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Abstract This is a general review of the existing climatological models of ionospheric

radio scintillation for high and equatorial latitudes. Trans-ionospheric communication of

radio waves from transmitter to user is affected by the ionosphere which is highly variable

and dynamic in both time and space. Scintillation is the term given to irregular amplitude

and phase fluctuations of the received signals and related to the electron density irregu-

larities in the ionosphere. Key sources of ionospheric irregularities are plasma instabilities;

every irregularities model is based on the theory of radio wave propagation in random

media. It is important to understand scintillation phenomena and the approach of different

theories. Therefore, we have briefly discussed the theories that are used to interpret ion-

ospheric scintillation data. The global morphology of ionospheric scintillation is also

discussed briefly. The most important (in our opinion) analytical and physical models of

scintillation are reviewed here.

Keywords Ionosphere � Scintillation � Plasma instability � Ionospheric irregularities �
Trans-ionospheric communication

1 Introduction

The radio scintillation phenomenon is very similar to the twinkling of the stars in the

visible part of the electromagnetic spectrum which are due to variations in tropospheric

density due to turbulence. Scintillation is a fact of life for a number of radio communi-

cation and navigation systems that have to operate through the auroral or equatorial ion-

osphere (Crane 1977). Space-diversity and time-diversity coding schemes are required to

mitigate the effects of scintillation. Random fluctuations in the refractive index of the

medium cause fluctuations of a very high-frequency radio signal passing through the
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medium, and this effect is referred as scintillation. In particular, scintillations are fluctu-

ations of the parameters of trans-ionospheric waves, i.e., their phase, amplitude, direction

of propagation and polarization.

Scintillation observations have been used to identify and diagnose irregular structure in

highly varied propagation media. Research fields like atmospheric physics, geophysics,

ionospheric physics, ocean acoustics, astronomy and radio physics have benefitted through

scintillation research (Rino 2011). In the past, voluminous studies based on observations

have been performed on ionospheric amplitude and phase scintillation. The global distri-

bution of ionospheric amplitude scintillation is shown in Fig. 1. The major scintillation

activity is observed during the solar maximum period, near the magnetic equator and in the

midnight sector (Basu et al. 1988a, b).

The theory of radio wave propagation in random media has been developed, allowing

for the physical interpretation of scintillation data in terms of the properties of the iono-

sphere’s irregular structure (Tatarski 1971; Yeh and Liu 1982; Bhattacharyya et al. 1992).

It has been found that the irregularities producing scintillations are predominantly localized

in the F layer, near the peak of plasma density, at * 300 km altitude. To explain the

generation of plasma irregularities, various kinds of plasma instabilities were considered. It

seems that the consensus that has been reached is that the generalized Rayleigh–Taylor

instability is the primary mechanism generating equatorial plasma density irregularities of

intermediate scale length, i.e., with sizes of the order of a few hundreds of meters to several

kilometers (Kelley 1989). Plasma in the high-latitude F-region ionosphere is highly

structured on a scale from tens of meters to tens of kilometers (Dyson et al. 1974; Clark

and Raitt 1976; Phelps and Sagalyn 1976; Tsunoda 1988).

In this paper, we will present and discuss the most important models of ionospheric

scintillation. Following Maria (1997), a model is a representation of the construction and

operation of a certain system. In our case, as a system, we identify the propagation of radio

waves through the ionosphere with fluctuating electron density. The model is validated

using simulations under a known input and comparing the model and system outputs

(Maria 1997; Winsberg 2013). In the case of scintillation modeling, the simulation is a

solution of the equations modeling the wave propagation through the irregular ionosphere.

Fig. 1 Global variation of amplitude scintillation fades at L band (after Basu et al. 1988a, b, colored by
A.W. Wernik)
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The present paper discusses briefly scintillation mechanisms, different scintillation theories

and the morphology of high- and low-latitude scintillations. As the main objective of the

paper, we will review some existing scintillation models.

2 Background

2.1 Scintillation Phenomenon

Much of our knowledge of ionospheric scintillation and the irregularities that cause the

scintillation has been derived from the many observations taken over the past six decades.

The scintillation of radio signals is a consequence of the presence of random fluctuations of

the refractive index related to the electron density irregularities. These fluctuations distort

the original wavefront of the signal. Consequently, they give rise to a randomly phase-

modulated wave. Formally, ionospheric scintillation can be defined as a random modu-

lation imparted to propagating wave fields by structure in the propagation medium (Rino

2011). As the satellite, and/or ionosphere, or both, moves relative to the receiver, temporal

variations of intensity and phase are recorded (Wernik et al. 2003).

2.2 Scintillation Theory

Different theories are used to interpret ionospheric scintillation data. Since the scintillation

phenomenon is being studied by direct measurements from a number of satellites using

multi-frequency phase coherent beacon signals, we will focus on the full structure of the

complex signal. From the beginning of the advent of ionospheric scintillation phenomenon,

a comprehensive and wide literature exists; the January 1975 issue of RadioScience was

devoted to this subject. Weak-scatter theory, the Rytov approximation, single, thin or

multiple phase screen, multiple-scatter theory are the theories used to study scintillation

data for last six decades. We shall discuss each one of them very briefly.

Under the assumption that the characteristic scale size and characteristic scale of the

temporal variations of the refractive index fluctuations are much larger than the respective

radio wavelength and wave period, the vector wave equation can be replaced with the

scalar wave equation

r2E þ k2½1þ e1ðr; tÞ�E ¼ 0 ð1Þ

where e1(r,t) is the fluctuating part of the dielectric permittivity caused by electron density

irregularities, and k2 = k0
2 hei with k0—the wave number in free space, hei—the average

dielectric permittivity; (r,t) specifies the location of the irregularity is space and time.

Equation (1) is a differential equation with randomly fluctuating coefficients which

forms the basis of the scintillation theory. To solve the equation, one has to resort to certain

approximations. We assume that a plane wave is incident normally on a plane-parallel

irregular slab. If the incident direction is identified with the z direction of the coordinate

system, u(r,t) is the complex amplitude of the radio wave so that

Eðr; tÞ ¼ uðr; tÞ expð�ikzÞ ð2Þ

the substitution of (2) into (1) leads to the following equation
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�2ik
ou

oz
þr2u ¼ �k2e1ðr; tÞu ð3Þ

If the wavelength of the radio signal k is much smaller than the characteristic scale l0 of

the irregularities, then 2 k|qu/qz| � |q2u/qz2| and (3) reduces to the following parabolic

equation

�2ik
ou

oz
þr2

?u ¼ �k2e1ðr; tÞu ð4Þ

where r\
2 is the transverse Laplacian.

The Laplacian term represents the diffraction of the wave, while the right-hand side of

(4) represents random phase shifts caused by the refractive index fluctuations. If k/L �
1/r0

2, where r0 is the outer scale of the irregularities and L is the irregular slab thickness, the

Laplacian term can be neglected as compared to the gradient term and (4) reduces to

ou

oz
¼ �i

k

2
e1ðr; tÞu ð5Þ

The condition k/L � 1/r0
2 is equivalent to the requirement that the size of the first

Fresnel zone
ffiffiffiffiffiffi

kL
p

is much less than the outer scale r0. Under this condition, diffraction is

ignored and the complex amplitude is equal to

uðr; tÞ ¼ A0 exp½�i/ðr; tÞ� ð6Þ

where the wave phase u(r,t) = u(q,z,t) is given by

/ðq; z; tÞ ¼ k

2

Z

z

0

e1ðq; z0; tÞdz0 ¼ �kreDNTðq; z; tÞ ð7Þ

In (7), re is the classical electron radius, DNT is the fluctuation of the electron content

between transmitter and receiver on the ground, and q is a vector in a plane transverse to

the propagation direction.

