
The Gravity Anomaly of a 2D Polygonal Body Having
Density Contrast Given by Polynomial Functions

M. G. D’Urso

Received: 8 September 2014 / Accepted: 11 January 2015 / Published online: 30 January 2015
� Springer Science+Business Media Dordrecht 2015

Abstract An analytical solution is presented for the gravity anomaly produced by a 2D

body whose geometrical shape is arbitrary and where the density contrast is a polynomial

function in both the horizontal and vertical directions. Approximating the real shape of the

body by a polygon, the solution is expressed as sum of algebraic quantities that depend only

upon the coordinates of the vertices of the polygon and upon the polynomial density function.

The solution presented in the paper, which refers to a third-order polynomial function as a

maximum, exhibits an intrinsic symmetry that naturally suggests its extension to the case of

higher-order polynomials describing the density contrast. Furthermore, the gravity anomaly

is evaluated at an arbitrary point that does not necessarily coincide with the origin of the

reference frame in which the density function is assigned. Invoking recent results of potential

theory, the solution derived in the paper is shown to be singularity-free and numerically

robust. The accuracy and effectiveness of the proposed approach is witnessed by the

numerical comparisons with examples derived from the existing literature.
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1 Introduction

The gravity anomaly of a region represents a basic set of geophysical data for the inves-

tigation of the subsurface density both in forward modelling and inversion (Jacoby and

Smilde 2009). For this reason, it is highly beneficial to dispose of analytical solutions of the

gravity anomaly associated with a body characterized by complex density distributions.

Due to the mathematical complexity of the problem, the gravity anomaly of an irregular

body whose density contrast is spatially variable has been first computed by approximating

the body as a collection of vertical rectangular parallelepipeds (prisms) in which the

M. G. D’Urso (&)
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density is assumed to be constant. Hence, the gravity anomaly for the whole body is

computed as algebraic sum of the contribution of all vertical prisms at appropriate depths

and distances from the observation point.

Numerical computations were first carried out by Talwani et al. (1959) and Bott (1960).

Closed-form expressions of the gravity anomaly were subsequently derived by Nagy

(1966), Banerjee and DasGupta (1977), Cady (1980), Nagy et al. (2000), Tsoulis (2000),

Jiancheng and Wenbin (2010), D’Urso (2012), see also Plouff (1975, 1976), Won and

Bevis (1987), Montana et al. (1992) for computer codes. The case of a spheroidal shell has

been addressed by Johnson and Litehiser (1972). Analytical expressions of the gravity

anomaly for prisms have been derived by D’Urso (2015b); for a linearly varying density,

by Rao (1985, 1986, 1990), Rao et al. (1994), and Gallardo-Delgado et al. (2003); and for

a quadratic density contrast, by Garcı́a-Abdeslem (1992, 2005a), when the density varies

with depth according to a cubic law. Non-polynomial density contrast models have been

considered by Cordell (1973), Chai and Hinze (1988), Litinsky (1989), Silva et al. (2006),

and Chappell and Kusznir (2008). For more complicated forms of the density contrast, see,

e.g., Cai and Wang (2005) and Mostafa (2008).

The previous contributions are characterized by simple geometric modelling, i.e., the

use of prisms, and refined modelling of the density contrast. A different approach is based

on the use of polyhedra, to avoid the necessity of subdividing the region of interest in

several prisms, countervailed by a simple description of density contrast. Analytical for-

mulas for the gravimetric analysis of polyhedra having constant density have been con-

tributed by Paul (1974), Barnett (1976), Strakhov (1978), Okabe (1979), Waldvogel

(1979), Golizdra (1981), Strakhov et al. (1986), Götze and Lahmeyer (1988), Pohanka

(1988), Murthy et al. (1989), Kwok (1991b), Werner (1994), Holstein and Ketteridge

(1996), Petrović (1996), Werner and Scheeres (1997), Li and Chouteau (1998), Tsoulis

(2012), and D’Urso (2013a). Subsequent advancements have been only concerned with a

linear density variation (Pohanka 1998; Hansen 1999; Holstein 2003; Hamayun et al.

2009; D’Urso 2014b); actually, handling more complex density functions in conjunction

with polyhedral models considerably increases the difficulties of the treatment, especially

if analytical solutions are looked for.

As a matter of fact, the interest in modelling gravity data using non-uniform density

contrast is associated with the geological and economic relevance of sedimentary basins.

Actually, the sediment thickness and bedrock topography are important parameters in

modelling groundwater flow, petroleum exploration, geotectonic investigations, and

ground motion amplification during an earthquake (Jacoby and Smilde 2009; Aydemir

et al. 2014). The geologic evaluation of sedimentary basins can be quite complex so that

the kind of function describing the density contrast significantly differs from case to case.

For instance, if simple differential compaction is assumed to be the main diagenetic

process in the evaluation of a sedimentary basin, geologically meaningful results are

obtained by using an exponentially increasing density with depth. However, if more

complex geological process come into play, such as non-uniform stratigraphic layering and

facies changes, more general variations in density need to be taken into account.

Independently of the kind of function assumed to define the density contrast, density can

be assumed to vary, separately or jointly, along the vertical and horizontal directions. For

instance, variations in density can be either arbitrary in the horizontal direction and of

polynomial type in the vertical one, or with an interchanged functional dependence. This

last case does occur in dipping layered intrusions or sedimentary beds in which an arbitrary

density function is assumed along depth and a polynomial function is considered in the

horizontal direction. Furthermore, complicated density functions can be associated with 3D
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modelling based on prisms (Murthy and Rao 1979; Rao et al. 1990; Chakravarthi et al.

2002; Chakravarthi and Sundararajan 2007; Zhou 2009b), or with 2D geometrical shapes

(Gendzwill 1970; Murthy and Rao 1979; Pan 1989; Guspı́ 1990; Ruotoistenmäki 1992;

Martı́n-Atienza and Garcı́a-Abdeslem 1999; Zhang et al. 2001; Zhou 2008, 2009a, 2010).

Actually, this last geometrical assumption, which characterizes domains having a cylin-

drical shape, significantly simplifies the mathematical treatment of the problem.

The derivation of analytical expressions for the gravity anomaly has not yet been

achieved, even in the presence of two-dimensional domains, for bodies characterized by a

complicated density contrast, so that numerical methods have been resorted to. Specifi-

cally, starting from the first researches on the subject (Hubbert 1948), all authors have

systematically transformed the original domain integrals into integrals of lower dimension

in order to simplify the adoption of quadrature rules for the numerical evaluation of the

gravity anomaly.

For 2D bodies, which are the object of the present paper, Zhou (2008) converted the

original domain integral for gravity anomaly to a line integral (LI) by using Stokes theorem.

In particular, he derived two types of LIs for computing the gravity anomaly of bodies having

density contrast depending only on depth. In a subsequent paper (Zhou 2009a), the author

extended his method to account for density contrast functions that depended not only on depth

but also on horizontal or, jointly, on horizontal and vertical directions. The original approach

by Zhou has been further improved in Zhou (2010) to evaluate the gravity anomaly at

observation points different from the origin since, historically, gravity anomaly was com-

puted only at the origin of the reference frame. Furthermore, Zhou dealt with the singularity of

the gravity anomaly arising where the observation point is coincident with the vertices of the

integration domain, an issue already discussed in Kwok (1991a), for prism-based modelling,

and Tsoulis and Petrović (2001) for polyhedra.

