasigeoid correction in Eq. (4) is described by the two constituents related to

the disturbing potential difference and the normal gravity difference. The former represents

a major contribution to v. The latter is further defined in terms of the normal vertical

gravity gradient. A similar definition of v was given before by Tenzer et al. (2006) using a

Taylor series to define the normal gravity difference. We note here that Eq. (3) and all

expressions hereafter actually define the geoid-to-quasigeoid correction as negative,

because the value v has to be added to the height anomaly in order to obtain the geoidal

height, i.e. N = 1 ? v.
If we disregard the nonlinear changes in the vertical normal gravity gradient, i.e.

c HN ;/
� �

� c0 /ð Þ þ oc
oh

����
h¼0

HN Xð Þ; ð5Þ

the second constituent on the right-hand side of Eq. (4) becomes

1 Xð Þ c HN ;/ð Þ � c0 /ð Þ
c0 /ð Þ ffi 1

c0 /ð Þ
oc
oh

����
h¼0

HN Xð Þ1 Xð Þ; ð6Þ

where h is the geodetic height. Substituting c0 � GM=R2 and oc=oh � �2GM=R3 in

Eq. (6), we get

1 Xð Þ c HN ;/ð Þ � c0 /ð Þ
c0 /ð Þ � � 2GM

R3

R2

GM
HN Xð Þ1 Xð Þ ¼ � 2

R
HN Xð Þ1 Xð Þ; ð7Þ

where GM ¼ 3986005� 108 m3 s-2 is the geocentric gravitational constant, and R ¼
6371� 103 m is the Earth’s mean radius. Setting H & 8.85 9 103 m and 1 & ±100 m,

the second constituent on the right-hand side of Eq. (4) will not exceed a maximum

of ± 0.3 m. The errors due to disregarding the nonlinear changes of the normal gravity

gradient in Eq. (5) are less than 1 mm. This is evident from

2c0ð Þ�1
H21o2c=oh2 � H21=3R2, where o2c=oh2 � 6GM=R4.

To evaluate the first constituent on the right-hand side of Eq. (4), we define the dis-

turbing potential T as a function of the gravity disturbance dg, i.e. dg % - qT/qr. We then

write

T rg;X
� �

� T rt;Xð Þ ¼
Zrt

r¼rg

dg r;Xð Þ cos �g; r�ð Þdr ffi
Zrt

r¼rg

dg r;Xð Þdr; ð8Þ

where cos �g; roð Þ is the cosine of the deflection of the plumbline from the geocentric

radial direction, g is the vector of gravity, and ro is the unit vector in the geocentric radial

direction. Tenzer et al. (2005) demonstrated that neglecting the deflection of the plumbline

from the geocentric radial direction, i.e. cos �g; roð Þ � 1, could increase the error in the

orthometric height only by a few millimetres. The integral mean of the gravity disturbance

dg Xð Þ reads (Tenzer 2004)

dg Xð Þ ffi 1

HO Xð Þ

Zrt

r¼rg

dg r;Xð Þdr; ð9Þ
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where HO is the orthometric height. From Eqs. (8) and (9), we get

T rg;X
� �

� T rt;Xð Þ ¼ HO Xð Þdg Xð Þ: ð10Þ

Substituting Eqs. (7) and (10) in Eq. (4), the geoid-to-quasigeoid correction is found to be

v Xð Þ ffi
T rg;X
� �

� T rt;Xð Þ
c0 /ð Þ � 2

R
HN Xð Þ1 Xð Þ

ffi 1

c0 /ð ÞH
O Xð Þdg Xð Þ � 2

R
HN Xð Þ1 Xð Þ

: ð11Þ

The orthometric height in Eq. (11) can be replaced by the normal height, and vice versa,

without any significant influence on the accuracy; for HO � HN ¼ �5 m and

dg ¼ 500 mGal, the error of v is only *2.5 mm. The expression in Eq. (11) can then be

described in terms of the topographic height H (instead of specifically for HN or HO).

Hence

v Xð Þ ffi H Xð Þ
c0 /ð Þ dg Xð Þ � 2

R
1 Xð Þc0 /ð Þ

� �
: ð11aÞ

Since the second constituent on the right-hand side of Eq. (11a) can readily be computed

from the known values of 1 and H, the computational procedure is now reduced to evaluate

the integral mean of the gravity disturbance dg. As seen in Eq. (10), the computation of dg
in Eq. (11a) can be done in terms of the disturbing potential difference. In the next section,

we present various methods for computing the disturbing potential difference in the spatial

domain.

3 Computation in the Spatial Domain

The disturbing potential difference can be evaluated from the observed gravity distur-

bances/anomalies by applying four (successive) numerical steps comprising: (1) the for-

ward modelling of the topographic gravity correction, (2) the inverse solution to discretized

Green’s integral equations, (3) the solution to discretized Poisson’s integral equation, and

(4) the forward modelling of the topographic potential difference.

To better explain these four numerical steps, we first clarify their purpose. By analogy

with the gravimetric geoid determination, the gravitational contribution of topographic

masses has to be removed from the observed gravity data. For this reason, the forward

modelling is applied to compute the topographic gravity correction. In the second step, the

topography-corrected gravity data at (or above) the topographic surface are converted to

the disturbing potential values at the geoid by solving the inverse to discretized Green’s

integrals. Subsequently, the disturbing potential values at the geoid are upward continued

to the topographic surface by solving the discretized Poisson’s integral equation. The

disturbing potential values at the geoid and the topographic surface are then used to

compute the disturbing potential difference. There is, however, a remaining problem

related to the fact that the gravitational contribution of topographic masses was subtracted

from the observed gravity data (in the first step) prior to their conversion to potential values

(the second and third steps). The disturbing potential values obtained from these gravity

data thus do not comprise the topographic effect. Since the integral mean of gravity

disturbance is defined inside the topography, the gravitational contribution of topographic
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masses has to be restored. This is done by applying the topographic correction to the

disturbing potential difference. For this purpose, the forward modelling is used in the final

step to compute the topographic potentials at the geoid and the topographic surface.

Mathematical formalisms applied for solving these numerical steps using either the gravity

disturbances or the gravity anomalies are reviewed below. This numerical procedure is

then compared with published methods. The schematic diagrams of these numerical pro-

cedures are shown in Fig. 2.

By analogy with the procedure described in Tenzer et al. (2005), we first separate the

disturbing potential T into the components which can be calculated separately from gravity

data and available terrain and crustal density models. We then write

T r;Xð Þ ¼ VT r;Xð Þ þ TNT r;Xð Þ; ð12Þ

where VT is the topographic potential, and TNT is the no-topography disturbing potential

(Vanı́ček et al. 2005) which is generated by the mass density heterogeneities distributed

below the geoid surface. As seen in Eq. (12), the no-topography disturbing potential can be

obtained from the disturbing potential after subtracting the topographic potential. In the

Fig. 2 Numerical procedures applied for computing the geoid-to-quasigeoid correction in the regional
gravity inversion: the computation of the disturbing potential difference from the observed gravity
disturbances (a) and from the topography-corrected gravity anomalies (b) based on solving the inverse to
Green’s integral equation with a subsequent solution to the Poisson’s integral equation. The computation of
the disturbing potential difference from the observed gravity disturbances based on solving the inverse to
Poisson’s integral equation with a subsequent solution to the radially integrated Poisson’s integral according
to Tenzer et al. (2005) (c). The computation of the disturbing potential difference from the observed gravity
anomalies based on solving the inverse to Poisson’s integral equation with a subsequent solution to the
generalized Stokes’s problem according to Tenzer et al. (2006) and Sjöberg (2006) (d). Note that the values
at the geoid and the topographic surface are denoted by subscripts ‘‘g’’ and ‘‘t’’, respectively
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most general case, the atmospheric potential should also be taken into consideration in

Eq. (12). Tenzer et al. (2005) demonstrated, however, that the atmospheric effect on the

geoid-to-quasigeoid correction is less than 1 mm and thus completely negligible.