Equations (6) and (7) describe so-called phase screen approximation or model. The

concept of the phase-changing screen was introduced by Booker et al. (1950) and Ratcliffe

(1956) and later advanced and developed by Rino (1976). Below the screen, the wave

propagates in free space, undergoing phase mixing. To express mathematically this effect,

we set the right-hand side of (4) equal to zero:

�2ik
ou

oz
þr2

?u ¼ 0 ð8Þ

The solution of this equation with the ‘‘initial’’ condition as given by (6) can be

expressed in the form of the Fresnel diffraction formula:

uðq; z; tÞ ¼ ikA0

2pz

Z

1

�1

Z

1

�1

exp �i /ðq0; z; tÞ þ k

2z
jq� q0j2

� �� �

dq0 ð9Þ

The approach in which scintillation is considered as propagation inside the irregular

medium with the succeeding propagation in free space down to the receiver is called split-

step algorithm or model. If the wave propagates in a non-uniform ionosphere, in which the
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background electron density varies with the altitude, then one can use the split-step

algorithm several times along the propagation path, adjusting the background density to the

required profile and using the previous step results as the initial condition for the next step.

An example of the simulated scintillation in the L2 band is shown in Fig. 2. It was assumed

that the electron density profile is a Chapman function with the peak density 2 9 1012

electrons/m3 at the peak height 350 km. The irregularities are characterized by the power

law spectrum with the 3D spectral index equal to 3.5. One can see that the main contri-

bution to scintillation is due to those irregularities which are close to the peak electron

density.

Scintillation is a stochastic (random) phenomenon, and to validate scintillation theories,

one should compare observed and theoretical statistics. The statistics most easily calculated

from measurements are the scintillation index S4 (normalized standard deviation of the

signal power/intensity) and the phase standard deviation r/. The derivation of the theo-

retical statistics requires the calculation of the moments of the complex amplitude u(r,t)

and is difficult. It requires an assumption about the probability distribution of the random

electron density fluctuations. Usually, it is assumed that this is a Gaussian with zero

mean. If so, then the first moment of the complex amplitude hui is given by Yeh and Liu

(1982) as:

uh i ¼ expð�u2
0=2Þ ð10Þ

Fig. 2 Variations in the vertical plane of simulated electron density fluctuations (upper left panel), signal
amplitude (upper middle panel) and phase (upper right panel). The electron density height profile is shown
in the lower left panel, and the scintillation index S4 and phase variance r/ profiles in the lower middle and
right panels, respectively
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where /0
2 is the variance of the phase introduced by the medium.

The average signal intensity is equal to

uu�h i ¼ A2
0 ð11Þ

which does not change as the wave propagates through the medium. This reflects the

conservation of wave energy.

Derivation of the higher order moments of u(r,t) is cumbersome and will not be given

here. We refer interested readers to the review by Yeh and Liu (1982) where further

references can be found.

Formally, the phase screen approach, as described by (6) and (9), is not limited to a

weak scintillation. However, often—especially at higher frequencies—S4 and r/ can be

approximated assuming that the phase variance /0
2 on a screen is much smaller than one.

This assumption is known as the shallow screen approximation. In the shallow screen

approximation, the statistics of a signal can be related to the statistics of the phase fluc-

tuations on a screen and therefore to the statistics of the scattering medium.

Let us define the logarithmic amplitude v and departure phase S1 by the following

relation:

uðq; z; tÞ ¼ A0 exp½vðq; z; tÞ � iS1ðq; z; tÞ� ¼ A0 exp½iwðq; z; tÞ� ð12Þ

For a shallow screen, the power spectra of v and S1 are given by Yeh and Liu (1982) as:

Fvðj?Þ ¼ sin2ðj2
?z=2kÞF/ðj?Þ ¼ 2pk2r2

e sin2ðj2
?z=2kÞFNðj?; 0Þ

FSðj?Þ ¼ cos2ðj2
?z=2kÞF/ðj?Þ ¼ 2pk2r2

e cos2ðj2
?z=2kÞFNðj?; 0Þ

ð13Þ

where j\ is the transverse spectral wave vector, and Fu and FN are power spectra of phase

and density, respectively.

2.2.1 The Weak-Scatter Theory

Booker et al. (1950) first introduced the weak-scatter theory. The work of Ratcliffe (1956),

Bowhill (1961), Briggs and Parkin (1963) and Budden (1965a, b) improved this theory

later. This theory resembles the first Born approximation solution to the vector wave

equation. Booker et al. (1950) and Ratcliffe (1956) introduced the concept of the phase-

changing screen. The weak-scatter theory is almost always formulated within the frame-

work of a weak phase-changing screen. At the edge of the phase-changing screen, z0, the

scalar wave field u(q,z0) is expressed as follows

uðq; z0Þ ¼ expfi/ðq; z0Þg ð14Þ

where /(q,z0) is obtained by a straight-line path integration (Rino 1976). The variance of /
(q,z0) is denoted by /0

2; in weak-scatter theory, the variance of / (q,z0) is numerically

equal to r2L, where r2 is a linear scattering coefficient and L is the layer thickness. For an

ionized medium, the variance can be expressed as follows

r2L ¼ /2
0 ¼ r2

ek
2L sec2 h

ZZ

UDNe
k;� tan hâkT

� kð Þ dk

ð2pÞ2
ð15Þ

where h is the incidence angle, j = (2p/k)âj is the wave vector, âkS is the projection of the

wave vector onto the x–y plane, and UDNe (j,jz) is the three-dimensional spectral density
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function for the electron density irregularity. This equation shows that /0
2 � L sec2 h for an

isotropic medium. The wave field can be described to statistics of the second order by the

mutual coherence function

RuðDq; zÞ, uðq; zÞu�ðq0; zÞh i � uðq; zÞh ij j2 ð16Þ

and the complementary function is expressed as follows

BuðDq; zÞ ¼ uðq; zÞuðq0; zÞh i � uðq; zÞh i2: ð17Þ

Only the intensity (I & |u|2) fluctuations are usually measured, the principal observable

being

RIðDq; zÞ, II0h i � Ih i I0h i
Ih i I0h i ð18Þ

The commonly used amplitude scintillation index S4 is simply expressed as [RI(0;z)]1/2.

2.2.2 The Rytov Approximation

The weak-scatter theory is equivalent to the first Born approximation, which takes the form

of a scalar wave field u (q,z) & 1 ? w. Thus, we must have |w| � 1. By comparison, the

Rytov approximation takes the form u (q,z) & exp{w} with the same perturbation function

w (Rino 1976). It follows that all the previous weak-scatter results apply to log-amplitude

and phase. It was originally thought that the Rytov solution had a greater range of validity

than the Born solution (e.g., Barabanenkov et al. 1971), but this has since been shown to be

not strictly correct. The amplitude fluctuation must still be small, but not the phase.