The aim of this paper is to derive an analytical expression of the gravity anomaly for

polygonal bodies whose density contrast is expressed as a polynomial function of arbitrary

degree in both the horizontal and vertical directions. The result is obtained by reducing the

original domain integral to a boundary integral by virtue of the generalized Gauss theorem

first presented in D’Urso (2012, 2013a) and subsequently applied to several problems

ranging from geodesy (D’Urso 2014a, b, 2015b; D’Urso and Trotta 2015c) to geome-

chanics (Sessa and D’Urso 2013; D’Urso and Marmo 2015a), to geophysics (D’Urso and

Marmo 2013b), and to heat transfer (Rosati and Marmo 2014). The generalized Gauss

theorem referred to above does allow one not only to derive an expression of the gravity

anomaly that is expressed in terms of a boundary integral but also to prove that the

singularity of the gravity anomaly, arising when the observation point does belong to the

integration domain, is eliminable.

For a polygonal domain X of n sides, the expression of the gravity anomaly in terms of

boundary integral is further specialized to the sum of n 1D integrals. Differently from

previous contributions on the subject, such 1D integrals are not numerically evaluated but

expressed analytically as a function of the position vectors defining the vertices of the

integration domain and of scalar quantities Iki defined on each side. In turn, the quantities

Iki, pertaining to the ith edge of the boundary of X, are analytically computed by evaluating

an integral of real variable that can exhibit a singularity when the edge does belong to a

line containing the observation point. However, it is proved that such a singularity pro-

duces a null contribution of the ith edge to the general expression of gravity anomaly;

hence, one can conclude that the derived expression is singularity-free.

By exploiting a suitable change in variables, we also derive an enhanced algebraic

formula that expresses the gravity anomaly at an arbitrary point P and simplifies to the
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ordinary one when P ¼ O. Remarkably, the enhanced expression of the gravity anomaly

has been derived without any modification of the density contrast function since this is still

defined in the original reference frame. The enhanced formula has been implemented in a

MATLAB code, and its accuracy and robustness has been assessed by numerical com-

parisons with examples derived from the literature.

2 Gravity Anomaly of a 2D Body at the Origin O of the Reference Frame

It is well known that the gravitation exerted by a 3D body X̂ on a unit mass at O is given by

gðOÞ ¼ G

Z

X̂

DqðrÞ r
ðr � rÞ3=2

dV ð1Þ

where G is the gravitational constant, r the position vector pointing from O to an arbitrary

point of X̂ and DqðrÞ the density contrast at r. Hence, DqðrÞdVðrÞ represents the infini-

tesimal difference between the mass at r and the background. We are interested in two-

dimensional problems so that we shall denote by X the section of X̂ in the vertical plane

and consider the reference frame sketched in Fig. 1.

The vertical component gz of gravitation at O is given by

gzðOÞ ¼ G

Z

X̂

DqðrÞr � k
ðr � rÞ3=2

dV ð2Þ

where k is the unit vector directed downwards. Being X̂ infinite in the y-direction and

assuming that the density contrast Dq is independent of y, the previous integration can be

carried out between two symmetric ordinates �dy, with dy !1. Accordingly, one obtains

gzð0; 0Þ ¼ G

Z

X

lim
dy!1

Zdy

�dy

Dqðx; zÞr � k
ðr � rÞ3=2

dy

2
64

3
75dxdz ¼

Z

X

Dqðx; zÞz
x2 þ z2

dA: ð3Þ

This is the general form of the 2D integral for calculating the gravity anomaly at O

produced by a distribution of 2D masses having a density contrast Dq with respect to the

Fig. 1 Polygonal domain X and
geometric quantities of the ith
edge
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background. Actually, the gravity anomaly is defined as the line integral of the components

of the 2D vector gravitation along the boundary of a mass body.

The computation of the integral in (3) is complicated by the fact that, due to geological

and geochemical processes, the density contrast distribution within X can be arbitrary. A

quite general expression for Dq, able to accommodate a large variety of geological for-

mations, is given by a double polynomial in x and z, (Zhang et al. 2001; Zhou 2008, 2009a,

2010)

Dqðx; zÞ ¼ hðx; zÞ ¼
XNx

i¼0

XNz

j¼0

cijx
izj ð4Þ

where Nx and Nz represent the maximum power of the polynomial density variation along x

and z; respectively.

The scalars cij represent the coefficients of the polynomial law; they can be estimated

from the known data points by a least-squares approach (Jacoby and Smilde 2009). In the

sequel, we shall confine the treatment to the case

Nx þ Nz ¼ 3 ð5Þ

since this will suffice to address the majority of the numerical examples previously con-

sidered in the literature and, at the same time, to present our formulation at a degree of

generality sufficient to be generalized to the cases Nx þ Nz [ 3.

To simplify the ensuing developments, it is convenient to introduce the two-dimen-

sional vectors q ¼ ðx; zÞ and jzð0; 1Þ. In this way, the previous relation can be written as

gzðoÞ ¼ 2G

Z

X

hðqÞðq � jzÞ
q � q dA ; ð6Þ

and our objective was to prove that the previous integral can be expressed as a line integral

extended to the boundary oX of X. Paralleling an analogous treatment developed in D’Urso

and Marmo (2013b), we first reformulate the general expression (4) of the density contrast

by writing

hðqÞ ¼ ho þ c � qþ C � Dqq þ C � Dqqq ð7Þ

where ho is a scalar, c is a vector, C; and Dqq are symmetric second-order tensors, C and

Dqqq are third-order tensors; furthermore, it has been set

Dqq ¼ q� q Dqqq ¼ q� q� q ð8Þ

The second-order (rank-two) tensor q� q has the following matrix representation

½q� q� ¼ x2 xz

xz z2

� �
ð9Þ

so that, being

C � ðq� qÞ ¼ C11x2 þ 2C12xzþ C22z2 ð10Þ

a quadratic distribution of density can be assigned by suitably defining the coefficients of

the symmetric tensor C. Analogously, the third-order tensors C and q� q� q are repre-

sented in matrix form as:
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ð11Þ

i.e., as vectors of rank-two tensors. Being

C � ðq� q� qÞ ¼ C111x3 þ ðC112 þ C121 þ C211Þx2z

þ ðC122 þ C212 þ C221Þxz2 þ C222z3
ð12Þ

the representation (4) of the density contrast is recovered from (7) by setting

ho ¼ c00 c1 ¼ c10 c2 ¼ c01

C11 ¼ c20 C22 ¼ c02 C12 ¼ c11=2
ð13Þ

and

C111 ¼ c30 C222 ¼ c03 ð14Þ

C112 ¼ C121 ¼ C211 ¼ c21=3 C122 ¼ C212 ¼ C221 ¼ c12=3 ð15Þ

In conclusion, we derive from (6) the following expression of the gravity anomaly

gzðoÞ ¼ 2G hodX
q þ c � dX

q þ C � DX
qq þ C � DX

qqq

h i
ð16Þ

where

dX
q ¼

Z

X

q � jz

q � q dA dX
q ¼

Z

X

ðq � jzÞq
q � q dA ð17Þ

and

DX
qq ¼

Z

X

ðq � jzÞq� q

q � q dA D
X
qqq ¼

Z

X

ðq � jzÞq� q� q

q � q dA ð18Þ

In order to transform the previous domain integrals into boundary integrals, we apply

Gauss theorem in the generalized form illustrated in D’Urso (2013a, 2014a). In this way,

the singularity at q ¼ o of the four domain integrals can be correctly taken into account.

