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Abstract An analytical solution is presented for the gravity anomaly produced by a 2D
body whose geometrical shape is arbitrary and where the density contrast is a polynomial
function in both the horizontal and vertical directions. Approximating the real shape of the
body by a polygon, the solution is expressed as sum of algebraic quantities that depend only
upon the coordinates of the vertices of the polygon and upon the polynomial density function.
The solution presented in the paper, which refers to a third-order polynomial function as a
maximum, exhibits an intrinsic symmetry that naturally suggests its extension to the case of
higher-order polynomials describing the density contrast. Furthermore, the gravity anomaly
is evaluated at an arbitrary point that does not necessarily coincide with the origin of the
reference frame in which the density function is assigned. Invoking recent results of potential
theory, the solution derived in the paper is shown to be singularity-free and numerically
robust. The accuracy and effectiveness of the proposed approach is witnessed by the
numerical comparisons with examples derived from the existing literature.
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1 Introduction

The gravity anomaly of a region represents a basic set of geophysical data for the inves-
tigation of the subsurface density both in forward modelling and inversion (Jacoby and
Smilde 2009). For this reason, it is highly beneficial to dispose of analytical solutions of the
gravity anomaly associated with a body characterized by complex density distributions.
Due to the mathematical complexity of the problem, the gravity anomaly of an irregular
body whose density contrast is spatially variable has been first computed by approximating
the body as a collection of vertical rectangular parallelepipeds (prisms) in which the
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density is assumed to be constant. Hence, the gravity anomaly for the whole body is
computed as algebraic sum of the contribution of all vertical prisms at appropriate depths
and distances from the observation point.

Numerical computations were first carried out by Talwani et al. (1959) and Bott (1960).
Closed-form expressions of the gravity anomaly were subsequently derived by Nagy
(1966), Banerjee and DasGupta (1977), Cady (1980), Nagy et al. (2000), Tsoulis (2000),
Jiancheng and Wenbin (2010), D’Urso (2012), see also Plouff (1975, 1976), Won and
Bevis (1987), Montana et al. (1992) for computer codes. The case of a spheroidal shell has
been addressed by Johnson and Litehiser (1972). Analytical expressions of the gravity
anomaly for prisms have been derived by D’Urso (2015b); for a linearly varying density,
by Rao (1985, 1986, 1990), Rao et al. (1994), and Gallardo-Delgado et al. (2003); and for
a quadratic density contrast, by Garcia-Abdeslem (1992, 2005a), when the density varies
with depth according to a cubic law. Non-polynomial density contrast models have been
considered by Cordell (1973), Chai and Hinze (1988), Litinsky (1989), Silva et al. (2006),
and Chappell and Kusznir (2008). For more complicated forms of the density contrast, see,
e.g., Cai and Wang (2005) and Mostafa (2008).

The previous contributions are characterized by simple geometric modelling, i.e., the
use of prisms, and refined modelling of the density contrast. A different approach is based
on the use of polyhedra, to avoid the necessity of subdividing the region of interest in
several prisms, countervailed by a simple description of density contrast. Analytical for-
mulas for the gravimetric analysis of polyhedra having constant density have been con-
tributed by Paul (1974), Barnett (1976), Strakhov (1978), Okabe (1979), Waldvogel
(1979), Golizdra (1981), Strakhov et al. (1986), Gotze and Lahmeyer (1988), Pohanka
(1988), Murthy et al. (1989), Kwok (1991b), Werner (1994), Holstein and Ketteridge
(1996), Petrovi¢ (1996), Werner and Scheeres (1997), Li and Chouteau (1998), Tsoulis
(2012), and D’Urso (2013a). Subsequent advancements have been only concerned with a
linear density variation (Pohanka 1998; Hansen 1999; Holstein 2003; Hamayun et al.
2009; D’Urso 2014b); actually, handling more complex density functions in conjunction
with polyhedral models considerably increases the difficulties of the treatment, especially
if analytical solutions are looked for.

As a matter of fact, the interest in modelling gravity data using non-uniform density
contrast is associated with the geological and economic relevance of sedimentary basins.
Actually, the sediment thickness and bedrock topography are important parameters in
modelling groundwater flow, petroleum exploration, geotectonic investigations, and
ground motion amplification during an earthquake (Jacoby and Smilde 2009; Aydemir
et al. 2014). The geologic evaluation of sedimentary basins can be quite complex so that
the kind of function describing the density contrast significantly differs from case to case.
For instance, if simple differential compaction is assumed to be the main diagenetic
process in the evaluation of a sedimentary basin, geologically meaningful results are
obtained by using an exponentially increasing density with depth. However, if more
complex geological process come into play, such as non-uniform stratigraphic layering and
facies changes, more general variations in density need to be taken into account.