2.2.3 The Gaussian Phase Screen

In the Gaussian phase screen model, / (q, z0) (where z0 is edge of the phase-changing

screen) is assumed to be a Gaussian random process. The power of this model lies in the

fact that all observables are calculable (Rino 1976). For example, one can easily show that

RuðDq; z0Þ ¼ expf�/2
0ð1� qDNe

ðDqÞÞg � expf�/2
0g ð19Þ

and

BuðDq; z0Þ ¼ expf�/2
0ð1þ qDNe

ðDqÞÞg � expf�/2
0g ð20Þ

where Ru is the mutual coherence function, Bu is complementary function, qDNe (Dq) is the

two-dimensional (in a plane perpendicular to the direction of propagation) correlation

function of the electron density fluctuations, and the used result is hui = exp{-�/0
2},

valid if / (q, z0) is a Gaussian field.

2.2.4 Multiple-Scatter Theory

The parabolic approximation to the scalar wave equation can be used to derive a system of

differential equations for the moments of the scalar wave field u. In deriving these

equations, one makes use of the so-called Markov approximation meaning that, under the

forward scattering assumption, the field at any height z0 depends only on those
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irregularities in the region z \ z0. Validity conditions have been derived by Tatarski (1971)

for the general case and by Beran (1970) and others for the mutual coherence function

equation. The validity condition takes the form r2Dz � 1, where r2 is a linear scattering

coefficient. Tatarski (1971) gives Dz * k, whereas Beran (1970) gives a much more

restrictive condition. The intensity correlation function has been numerically evaluated by

Yeh et al. (1975). Approximate formulas for the two-frequency correlation functions have

been given by Liu et al. (1974).

A power law spectrum of the form 1/jp for all values of j has several difficulties (Yeh

and Liu 1977). For example, for a spectral index p [ 2, its associated correlation function

will not exist. Also for any finite value of p, the spectral moments will fail to exist above a

certain order. To avoid this situation, a finite outer scale was introduced by Tatarski (1971).

The theory discussed here so far assumes, at least implicitly, that the outer scale is finite,

whereas the ionosphere does not show a well-defined outer scale cutoff (Crane 1976).

Rino (1976) shows observations of a navy navigation satellite signal at 150 MHz which

justify the omnipresence of large-scale structures that induce trend-like but, nonetheless,

random phase fluctuations well in excess of 1 rad. The weak-scatter theory cannot properly

interpret such signal structures. The Rytov approximation used by Crane (1976) is

appealing here since it is valid for large phase perturbations associated with small-

amplitude fluctuations. Here, it would be best to use multiple-scatter theory. Primarily,

phase perturbations are associated with large-scale structures, while diffraction gives rise

to a Gaussian component of Ru (mutual coherence function), Bu (complementary function)

and finally to the electron density function.

2.3 Global Morphology Ionospheric Scintillation

Starting with post-World War II studies of the fading of radio star sources and continuing

with the fading of signals from the Sputnik satellite, a gigantic amount of data has been

acquired to study the effect of ionospheric irregularities on signals propagating through the

ionosphere. The invited review paper by Aarons (1982) reviewed attempts to organize the

amplitude and phase scintillation data into equatorial-, middle- and high-latitude mor-

phologies. Globally, there are three major regions of scintillation activity. The equatorial

region comprises an area within ±20� of latitude of the magnetic equator. The high-

latitude region, for the purposes of the scintillation description, comprises the area from the

high-latitude edge of the trapped charged particle boundary (Van Allen outer belt) into the

polar region. All other regions are termed as ‘‘middle latitudes.’’ In all regions, there is a

pronounced nighttime maximum of scintillation activity. In the equatorial regions, the

activity begins only after sunset. Even in the polar region, there appears to be a greater

scintillation occurrence during the dark months than during the months of continuous Sun.

At the equator, the Earth’s magnetic field is parallel to the Earth’s surface and is oriented

magnetic N–S, while at the pole it is vertical. This strong characterization in relation to the

geomagnetic field configuration makes these regions the most affected by the formation of

the ionospheric irregularities which are potentially dangerous for communication and

navigation radio systems. Both ground-based scintillation measurements and in situ

satellite data show that ionospheric irregularities are concentrated near the magnetic

equator, where they are observed in the pre-midnight period, in auroral zone during the

nighttime period, and in the polar region at all local times (Wernik et al. 2004).

Equatorial scintillation-producing ionospheric irregularities are described using the

E 9 B mechanism and/or the Rayleigh–Taylor mechanism, in which a large (scale of

about 100 km) volume of depleted ionization is driven through the F region (Scannapieco
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and Ossakow 1976). The depleted volume leaves a trail, or plume, of small-scale (tens of

centimeters to a meter) irregularities surrounding the depletion, which can extend well

through the F-layer peak.

The most intense F-region irregularities in the high-latitude ionosphere seem to be

produced by convective plasma processes and, in particular, by the fluid E 9 B (gradient-

drift) interchange instability. Irregularities are produced by convectively mixing plasma

across a mean plasma density gradient. The transport of higher-density plasma into regions

of lower-density plasma (and vice versa) leads to the development of an irregularity

spectrum that extends in scale from about 10 km down to the ion gyroradius (Tsunoda

1988). Irregularities with this range of scales are not independent from larger-scale plasma

structures, that are produced by other means, to those of smaller-scale irregularities.

Scintillation activity at middle latitudes is not as intense as that encountered at equa-

torial, auroral or polar latitudes. The problem with describing scintillation activity at

midlatitudes is that at times it is an extension of phenomenon at equatorial and auroral

latitudes. Scintillation activity in 1979–1981, years of high sunspot number, was observed

to be high at Hawaii, Japan (Aarons 1982). These effects were possibly caused by equa-

torial phenomena during years of high sunspot number. The depletion regions that origi-

nate at equatorial latitudes do then move to higher altitudes. These irregularities should

maintain an altitude [2,000 km. The perturbing effects of these regions and the higher

electron densities during high sunspot number years might combine to provide effects

along the lines of force of the geomagnetic field, thus extending equatorial activity to the

‘‘lower’’ middle latitudes. At high latitudes, the irregularity boundary moves equatorward

during years of high sunspot number and during magnetic storms. Auroras have been

observed in the southern USA, along the 70�W meridian. Scintillation activity is present at

these times at these lower latitudes when and where optical aurora is seen.

Another complicating factor in midlatitude scintillation morphology is the effect of

sporadic E. Several studies in the past few decades have shown that intense sporadic E

yields scintillation. The behavior of sporadic E is totally different from the morphology of

F-layer irregularities. Thus, two independent variables produce the fading phenomena. At

middle latitudes, there is a high occurrence of daytime sporadic E resulting in a second

maximum of scintillation. Nighttime sporadic E adds to the effects of F-layer irregularities.

It is important to understand the global morphology of ionospheric scintillation since it

will help users to differentiate between fluctuations produced by ionospheric irregularities

and those of equipmental or man-made origin.

3 Scintillation Models

We have divided scintillation models into three groups—analytical models, global cli-

matological models and models based on in situ data.

3.1 Analytical Models

We shall here consider five such models produced by different research groups.