2.1 Analytical Expression of the Gravity Anomaly at O in Terms of Boundary Integral

Let us now illustrate a general approach to express the 2D integrals in (16) as 1D integrals

extended to the boundary of X. Generality lies in the fact that, owing to the symmetry of

the integrals, application of Gauss theorem can be based upon a unique formula. Actually,

we are going to prove the general formula
Z

X

iq½�q;m�
q � q dA ¼ 1

mþ 1

Z

oX

iq½�q;m�ðq � mÞ
q � q ds m ¼ 0; 1; . . . ð19Þ

where iq ¼ q � jz, m is the 2D outward unit normal to oX and ½�q;m� denotes a rank-m

tensor defined by
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½�q;m� ¼

1 if m ¼ 0

q if m ¼ 1

q� q if m ¼ 2

� � � � � �
q� q� � � � � q|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

m times

if m [ 2

8>>>>>>>><
>>>>>>>>:

ð20Þ

To fix the ideas, we shall prove the identity (19) for m ¼ 2
Z

X

iqq� q

q � q dA ¼ 1

3

Z

oX

iqðq� qÞmq

q � q ds ð21Þ

since it allows us to illustrate our approach to a degree of generality sufficient to extend the

final result to all integrals in (16) and to the additional ones, not reported in (16), con-

taining tensors of rank superior to three, i.e., tensors of the kind ½�q;m� where m [ 3. In

the following, we shall make use of some differential identities that are collected in

Appendix 1 in order to not divert the reader from the main stream of our derivation.

Let us consider the following identity involving the divergence of a rank-three tensor.

div iqðq� qÞ � q

q � q

� �
¼ ðq� qÞ � q

q � q

� �
grad iq þ iq ðgrad qÞ q

q � q

� �
� q

þ iqq� ðgrad qÞ q

q � q

� �
þ iqðq� qÞ div

q

q � q;
ð22Þ

which stems from the identity (119) of Appendix 1. Furthermore, application of the

identity (120) provides

grad iq ¼ grad ðq � jzÞ ¼ ðgrad qÞtjz ¼ jz ð23Þ

since jz is a constant vector field and grad q ¼ I where I is the rank-two identity tensor.

Substituting the previous relation in (22), one obtains

div iqðq� qÞ � q

q � q

� �
¼ ðq� qÞ � q

q � q

� �
jz þ iq

q

q � q� qþ q� q

q � q

� �

þ iqðq� qÞ div
q

q � q

¼ 3iq
q� q

q � q þ iqðq� qÞ div
q

q � q

ð24Þ

Finally, integrating the previous identity over X yields
Z

X

iq
q� q

q � q dA ¼ 1

3

Z

X

div iqðq� qÞ � q

q � q

� �
dA� 1

3

Z

X

iqðq� qÞ div
q

q � q dA ð25Þ

The second integral on the right-hand side can be computed by means of the general

result (Tang 2006)

Z

F

uðqÞdiv
q

q � q

� �
dA ¼

0 if o 62 F

aðoÞuðoÞ if o 2 F

�
ð26Þ
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where u is a scalar function and F denotes an arbitrary 2D domain. The previous

expression can be extended to arbitrary tensors by applying it to each scalar component of

the tensor. Furthermore, the quantity a represents the angular measure, expressed in

radians, of the intersection between F and a circular neighborhood of the singularity point

q ¼ o, see D’Urso (2012, 2013a, 2014a) for additional details. Although its computation is

not required in the ensuing developments, we specify for completeness that a can be

computed by means of the general algorithm detailed in D’Urso and Russo (2002).

On account of (26), one infers that the second integral on the right-hand side of (25) is

the null rank-two tensor O since

Z

X

iqðq� qÞ div
q

q � q dA ¼
O if o 62 X

½iqq� q�q¼oaðoÞ if o 2 X

(
ð27Þ

However, the expression ½iqðq� qÞ�q¼o amounts to evaluating the quantity iqðq� qÞ at the

singularity point q ¼ o, that yields trivially the null tensor O. Hence, according to (27), the

last integral in (25) is always the null tensor, independently from the position of singularity

point q ¼ o with respect to the domain X of integration. In conclusion, upon application of

Gauss theorem to the second integral in (25), we finally infer the identity (21). Remarkably,

the derivation of this identity has also allowed us to prove that the singularity at q ¼ o, of

the integrand function appearing on the left-hand side of (21), can be actually ignored.

Furthermore, it is not difficult to rephrase the path of reasoning detailed in formulas

(22)–(27) so as to prove the more general formula (19). Hence, defining

doX
q ¼

Z

oX

ðq � jzÞðq � mÞ
q � q ds doX

q ¼
Z

oX

ðq � jzÞ q ðq � mÞ
q � q ds ð28Þ

DoX
qq ¼

Z

oX

ðq � jzÞ q� q ðq � mÞ
q � q ds D

oX
qqq ¼

Z

oX

ðq � jzÞ q� q� q ðq � mÞ
q � q ds ð29Þ

one has, recalling definitions (17) and (18)

dX
q ¼ doX

q dX
q ¼

doX
q

2
DX

qq ¼
DoX

qq

3
D

X
qqq ¼

D
oX
qqq

4
ð30Þ

In conclusion, application of formula (19)–(16) yields

gzðoÞ ¼ 2G hodoX
q þ

c � doX
q

2
þ

C � DoX
qq

3
þ
C � DoX

qqq

4

" #
ð31Þ

a formula that will be specialized to the case of polygonal domains in the next subsection.

2.2 Algebraic Expression of the Gravity Anomaly at O

In order to derive an algebraic expression suitable to be programmed, we specialize for-

mula (31) to the case of a polygonal domain X. Actually, this is by far the most common

case since geological formations are either polygonal or can be approximated to polygons

by subdividing the real boundary by an arbitrary number of vertices and edges. Once again,

in order to illustrate the rationale of our derivation, we shall make reference to formula
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(21). In particular, denoting by n the common number of vertices and edges belonging to

oX (see Fig. 1), formula (21) simplifies to

Z

X

iqq� q

q � q dA ¼ 1

3

Xn

i¼1

Z

oiX

½qðsiÞ � jz�½qðsiÞ � qðsiÞ�½qðsiÞ � mðsiÞ�
qðsiÞ � qðsiÞ

dsi ð32Þ

where si is the curvilinear abscissa along the ith edge oiX of the boundary of X.

The edge oiX connects the vertices qi and qiþ1, see, e.g., Fig. 1, and it will be assumed

that, along each edge, the relevant curvilinear abscissa has its origin at the ith vertex. Being

the product qðsiÞ � mðsiÞ constant along each side, formula (32) becomesZ

X

iqDqq

q � q dA ¼ 1

3

Xn

i¼1

qi � mi

Z

oiX

½qðsiÞ � jz�½qðsiÞ � qðsiÞ�
qðsiÞ � qðsiÞ

dsi ð33Þ

where mi is the outward unit normal to the ith edge. Assuming a counterclockwise circu-

lation sense along oiX and denoting by li ¼ jqiþ1 � qij the length of the ith edge, it turns

out mi ¼ ðqiþ1 � qiÞ?=li where ð�Þ? denotes a clockwise rotation of ð�Þ. In particular,

qi � mi ¼ qi � q?iþ1=li where q?iþ1 ¼ ðziþ1;�xiþ1Þ (D’Urso 2013a).