We further separate the topographic potential in Eq. (12) into the components VT ;qT and

VT ;dqT which are related to the constant and anomalous topographic density distribution,

i.e. �qT ¼ const: and dqT ¼ qT � �qT, where qT is the actual topographic density. Hence

VT r;Xð Þ ¼ VT ;�qT r;Xð Þ þ VT ;dqT r;Xð Þ: ð13Þ

Substituting Eqs. (12) and (13) in Eq. (10), we arrive at

T rg;X
� �

� T rt;Xð Þ ffi VT ;�qT rg;X
� �

� VT ;qT rt;Xð Þ
h i

þ VT ;dqT rg;X
� �

� VT ;dqT rt;Xð Þ
h i

þ TNT rg;X
� �

� TNT rt;Xð Þ
� �

: ð14Þ

Whereas the topographic potentials VT ;�qT and VT ;dqT in Eq. (14) can directly be computed

from terrain and crustal density models by applying forward modelling, the evaluation of

the no-topography disturbing potential difference from the observed gravity data requires

the removal of topographic effect (i.e. the first numerical step) followed by the gravity-to-

potential conversion of the non-topographic part of the gravity field (the second step) with

the additional upward continuation (the third step).

The no-topography gravity disturbances dgNT at the topographic surface are obtained

from the observed gravity disturbances dg after applying the direct topographic effect

dgNT rt;Xð Þ ¼ dg rt;Xð Þ � gT ;�q
T

rt;Xð Þ � gT ;dq
T

rt;Xð Þ; ð15Þ

where the topographic attraction gT consists of two components gT ;�q
T

and gT ;dq
T

which are

evaluated again for the reference and anomalous topographic density distribution.

The computation of the no-topography gravity anomalies DgNT from the observed

gravity anomalies Dg is realized by applying the direct and secondary indirect topographic

effects (Vanı́ček et al. 2005)

DgNT rt;Xð Þ ¼ Dg rt;Xð Þ � gT ;�q
T

rt;Xð Þ � gT ;dq
T

rt;Xð Þ

þ 2

rt Xð ÞV
T ;�qT rt;Xð Þ þ 2

rt Xð ÞV
T ;dqT rt;Xð Þ:

ð16Þ

As seen in Eqs. (15) and (16), the direct and secondary indirect topographic effects are

defined as gT and 2r-1VT, respectively. We note here that the definitions of dgNT and DgNT

formally also include the respective atmospheric effects. Since the atmospheric effect on

the geoid-to-quasigeoid correction is negligible, the atmospheric gravitational effect was

not subtracted from the gravity disturbance/anomaly in Eqs. (15) and (16).

3.1 Topographic Component

The topographic potential VT ;�qT is evaluated at a point (r, X) by solving Newton’s volu-

metric integral (e.g., Martinec 1998, Chap 3)

VT ;�qT r;Xð Þ ffi G�qT
ZZ

/

Z RþH0

r0¼R

‘�1 r;w; r0ð Þr02dr0dX0; ð17Þ
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where G ¼ 6:674� 10�11 m3 kg-1 s-2 is the Newton gravitational constant, ‘ is the

Euclidean spatial distance between two points (r, X) and (r0, X0), w is the respective

spherical distance, dX0 = cos /0 d/0 dk0 is the infinitesimal surface element, and / ¼

X
0 ¼ /

0
; k

0
	 


: /
0 2 �p=2; p=2½ 	 ^ k

0 2 0; 2pÞ½
n o

is the full spatial angle. The reference

topographic density of �qT ¼ 2670 kg m-3 is typically attributed to an average density of

the upper continental crust (cf. Hinze 2003).

By analogy with Eq. (17), we define the topographic potential VT ;dqT generated by the

anomalous topographic density dqT in the following form (e.g., Martinec 1998, Chap 6)

VT ;dqT r;Xð Þ ffi G

ZZ

/

Z RþH0

r0¼R

dqT r0;X0ð Þ‘�1 r;w; r0ð Þr02dr0dX0: ð18Þ

The topographic attractions gT ;�q
T

and gT ;dq
T

(defined approximately as a negative radial

derivative of the respective topographic potentials VT ;�qT and VT ;dqT ) are given by

gT ;�q
T

r;Xð Þ ffi � oVT ;�qT

or
ffi �G�qT

ZZ

/

Z RþH0

r0¼R

o‘�1 r;w; r0ð Þ
or

r
02dr0dX0; ð19Þ

and

gT ;dq
T

r;Xð Þ ffi � oVT ;dqT

or
ffi �G

ZZ

/

Z RþH0

r0¼R

dqT r0;X0ð Þ o‘
�1 r;w; r0ð Þ

or
r02dr0dX0: ð20Þ

In Eqs. (17–20) and all equations hereafter, we apply the spherical approximation (i.e.

the geocentric radii of the geoid surface are approximated by the Earth’s mean radius).

Relative errors of about 0.3 % are to be expected in the computed gravity field quantities

due to disregarding the Earth’s flattening (cf. Heiskanen and Moritz 1967, Chap 2–14).

Moreover, strict definition of the height system (i.e. either the orthometric or normal

heights) is not required in computing the geoid-to-quasigeoid correction, because topo-

graphic information is typically retrieved from digital terrain models (DTMs). Hence, we

refer here to the topographic height H instead of specifically to HN or HO. The geocentric

radii of the topographic surface and the geoid are then defined as rt ffi Rþ H and rg ffi R,

respectively, and the radial integration is within the interval of: R
 r0 
Rþ H0.

3.2 Non-topographic Component

The computation of the non-topographic part of the geoid-to-quasigeoid correction is realized

in two steps (see Figs. 2a, b). First, the harmonic downward continuation is applied bymeans

of solving the inverse to discretized Green’s integral equations. In this numerical step, the

values of TNT are determined at the geoid from the values of dgNT or DgNT at the topographic
surface. The Green integrals read (Novák 2003;Tenzer and Novák 2008)

rdgNT r;Xð Þ ¼ � r

4p

ZZ

/

oP r;w;Rð Þ
or

TNT r0g;X
0

	 

dX0 r�Rð Þ; ð21Þ

and

rDgNT r;Xð Þ ¼ � r

4p

ZZ

/

oP r;w;Rð Þ
or

þ 2

r
P r;w;Rð Þ

� �
TNT r0g;X

0
	 


dX0 r�Rð Þ; ð22Þ
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where P is the Poisson kernel (e.g., Heiskanen and Moritz 1967, Chap 1–16). We note here

that the products rdgNT and rDgNT are harmonic functions everywhere above the geoid, i.e.

8r[R : D rdgNTð Þ ¼ 0 and 8 r[R:D rDgNTð Þ ¼ 0. The harmonic upward continuation,

realized by solving the discretized Poisson’s integral equation, is then applied to evaluate

the no-topography disturbing potential TNT at the topographic surface. The Poisson integral

reads (e.g., Heiskanen and Moritz 1967, Eq. 1-88)

TNT r;Xð Þ ¼ 1

4p

ZZ

/
P r;w;Rð ÞTNT r0g;X

0
	 


dX0 r�Rð Þ: ð23Þ

For r�R, the Poisson kernel P and the respective Green kernels oP=or and oP=or þ
2P=r in Eqs. (21–23) are given by (e.g., Tenzer and Novák 2008)

P r;w;Rð Þ ¼ R
r2 � R2

‘3 r;w;Rð Þ ; ð24Þ

oP r;w; Rð Þ
or

¼ 2r R

‘3 r;w; Rð Þ � 3R
r2 � R2

‘5 r;w; Rð Þ r � R coswð Þ; ð25Þ

oP r;w; Rð Þ
or

þ 2

r
P r;w; Rð Þ ¼ 2R

r

r2 � R2

‘3 r;w;Rð Þ � 3R
r2 � R2

‘5 r;w; Rð Þ r � R coswð Þ: ð26Þ

An alternative approach for computing the no-topography disturbing potential differ-

ence was proposed by Tenzer et al. (2005). They applied the downward continuation of the

no-topography gravity disturbances based on solving the inverse to discretized Poisson’s

integral equations. The resulting no-topography gravity disturbances at the geoid are then

used to evaluate the radial integral of discretized Poisson’s integral equation (see Fig. 2c).