3.1.1 Model of Fremouw and Rino (1973)

Fremouw and Rino (1973) presented the first analytical model of scintillations. The model

was suitable for estimating the rms fluctuation in the received signal strength (i.e., the
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scintillation index) to be expected on a given trans-ionospheric VHF/UHF (but not SHF)

communication link, under average scintillation conditions. By average scintillation con-

ditions is meant those conditions to be expected on the average for a given geomagnetic

latitude, time of day, day of the year, and sunspot number. Thus, the model does not

address the question of variations in scintillation index from its mean value for a given set

of the above independent variables. They assumed the center height of the irregular layer to

be 350 km, the thickness of the irregular layer 100 km, the ratio of the scale size along the

geomagnetic field to that transverse to it of 10, the transverse scale size (defined as a

distance over which the spatial correlation falls to 1/e of its maximum value) = n0

(transverse irregularity scale size) and the rms fluctuations of electron density = DN. The

model for DN consists of four additive terms, the influence of each being dominant in

different regimes of geomagnetic latitude, as follows

DN ¼ DNeq R;D; t; kð Þ þ DNmid t; kð Þ þ DNhi R; t; kð Þ þ DNaur R; t; kð Þ ð21Þ

where the subscripts are eq(equatorial region), mid(midlatitude region), hi(high-latitude

region) and aur(auroral region) and expressions for these different regions are as given

below:

DNeq ¼ð5:5� 109Þð1þ 0:05RÞ

� 1� 0:4 cos p
Dþ 10

91:25

� �� �

� exp � t

4

	 
2
� �

þ exp � t þ 23:5

3:5

� �2
" #( )

� exp � k
12

� �2
" #( )

e1=m3

ð22Þ

DNmin ¼ð6:0� 108Þ 1þ 0:4 cos
pt

12

	 


� exp � k� 32:5

10

� �2
" #( )

e1=m�3
ð23Þ

DNhi ¼ ð2:7� 109Þ 1þ erf
k� kðR; tÞ
0:02kbðR; tÞ

� �� �

e1=m�3 ð24Þ

DNaur ¼ð5:0� 107ÞR

� exp � k� 70þ 2 cosðpt=12Þ
0:03R

� �2
" #( )

e1=m�3
ð25Þ

kb ¼ 79� 0:13R� ð5þ 0:04RÞ � cosðpt=12Þ degrees ð26Þ

where R is the sunspot number, D is the day of the year, t the local time of the day in hours,

and k the geomagnetic latitude in degrees. These equations show the linear dependence of

the scintillation on R, D, t and k (geomagnetic latitude in degrees).

Using the assumed DN, Dh, n0 and irregularity axial ratio a, the rms phase at the exit

from the irregular layer can be calculated using
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/0 ¼ p1=4rek ðan0 sec iÞ1=2=b1=2
h i

ðDhÞ1=2ðDNÞ ð27Þ

where re is the classical electron radius, k the wavelength of the wave, i the incidence angle

of the radio wave on the irregular layer, Dh the thickness of the irregular layer, n0 the

transverse irregularity scale size, and b = a2 sin2x ? b2 cos2x, where x is the angle

between the magnetic field and the ray path.

Figure 3 compares the model with geostationary satellite observations from Ghana. In

this figure, the fits are reasonably close where the weak-scatter assumption holds. This

model has a historical value, but it led to the foundation of a much more advanced model,

WBMOD, which is discussed later.

3.1.2 Aarons Model

The Aarons model (1985) gave an understanding of equatorial scintillation outages and a

means of dealing with them at specific geographic locations. Using 15-min peak-to-peak

scintillation indices taken over 5 years, an empirical formula was developed to yield the

average value of the scintillation index. It used observations made at Huancayo, Peru, on

the magnetic equator from the LES 6 satellite transmitting at 254 MHz. The azimuth angle

was 75�, and the average elevation angle was 45�. The data set has limitations. However,

one limitation was that 22.00–24.00 LT observations were not available (the satellite

beacon was turned off). This data set was used from ATS 3 at 137 MHz. The second

Fig. 3 Comparison of model
calculations with geostationary
satellite observations from
Ghana. The top is diurnal
variation:
frequency = 136 MHz, sunspot
number = 107 and day
number = 31. The bottom is
seasonal variation:
frequency = 136 MHz, sunspot
number = 97, and time is 0200.
The observations are shown as
discrete points and the
calculations as a curve. The curve
is solid where the weak-scatter
assumption is valid and dashed
where it is questionable. Where it
is invalid, no calculated results
are given (after Fremouw and
Rino 1973)
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limitation was the signal-to-noise ratio which resulted in a limiting value of approximately

16–19 dB excursion peak to peak. Other experiments near 250 MHz show much higher

values. The output was given as mean decibels of fading peak to peak

SIðdBÞ ¼ 2ðqþrÞ ð28Þ

where

q ¼ FAþ FBþ ð�1:5FAþ 0:8FBÞ � cos ðp=12ÞðH � 0:2� 0:25KpÞ½ �;
r ¼ FC cos ðp=6ÞðH þ 3:3Þ½ � � 0:4 cos ðp=4ÞðH þ 1:5Þ½ �f g;

FA ¼ ð�2:7� 0:3FDÞðS=100Þ;
FB ¼ �0:2þ FDþ ð0:1� 0:1FDÞKp;

FC ¼ ð�1:6þ 0:7FDÞðS=100Þ þ 0:1Kp;

FD ¼ cosð2p=365ÞðDþ 1:3Þ � 0:6 cosð4p=365ÞðD� 4Þ:

Here, D is the day number, H is the local time in hours, S the solar flux at 10 cm given

in solar flux units (an sfu = 10-22 m-2 Hz-1), and Kp is the planetary magnetic index. All

the angles are in radians.

In Fig. 4a, the mean scintillation index is plotted on February 15, with three solar flux

values of 50, 100 and 150, and with Kp = 2. Figure 4b shows the diurnal variation of the

scintillation levels for three chosen days and for constant solar flux and Kp. The model has

serious limitations in its application at other frequencies and other locations in the equa-

torial region.

Fig. 4 a. Mean scintillation index (in decibels peak-to-peak excursions) for February 15, with 10-cm solar
flux of 50, 100 and 150 units; Kp = 2 (after Aarons, 1985). b. Scintillation index of the 3 days of the year,
with solar flux of 100 and Kp = 2. The solid line is March 15, the dashed line is January 1, and dotted line is
for July 10 (after Aarons 1985)
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3.1.3 Franke and Liu (1985) Model

This is an equatorial-latitude multi-frequency scintillation model. Analytical and numerical

techniques have been used for modeling multi-frequency amplitude scintillation data

observed at Ascension Island (equatorial region). The temporal coherence interval of

multi-frequency amplitude scintillations observed at VHF, L band and C band has been

studied by this model. The data used were a wide range of perturbation strengths corre-

sponding to scintillation indices (S4) in the range 0.05–0.25 at C band (4 GHz). Franke and

Liu (1985) modeled the multi-frequency behavior of the temporal coherence interval of

amplitude scintillations due to two-component power law irregularities. They used both

analytical and numerical models to solve the problem, and a phase screen has been used to

model the propagation effects. They started by considering the multiplicative two-com-

ponent model for the two-dimensional irregularities that was adopted by Franke et al.

(1984). This two-dimensional model is reasonable because of the large elongation of

equatorial irregularities along magnetic field lines (magnetic N–S alignment) and the

nearly vertical propagation path for the experiment. For this model, the spectrum becomes

SDNðKÞ ¼
cN

K2
o þ K2

� �P1=2
K2

b þ K2
� �ðP2�P1Þ=2

ð29Þ

where CN is a normalization constant, K2 is Kx
2 ? Kz

2, where Kx and Kz are the horizontal

and vertical wave numbers, respectively. Ko is the outer scale wave number, and Kb the

break scale wave number. It is assumed that Kb [ Ko. p1 and p2 are low-frequency and

high-frequency power law indices. CN can be expressed as

CN ¼
r2

N

2p
� ðK

2
b þ K2Þ

ln Kb þ K0ð Þ ð30Þ

where rM
2 is the variance of the electron density fluctuations. Using expressions from Yeh

and Liu (1982)

S/ðKXÞ ¼ 2pk2r2
er

2
NLSDNðKX; 0Þ ð31Þ

where k is the wavelength in meters, re is the classical electron radius, i.e.,

2.82 9 10-15 m, and L is the slab thickness of the irregularity regions in meters.