Introducing in (32) the dimensionless abscissa ki ¼ si=li; we finally get

Z

X

iqDqq

q � q dA ¼ 1

3

Xn

i¼1

qi � q?iþ1

Z1

0

½qðkiÞ � jz�½qðkiÞ � qðkiÞ�
qðkiÞ � qðkiÞ

dki; ð34Þ

which represents the starting point to derive the basic formulas useful for programming.

Actually, defining

doiX
q ¼

Z1

0

qðkiÞ � jz

qðkiÞ � qðkiÞ
dki doiX

q ¼
Z1

0

½qðkiÞ � jz�qðkiÞ
qðkiÞ � qðkiÞ

dki ð35Þ

DoiX
qq ¼

Z1

0

½qðkiÞ � jz�qðkiÞ � qðkiÞ
qðkiÞ � qðkiÞ

dki ð36Þ

D
oiX
qqq ¼

Z1

0

½qðkiÞ � jz�qðkiÞ � qðkiÞ � qðkiÞ
qðkiÞ � qðkiÞ

dki; ð37Þ

we can express the integrals (28) and (29) as

doX
q ¼

Xn

i¼1

ðqi � miÞlid
oiX
q doX

q ¼
Xn

i¼1

ðqi � miÞlid
oiX
q ð38Þ

DoX
qq ¼

Xn

i¼1

ðqi � miÞliD
oiX
qq D

oX
qqq ¼

Xn

i¼1

ðqi � miÞliD
oiX
qqq ð39Þ

Accordingly, formula (31) of the gravity anomaly simplifies as follows

gzðoÞ ¼ 2G
Xn

i¼1

ðqi � q?iþ1Þ hodoiX
q þ

c � doiX
q

2
þ

C � DoiX
qq

3
þ
C � DoiX

qqq

4

( )
ð40Þ
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The previous integrals can be evaluated analytically by introducing the following

parameterization of the ith edge

qðkiÞ ¼ qi þ kiðqiþ1 � qiÞ ¼ qi þ kiDqi ð41Þ

In this way, one has

qðkiÞ � jz ¼ ðqi � jzÞ þ kiðDqi � jzÞ ¼ ai þ biki ð42Þ

and

qðkiÞ � qðkiÞ ¼ pik
2
i þ 2qiki þ ui ð43Þ

where

pi ¼ Dqi � Dqi qi ¼ qi � Dqi ui ¼ qi � qi ð44Þ

Furthermore,

qðkiÞ � qðkiÞ ¼ qi � qi þ kiðqi � Dqi þ Dqi � qiÞ þ k2
i Dqi � Dqi

¼ Dqiqi
þ kiDqiDqi

þ k2
i DDqiDqi

ð45Þ

Analogously, setting

Dqiqiqi
¼ qi� qi � qi DqiqiDqi

¼ qi� qi �Dqi þ qi�Dqi� qiþDqi� qi � qi ð46Þ

DqiDqiDqi
¼ qi � Dqi � Dqi þ Dqi � qi � Dqi

þ Dqi � Dqi � qi

ð47Þ

DDqiDqiDqi
¼ Dqi � Dqi � Dqi; ð48Þ

one has

qðkiÞ � qðkiÞ � qðkiÞ ¼ Dqiqiqi
þ kiDqiqiDqi

þ k2
i DqiDqiDqi

þ k3
i DDqiDqiDqi

ð49Þ

Thus, defining

f ðkiÞ ¼
ai þ biki

pik
2
i þ 2qiki þ ui

ð50Þ

formula (40) simplifies to

gzðoÞ ¼ 2G
Xn

i¼1

qi � q?iþ1

� �
ho

Z1

0

f ðkiÞdki þ
c

2
�
Z1

0

f ðkiÞðqi þ kiDqiÞdki

8<
:

þ C

3
�
Z1

0

f ðkiÞ Dqiqi
þ kiDqiDqi

þ k2
i DDqiDqi

� 	
dki

þ C

4
�
Z1

0

f ðkiÞ Cqiqiqi
þ kiCqiqiDqi

þ k2
i CqiDqiDqi

þ k3
i CDqiDqiDqi

� 	
dki

9=
;

ð51Þ
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Grouping together the quantities multiplying the same exponent of ki and setting

hO
qi
¼ c � qi

2
þ C � Dqiqi

3
þ C � Dqiqiqi

4
ð52Þ

hO
Dqi
¼ c � Dqi

2
þ C � DqiDqi

3
þ C � DqiqiDqi

4
ð53Þ

hO
DqiDqi

¼ C � DDqiDqi

3
þ C � DqiDqiDqi

4
ð54Þ

hO
DqiDqiDqi

¼ C � DDqiDqiDqi

4
ð55Þ

formula (40) becomes

gzðoÞ ¼ 2G
Xn

i¼1

qi � q?iþ1

� �
I0i ai ho þ hO

qi


 �h i
þ I1i aih

O
Dqi
þ bih

O
qi

h in

þ I2i aih
O
DqiDqi

þ bih
O
Dqi

h i
þ I3i aih

O
DqiDqiDqi

þ bih
O
DqiDqi

h i

þ I4ibih
O
DqiDqiDqi

o
ð56Þ

where

Iki ¼
Z1

0

kk
i

pik
2
i þ 2qiki þ ui

dki ð57Þ

ho is defined in (13), ai; bi in (42), hO
qi
� hO

Dqi
� hO

DqiDqi
� hO

DqiDqiDqi
in (52)–(55).

The actual computation of the integrals Iki will be detailed in Sect. 4. In particular,

singularities in their expression, due to the vanishing of the denominator in (57), will be

proved to be ineffective. Hence, formula (56) is singularity-free in the sense that, for edges

characterized by singularities of the integrals Iki, the whole addend of the sum is zero.

3 Gravity Anomaly of a 2D Body at an Arbitrary Point P

Gravity anomaly calculations at an observation point which does not coincide with the

origin of the reference frame have been first addressed by Zhou (2010). Specifically, the

author devised two alternative formulations: the first one, named coordinate transforma-

tion, was conceived so as to make the observation point as the origin of the new coordinate

system and employing the solution obtained by the author in Zhang et al. (2001) and Zhou

(2009a). Clearly, this approach requires one to express the density contrast as a function of

the new coordinates. In the second formulation proposed by Zhou (2010), named solution

transformation, the solution at an arbitrary point is extrapolated from that obtained at the

origin of the reference frame.

On the contrary, denoting by x ¼ ðxP; zPÞ the position vector of an arbitrary point P, we

show that the approach illustrated in the previous section, as well as the function expressing

the density contrast, can be left unchanged provided that one introduces the vector

q ¼ r� x ð58Þ
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defining the relative position of the generic point r ¼ ðx; zÞ of X with respect to P, see, e.g.,

Fig. 2. Hence, the gravity anomaly at P is given by

gzðPÞ ¼ gzðxÞ ¼ 2G

Z

X

hðrÞðq � jzÞ
q � q dA ð59Þ

an expression which trivially simplifies to (6) whenever x ¼ o. On account of (7), the

previous expression becomes

gzðxÞ ¼ 2G ho

Z

X

iq
q � q dAþ c �

Z

X

iqr
q � q dA

8<
: þC �

Z

X

iqDrr

q � q dAþ C �
Z

X

iqDrrr

q � q dA

9=
;
ð60Þ

where Drr and Drrr are defined as in (8).