The Poisson integral for dgNT reads

rdgNT r;Xð Þ ¼ R

4p

ZZ

/
P r;w;Rð ÞdgNT r0g;X

0
	 


dX0 r�Rð Þ: ð27Þ

The radial integral of Poisson’s integral is given by (Tenzer et al. 2005)

TNT rg;X
� �

� TNT rt;Xð Þ ffi
ZRþH

r¼R

dgNT r;Xð Þdr

¼ R

4p

ZZ

/

ZRþH

r¼R

r�1P r;w;Rð ÞdrdgNT r0g;X
0

	 

dX0 r�Rð Þ;

ð28Þ

where

Z

r

r�1P r;w;Rð Þdr ¼ �2R‘�1 r;w;Rð Þ þ ln
R� r coswþ ‘ r;w;Rð Þ

r sinw

����

����: ð29Þ

It is worth mentioning that the computation of the (no-topography) disturbing potential

difference from the respective gravity disturbances at the geoid can be realized by applying

Hotine’s integrals (e.g., Featherstone 2013).
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Since gravity anomalies are until now the most commonly used gravity data type, it is

convenient to compute the geoid-to-quasigeoid correction from the observed gravity

anomalies without their additional conversion to gravity disturbances. Such a procedure

was discussed in Tenzer et al. (2006) and Sjöberg (2006). According to their approach, the

no-topography gravity anomalies (defined in Eq. 16) are first downward continued onto the

geoid. This numerical step is realized by solving the inverse to discretized Poisson’s

integral. By analogy with Eq. (27), the Poisson integral for DgNT reads

rDgNT r;Xð Þ ¼ R

4p

ZZ

/
P r;w;Rð ÞDgNT r0g;X

0
	 


dX0 r�Rð Þ: ð30Þ

In the second step, the no-topography gravity anomalies at the geoid (obtained after

solving Eq. 30) are used to compute the no-topography disturbing potential values at the

topographic surface and the geoid, yielding the (no-topography) disturbing potential dif-

ference (see Fig. 2d). This is done by solving the generalized Stokes’s problem (Tenzer

et al. 2006; Sjöberg 2006)

TNT rg;X
� �

� TNT rt;Xð Þ ffi R

4p

ZZ

/
S wð Þ � S rt;wð Þ½ 	 DgNT r0g;X

0
	 


dX0; ð31Þ

where the closed analytical formulas of the Stokes kernels S wð Þ and S r;wð Þ are given by

(cf. Heiskanen and Moritz 1967, Eqs. 2-164 and 2-162)

S wð Þ ¼ cos ec
w
2
� 6 sin

w
2
þ 1� 5 cosw� 3 cosw ln sin

w
2
þ sin2

w
2

� �
; ð32Þ

and

S r;wð Þ ¼ 2R

‘ r;w;Rð Þ þ
R

r
� 3

R

r2
‘ r;w;Rð Þ

� R

r

� �2

cosw 5þ 3 ln
r � R coswþ ‘ r;w;Rð Þ

2r

� �
:

ð33Þ

Whereas the gravity-to-potential conversion of the non-topographic part of the gravity field

is realized through the downward continuation procedure of solving the inverse to dis-

cretized Green’s integral equations (Eqs. 21 and 22), in the alternative approaches this

conversion is realized after the gravity downward continuation by solving either the radial

integral of discretized Poisson’s integral equation for the values of dgNT (Eq. 28) or the

generalized Stokes’s problem for the values of DgNT (Eq. 31). In the final step, the dis-

turbing potential difference is obtained from the respective non-topographic value by

adding the topographic potential difference (see Eq. 14). The computation of the topo-

graphic potential difference can be realized by solving either Newton’s volumetric integral

for the potential values or the radial integral of Newton’s integral for the topographic

attraction. A more detailed discussion of solving Newton’s integral in the spatial domain is

out of the scope of this study while focusing only on its evaluation in the spectral domain.

4 Computation in the Spectral Domain

In this section, we introduce the expressions for computing the geoid-to-quasigeoid cor-

rection in the spectral domain based on methods for the spherical analysis and synthesis of

the gravity field and using terrain and crustal density models. With reference to the
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decomposition of the disturbing potential difference in Eq. (14), we derive the spectral

expressions individually for the topographic potential differences of reference and

anomalous density distributions and for the no-topography disturbing potential.

4.1 Topographic Potential Difference (of Reference Density)

We express the topographic potential difference (in the first constituent on the right-hand

side of Eq. 14) by means of applying the analytical downward continuation of the topo-

graphic potential VT;�qT
e (which is defined for the external convergence domain) and

introducing the topographic bias. Sjöberg (2007) defined the topographic bias as the dif-

ference between the downward-continued gravitational potential lim
r!Rþ

VT;�qT
e r;Xð Þ (for the

external convergence domain) and the topographic potential computed for the internal

convergence domain lim
r!R�

V
T;�qT

i r;Xð Þ. The analytical downward continuation is in this case
permissible due to assuming a constant topographic density and can also be applied for a

density distribution with only lateral variations. The topographic potential difference then

takes the following form

VT ;�qT rg;X
� �

� VT ;�qT rt;Xð Þ ¼ lim
r!R�

V
T ;�qT

i r;Xð Þ � VT ;�qT
e rt;Xð Þ

¼ lim
r!Rþ

VT ;�qT
e r;Xð Þ � VT ;�qT

e rt;Xð Þ

þ lim
r!R�

V
T ;�qT

i r;Xð Þ � lim
r!Rþ

VT ;�qT
e r;Xð Þ;

ð34Þ

where VT;�qT
e rt;Xð Þ � lim

r!Rþ
VT;�qT
e r;Xð Þ is the analytical continuation term, and

lim
r!Rþ

VT;�qT
e r;Xð Þ � lim

r!R�
V
T;�qT

i r;Xð Þ is the topographic bias. The spectral form of the

topographic potential VT;�qT
e for the external convergence domain is derived in ‘‘Appendix 1’’.

From Eq. (63), the topographic potential VT;�qT
e at the topographic surface, i.e.

rt ¼ Rþ H, is computed as follows

VT ;�qT
e rt;Xð Þ ffi 4pG�qTR2

X1

n¼0

R

Rþ H

� �nþ1
1

2nþ 1

�
Xnþ2

k¼0

nþ 2

k

� �
1

Rkþ1

1

k þ 1

Xn

m¼�n

H kþ1ð Þ
n;m Yn;m Xð Þ; ð35Þ

where Yn;m are the surface spherical harmonics. The Laplace harmonics Hn of the topo-

graphic heights (including their higher-order terns) are defined in Eqs. (61) and (62).

The analytically continued value of VT;�qT
e at the geoid, i.e. r ¼ R, is given by

lim
r!Rþ

VT ;�qT
e r;Xð Þ ffi 4pG�qTR2

X1

n¼0

1

2nþ 1

�
Xnþ2

k¼0

nþ 2

k

� �
1

Rkþ1

1

k þ 1

Xn

m¼�n

H kþ1ð Þ
n;m Yn;m Xð Þ: ð36Þ

From Eqs. (35) and (36), the (negative) analytical continuation term becomes
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lim
r!Rþ

VT;�qT
e r;Xð Þ � VT;�qT

e rt;Xð Þ ¼ 4pG �qTR2
X1

n¼0

1

2nþ 1
1� 1þ H

R

� ��n�1
" #

�
Xnþ2

k¼0

nþ 2

k

� �
1

Rkþ1

1

k þ 1

Xn

m¼�n

H kþ1ð Þ
n;m Yn;m Xð Þ: ð37Þ

Sjöberg (2007) derived the topographic bias in the following form

lim
r!Rþ

VT ;�qT
e r;Xð Þ � lim

r!R�
V
T ;�qT

i r;Xð Þ ¼ 2pG�qT H2 þ 2

3R
H3

� �
: ð38Þ

The topographic bias represents the discontinuity of the gravitational potential gener-

ated by the spherical Bouguer shell at its lower topographic bound, r ¼ R. The topographic

bias of the spherical roughness term equals zero, because its values evaluated for r ! Rþ

and r ! R� are the same and thus cancel each other (cf. Sjöberg 2007). With reference to

the definition of the (higher-order) Laplace harmonics fHðkÞ
n : k ¼ 2; 3; . . .g of topo-

graphic heights in Eq. (9.A), the topographic bias in Eq. (39) is defined in the following

spectral form

lim
r!Rþ

VT;�qT
e r;Xð Þ � lim

r!R�
V
T;�qT

i r;Xð Þ ¼ 2pG�qT
X1

n¼0

Xn

m¼�n

H 2ð Þ
n;m þ 2

3R
H 3ð Þ

n;m

� �
Yn;m Xð Þ: ð39Þ

Inserting from Eqs. (37) and (39) to Eq. (34), the spectral expression for the topographic

potential difference becomes

VT ;�qT r;Xð Þ � VT ;�qT rt;Xð Þ ¼ 4pG �qTR2
X1

n¼0

1

2nþ 1
1� 1þ H

R

� ��n�1
" #

�
Xnþ2

k¼0

nþ 2

k

� �
1

Rkþ1

1

k þ 1

Xn

m¼�n

H kþ1ð Þ
n;m Yn;m Xð Þ

� 2pG�qT
X1

n¼0

Xn

m¼�n

H 2ð Þ
n;m þ 2

3R
H 3ð Þ

n;m

� �
Yn;m Xð Þ: ð40Þ

To relate the Laplace harmonics of Hn (and their higher-order terms) with the spherical

harmonics which describe the Earth’s gravity field, the constituents on the right-hand side

of Eq. (40) are scaled by GM. In the spherical approximation, the geocentric gravitational

constant GM is given by

GM ¼ 4p
3

GR3 �qEarth; ð41Þ

where �qEarth ¼ 5500 kg m-3 is the Earth’s mean mass density. Combining Eqs. (40) and