The spectrum of phase fluctuations in the phase screen can be written as

S/ðKXÞ ¼
C/

K2
o þ K2

x

� �

K2
b þ K2

x

� � ð32Þ

where

C/ ¼
r2

/

p
� KoKbðKb þ KoÞ

The variance of the phase fluctuations in the screen is related to the electron density

fluctuations as follows:

r2
/ ¼ pk2r2

er
2
NL

Kb � Ko

KbKo

� 1

lnðKb=KoÞ
ð33Þ
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For the weak scintillation case so that r/
2 � 1, the scintillation index S4 can be found

(Yeh and Liu 1982)

S2
4 ¼ 4

Z

1

�1

S/ðKXÞ sin2 K2
Xz

2k

� �

dKX

¼ 2r2
/ 1� 1

1� a
b

(

½cosð2a2Þ

�
ffiffiffi

2
p

cos 2a2 þ p
4

	 


Cð
ffiffiffi

2
p

aÞ

�
ffiffiffi

2
p

sin 2a2 þ p
4

	 


Sð
ffiffiffi

2
p

aÞ�

� 1

1� b
a

½cosð2b2Þ

�
ffiffiffi

2
p

cos 2b2 þ p
4

	 


Cð
ffiffiffi

2
p

bÞ

�
ffiffiffi

2
p

sin 2b2 þ p
4

	 


Sð
ffiffiffi

2
p

bÞ�

ð34Þ

where a ¼ lf ; b ¼ lfKb; l ¼ z
2k

� �1=2
and z is the distance from the phase screen to the

receiver plane, and C(x) and F(x) are Fresnel integrals

SðxÞ ¼ 2

p

� �1=2Z
x

0

sin t2dt ð35Þ

CðxÞ ¼ 2

p

� �1=2Z
x

0

cos t2dt ð36Þ

If a = b and a � 1, the model reduces to a single-component spectrum with p = 4 and

outer scale size Lo � ‘f. In this condition, the equation for S4 reduces to

S2
4 ¼ 6:02r2

/ðKolf Þ3 ð37Þ

This is similar to Rino’s (1979) results for the single-component spectrum. Figure 5a

shows the result of this model computation using Eq. (21). The parameters chosen are

f = 3,945.5 MHz, rM
2 L = 1.08 9 1029 m-5 and z = 350 km. The break scale Lb is

750 m. The S4 index is plotted versus the outer scale size Lo. Also shown (dotted lines) are

the results of model computations for single-component spectra with p = 2.5, 3.0, 3.5 and

4.0. In this model, the authors consider the case where the power law indices are given by

pl = 2 and p2 = 4. These are two-dimensional power law indices; the corresponding one-

dimensional power law indices are p1(1) = 1 and p2(1) = 3.

Figure 5b shows S4C vs. Lb for outer scale sizes L0 = 10 and L0 = 100 km. The

propagation distance z = 350 km. The dependence on the break scale is strong; to produce

a scintillation index of *0.2, the break scale is *1 km for L0 = 10 km and *700 m for

L0 = 100 km.

In effect, the break scale assumes the role of the outer scale in the two-component

model. If we define the coherence distance (dI) of the electron density perturbation as the

spatial separation at which the normalized intensity covariance is 0.5, i.e., CI(dI) = 0.5
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(Franke and Liu 1985), then it can be expressed in terms of the electron density pertur-

bation as

dI ’
0:693Kb=Ko

pk2r2
er

2
NLðKb;KoÞ

" #1=2

dI � Lb ð38Þ

This was the result for the analytic model for the two-component spectrum. This model

also demonstrates the consistency of the observational data with analytical and simulation

results based on an irregularity spectrum. It shows that the coherence interval at VHF is a

good indicator of the scintillation strength. Empirical formulas were derived based on the

simulation results which relate the VHF coherence distance to the scintillation index at C

band. These results were found useful for obtaining an approximate estimate of the

scintillation strength at GHz frequencies based on the measurements of saturated VHF

scintillations only. A simple inverse relationship was found to exist between the correlation

interval of saturated scintillations at VHF and the perturbation strength as measured by the

C band scintillation index.

Fig. 5 a Scintillation index at C
band versus outer scale size Lo,
in km (after Franke and Liu
1985). b Scintillation index at C
band verses the break scale size
in meters (after Franke and Liu
1985)
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3.1.4 Iyer et al. (2006) Model

The amplitude scintillation of 250-MHz signals from the geostationary satellite FLEET-

SAT (at 73� longitude E) was measured at the Indian magnetic equatorial station, Tri-

vandrum, and at the anomaly crest station of Rajkot. The scintillation data recorded during

the years 1987–1989 were used (Iyer et al. 2006).

The model takes into account seasonal, solar activity and latitudinal variations of the

scintillation occurrence. Scintillation occurrence (SO, as a percentage), as functions of

local time, latitude, season/day and solar flux value, is expressed as a simultaneous product

of univariate normalized cubic B-splines as given below:

SOðt; d;F; hÞ ¼
X

17

i¼1

X

12

j¼1

X

3

k¼1

X

2

l¼1

ai;j;k;lNi;4ðtÞNj;2ðdÞNk;2ðFÞNl;2ðhÞ ð39Þ

where t is the local time, d is the day of the year, solar flux F, ai,j,k,l are the monthly means

of the scintillation occurrence percentage for each interval of local time and latitude h
expressed as a simultaneous product of univariate normalized cubic B-splines. The second

subscript is the order of a cubic B-spline. The 17 local time nodes are distributed between

16.00 and 08.00 LT at one-hour intervals. The 12 seasonal nodes are placed at the 15th day

of the month. In Fig. 6a, the modeled (right panels) and observed (left panels) scintillation

occurrence in Trivandrum is compared for high and low solar activity. One may note a

close agreement between observed and model values.

As evidenced by Fig. 6b, an excellent agreement has also been achieved for the

anomaly station, Rajkot. In spite of the superb agreement between the model and obser-

vation, the usefulness of this kind of model in the prediction of scintillation levels is

limited to the frequency and location for which it has been constructed.

3.1.5 3D Ionospheric Plume Models

This model developed by Retterer (2010) is a three-dimensional model for the plasma

plumes caused by interchange instabilities in the low-latitude ionosphere. It describes the

structure and extent of the radio scintillation generated by turbulence around and within the

plumes (Retterer 2010).

The model can predict the strength of radio scintillations as a function of time, latitude

and longitude, given the drivers for the ionospheric structure (the plasma drift velocity and

temperature) and the thermospheric parameters. Although the model cannot encompass a

first-principle description of phenomena on all the scale lengths relevant for the generation

of scintillation, the necessary extrapolations are based on observations and physical

principles. The phase screen formula is accurate only for weak scattering.