To exploit the results illustrated in the previous section, it is convenient to express r as a

function of q. For brevity, this is detailed only for the rank-three tensor Drrr since it is the

more cumbersome to handle. In particular, recalling (58), one has

Drrr ¼ r� r� r ¼ ðqþ xÞ � ðqþ xÞ � ðqþ xÞ
¼ Dqqq þ Dqqx þ Dxxq þ Dxxx

ð61Þ

where Dxxx ¼ x� x� x;

Dqqx ¼ q� q� xþ q� x� qþ x� q� q ð62Þ

and

Dxxq ¼ x� x� qþ x� q� xþ q� x� x

¼ Dxx � qþ x� q� xþ q� Dxx

ð63Þ

Hence, (60) becomes

Fig. 2 Representation of
geometric quantities used to
assign density contrast (r) and
define the position of X with
respect to an arbitrary point P
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gzðxÞ ¼ 2G ho þ c � xþ C � Dxx þ C � Dxxx½ �dX
q þ c � dX

q

n

þ C � dX
q � xþ x� dX

q þ DX
qq

h i

þ C � Dxx � dX
q þ x� dX

q � xþ dX
q � Dxx

h i

þ C � DX
qq � xþ dX

q � x� dX
q þ x� DX

qq

h i
þ C � DX

qqq

o
;

ð64Þ

which represents the generalization of (16) to the case x 6¼ o.

Special attention has to be paid to the symbol dX
q � x� dX

q ; which is a shorthand to

denote the third-order tensor

dX
q � x� dX

q ¼
Z

X

ðq � jzÞq� x� q

q � q dA ð65Þ

In spite of its symbol, which has been adopted to emphasize its symmetric expression, the

tensor above cannot be obtained as triple tensor product of the vectors dX
q and x. Rather, as

detailed in Sect. 3.3, it is conveniently computed starting from the rank-two tensor DX
qq.

For the sake of clarity, and to parallel the treatment developed in the previous section, we

shall consider separately the analytical expression of the gravity attraction at an arbitrary

point P and its algebraic counterpart, i.e., the formula useful for programming.

3.1 Analytical Expression of the Gravity Anomaly at an Arbitrary Point P in Terms

of Boundary Integral

Although q is now defined from (58), it can be shown that formula (19) holds as well.

Thus, recalling (30) and setting

hx ¼ c � xþ C � Dxx þ C � Dxxx ð66Þ

formula (64) simplifies to

gzðxÞ ¼ 2G ðho þ hxÞdoX
q þ

c � doX
q

2
þ C �

doX
q

2
� xþ x�

doX
q

2
þ

DoX
qq

3

" #(

þC � 1

2
Dxx � doX

q þ x� doX
q � xþ doX

q � Dxx


 ��

þ 1

3
DoX

qq � xþ doX
q � x� doX

q þ x� DoX
qq


 �
þ
D

oX
qqq

4

#)
ð67Þ

Obviously, (67) coincides with (31) when x ¼ o. We are now in the position to simplify

(67) to the case of a polygonal boundary.

3.2 Algebraic Expression of the Gravity Anomaly at an Arbitrary Point P

On account of (38) and (39), formula (67) becomes
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gzðxÞ ¼ 2G
Xn

i¼1

qi � q?iþ1 ½ho þ hx�doiX
q þ

c � doiX
q

2
þ C �

doiX
q

2
� xþ x�

doiX
q

2
þ

DoiX
qq

3

" #(

þC � 1

2
Dxx � doiX

q þ x� doiX
q � xþ doiX

q � Dxx


 ��

þ 1

3
DoiX

qq � xþ doiX
q � x� doiX

q þ x� DoiX
qq


 �
þ
D

oiX
qqq

4

#)

ð68Þ

Furthermore, recalling the definitions (41)–(43), (45), (49), and (57), one can express

(35)–(37)

doiX
q ¼ aiI0i þ biI1i ð69Þ

doiX
q ¼ ðaiI0i þ biI1iÞqi þ ðaiI1i þ biI2iÞDqi ð70Þ

DoiX
qq ¼ ðaiI0i þ biI1iÞDqiqi

þ ðaiI1i þ biI2iÞDqiDqi

þ ðaiI2i þ biI3iÞDDqiDqi

ð71Þ

D
oiX
qqq ¼ ðaiI0i þ biI1iÞDqiqiqi

þ ðaiI1i þ biI2iÞDqiqiDqi

þ ðaiI2i þ biI3iÞDqiDqiDqi
þ ðaiI3i þ biI4iÞDDqiDqiDqi

ð72Þ

In order to shorten the subsequent formulas to the maximum extent, it is convenient to

introduce the following additional notation

Dqix ¼ qi � xþ x� qi DDqix ¼ Dqi � xþ x� Dqi ð73Þ

and

ð74Þ

ð75Þ

ð76Þ

Dxxqi
¼ x� x� qi þ x� qi � xþ qi � x� x

¼ Dxx � qi þ x� qi � xþ qi � Dxx

ð77Þ

DxxDqi
¼ x� x� Dqi þ x� Dqi � xþ Dqi � x� x

¼ Dxx � Dqi þ x� Dqi � xþ Dqi � Dxx

ð78Þ

The symbols , , , and denote quantities

that have been formally introduced in the previous expression simply to preserve its
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symmetry of representation and to facilitate the reader in checking the correctness of

formula (81). As a matter of fact, they do not have to be computed since they are associated

with the integral (65) and its discrete counterpart doiX
q � x� doiX

q in (68). The computation

of this last quantity is addressed in Sect. 3.3.

Substituting the previous expressions in (68) and defining

hP
qi
¼ C � Dqix

2
þ C

3
� Dxxqi

þ Dqiqix

� �
ð79Þ

hP
Dqi
¼ C � DDqix

2
þ C

3
� DxxDqi

þ DqiDqix

� �
hP

DqiDqi
¼ C � DDqiDqix

3
; ð80Þ

we get

gzðoÞ ¼ 2G
Xn

i¼1

qi � q?iþ1

� �
I0i ai ho þ hO

qi
þ hx þ hP

qi


 �h in

þ I1i ai hO
Dqi
þ hP

Dqi


 �
þ bi ho þ hO

qi
þ hx þ hP

qi


 �h i

þ I2i ai hO
DqiDqi

þ hP
DqiDqi


 �
þ bi hO

Dqi
þ hP

Dqi


 �h i

þ I3i aih
O
DqiDqiDqi

þ bi hO
DqiDqi

þ hP
DqiDqi


 �h i
þ I4ibih

O
DqiDqiDqi

o
ð81Þ

where ho is defined in (13), ai; bi in (42), Iki ðk ¼ 0; 1; 2; 3) in (57), hO
qi
� hO

Dqi
� hO

DqiDqi
�

hO
DqiDqiDqi

in (52)–(55), hx in (66), hP
qi
� hP

Dqi
� hP

DqiDqi
in (79) and (80).

By eliminating all terms depending explicitly on x, i.e., hx, hP
qi

, hP
Dqi

and hP
DqiDqi

, it can

be easily checked that the previous expression does simplify to (56) when x ¼ o, i.e., when

the gravity anomaly is evaluated at the origin of the reference frame. The previous

expression is particularly useful for programming since I2i, I3i and I4i can be expressed as a

function of I0i and I1i by means of formulas (130)–(132) detailed in Appendix 2. The

resulting formula is not reported explicitly since it amounts to performing straightforward

algebraic manipulations.