(41) and limiting the series expansion up to the finite degree of �n, we get

VT ;�qT rrmg;X
� �

� VT ;�qT rt;Xð Þ ¼ GM

R

X�n

n¼0

1� 1þ H

R

� ��n�1
" #

Xn

m¼�n

VT;�qT
n;m Yn;m Xð Þ

� GM

R

X�n

n¼0

Xn

m¼�n

Vbias
n;m Yn;m Xð Þ; ð42Þ
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where the potential coefficients VT;�qT
n;m read

VT;�qT
n;m ¼ 3

2nþ 1

�qT

�qEarth
Xnþ2

k¼0

nþ 2

k

� �
1

k þ 1

H kþ1ð Þ
n;m

Rkþ1
; ð43Þ

and the topographic bias coefficients Vbias
n;m are given by

Vbias
n;m ¼ 3

�qT

�qEarth
X2

k¼1

1

k þ 1

H kþ1ð Þ
n;m

Rkþ1
: ð44Þ

As seen in Eqs. (43) and (44), the potential coefficients VT;�qT
n;m comprise the first- and

higher-order terms of the Laplace harmonics of topographic heights (up to a chosen

maximum degree of the spectral resolution used for the computation), while the topo-

graphic bias coefficients Vbias
n;m comprise only the second- and third-order Laplace har-

monics. This is because the terrain roughness term in the definition of the topographic bias

is absent.

4.2 Topographic Potential Difference (of Anomalous Density)

The topographic potential VT ;dqT generated by the anomalous topographic density distri-

bution can be defined in terms of the Laplace harmonics of dqTHn and their higher-order

terms fdqTH kð Þ
n : k ¼ 2; 3; . . .g if the density function dqT describes uniquely the anoma-

lous density distribution within the whole topography. This is possible only if the radial

density distribution is continuous everywhere within the topography. In reality, however,

the density distribution within the upper continental crust comprises density contrast

interfaces, such as below the polar ice sheets or sedimentary basins and the underlying

bedrock. For this reason, we separate the anomalous topographic density into particular

continental crustal components (within the topography) attributed to the continental water

bodies (lakes), ice, sediments and remaining anomalous topographic masses. This

description utilizes the volumetric mass layer of a particular density structure enclosed by

the upper and lower bounds of this volumetric layer. The geometry of the upper and lower

bounds is defined by their heights HU and HL relative to the geoid surface (which is

approximated by the radius R). In the most general case, the actual density q within every

volumetric mass layer can be approximated by the laterally distributed radial density

variation model using the following polynomial function (Tenzer et al. 2012a)

q r;Xð Þ ¼ q HU ;Xð Þ þ b Xð Þ
XI

i¼1

ai Xð Þ r � Rð Þi;

for Rþ HU Xð Þ� r[Rþ HL Xð Þ; ð45Þ

where q(HU, X) is the (nominal) lateral density stipulated at the upper bound HU and a

location X. The radial density change with respect to the nominal density q(HU, X) is

described by the parameters b and {ai:i = 1, 2, …, I}, where I is the maximum order of

the radial density distribution function.

Since the anomalous topographic density dqT is defined with respect to the reference

topographic density �qT, we further define the density contrast within a volumetric mass

layer by
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dq r;Xð Þ ¼ q r;Xð Þ � �qT

¼ dq HU ;Xð Þ þ b Xð Þ
XI

i¼1

ai Xð Þ r � Rð Þi;

for Rþ HU Xð Þ� r[Rþ HL Xð Þ; ð46Þ

where dq(HU, X) is the nominal value of the lateral density contrast at (HU, X).
In Sect. 4.1, we derived the topographic potential difference (of reference density)

lim
r!R�

V
T;�qT

i r;Xð Þ � VT;�qT
e rt;Xð Þ by means of the analytical continuation term and the

topographic bias (see Eq. 42), because the analytical downward continuation of the

topographic potential was in this case permissible. For the anomalous topographic density

distribution, however, this mathematical formalism is not applicable, due to presence of

mass density discontinuities. For this reason, we define the gravitational potential differ-

ence of a volumetric mass density contrast layer in terms of the potentials for the internal

and external convergence domains, i.e. VdqT rg;X
� �

� VdqT rt;Xð Þ ¼
lim
r!R�

V
dq
i r;Xð Þ � Vdq

e rt;Xð Þ. The gravitational potentials (of anomalous mass density

contrast layer) for the external and internal convergence domains are derived in Appen-

dices 2 and 3, respectively.

With reference to Eqs. (71) and (84), the potential difference of a volumetric mass

density contrast layer is obtained in the following form

lim
r!R�

V
dq
i r;Xð Þ � Vdq

e rt;Xð Þ ¼ GM

R

X�n

n¼0

Xn

m¼�n

iVdq
n;m � R

Rþ H

� �nþ1

eVdq
n;m

" #

Yn;m Xð Þ; ð47Þ

where the potential coefficients eVdq
n;m and iVdq

n;m for the external and internal convergence

domains are defined in Eqs. (72) and (85), respectively. Since the anomalous density

distribution within the whole topography is generally described by several individual

volumetric mass layers, the gravitational effect of anomalous topographic density is

defined as a sum of the potentials generated by these layers.

4.3 No-Topography Disturbing Potential Difference

To evaluate the non-topographic part of the disturbing potential difference in Eq. (14), we

first subtract the topographic potential VT from the disturbing potential T, both referred at

the topographic surface. The disturbing potential T at the topographic surface (rt, X) reads
(e.g., Heiskanen and Moritz 1967, Chap 2–14)

T rt;Xð Þ ¼ GM

R

X�n

n¼0

Xn

m¼�n

R

rt

� �nþ1

Tn;mYn;m Xð Þ; ð48Þ

where Tn;m are the (fully normalized) numerical coefficients which describe the disturbing

potential T. The coefficients Tn;m are obtained from the coefficients of a global gravita-

tional model after subtracting the spherical harmonic coefficients of the GRS80 normal

gravity field (Moritz 2000).

By analogy with Eq. (48), we define the no-topography disturbing potential TNT at the

topographic surface (rt, X) by subtracting the topographic potential VT from T. With ref-

erence to the decomposition of the topographic potential in Eq. (13), we write
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TNT rt;Xð Þ ¼ T rt;Xð Þ � VT ;�qT
e rt;Xð Þ �

X

j

V
dq
ej rt;Xð Þ; ð49Þ

where j is the summation index of the volumetric mass density contrast layers applied to

describe the anomalous density distribution within the whole topography. The corre-

sponding spectral representation of the no-topography disturbing potential TNT at the

topographic surface reads

TNT rt;Xð Þ ¼ GM

R

X�n

n¼0

Xn

m¼�n

R

rt

� �nþ1

Tn;m � VT ;�qT
n;m �

X

j

eV
dq
n;mj

 !