For power law density irregularity spectra, comparison with full-wave equation solu-

tions (Dashen and Wang 1993) shows that the phase screen formula does describe the

resulting amplitude scintillation accurately when the irregularities are weak. When the

irregularities are stronger, however, the full-wave values of S4 saturate at a value near

unity. Physically, this results because negative fluctuations in intensity cannot exceed the

b Fig. 6 a Scintillation occurrence over Trivandrum for solar minimum (upper panels) and maximum (lower
panels) (after Iyer et al. 2006). b Local time variation of scintillation occurrence over the anomaly crest
station Rajkot for solar maximum (after Iyer et al. 2006)
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signal intensity in magnitude, nor can positive fluctuations exceed the average intensity for

long. To derive the actual strength of scintillation, S4, the authors impose this saturation on

the phase screen results, S4ps, using a simple analytical formula derived by visual

inspection of numerical simulations results (Dashen and Wang 1993):

S4 ¼ 1�exp �S4ps � S2
4ps

	 


ð40Þ

Figure 7 presents the S4 scintillation index reported for three stations, namely Ancon,

Antofagasta and Cuiaba (their geomagnetic latitudes are given in Fig. 7) at 82 s sampling

times using red curves, along with the scintillation index predicted by the model (blue

line). At all three stations, the model does well in predicting the onset time and duration of

the scintillations. This model provides an envelope within which the actual S4 varies.

3.2 Global Climatological Models

3.2.1 WBMOD

The WBMOD (for WideBand MODel) ionospheric scintillation model was developed over

the past two decades by NorthWest Research Associates (NWRA) with support from the

US Government. This model can be used to calculate estimates of the severity of scin-

tillation effects on a user-specified system and scenario (location, date, time, geophysical

conditions). WBMOD consists of an ionosphere model, which provides the global distri-

bution and synoptic behavior of the electron density irregularities that cause the scintil-

lations, and a propagation model that calculates the effects that these irregularities will

have on a given system (http://www.nwra.com/ionoscint/wbmod.html). The outputs that

Fig. 7 Comparison of predicted
scintillation (blue curves) with
UHF SCINDA (Scintillation
Network Decision Aid)
measurements (red curves) of
amplitude scintillation at three
South American stations (after
Retterer 2010)
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the model returns are the phase scintillation spectrum spectral index p, the spectral strength

parameter (the spectral power at 1 Hz) T, the intensity scintillation index S4, and rms phase

ru.

The WBMOD consists of two parts: the electron density irregularities model and the

propagation model. The electron density model was developed based on a large collection

of scintillation observations taken during the Wideband, HiLat, and Polar Bear experi-

ments and from the USAF Phillips Laboratory equatorial scintillation monitoring network.

It provides information on the geometry, strength, orientation and motion of irregularities

as a function of location (latitude, longitude), date, time of day, solar (sunspot number) and

geomagnetic (planetary K index, Kp) activity. The most important parameter returned by

the model is the height-integrated irregularity strength CkL, i.e., the product of the tur-

bulence strength parameter Ck and the irregularity layer thickness L. An example of the

contour plot of observed log(CkL) is shown in Fig. 8. The highest values of log(CkL) form

just after local sunset on both sides of the magnetic equator (long dashed line). One can

expect that these are the regions of strongest scintillation for the given conditions. The

propagation model employed in WBMOD is the phase screen model as formulated by Rino

(1979) and briefly described in Sect. 2.2.3. The phase spectrum is characterized by the

power law with two-dimensional spectral index p and T—the phase spectral power at 1 Hz.

These are related to the properties of the electron density irregularities and geometry

(Fremouw and Secan 1984):

p 	 qþ 1 ð41Þ

T ¼ N qð Þk2ðCkLÞsechGVq
e ð42Þ

where q is the one-dimensional spectral index of electron density fluctuations as measured

in situ onboard a satellite, k is the radio wavelength, h is the propagation angle, G(a, b, d) is

a geometrical enhancement factor, and Ve(Vs, Vd, a, b, d) is the effective ray path scan

velocity across contours of the plasma density; N(q) is a normalization factor. Other

Fig. 8 Contour map of log(CkL) for 23.00 UT on March 21, 1994, and the sunspot number 150 (after www.
nwra.com/ionoscint/wbmod.html)
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quantities are as follows: a—axial ratio along the magnetic field, b—axial ratio across the

magnetic field, d—orientation of sheet-like irregularities with respect to the L-shell, Vs—

the line-of-sight scan velocity, Vd—large-scale drift velocity of irregularities.

Near the equator, WBMOD uses a simple model of drift velocity Vd varying diurnally,

with eastward drifts reaching 100 m/s at 22.00 local time, westward drifts reaching 50 m/s

at 10.00 L.T., and reversals taking place just before 16.00 and just after 04.00. It is

assumed that, in the equatorial region, the axial ratio b is unity, so that irregularities are

axially symmetric highly elongated rods with a = 30. As a measure of the phase scintil-

lation, the phase variance is used, which is simply the integral of the phase spectrum P(f):

r2
/ ¼

Z

1

fc

P/ðf Þdf ¼ 2

Z

1

fc

Tdf

ðf 2
0 =f 2Þp=2

ð43Þ

where f0 = Ve/2pr0 and r0 is the outer scale. fc is the lowest frequency admissible by the

system, for instance, the phase detrending frequency. Usually, fc � f0 so that

r2
/ 	

2T

ðp� 1Þf p�1
c

ð44Þ

The intensity scintillation is measured using the scintillation index, defined as the

normalized (by the mean squared) variance of the intensity:

S2
4 ¼

I2

 �

� Ih i2

Ih i2
ð45Þ

For weak intensity scintillation, the WBMOD uses following formula:

S2
4w ¼

MðqÞ
NðqÞ T

F

G

Zq=2

V
q
e

ð46Þ

where F(q, a, b, d) is the Fresnel filter factor, Z(k, h) is the Fresnel zone size, and M(q) is

the normalization factor.

It is important to realize that the model is valid only for weak scintillation. If the

scintillating signal obeys Rice statistics, then the following formula can be used to account

for the saturation of the scintillation index S4:

S2
4 	 1� expð�S2

4wÞ ð47Þ

where S4w is the weak-scatter scintillation index.

An improved WBMOD of equatorial scintillations can be found in Secan et al. (1995).

Compared to the earlier model, the authors here use a more extended scintillation database.

Thanks to that, it was possible to derive and use the probability distribution function of

log(CkL) instead of the average value of log(CkL). This enables the use of the full scin-

tillation statistics, which are needed to calculate the percentage of time that the scintillation

exceeds a given level. It also permits calculation of the scintillation level at a user-specified

percentile. In Fig. 9, the contours of the percent occurrence of S4 [ 0.5 are plotted for the

observed and modeled scintillation as a function of UT and day of the year for three

selected locations in the equatorial region. One can see that the model is consistent with the

observations. In particular, it adequately reproduces the longitudinal differences in the

solstitial behavior of the scintillation activity between Manila, where the scintillation
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activity peaks during the June solstice, and Huancayo, where the highest level of scintil-

lation is observed during the December solstice. WBMOD is a very popular model, and it

is no wonder that there are a good number of papers dealing with its validation. We

mention here the papers by Cervera et al. (2001) and Forte and Radicella (2005).