To derive an alternative expression of the gravity anomaly which can be conveniently

used to check the correct implementation of the more efficient one reported in (81), one can

set

iki ¼ aiIki þ biIðkþ1Þi k ¼ 0; . . .; 3 ð82Þ

and replace formulas (69)–(72) with

doiX
q ¼ i0i doiX

q ¼ i0iqi þ i1iDqi ð83Þ

DoiX
qq ¼ i0iDqiqi

þ i1iDqiDqi
þ i2iDDqiDqi

ð84Þ

D
oiX
qqq ¼ i0iDqiqiqi

þ i1iDqiqiDqi

þ i2iDqiDqiDqi
þ i3iDDqiDqiDqi

ð85Þ
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Hence, formula (68) becomes

gzðxÞ ¼ 2G
Xn

i¼1

qi � q?iþ1 ½ho þ hx�i0i þ
c

2
� ði0iqi þ i1iDqiÞ

n

þC � i0i

Dqix

2
þ Dqiqi

3

� 

þ i1i

DDqix

2
þ DqiDqi

3

� 

þ i2i

DDqiDqi

3

� �

þC � i0i

Dxxqi

2
þ Dqiqix

3
þ Dqiqiqi

4

� 

þ i1i

DxxDqi

2
þ DqiDqix

3
þ DqiqiDqi

4

� 
�

þ i2i

DDqiDqix

3
þ DqiDqiDqi

4

� 

þ i3i

DDqiDqiDqi

4

��

ð86Þ

a formula which can be further elaborated upon by expressing I2i; I3i and I4i as a function of

I0i and I1i in the formulas for i2i; i3i and i4i.

3.3 Evaluation of the Third-Order Tensor doiX
q � x� doiX

q

We have denoted by the symbol doiX
q � x� doiX

q in (68) the third-order tensor

doiX
q � x� doiX

q ¼
Z1

0

½qðkiÞ � jz�qðkiÞ � x� qðkiÞ
qðkiÞ � qðkiÞ

dki ð87Þ

As a matter of fact, the tensor to evaluate is the rank-two tensor DoiX
qq since its components

have to be suitably combined with those of x in order to compute (87). In turn, this

depends upon the rule which is adopted to define the matrix associated with a third-order

tensor, a rule which usually depends upon the adopted programming language. For

instance, extending the rule defined in (11) to three arbitrary vectors t, v and w; one obtains

ð88Þ

The products t1w1, t1w2 are the components of the tensor t� w which plays the role of the

tensor DoiX
qq , i.e., the one to be actually computed.

Accordingly, we can define the matrix associated with doiX
q � x� doiX

q as

ð89Þ

where ½DoiX
qq �ij denotes the ij entry of the matrix associated with DoiX

qq .
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4 Ineffective Singularities of the Algebraic Expressions of the Gravity Anomaly

It has already been shown that the analytical expression (31) of the gravity anomaly is

singularity-free in the sense that its expression holds rigorously whatever is the position of

the point O with respect to X. The same property holds true for the expression (67) referred

to an arbitrary point P. However, the algebraic counterparts of (31) and (67), which are

provided by formulas (56) and (81), respectively, still hide some singularities.

They are associated with the expression of the integrals Iki, provided in (57), since some

special positions of the generic edge of oX with respect to the observation point can make

the denominator of (57) vanish. However, we are going to prove that such singularities are

ineffective from the computational point of view since they can actually be ignored when

evaluating the ith addend of the sums (56) and (81).

To fully understand this point, let us first notice that the opposite of the discriminant Di

of the quadratic function at the denominator in (57) is always nonnegative, being

Di ¼ piui � q2
i ¼ ðqiþ1 � qiþ1Þðqi � qiÞ � ðqi � qiþ1Þ2� 0 ð90Þ

by virtue of the Cauchy–Schwarz inequality (Tang 2006). The quantity Di can vanish,

making undefined the integral Iki in (57), if and only if either qiðqiþ1Þ ¼ o or qi and qiþ1

are parallel. In turn, this happens when the observation point does belong to the line

containing the ith edge. Accordingly, if Di [ 0, formulas (124) and (125) simplify to

I0i ¼
1ffiffiffiffiffi
Di

p arctan
qiþ1 � Dqiffiffiffiffiffi

Di

p � arctan
qi � Dqiffiffiffiffiffi

Di

p
� �

ð91Þ

and

I1i ¼
1

Dqi � Dqi

1

2
log

qiþ1 � qiþ1

qi � qi

� ðqi � DqiÞI0i

� �
; ð92Þ

respectively. Furthermore, formulas (130)–(132) can be used to evaluate I2i, I3i and I4i.

Clearly, the previous expressions become singular if Di ¼ 0, i.e., when the ith edge does

belong to a line containing the observation point. Nevertheless, we shall prove that the

contribution of the ith edge to the gravity anomaly is zero. Hence, from the computational

point of view, it is possible to skip the evaluation of the ith addend in formula (56)

whenever the ith edge does belong to a line containing O. The same property can be

invoked for formulas (81) and (86) whenever the ith edge does belong to a line containing

the arbitrary point P at which the gravity anomaly is required. The conditions stated above

do hold when qi ¼ o or qiþ1 ¼ o or qi is parallel to qiþ1. These three cases will be

addressed separately in the sequel.

4.1 Simplification of the Line Integrals (35)–(37) to the Case qi ¼ o

Recalling (41), the parameterization of the ith edge becomes

qðkiÞ ¼ kiqiþ1 ð93Þ

so that

qðkiÞ � jz ¼ kiqiþ1 � jz ¼ biki ð94Þ

and
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qðkiÞ � qðkiÞ ¼ k2
i qiþ1 � qiþ1 ¼ pik

2
i ð95Þ

Accordingly, we get from (35) to (37)

doiX
q ¼ bi

pi

Z1

0

dki

ki

¼ bi

pi

lim
e!0
½ logki�1e ; ð96Þ

which is singular at ki ¼ 0, and

doiX
q ¼ bi

pi

qiþ1 DoiX
qq ¼

1

2

bi

pi

qiþ1 � qiþ1 D
oiX
qqq ¼

1

3

bi

pi

qiþ1 � qiþ1 � qiþ1 ð97Þ

However, doiX
q in formulas (40) and (68), and hence the logarithm in (96), is scaled by

qi � q?iþ1. Setting e ¼ jqij, we infer that

lim
e!0

qi � q?iþ1

� �
I0i ¼ lim

e!0
e

bi

pi

loge ¼ 0 ð98Þ

since the logarithm tends to infinite with an arbitrarily low degree. In addition, being doiX
q ,

DoiX
qq and D

oiX
qqq finite, we ultimately infer that the contribution of the ith edge to the

expressions (56), (81), and (86) of the gravity anomaly is zero.