Yn;m Xð Þ: ð50Þ

The computation of the no-topography gravity field quantities according to Eq (50) is

realized by generating spherical harmonic coefficients of the no-topography disturbing

potential, i.e. TNT
n;m ¼ Tn;m � VT ;�qT

n;m �
P

j
eV

dq
n;mj. These coefficients are then used to compute

the no-topography disturbing potential difference from

TNT rg;X
� �

� TNT rt;Xð Þ ¼ GM

R

X�n

n¼0

Xn

m¼�n

1� 1þ H

R

� ��n�1
" #

TNT
n;mYn;m Xð Þ: ð51Þ

4.4 Normal Gravity Difference Term

The expression for the geoid-to-quasigeoid correction in Eq. (11a) comprises also the

normal gravity difference term. For consistency, this term should be computed with the

same spectral resolution as the disturbing potential difference term using the following

expression

2

R
H Xð Þ1 Xð Þ ¼ 2

R

X�n

n¼0

Xn

m¼�n

Hn;mYn;m Xð Þ
X�n

n¼0

Xn

m¼�n

1n;mYn;m Xð Þ: ð52Þ

The height anomaly coefficients 1n;m in Eq. (52) are generated from the disturbing

potential coefficients Tn;m (scaled by the factor c-1). Hence

1n;m ¼ Tn;m

c HN ;/ð Þ : ð53Þ

5 Discussion

The geoid-to-quasigeoid correction is often computed only approximately as a function of

the simple planar Bouguer gravity anomaly and the topographic height for a conversion

between Molodensky’s normal and Helmert’s orthometric heights. For practical reasons,

this simple formula would preferably be used for most applications. Moreover, it provides

a relatively good accuracy over flat regions. In mountainous, polar and geologically

complex regions, however, the errors in computed values of the geoid-to-quasigeoid

correction can reach up to several decimetres (e.g., Santos et al. 2006). To reduce these

errors to reach the centimetre level accuracy, the computation should be done more

accurately using the expression derived in Eq. (11).
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The numerical procedures developed in this study incorporate terrain and crustal

density models in the definition of the geoid-to-quasigeoid correction while also taking

the effect of mass density heterogeneities distributed below the geoid surface into

consideration. As already emphasized, the application of more accurate methods is

needed especially in the mountainous regions. This was demonstrated, for instance, by

Sjöberg and Bagherbandi (2012) who estimated, based on using the EGM2008 coeffi-

cients (Pavlis et al. 2012) complete to a spherical harmonic degree of 2160, that the

geoid-to-quasigeoid correction reaches a maximum of *5.5 m in the Himalayas.

Bagherbandi and Tenzer (2013) used the GOCO02S coefficients (Goiginger et al. 2011)

up to degree/order 250 to estimate this correction in central Eurasia. According to their

result this correction reaches a maximum of *3.6 m in the Himalayas. They applied the

method of Sjöberg (2010) which takes the effects of terrain and lateral topographic

density into consideration. Although the effect of variable topographic density was

disregarded in these numerical studies, the terrain geometry alone changed the value of

the geoid-to-quasigeoid correction considerably. The differences between the maximum

values of the geoid-to-quasigeoid correction in the Himalayas estimated by Sjöberg and

Bagherbandi (2012) and Bagherbandi and Tenzer (2013) are explained by the fact that

this correction is very sensitive on the maximum degree of spherical harmonics used for

the computation. These two estimates also differ significantly from the maximum value

of this correction in the Himalayas of only *2 m when computed as a function of the

simple planar Bouguer gravity anomaly and the topographic height (e.g., Rapp 1997).

The effect of terrain geometry on the geoid-to-quasigeoid correction is thus significant.

Nevertheless, all these values were estimated according to computational models which

take only topography into consideration while disregarding the effect of mass density

heterogeneities distributed below the geoid surface. The assumption that the geoid-to-

quasigeoid correction could not be computed accurately without taking the non-topo-

graphic effect into consideration was confirmed by Tenzer et al. (2005). They demon-

strated, based on the numerical results in a high-elevation and rugged part of the

Canadian Rocky Mountains, that the effect of topographic density variations varies from

-7 to 2 cm, while the total topographic effect (including the variable topographic

density) on the geoid-to-quasigeoid correction is between -86.5 and 0.1 cm. In contrast,

they estimated that the non-topographic effect is mostly positive and varies within a

range of -8 to 44 cm. Since the non-topographic effect is mostly of opposite sign than

the topographic effect, the combined effect to the geoid-to-quasigeoid correction cancels

to some extent, especially at the long-to-medium wavelengths where isostatic compen-

sation prevails. According to their results the geoid-to-quasigeoid correction is every-

where negative and varies from -0.1 to -45.6 cm which is only about a half of the total

topographic effect. These results also revealed that the gravitational contribution of mass

density heterogeneities distributed below the geoid surface is actually much larger than

the effect of variable topographic density. Based on these results, we argue that the

estimation of the non-topographic effect to the geoid-to-quasigeoid correction is essential

especially in the mountainous regions due to the presence of isostatic compensation. This

isostatic effect could be attributed to either variable crustal density (i.e. Pratt’s (1855)

isostatic principle) or variable crustal thickness (i.e. Airy’s (1855) isostatic principle). In

reality, however, both these isostatic models represent only extreme cases, while the

actual crustal mass balance is much more complex and involving also geodynamic

processes (such as active tectonism, postglacial rebound, crustal flexure, mantle vis-

coelasticity). Nevertheless, in mountainous areas the isostasy typically more closely
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agrees with Airy’s model, while Pratt’s model better approximates the isostasy over

oceans.

The effect of variable topographic density on the geoid-to-quasigeoid correction could

in some regions be also very significant. A typical example can be given for polar regions

of Antarctica and Greenland with thick coverings of continental ice sheets (reaching up

to * 4 km at places). In this case, the knowledge of the bedrock topography is essential to

determine the depth to which the density of ice should be used instead of the rock density.

When disregarding lakes and polar ice sheets, the topographic density still varies over a

relatively large interval. Martinec (1998), for instance, mentioned that the topographic

density variations worldwide are typically within ±300 kg m-3 around the average value

of 2670 kg m-3. These density variations correspond to changes in the geoid-to-quasi-

geoid correction to *10 % (cf. Huang et al. 2001). Even larger topographic mass density

variations (*20–30 %) are encountered in some other parts of the world (e.g., Tziavos and

Featherstone 2001). Tenzer et al. (2011c), for instance, inferred the density variations of

main rock types in New Zealand between 900 kg m-3 (Loess) and 3300 kg m-3 (Dunite)

based on the analysis of in situ density measurements and digital geological maps. These

large topographic density variations could cause changes in the geoid-to-quasigeoid cor-

rections up to several decimetres (Vanı́ček et al. 1995; Allister and Featherstone 2001;

Tenzer and Vanı́ček 2003; Hwang and Hsiao 2003).

The computation of the geoid-to-quasigeoid correction in regional applications is

commonly realized in the spatial domain from detailed gravity, terrain and crustal density

data. Given that the gravitational signature of deep mantle density heterogeneities has a

prevailing long-wavelength pattern, the effect of distant zones should also be taken into

consideration. By analogy with the gravimetric geoid/quasigeoid determination, the

computation of this correction can then be realized separately for the reference and residual

components by applying the remove-compute-restore numerical scheme. Following this

principle, the spectral expressions developed in Sect. 4 can be used to compute the (long-

to-medium wavelength) reference part of this correction. Subsequently, the (higher-fre-

quency) residual part can be computed from more detailed regional datasets according to

the numerical procedures provided in Sect. 3. Although this scheme has been routinely

used for the gravimetric geoid/quasigeoid modelling, it has not yet been applied for

computing this correction. The main reason is probably that the classical definitions

assume that most of the differences between the geoid and the quasigeoid are attributed to

the terrain geometry and the topographic density distribution in proximity of the compu-

tation point. Tenzer et al. (2005), however, demonstrated that the non-topographic effect

on the geoid-to-quasigeoid correction can be significant. Since they used only the regional

data while disregarding the gravitational contribution of distant masses, we expect that the

non-topographic effect could reach even larger values than those estimated in their study.

This aspect has yet to be confirmed numerically. Nevertheless, it is clear that the practical

computation of this correction even for regional applications would probably require

numerically complex procedures, very similar to those used for the gravimetric geoid/

quasigeoid determination.