Cervera et al. (2001) used GPS scintillation data collected during 1998 and 1999 from

two sites, one situated in the southern equatorial anomaly region and the other situated near

the geomagnetic equator, in Southeast Asia. It has been found that at both the equatorial

and anomaly sites, in 1998 when the solar activity was lower than in 1999, the modeled

occurrence of scintillation stronger than S4 = 0.3 agreed with observations, although some

Fig. 9 Variation of the percent occurrence of S4 [ 0.5 as a function of UT and day of the year for indicated
receiver location. Left plots—observations, right plots—model. Heavy solid curves indicate the time of
E region sunset and heavy dashed curves the time of F2 region sunset. Note that Manilla is plotted with the
June solstice at the center of the y-axis, while Huancayo and Ascension Island have the December solstice at
the center (after Secan et al. 1995)
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differences were noted. However, in 1999 at the equatorial site, the predicted scintillation

activity was much lower than that observed and this disagreement grows to be more serious

for stronger scintillation. At the same time, in the anomaly region, the agreement of the

model with observations was satisfactory. It has also been noted that scintillation activity

predicted by WBMOD ceased approximately 2 h earlier than the observations showed. As

indicated by Cervera et al. (2001), this can be of concern at VHF because at these fre-

quencies the scintillation is strong and extends later into the night.

Forte and Radicella (2005) compared the WBMOD and GISM (see below) scintil-

lation predictions with observations made in Tucuman (Argentina), at the crest of the

equatorial anomaly. The authors highlight the patchy character of the equatorial scin-

tillations which is not reflected in the models. Rather than that, the model predicts the

average behavior of the scintillations as a function of time and position. That is why, for

most of the time, the WBMOD fails to predict the scintillation on a given GPS link.

Forte and Radicella (2005) underline the fact that the reaction of the GPS navigation

system to scintillations depends on the receivers used in that different receivers might

response differently to scintillations of a similar character (for instance, intensity and

fading frequency).

3.2.2 GISM

The Global Ionospheric Scintillation Model (GISM) has been described by Béniguel and

Buonomo (1999) and, in a slightly modified wording, by Béniguel (2002). The electron

density is calculated by the model NeQuick developed by the University of Graz and ICTP

Trieste (Radicella 2009). Inputs to this model are the solar flux number, the year, the day of

the year and the local time. It provides the average electron density value for any point in

the ionosphere (latitude, longitude, altitude). The magnetic parameters are computed based

on a Schmidt quasi-normalized spherical harmonic model of the Earth’s magnetic field.

These are the declination, the inclination, the vertical intensity and the components of the

field.

The GISM uses the multiple phase screen technique (MPS) (Knepp 1983; Béniguel

2002; Béniguel et al. 2004; Gherm et al. 2005). The locations of transmitter and

receiver are arbitrary. The radio link’s angle of incidence is arbitrary with respect to the

ionosphere layers and to the magnetic field vector orientation. It can either cross the

entire ionosphere or a small part of it. At each screen location along the line of sight,

the parabolic equation (PE) is solved for estimating the complex amplitude. The ion-

ospheric electron density at any point inside the medium, required for this calculation,

is provided by the NeQuick model. Mean errors are related to the total electron content

(TEC) value. The results are presented in the form of maps of scintillation index using

geographic coordinates.

Forte and Radicella (2005) compared the GISM with observations collected over South

America. As in the case of WBMOD, the patchy character of the low-latitude irregular

structure is completely absent. GISM predicts the same behavior for scintillations at dif-

ferent local times, changing just the scintillation intensity, but not its morphology. It seems

that WBMOD is more realistic as far as the reproduction of the diurnal scintillation

variations is concerned. Figure 10 shows the plot of intensity and phase scintillation with

local time at Cayenne, French Guiana, for 314 day of year 2006.
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3.3 Models Using Satellite in situ Data

3.3.1 Basu et al. (1976) Equatorial Scintillation Model

The model of Basu et al. (1976) is a morphological model of equatorial scintillations based

on in situ irregularity measurements from OGO-6 satellite retarding potential analyzer

(RPA) data. This instrument was used as a conventional RPA for 50 % of the time when

ion temperature and ion composition were obtained. For the other half of the time, it was

used as an irregularity detector. They further assumed that scintillation is weak and that a

phase screen approximation as formulated by Rufenach (1975, 1976) is valid. The irreg-

ularity layer thickness was taken to be 200 km and its height to be 450 km. The outer scale

of 20 km was chosen, and the axial ratio was considered to be greater than 5. Modeling

was performed for vertical incidence.

The percentage occurrence of scintillations estimated from the model is found to be

consistent with observations of VHF scintillation at Ghana, Huancayo and Calcutta. The

model demonstrates pronounced longitudinal variations in the scintillation activity with

maximum values being in the African sector (Fig. 11).

3.3.2 High-Latitude Scintillation Models by Basu

Basu et al. (1981) used Atmospheric Explorer D (AE-D) data to model scintillations at high

latitudes. Due to a limited availability of data, the model is suitable for northern winter

under sunspot minimum conditions. Only rms plasma irregularity amplitude rDN/N com-

puted from the satellite data over 3-s interval (approximately 20 km of path length per-

pendicular to the magnetic field). Values obtained every 8 s were used in the modeling.

The first step in the modeling was to determine the behavior of rDN/N as a function of

magnetic activity, magnetic latitude and magnetic local time.

The next step is to convert the plasma density morphology into the model of amplitude

and phase scintillations. To accomplish this, Rino’s (1979) formulation of the phase screen

theory of weak scintillation was used. The ambient electron density N and irregularity layer

thickness L were derived from the Bent model of the ionosphere (Llewellyn and Bent

Fig. 10 Intensity and phase scintillation indices on day 314, GPS week N� 377, obtained by modeling
(after Béniguel 2011)
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1973). It is assumed that the layer thickness is the same as the slab thickness of the

ionosphere under similar geophysical conditions. To simplify the equations expressing the

rms phase ru and scintillation index S4 in terms of parameters characterizing the electron

density irregularities and propagation geometry, it was assumed that the two-dimensional

spectral index p = 3. These simplified equations are as follows:

r2
/ 	

1

25p3
ðrekÞ2ðL sec hÞGCsðveffsÞ2 ð48Þ

S2
4 	

1

2
ðrekÞ2ðL sec hÞGCs

kz sec h
4p

� �

F ð49Þ

where the turbulence strength parameter Cs = 23 p hDN2i (2p/r0), and s is the phase

detrend interval. The geometrical factors G, F and the effective scan velocity veff of the ray

path across the electron density correlation ellipsoid depend on the anisotropy of the

irregularities, the orientation of the geomagnetic field and the propagation angle. In the

model, it was assumed that the scan velocity due to the satellite motion is much larger than

scan velocity associated with the ionospheric drift. This 3 km/s scan velocity is in the

magnetic N–S direction. Three kinds of irregularity anisotropy were considered. In the

nighttime auroral oval, magnetic L-shell aligned E-W sheets were used, while in the

daytime sub-auroral region, field-aligned rods were used.

3.3.3 WAM (Wernik et al. 2007) Model

The input data used in this Wernik et al. (2007) model are DE (Dynamic Explorer) 2

retarding potential analyzer (RPA) measurements of the ion density which, by overall

charge neutrality, are equivalent to the electron density Ne. The satellite traversed a nearly

polar orbit. The sampling frequency of the RPA was 64 Hz, corresponding to every 120 m

along the satellite orbit. These measurements were grouped over 8-s (512 samples)

Fig. 11 Contour plot of the occurrence of scintillations C4.5 dB at 140 MHz over the equatorial region
(after Basu et al. 1976)
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segments. The data gaps not longer than three samples were filled using linear interpo-

lation. Segments with longer gaps were rejected. Bad data, defined as that falling outside

the interval ±4rN around the mean electron density for the segment, were corrected using

linear interpolation. Only segments for which the invariant magnetic latitude was larger

than 50� are considered.