4.2 Simplification of the Line Integrals (35)–(37) to the Case qiþ1 ¼ o

In this case, the ith edge is parameterized in the form

qðkiÞ ¼ giqi ¼ ð1� kiÞqi 0� g� 1 ð99Þ

Hence,

qðkiÞ � jz ¼ giqi � jz ¼ aigi ð100Þ

and

qðkiÞ � qðkiÞ ¼ g2
i qi � qi ¼ uig

2
i ð101Þ

Being dki ¼ �dgi; one has

doiX
q ¼ � ai

ui

Z0

1

dgi

gi

¼ ai

ui

lim
e!0
½ logki�1e ð102Þ

doiX
q ¼ ai

ui

qi DoiX
qq ¼

1

2

ai

ui

qi � qi D
oiX
qqq ¼

1

3

ai

ui

qi � qi � qi ð103Þ

Hence, we can repeat the considerations developed in the previous subsection, by

exchanging the role of qi and qiþ1, and conclude that the contribution of the ith edge to the

expressions (56), (81), and (86) of the gravity anomaly vanishes.
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4.3 Simplification of the Line Integrals (35)–(37) to the Case qikqiþ1

In this case, we can set qiþ1 ¼ biqi with 0\bi ¼ jqiþ1j=jqij and parameterize the ith edge

as

q½kiðniÞ� ¼ niqi ð104Þ

where

ni ¼ 1þ kiðbi � 1Þ 1� ni�bi; ð105Þ

and it has been assumed bi [ 1. As it will be apparent in the sequel, the case bi\1 does

not modify the final result. Being also

qðkiÞ � jz ¼ niqi � jz ¼ aini ð106Þ

and

qðkiÞ � qðkiÞ ¼ pin
2
i ð107Þ

and dni ¼ dkiðbi � 1Þ; we now have

doiX
q ¼ ai

piðbi � 1Þ

Zbi

1

dni

ni

¼ ai

pi

logbi

bi � 1
ð108Þ

doiX
q ¼ ai

pi

qi DoiX
qq ¼

1

2

ai

pi

ðbi þ 1Þqi � qi D
oiX
qqq ¼

1

3

ai

pi

b3
i � 1

bi � 1
qi � qi � qi ð109Þ

The four integrals above are well defined but are scaled by the quantity qi � q?iþ1; which is

zero by hypothesis. Hence, recalling formulas (40) and (68), the ith edge does not give any

contribution to the sum in (56), (81), and (86). In conclusion, it has been proved that,

whenever qi � q?iþ1 ¼ 0, which is equivalent to state qi ¼ 0 or qiþ1 ¼ 0 or qikqiþ1, the

computation of the ith addend of the sum in (56), (81), and (86) can be skipped. Clearly,

from the numerical point of view, the analytical condition qi � q?iþ1 ¼ 0 is replaced by

kqi � q?iþ1k� tol where tol is a machine-dependent numerical tolerance (Table 1).

5 Numerical Examples

The formulas illustrated in the previous sections have been coded in a MATLAB program

in order to check their correctness and robustness. They have been applied to model tests

and case studies derived from the specialized literature. In particular, the density contrast

has been assumed to vary separately along the horizontal and the vertical directions or

along both of them. In all examples, the density contrast is expressed in units grams per

cubic centimeter while distances are expressed in kilometers; the value of the gravitational

constant G is 6.67259 9 10�11 m3 kg�1 s�2.

For all the examples, we include a graphical and a tabular comparison between our

results and those already published in the literature, although these last ones have been

inferred, to the best of the author’s expertise, from the diagrams in which they have been

originally reported. We also include the computing time (CT) obtained by running the
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MATLAB code on a INTEL CORE2 PC with 16 Gb of RAM and a i7-4700HQ CPU

having clock speed of 2.40 GHz. They can be useful to allow for a comparison with

computations carried out by using different methods or with more complex modellings,

e.g., those required to evaluate the gravitational effects of an arbitrary volumetric mass

layer in which a laterally varying radial density change has been assumed (Tenzer et al.

2012a, b, c).

The model test in Fig. 3 is a 2D rectangular cylinder at a depth of 1 km, 6 km wide, and

1 km high; it has been first considered by Rao (1986), and subsequently by Zhang et al.

(2001), by assuming a density contrast given by

hðzÞ ¼ 1:54þ 0:24z� 0:035z2 ð110Þ

Figure 4 shows a perfect agreement between the solid line, representing jointly the results

by Rao (1986) and Zhang et al. (2001), and the dotted line that has been computed by

means of the proposed approach. Each point in the figure represents the gravity anomaly

associated with a position of the observation point having as coordinates z ¼ 0 and an

abscissa x equal to that of the plotted point.

The second example, shown in Fig. 5, has been first addressed by Garcı́a-Abdeslem

et al. (2005b) and later considered in Zhou (2008). It refers to the Sebastián Vizcaı́no Basin

in Mexico for which the density contrast has been assumed in the form

hðzÞ ¼ �0:7þ 2:548	 10�4z� 2:73	 10�8z2 ð111Þ

0 2 4 6 8 10 12

0

0.5

1

1.5

2

2.5

3

x [km]

D
ep

th
 [k

m
]

Fig. 3 2D rectangular domain,
derived from Rao (1986), with
density contrast given by (110)
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Fig. 4 Comparison between the
results of the present approach
and those in Zhang et al. (2001)
for the domain in Fig. 3
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where z is expressed in meters. The gravity anomaly along a transect on the x-axis is shown

in Fig. 6 and successfully compared with that computed in Zhou (2008) by two distinct

methodologies named LI with arctangent kernel and density integrated LI. In both meth-

odologies, Zhou evaluated the resulting integrals by the Gauss–Legendre quadrature

method (Table 2).

Figure 7 illustrates an elongated segment valley first considered by Murthy and Rao

(1979) and later analyzed by Zhang et al. (2001). The density contrast is given by

hðzÞ ¼ �0:55þ 2	 10�4z ð112Þ

where z is expressed in meters. Figure 8 shows the comparison of the gravity anomaly

computed by different procedures, i.e., the one presented in Zhang et al. (2001), the two

methodologies quoted above by Zhou (2008) and that contributed in the present paper

(Table 3).

Figure 9 illustrates a case analyzed by Martı́n-Atienza and Garcı́a-Abdeslem (1999),

Zhou (2009a, 2010) in which the density contrast varies only along the horizontal position

hðzÞ ¼ 0:5þ 2	 10�5x� 2	 10�8x2 ð113Þ

The gravity anomaly, calculated along a transect on the x-axis, is shown in Fig. 10 where

our results are compared with those obtained by Zhou (2010). These last results had been

previously compared by Zhou with those based on the LI method with logarithmic kernel,
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Fig. 5 Domain derived from
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with density contrast given by
(111)
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Fig. 6 Comparison between the
results of the present approach
and those in Zhou (2008) for the
domain in Fig. 5
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previously contributed in Zhou (2009a), and the original results by Martı́n-Atienza and

Garcı́a-Abdeslem (1999) (Table 4).

The last numerical example, shown in Fig. 11, refers to a case first studied by Martı́n-

Atienza and Garcı́a-Abdeslem (1999) and later re-examined in Zhou (2009a). The

geometry in Fig. 11 refers to folded and overturned strata in a sedimentary basin in which

the density contrast varies simultaneously along the horizontal and vertical directions

hðx; zÞ ¼ �0:7� 5	 10�8xzþ 4	 10�8x2 þ 6	 10�8z2 ð114Þ

The boundary of the body has been approximated by a 26-sided polygon, and the gravity

anomaly has been computed at 41 stations. The high number of polygon vertices and the

more complex density contrast function explain the computing time of 0.32681 s which is

considerably higher than those experienced in previous examples. Figure 12 superimposes

our results with those obtained by Martı́n-Atienza and Garcı́a-Abdeslem (1999), the

seminumerical LI method by Zhou (2009a), and the analytical method in Zhou (2010)

(Table 5).

5.1 Error Analysis

It is interesting to consider the susceptibility of the formulas derived in the paper to

numerical rounding error. As shown in Holstein and Ketteridge (1996), this depends on the

target aspect ratio c ¼ a=d where a is the typical linear dimension of the target and d its
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Fig. 7 Domain derived from
Murthy and Rao (1979) with
density contrast given by (112)
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Fig. 8 Comparison between the
results of the present approach
and those in Zhang et al. (2001)
and Zhou (2008) for the domain
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typical distance from the observation point. For 2D bodies, the anomaly calculation (6) is

governed by an area integral weighted by the density contrast, the vertical component of

the position vector, proportional to d, and the inverse square law factor, proportional to

1=d2.