In Sect. 3, we presented newly developed numerical procedures for computing the

geoid-to-quasigeoid correction from discrete gravity disturbances/anomalies. This proce-

dure comprises four individual numerical steps (Fig. 2a, b). By analogy with the gravi-

metric geoid determination, the gravitational effect of topographic masses is subtracted

from the observed gravity data (the first step) and then added back to the resulting (no-

topography) disturbing potential difference (the fourth step). The computation of the non-

topographic contribution utilizes the gravity-to-potential conversion based on solving

646 Surv Geophys (2015) 36:627–658

123



inverse to discretized Green’s integral equation (the second step) with the subsequent

upward continuation of the no-topography disturbing potential from the geoid to the

topographic surface (the third step). Tenzer and Novák (2008) investigated the condi-

tionality of inverse solutions to discretized integral equations in geoid modelling from local

gravity data. They demonstrated that the downward continuation procedure by means of

solving the inverse to discretized Green’s integral equations (Eqs. 21 and 22) is numeri-

cally more stable than Poisson’s downward continuation (Eqs. 27 and 30). The gravity-to-

potential conversion proposed in this study is thus more suitable than the gravity downward

continuation used in the previous studies by Tenzer et al. (2005, 2006) and Sjöberg (2006),

because it recovers a smoother potential field (at the geoid) from the more detailed gravity

field (at the topographic surface). By way of contrast, the recovery of the more detailed

gravity field (at the geoid) is required from a smoother gravity field (at the topographic

surface) in the gravity downward continuation.

Since currently available detailed gravity datasets around the world are provided to

users in the form of either the gravity anomalies or the gravity disturbances, the newly

developed numerical procedures in Sect. 3 were derived for both these gravity data types.

As seen in Eqs. (21) and (22), the Green integral kernel for the no-topography gravity

disturbances is defined as the negative of the Poisson’s kernel �oP=or, while the Green

integral kernel for the corresponding gravity disturbance comprises an additional term

2P=r. Regarding the existing methods, Tenzer et al. (2005) formulated this problem for the

no-topography gravity disturbances (see Fig. 2c). According to their approach, the gravity

disturbances are first downward continued to the geoid by solving the inverse to discretized

Poisson’s equation (Eq. 27). These downward-continued gravity disturbances are then used

to compute the integral mean of the (no-topography) gravity disturbances (Eq. 29). The

conversion between the gravity and potential is in this case avoided. In the alternative

method by Tenzer et al. (2006) and Sjöberg (2006), they modified this problem for the

gravity anomalies. The (no-topography) gravity anomalies are again downward continued

on the geoid by solving the inverse to discretized Poisson’s equation (Eq. 30). Subse-

quently, they solve the generalized Stokes’s problem (Eq. 31) for computing the (no-

topography) disturbing potential difference from the respective gravity anomalies at the

geoid (see Fig. 2d). This type of input gravity data also has implications on the applied

topographic correction. As seen in Eqs. (15) and (16), the direct topographic effect is

subtracted from the observed gravity disturbances, while the secondary indirect topo-

graphic effects have to be taken also into consideration when using the gravity anomalies.

The reasons were explained by Vanı́ček et al. (2005).

The principal difference between the computation of the geoid-to-quasigeoid correction

in the spatial and spectral domains is that in the former the gravity data are either converted

to the potential values or used directly to compute the potential difference by means of the

integral mean of gravity (Sect. 3). In the latter, the computation of the geoid-to-quasigeoid

correction is realized by means of the potential field (Sect. 4). The gravity-to-potential

conversion is thus not required. This is possible because the EGM coefficients can directly

be used to compute the disturbing potential. Similarly, the topographic and crustal density

models can directly be used to compute the topographic potential. The disturbing potential

difference is then computed individually for the no-topography disturbing potential dif-

ference and the topographic potential difference. Moreover, the topographic potential is

treated separately for the reference and anomalous topographic density distributions.

Compared to existing spectral expressions (e.g., Sjöberg 2010), this newly developed

spectral procedure allows modelling of the anomalous topographic density distribution

using a 3D density contrast model (Eq. 46). The anomalous density distribution within the
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whole topography is approximated by a finite number of volumetric mass layers of which

density is described by the laterally distributed radial density variation model. These layers

are used to represent major known crustal density structures. The uniform density contrast

model is, for example, suitable to approximate the density contrast of continental ice sheets

and continental water bodies (lakes). The lateral density model (of multiple layers) can be

implemented to describe the density contrast structures within the sediments and remaining

upper continental crust. Alternatively, the increasing density with depth within sedimen-

tary basins due to compaction can de described more realistically by assuming a depth-

dependent density model (e.g., Artemjev et al. 1994) or—in the most general case—by a

3D density model if information on lateral density structure within sedimentary basins is

also known. The most significant improvement in the proposed method is the computation

of the non-topographic effect in terms of the no-topography disturbing potential difference.

In this way, the change of gravity within the topography attributed to mass density dis-

tribution below the geoid surface is taken into consideration, while the spectral expressions

in published studies do not account for these gravity variations. As already stated, this

effect is significant and cannot be neglected.

6 Summary and Concluding Remarks

Since Molodensky’s concept does not require any hypothesis on the density distribution

within the topography, normal heights can be computed with the accuracy which is limited

only by cumulative and random errors in geodetic spirit levelling and gravity measure-

ments along levelling lines. Molodensky’s concept also has some practical advantages

related to the definition of the height anomaly for the external gravity field (i.e. the

definition of the disturbing potential at the topographic surface), which can be facilitated,

for instance, in testing the accuracy of global geopotential models and for the estimation of

local vertical datum (LVD) offsets using the Global Navigation Satellite System (GNSS)

and levelling data (e.g., Burke et al. 1996; Burša et al. 1997, 1999, 2001; Grafarend and

Ardalan 1997; Ardalan and Grafarend 1999). Compared to Molodensky’s concept, Hel-

mert’s orthometric heights approximate more closely the actual length of the plumbline

between the topographic surface and the geoid. This is possible because the Poincaré–Prey

gravity gradient in Helmert’s definition of mean gravity satisfies Poisson’s equation inside

the topography, whereas the normal gravity gradient in Molodensky’s definition does not

(it assumes no masses above the reference ellipsoid). In Helmert’s definition, however,

only a uniform topographic density model is assumed, disregarding the effects of terrain,

variable topographic density and mass density distribution below the geoid surface (i.e. the

non-topographic effect). In Niethammer and Mader’s definitions, the gravity gradient

within the topography is computed more realistically by incorporating the planar terrain

correction into Poincare-Prey’s gravity gradient (see also Santos et al. 2006). In more

recent studies, not only the terrain effect, but eventually also the anomalous topographic

density distribution was taken into consideration in theoretical derivations and practical

computations (e.g., Tenzer and Vanı́ček 2003; Flury and Rummel 2009; Sjöberg 2010,

2012). The most comprehensive methods of computing the geoid-to-quasigeoid correction

and orthometric heights by taking the non-topographic effect into consideration were

presented in studies by Tenzer (2004), Sjöberg (2006), Tenzer et al. (2005, 2006) and

Santos et al. (2006).
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In this study, we developed numerical procedures for computing the non-topographic

effect on the geoid-to-quasigeoid correction by means of applying the inverse solutions to

discretized Green’s integral equations. A theoretical foundation of this numerical scheme

was given by Novák (2003), who first applied this method in gravimetric geoid determi-

nation. According to these numerical procedures, the no-topography gravity disturbances/

anomalies at the topographic surface (and corrected for the topographic effect) are directly

converted to the respective disturbing potential values at the geoid surface. As discussed in

Sect. 5, the main advantage of the gravity-to-potential conversion is its better numerical

stability compared to the gravity downward continuation. The no-topography disturbing

potential difference is then computed in the successive numerical steps by solving the

discretized Poisson’s integral. The gravity-to-potential conversion is thus explicitly

incorporated in the downward continuation procedure, while in the previous studies this

conversion was realized in the successive steps of the upward continuation procedure (after

applying the gravity downward continuation). In particular, Tenzer et al. (2005) applied the

inverse solution to the discretized Poisson’s integral equation for the downward continu-

ation of the no-topography gravity disturbances. They then solved the integral mean of

discretized Poisson’s integral for computing the non-topographic part of the disturbing

potential difference. In the alternative method of computing the geoid-to-quasigeoid cor-

rection from the observed gravity anomalies, Tenzer et al. (2006) and Sjöberg (2006)

proposed to apply the inverse solution to discretized Poisson’s integral equations for the

downward continuation of the no-topography gravity anomalies. They then solved the

generalized Stokes’s problem to compute the (no-topography) disturbing potential differ-

ence from the respective gravity anomalies at the geoid surface. Similarly, Hotine’s

integrals can be used in this numerical step if gravity disturbances are used instead of

gravity anomalies. We note that the application of Hotine’s approach in computing the

geoid-to-quasigeoid correction is still open for investigation.