For each segment, Wernik et al. (2007) calculated the maximum entropy power spec-

trum (MEM) using 30 filter weights; altogether, they analyzed over 211,000 segments.

Figure 12 presents an arbitrarily chosen data segment and its spectrum, and Fig. 13 pre-

sents an example of calculations for a single DE 2 satellite path. Figure 13a shows the log

of the electron density averaged over data segments 8 s long, while Fig. 13b shows the

irregularity amplitude. In Fig. 13c is plotted the log of turbulence strength parameter Csr at

the peak height. In Fig. 13d, the spectral index p is given, and in Fig. 13e, we show the

scintillation index S4 at the signal frequency of 1.2 GHz. The high signal frequency was

chosen to ensure that the scintillation is weak enough to comply with the weak-scatter

assumption. This database is used to derive various statistically significant relationships

and maps.

The model is limited by the data used in its construction. Since scintillation is strongly

controlled by solar activity (Wernik et al. 2007) and since DE 2 was operating during a

period of moderate solar activity, the model is expected to be valid only when the sunspot

number is within the range 80–140. Another limitation is the assumption that the irregu-

larities traversed by the probe are isotropic. This assumption leads to an overestimate of the

turbulence strength parameter and consequently overestimated scintillation index. At the

dip angle 60�, the error in S4 might be as large as 25 % for highly anisotropic irregularities,

but decreases as the geomagnetic latitude increases. A serious limitation is imposed by the

use of the International Reference Ionosphere (IRI) model, which often fails to give

reasonable high-latitude F-region electron density profiles, so that important parameters

such as the peak density, peak height and irregularity layer thickness might be erroneously

Fig. 12 Example of 8-s-long data segment of ion density obtained by RPA on the DE 2 satellite and its
maximum entropy spectrum. The dotted line f-p dependence obtained by the least-squares fit over 1–20 Hz
(after Wernik et al. 2007)
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estimated. Another source of the disagreement between the modeled S4 and the obser-

vations is an inaccurate model of irregularity anisotropy.

4 Summary and Conclusions

In this paper, we have presented a general overview of models of ionospheric scintillations

for high and equatorial latitudes. Trans-ionospheric communication of radio waves from

transmitter to user is affected by the ionosphere which is highly variable and dynamic in

time and space. Scintillation is the term given to irregular amplitude and phase fluctuations

of the received signals and related to the electron density irregularities in the ionosphere.

Key sources of ionospheric irregularities are plasma instabilities. Every model of iono-

spheric scintillations is based on the theory of radio wave propagation in random media.

Emphasizing the full structure of the complex signal is significant because it has been

directly measured with a number of satellites having onboard multi-frequency phase

coherent beacons. The small-scale irregularities in the F layer of the ionosphere produce

amplitude fluctuations which can be a problem to navigation and communication systems

in the very high or ultra-high frequency (VHF-UHF) ranges. Irregularity regions do exist at

Fig. 13 Modeling results for a single satellite path. a Segment of the measured density data. b Irregularity
amplitude. c Turbulence strength parameter at the peak density height Csr. d Spectral index p. e Scintillation
index S4 (after Wernik et al. 2007)
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high latitude whose lower boundary at midnight is approximately 57� invariant latitude. At

±15� latitude on either side of the geomagnetic equator, ionospheric irregularities produce

strong scintillations in the VHF range, particularly during post-sunset to pre-midnight

hours.

The first empirical model of scintillations proposed by Fremouw and Rino (1973) could

estimate the scintillation index S4 on VHF/UHF, under weak-scatter conditions. However,

the weak-scatter condition is often exceeded near the equatorial anomaly and in auroral

regions. This model led to the foundation of a more advanced model WBMOD. Aarons

(1985) developed an analytic model using 15-min peak-to-peak scintillation indices (not

S4) taken over 5 years at Huancayo, Peru, from LES 6 satellite signals transmitted at

254 MHz. Franke and Liu (1985) proposed the modeling of equatorial multi-frequency

scintillations. Analytical and numerical techniques have been used to model multi-fre-

quency amplitude scintillation data recorded in the equatorial region at Ascension Island.

Later on came the model by Iyer et al. (2006). They used a cubic B-spline technique to

develop an empirical model of magnetic quiet time scintillation occurrence at Indian

equatorial and low latitudes. A 250-MHz signal from the FLEETSAT satellite was mea-

sured for 2 years at Trivandrum, near the magnetic equator, and at Rajkot at the crest of the

equatorial anomaly.

To describe the structure and extent of the radio scintillation generated by turbulence

around and within the equatorial plumes, a physical model was developed by Retterer

(2010). The first climatological model WBMOD was developed by NorthWest Research

Associates in which the user can specify his/her operating scenario. As an output, the

model returns the phase scintillation spectral index p, the spectral strength parameter T, S4,

and rms phase r/. Another global ionospheric scintillation model, GISM, has been

described by Béniguel and Buonomo (1999). The model consists of two parts; these are the

NeQuick model and the scintillation model based on a multiple phase screen algorithm,

and a second part which needs statistical information about the irregularities as an input.

The algorithm is used to calculate the scintillation index at the receiver.

Basu and his group used in situ satellite data in scintillation modeling for the first time

in 1976. They assumed a 3D power law irregularity spectrum with a constant spectral index

of 4. They prepared another high-latitude scintillation model (1988) using Atmospheric

Explorer D data. Due to the limited availability of data, the model was only suitable for

northern winter under sunspot minimum conditions. Wernik et al. (2007) used Dynamics

Explorer B data to estimate the irregularity spectral index and turbulence strength

parameter, the factors that are required to calculate the scintillation index (Rino 1979).

Their approach has been extended by Liu et al. (2012) by introducing the finite outer scale.

This paper reviews many analytical, empirical and climatological models that place

emphasis on the irregularities directly embedded in the background ionosphere. We did not

consider the more critical review of the models since many authors (e.g., Forte and

Radicella 2005; Strangeways et al. 2014) have already tried to make a direct numerical

comparison between scintillation results achieved by various different models. In general,

the ionospheric scintillation models discussed in this paper reproduce well the global

morphology of the ionospheric scintillations, but they often show a lack of precision in the

detailed resolution for short time periods (e.g., geophysical case studies). Strangeways

et al. (2014) have presented a significant numerical comparison of four different models.

They have demonstrated through curve comparison that different methods give approxi-

mately the same variation with the parameters (outer scale, elevation angle, power law of

irregularity spatial spectrum and normalized variance of electron density irregularities) for

weak scintillation conditions. There are few ionospheric scintillation models applicable to
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the irregularities in realistic larger structures such as equatorial bubbles at equatorial

latitudes (e.g., Zernov et al. 2009) and polar patches at high latitudes (e.g., Maurits et al.

2008). Such modeling could be possible by using the hybrid scintillation propagation

model (HSPM) method discussed by Gherm et al. (2005). They proposed a propagation

model for trans-ionospheric fluctuating paths of propagation which is valid for strong

scintillations and leads to a software trans-ionospheric channel simulator. The hybrid

method, a combination of the complex phase method and the random screen technique,

uses the extended Rytov approximation (the complex phase method). The HPSM technique

was found to be capable of producing statistical characteristics and simulating time real-

izations of the field (including in the regime of strong amplitude fluctuations).
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