The density contrast functions considered in the previous examples show that hðqÞ is

obtained as the sum of separate terms having substantially the same order of magnitude as

the constant term ho. Nevertheless one has to consider separately the integrals (17) and

(18), and compute their one-dimensional counterparts (28) and (29).

In particular, we have

dX
q 
 OðaÞ ¼ OðdcÞ dX

q 
 OðdaÞ ¼ Oðd2cÞ ð115Þ

and

DX
qq 
 Oðd2aÞ ¼ Oðd3cÞ D

X
qqq 
 Oðd3aÞ ¼ Oðd4cÞ ð116Þ

where 
 means ‘‘has order of magnitude equal to.’’

Thus, when computed in a finite floating point precision �, the rounding error

Oðdkc�Þ; k ¼ 1; . . .4, progressively increases as the target distance d increases relative to
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the target size a. However, as shown in the previous figures, this is generally beyond the

region of geophysical interest.

As a final remark, it is worth mentioning that higher-order terms in the density contrast,

though more prone to computational noise as d increases, provide a progressively lower

contribution to the gravity anomaly. This is in accordance with the significance of higher-

order density polynomials in 2D modelling. As a matter of fact, geological settings require

mostly 3D gravity modelling: the errors caused by 2D gravity modelling with high-order

polynomials will often be larger than the errors caused by piecewise constant densities in a

relative few number of 3D polygonal bodies.

6 Conclusions

The gravity anomaly at arbitrary points produced by a 2D body whose shape is an arbitrary

polygon and where density contrast varies with a polynomial law has been obtained in

closed form. It is expressed as a sum of quantities that depend only upon the coordinates of

the vertices of the polygon and upon the parameters that define the density contrast. The

solution procedure, based upon a generalized application of Gauss theorem, takes con-

sistently into account the singularity intrinsic to the integrals to evaluate. Accordingly, by

means of rigorous mathematical arguments, singularities are proved to give no contribution

either to the analytical expression of the gravity anomaly or to its algebraic counterpart.
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The formulation presented in the paper, which has been limited to polynomial density

contrasts varying with a cubic law as a maximum, can be easily extended to polynomials of

higher degree. The effectiveness of the proposed approach has been intensively tested by

numerical comparisons, carried out by means of a MATLAB code, with several examples

derived from the specialized literature. Future contributions will concern the cases of

density contrast variable with exponential law for 2D domains and 3D polyhedral bodies

endowed with polynomial or exponential density contrasts.
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Appendix 1: Some Useful Differential Identities

We prove hereafter some differential identities that are useful for the derivations illustrated

in the main body of the paper; they are reported in the same order in which they are

required.

Let us begin with the component expression of the divergence of the rank-three tensor

div½wða� b� cÞ�ij ¼ wðaibjckÞ=k ð117Þ

where a, b, c (w) are vector (scalar) differentiable fields and ð�Þ=k means derivation with

respect to the kth variable. Applying the chain rule to (117), Tang (2006), one obtains

wðaibjckÞ=k ¼ w=kaibjck þ wai=kbjck þ waibj=kck þ waibjck=k

¼ ða� b� cÞijkðgradwÞk þ w½ðgrad aÞc�ibj

þ wai½ðgrad bÞc�j þ wða� bÞijdiv c

ð118Þ

Thus, combining (117) and (118), one has

div½wða� b� cÞ� ¼ ða� b� cÞgrad wþ w½ðgrad aÞc� � b

þ wa� ½ðgrad bÞc� þ wða� bÞdiv c
ð119Þ

A further useful identity concerns the gradient of a scalar field expressed as scalar

product of two vector fields

grad ða � bÞ ¼ ½grad a�tbþ ½grad b�ta ð120Þ

where ð�Þt stands for transpose. It stems from the relation

½grad ða � bÞ�i ¼ ðajbjÞ=i ð121Þ

Actually, carrying out the derivations in the previous expression yields

ðajbjÞ=i ¼ aj=ibj þ ajbj=i ¼ ½ðgrad aÞt�ijbj þ ½ðgrad bÞt�ijaj; ð122Þ

which represents the component form of (120).
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Appendix 2: Recursive Computation of Integrals

Application of formula (56) requires the analytical computation of integrals of the kind

Ik ¼
Z1

0

xk

px2 þ 2qxþ u
dx ð123Þ

where p [ 0 and the discriminant of the denominator, i.e., D ¼ q2 � pu, is assumed to be

negative. Hence, the quadratic function px2 þ 2qxþ u is always positive on the real

interval [0, 1]. The case of a null discriminant D will be directly addressed in Sect. 4 where

the evaluation of Iki, which makes use of the formulas derived hereafter for D\0, will be

detailed.

As previously shown by Zhou (2010), the generic integral (123) can be computed

recursively as a function of two integrals, namely

I0 ¼
Z1

0

1

px2 þ 2qxþ u
dx ¼ 1ffiffiffiffiffiffiffi

�D
p arctan

pþ qffiffiffiffiffiffiffi
�D
p � arctan

qffiffiffiffiffiffiffi
�D
p

� �
ð124Þ

and

I1 ¼
Z1

0

x

px2 þ 2qxþ u
dx ¼ 1

2p
log

pþ 2qþ u

u
� q

p
I0 ð125Þ

Both results can be obtained, after some manipulation, by setting t ¼ xþ q=p in the

integrand functions above. To make the paper self-contained, we rephrase the result given

in Zhou (2010)

Jk ¼
Z

xk

px2 þ 2qxþ u
dx ¼ xk�1

pðk � 1Þ �
2q

p

Z
xk�1

px2 þ 2qxþ u
dx

� u

p

Z
xk�2

px2 þ 2qxþ u
dx

ð126Þ

where k [ 1 and the terminology of this paper has been adopted.

For instance, if k ¼ 2, one has

J2 ¼
Z

x2

px2 þ 2qxþ u
dx ¼ 1

p

Z
px2 þ ð2qxþ u� 2qx� uÞ

px2 þ 2qxþ u
dx

¼ 1

p

Z
dx�

Z
2qxþ u

px2 þ 2qxþ u
dx

� �

¼ 1

p

Z
dx� 2q

Z
x

px2 þ 2qxþ u
dx� u

Z
dx

px2 þ 2qxþ u

� �

¼ 1

p
½x� 2qJ1 � uJ0�

ð127Þ

Analogously,
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J3 ¼
1

p

x2

2
� 2qJ2 � uJ1

� �
¼ 1

p

x2

2
� 2qx

p
þ 4q2 � pu

p
J1 þ

2qu

p
J0

� �
ð128Þ

and

J4 ¼
x3

3p
� q

p2
x2 þ 4q2 � pu

p3
x� 2qð4q2 � 2puÞ

p3
J1 �

uð4q2 � puÞ
p3

J0 ð129Þ

Hence,

I2 ¼
1

p
½1� 2qI1 � uI0� ð130Þ

I3 ¼
1

p

1

2
� 2q

p
þ 4q2 � pu

p
I1 þ

2qu

p
I0

� �
ð131Þ

and

I4 ¼
1

p

1

3
� q

p
þ 4q2 � pu

p2
� 2qð4q2 � 2puÞ

p2
I1 �

uð4q2 � puÞ
p2

I0

� �
ð132Þ
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