Another theoretical development in this study was related to the computation of the

geoid-to-quasigeoid correction in the spectral domain. These spectral expressions can be

applied to evaluate the long-to-medium wavelength part of the geoid-to-quasigeoid cor-

rection in the remove-compute-restore numerical scheme, entirely in spherical harmonics,

while the remaining higher-frequency part of this correction could be computed in the

spatial domain. In the spectral approach, the computation of the topographic potential

difference is realized individually for the reference and anomalous topographic density

distributions. By analogy with Sjöberg (2007), we have defined the potential difference of

the reference topographic density by means of applying the analytical continuation of

topographic potential and the topographic bias. The anomalous density distribution within

the topography was described by a finite number of the volumetric mass density contrast

layers. The gravitational effect of each volumetric mass density contrast layer on the geoid-

to-quasigeoid correction can be computed according to the expressions derived in Tenzer

et al. (2012a). These expressions, modified for computing the potential difference of the

volumetric mass density contrast layer, were defined in terms of the potential coefficients

for the external and internal convergence domains. The non-topographic part of the gravity

field is then generated from the spherical harmonic coefficients of the Earth’s gravity field

after subtracting the topographic potential coefficients.
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Appendix 1: Potential (of Reference Topographic Density) for External
Convergence Domain

To find the spectral representation of the Newton volumetric integral in Eq. (17) for the

external convergence domain, we define the fundamental harmonic function ‘�1 by (e.g.,

Heiskanen and Moritz 1967, Eqs. 1–81)

‘�1 r;w; r0ð Þ ¼ 1

r

X1

n¼0

r0

r

� �n

Pn tð Þ r� r0ð Þ; ð54Þ

where Pn is the Legendre polynomial of degree n, and t = cos w. Inserting Eq. (54) in

Eq. (17), the topographic potential VT;�qT
e for the external convergence domain r C r0

becomes

VT;�qT
e r;Xð Þ ¼ G�qTr

X1

n¼0

ZZ

/
Pn tð Þ

Z RþH0

r0¼R

r0

r

� �nþ2

dr0dX0: ð55Þ

The radial integral in Eq. (55) is further rearranged into the form

Z RþH0

r0¼R

r0

r

� �nþ2

dr0 ¼
Z RþH0

r0¼R

R

r

� �nþ2

1þ gð Þnþ2
dr0 n ¼ 0; 1; . . .ð Þ; ð56Þ

where g ¼ r0 � Rð Þ=R: Applying a binomial theorem to (1 ? g)n?2, we get

1þ gð Þnþ2 ffi
Xnþ2

k¼0

nþ 2

k

� �
r0 � R

R

� �k

n ¼ 0; 1; . . .ð Þ: ð57Þ

Substituting Eq. (57) in Eq. (56) yields

Z RþH0

r0¼R

r0

r

� �nþ2

dr0 ffi
Z RþH0

r0¼R

R

r

� �nþ2Xnþ2

k¼0

nþ 2

k

� �
r0 � R

R

� �k

dr0 n ¼ 0; 1; . . .ð Þ: ð58Þ

Solving the radial integral in Eq. (58) and inserting for the integral limits, we arrive at

Z RþH0

r0¼R

r0

r

� �nþ2

dr0 ffi R

r

� �nþ2Xnþ2

k¼0

nþ 2

k

� �
1

Rk

r0 � Rð Þkþ1

k þ 1
jRþH0

r0¼R

¼ R
R

r
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k¼0

nþ 2

k

� �
H0

R

� �kþ1
1

k þ 1
n ¼ 0; 1; . . .ð Þ; ð59Þ

where H0 ¼ r0 � R. Substituting Eq. (59) in Eq. (55), the spectral form of VT;qT
e becomes

VT;�qT
e r;Xð Þ ffi G�qTR2

X1

n¼0

R

r

� �nþ1

�
Xnþ2

k¼0

nþ 2

k

� �
1

Rkþ1

1

k þ 1

ZZ

/
H0kþ1Pn tð ÞdX0 ð60Þ

Since the expansion of VT;�qT
e into a series of spherical functions converges uniformly for

the external convergence domain r�R, the interchange of summation and integration in
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Eq. (60) was permitted (cf. Moritz 1990). We note here that the same spectral form of

Newton’s integral for the external convergence domain as derived in Eq. (61) can be found

by changing the order of applying the radial integration and binomial theorem (cf. Årgen

2004; Vermeer 2008).

The Laplace harmonics Hn of the topographic heights in Eq. (61) are defined by the

following integral convolution

H Xð Þ ¼
X1

n¼0

Hn Xð Þ;Hn Xð Þ ¼ 2nþ 1

4p

ZZ

/
H0Pn tð ÞdX0 ¼

Xn

m¼�n

Hn;mYn;m Xð Þ; ð61Þ

where Hn;m are the topographic height coefficients. The corresponding higher-order har-

monics fH kð Þ
n : k ¼ 2; 3; . . .g read

H kð Þ
n Xð Þ ¼ 2nþ 1

4p

ZZ

/
H0kPn tð ÞdX0

¼
Xn

m¼�n

H kð Þ
n;mYn;m Xð Þ: ð62Þ

Substituting Eqs. (61) and (62) in Eq. (60), the topographic potential VT;�qT
e is obtained

in the following spectral form

VT ;�qT
e r;Xð Þ ¼ 4pG�qTR2

X1

n¼0

R

r

� �nþ1
1

2nþ 1

�
Xnþ2

k¼0

nþ 2

k

� �
1

Rkþ1

1

k þ 1

Xn

m¼�n

H kþ1ð Þ
n;m Yn;m Xð Þ: ð63Þ

Appendix 2: Potential (of Anomalous Mass Density Contrast Layer)
for External Convergence Domain

To find the spectral expression of the gravitational potential Vdq
e (of anomalous mass

density contrast layer) for the external convergence domain, we first substitute the density

contrast model from Eq. (46) to Newton’s integral in Eq. (18). After limiting the inte-

gration domain to the volumetric mass layer, the gravitational potential Vdq becomes

Vdq r;Xð Þ ffi G

ZZ

/
dq H0

U ;X
0� � Z RþH0

U

r0¼RþH0
L

‘�1 r;w; r0ð Þr02dr0dX0

þ G

ZZ

/

Z RþH0
U

r0¼RþH0
L

b X0ð Þ
XI

i¼1

ai X
0ð Þ r0 � Rð Þi‘�1 r;w; r0ð Þr02dr0dX0: ð64Þ

We note that the parameters HU, HL and q(HU, X) become H0
U ;H

0
L and q H0

U ;X
0� �
when

used for volumetric integration on the right-hand side of Eq. (64), because the position of

integration point is described by the coordinates (r0, X0).

We further define the spectral form of Vdq
e in Eq. (64) for the external convergence

domain. Inserting from Eq. (54) to Eq. (64), we get
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Vdq
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The solution of the radial integral in the first constituent on the right-hand side of

Eq. (65) yields
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Similarly, the solution of the radial integral in the second constituent on the right-hand

side of Eq. (65) is found to be
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� �nþ2Xnþ2

k¼0

nþ 2

k

� �
1

Rk

H0kþiþ1
U � H0kþiþ1

L

k þ 1þ i
n ¼ 0; 1; . . .; i ¼ 1; 2; . . .; Ið Þ: ð67Þ

Inserting from Eqs. (66) and (67) to Eq. (65), we get

Vdq
e r;Xð Þ ffi GR

X1

n¼0

R

r

� �nþ1Xnþ2

k¼0

nþ 2

k

� �
1

Rk

1

k þ 1

�
ZZ

/
dq H0

U ;
_X0� �

H0kþiþ1
U � H0kþiþ1

L

� �
Pn tð ÞdX0

þ GR
X1

n¼0

R

r

� �nþ1XI

i¼1

Xnþ2

k¼0

nþ 2

k

� �
1

Rk

1

k þ 1þ i

�
ZZ

/
b X0ð Þai X0ð Þ H0kþiþ1

U � H0kþiþ1
L

� �
Pn tð ÞdX0: ð68Þ

Tenzer et al. (2012a, b) defined the spherical lower-bound and upper-bound functions Ln
and Un of a volumetric mass density contrast layer and their higher-order terms in the

following form
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L kþ1þið Þ
n Xð Þ ¼

2nþ 1

4p

ZZ

/
dq H0

U ;
_X0� �

Hkþ1
L X0ð ÞPn tð ÞdX0

¼
Xn

m¼�n

L kþ1ð Þ
n;m Yn;m Xð Þ i ¼ 0

2nþ 1

4p

ZZ

/
b X0ð Þai X0ð ÞHkþ1þi

L X0ð ÞPn tð ÞdX0

¼
Xn

m¼�n

L kþ1þið Þ
n;m Yn;m Xð Þ i ¼ 1; 2; . . .; I

8
>>>>>>>>>>>>><

>>>>>>>>>>>>>:

ð69Þ

and

U kþ1þið Þ
n Xð Þ ¼

2nþ 1

4p

ZZ

/
dq H0

U ;X
0� �
Hkþ1

U X0ð ÞPn tð ÞdX0

¼
Xn

m¼�n

U kþ1ð Þ
n;m Yn;m Xð Þ i ¼ 0

2nþ 1

4p

ZZ

/
b X0ð Þai X0ð ÞHkþ1þi

U X0ð ÞPn tð ÞdX0

¼
Xn

m¼�n

U kþ1þið Þ
n;m Yn;m Xð Þ i ¼ 1; 2; . . .; I

8
>>>>>>>>>>>>><

>>>>>>>>>>>>>:

ð70Þ

Substituting Eqs. (69) and (70) in Eq. (68) and considering the series expansion up to

the maximum degree of �n, we arrive at

Vdq
e r;Xð Þ ¼ GM

R

X�n

n¼0

R

r

� �nþ1 Xn

m¼�n

eVdq
n;mYn;m Xð Þ; ð71Þ

where the potential coefficients eVdq
n;m read

eVdq
n;m ¼ 3

2nþ 1

1

�qEarth
XI

i¼0

ðeFuðiÞn;m � eFl
ðiÞ
n;mÞ: ð72Þ

The numerical coefficients { eFl
ðiÞ
n;m; eFu

ðiÞ
n;m : i ¼ 0; 1; . . .; I } in Eq. (65) are given by

eFl
ðiÞ
n;m ¼

Xnþ2

k¼0

nþ 2

k

� �
1

k þ 1þ i

L kþ1þið Þ
n;m

Rkþ1
i ¼ 0; 1; . . .; Ið Þ; ð73Þ

and

eFu
ðiÞ
n;m ¼

Xnþ2

k¼0

nþ 2

k

� �
1

k þ 1þ i

U kþ1þið Þ
n;m

Rkþ1
i ¼ 0; 1; . . .; Ið Þ: ð74Þ
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Appendix 3: Potential (of Anomalous Mass Density Contrast Layer)
for Internal Convergence Domain

We apply a similar procedure as used in ‘‘Appendix 2’’ to derive the spectral expression of

the potential V
dq
i (of anomalous mass density contrast layer) for the internal convergence

domain. For this purpose, we define the fundamental harmonic function ‘�1 in Eq. (54) for

the internal convergence domain r\ r0 as follows

‘�1 r;w; r0ð Þ ¼ 1

r0

X1

n¼0

r

r0

	 
n
Pn tð Þ r\r0ð Þ: ð75Þ

The substitution from Eq. (75) to Eq. (64) yields

lim
r!R�

V
dq
i r;Xð Þ ¼ GR

X1

n¼0

ZZ

/
dq H0

U ;X
0� �
Pn tð Þ

Z RþH0
U

r0¼RþH0
L

R

r0

� �n�1

dr0dX0

þ GR
X1

n¼0

ZZ

/
b X0ð Þ

XI

i¼1

ai X
0ð ÞPn tð Þ

Z RþH0
U

r0¼RþH0
U

r0 � Rð Þi R

r0

� �n�1

dr0dX0: ð76Þ

We further rearrange the radial integral in the first constituent on the right-hand side of

Eq. (76) into the following form

Z RþH0
U

r0¼RþH0
L

R

r0

� �n�1

dr0 ¼
Z RþH0

U

r0¼RþH0
L

r0

R

� �1�n

dr0 ¼
Z RþH0

U

r0¼RþH0
L

1þ gð Þ1�n
dr0 n ¼ 0; 1; . . .ð Þ;

ð77Þ

and apply a binomial theorem to (1 ? g)1-n. Hence

1þ gð Þ1�nffi
X1

k¼0

1� n

k

� �
r0 � R

R

� �k

¼
X1

k¼0

�1ð Þk
nþ k � 2

k

� �
r0 � R

R

� �k

n ¼ 0; 1; . . .ð Þ: ð78Þ

Inserting from Eq. (78) to Eq. (77), we get

Z RþH0
U

r0¼RþH0
L

R

r0

� �n�1

dr0 ffi
X1

k¼0

�1ð Þk nþ k � 2

k

� �Z RþH0
U

r0¼RþH0
L

r0 � R

R

� �k

dr0 n ¼ 0; 1; . . .ð Þ:

ð79Þ

The solution of the radial integral in Eq. (79) reads

Z RþH0
U

r0¼RþH0
L

R

r0

� �n�1

dr0 ffi
X1

k¼0

�1ð Þk
nþ k � 2

k

� �
1

Rk

r0 � Rð Þkþ1

k þ 1

�����

RþH0
U

r0¼RþH0
L

¼ R
X1

k¼0

�1ð Þk
nþ k � 2

k

� �
H0

U � H0
L

R

� �kþ1
1

k þ 1
n ¼ 0; 1; . . .ð Þ: ð80Þ

By analogy with Eq. (79), we rewrite the radial integral in the second term on the right-

hand side of Eq. (76) as follows
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Z RþH0
U

r0¼RþH0
L

r0 � Rð Þi R

r0

� �n�1

dr0 ¼
Z RþH0

U

r0¼RþH0
L

r0 � Rð Þi 1þ gð Þ1�n
dr0

n ¼ 0; 1; . . .; i ¼ 1; 2; . . .; Ið Þ: ð81Þ

The substitution for (1 ? g)1-n from Eq. (78) to Eq. (81) yields

Z RþH0
U

r0¼RþH0
L

r0 � Rð Þi R

r0

� �n�1

dr0 ffi Ri
X1

k¼0

�1ð Þk nþ k � 2

k

� �Z RþH0
U

r0¼RþH0
L

r0 � R

R

� �kþi

dr0

n ¼ 0; 1; . . .; i ¼ 1; 2; . . .; Ið Þ:
ð82Þ

The solution of the radial integral in Eq. (82) is then found to be

Z RþH0
U

r0¼RþH0
L

r0 � Rð Þi R

r0

� �n�1

dr0 ffi
X1

k¼0

�1ð Þk
nþ k � 2

k

� �
1

Rk

r0 � Rð Þkþiþ1

k þ 1þ i

�����

RþH0
U

r0¼RþH0
L

¼ Riþ1
X1

k¼0

�1ð Þk
nþ k � 2

k

� �
H0

U � H0
L

R

� �kþiþ1
1

k þ 1þ i

n ¼ 0; 1; . . .; i ¼ 1; 2; . . .; Ið Þ: ð83Þ

Substituting from Eqs. (80) and (83) to Eq. (76) and limiting the series expansion up to

the maximum degree �n, we arrive at

lim
r!R�

V
dq
i r;Xð Þ ¼ GM

R

X�n

n¼0

Xn

m¼�n

iV
dq
n;mYn;m Xð Þ; ð84Þ

where the potential coefficients iV
dq
n;m are given by

iV
dq
n;m ¼ 3

2nþ 1

1

�qEarth
XI

i¼0

iFu
ðiÞ
n;m � iFl

ðiÞ
n;m

	 

: ð85Þ

The numerical coefficients { iFl
ðiÞ
n;m; iFu

ðiÞ
n;m : i ¼ 0; 1; . . .; I } in Eq. (86) read

iFl
ðiÞ
n;m ¼

X1

k¼0

�1ð Þk nþ k � 2

k

� �
1

k þ 1þ i

L kþ1þið Þ
n;m

Rkþ1
i ¼ 0; 1; . . .; Ið Þ; ð86Þ

and

iFu
ðiÞ
n;m ¼

X1

k¼0

�1ð Þk nþ k � 2

k

� �
1

k þ 1þ i

U kþ1þið Þ
n;m

Rkþ1
i ¼ 0; 1; . . .; Ið Þ: ð87Þ
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Sjöberg LE (2007) The topographical bias by analytical continuation in physical geodesy. J Geod

81:345–350
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Sjöberg LE (2012) The geoid-to-quasigeoid difference using an arbitrary gravity reduction model. Stud

Geophys Geod 56:929–933
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