Independently of the kind of function assumed to define the density contrast, density can
be assumed to vary, separately or jointly, along the vertical and horizontal directions. For
instance, variations in density can be either arbitrary in the horizontal direction and of
polynomial type in the vertical one, or with an interchanged functional dependence. This
last case does occur in dipping layered intrusions or sedimentary beds in which an arbitrary
density function is assumed along depth and a polynomial function is considered in the
horizontal direction. Furthermore, complicated density functions can be associated with 3D
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modelling based on prisms (Murthy and Rao 1979; Rao et al. 1990; Chakravarthi et al.
2002; Chakravarthi and Sundararajan 2007; Zhou 2009b), or with 2D geometrical shapes
(Gendzwill 1970; Murthy and Rao 1979; Pan 1989; Guspi 1990; Ruotoistenmiki 1992;
Martin-Atienza and Garcia-Abdeslem 1999; Zhang et al. 2001; Zhou 2008, 2009a, 2010).
Actually, this last geometrical assumption, which characterizes domains having a cylin-
drical shape, significantly simplifies the mathematical treatment of the problem.

The derivation of analytical expressions for the gravity anomaly has not yet been
achieved, even in the presence of two-dimensional domains, for bodies characterized by a
complicated density contrast, so that numerical methods have been resorted to. Specifi-
cally, starting from the first researches on the subject (Hubbert 1948), all authors have
systematically transformed the original domain integrals into integrals of lower dimension
in order to simplify the adoption of quadrature rules for the numerical evaluation of the
gravity anomaly.

For 2D bodies, which are the object of the present paper, Zhou (2008) converted the
original domain integral for gravity anomaly to a line integral (LI) by using Stokes theorem.
In particular, he derived two types of LIs for computing the gravity anomaly of bodies having
density contrast depending only on depth. In a subsequent paper (Zhou 2009a), the author
extended his method to account for density contrast functions that depended not only on depth
but also on horizontal or, jointly, on horizontal and vertical directions. The original approach
by Zhou has been further improved in Zhou (2010) to evaluate the gravity anomaly at
observation points different from the origin since, historically, gravity anomaly was com-
puted only at the origin of the reference frame. Furthermore, Zhou dealt with the singularity of
the gravity anomaly arising where the observation point is coincident with the vertices of the
integration domain, an issue already discussed in Kwok (1991a), for prism-based modelling,
and Tsoulis and Petrovi¢ (2001) for polyhedra.

The aim of this paper is to derive an analytical expression of the gravity anomaly for
polygonal bodies whose density contrast is expressed as a polynomial function of arbitrary
degree in both the horizontal and vertical directions. The result is obtained by reducing the
original domain integral to a boundary integral by virtue of the generalized Gauss theorem
first presented in D’Urso (2012, 2013a) and subsequently applied to several problems
ranging from geodesy (D’Urso 2014a, b, 2015b; D’Urso and Trotta 2015¢) to geome-
chanics (Sessa and D’Urso 2013; D’Urso and Marmo 2015a), to geophysics (D’Urso and
Marmo 2013b), and to heat transfer (Rosati and Marmo 2014). The generalized Gauss
theorem referred to above does allow one not only to derive an expression of the gravity
anomaly that is expressed in terms of a boundary integral but also to prove that the
singularity of the gravity anomaly, arising when the observation point does belong to the
integration domain, is eliminable.

For a polygonal domain Q of n sides, the expression of the gravity anomaly in terms of
boundary integral is further specialized to the sum of n 1D integrals. Differently from
previous contributions on the subject, such 1D integrals are not numerically evaluated but
expressed analytically as a function of the position vectors defining the vertices of the
integration domain and of scalar quantities /;; defined on each side. In turn, the quantities
I;, pertaining to the ith edge of the boundary of (2, are analytically computed by evaluating
an integral of real variable that can exhibit a singularity when the edge does belong to a
line containing the observation point. However, it is proved that such a singularity pro-
duces a null contribution of the ith edge to the general expression of gravity anomaly;
hence, one can conclude that the derived expression is singularity-free.

By exploiting a suitable change in variables, we also derive an enhanced algebraic
formula that expresses the gravity anomaly at an arbitrary point P and simplifies to the
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ordinary one when P = O. Remarkably, the enhanced expression of the gravity anomaly
has been derived without any modification of the density contrast function since this is still
defined in the original reference frame. The enhanced formula has been implemented in a
MATLAB code, and its accuracy and robustness has been assessed by numerical com-
parisons with examples derived from the literature.

2 Gravity Anomaly of a 2D Body at the Origin O of the Reference Frame

It is well known that the gravitation exerted by a 3D body Q on a unit mass at O is given by

g(0) = G/de 0

) (r-r)"?
where G is the gravitational constant, r the position vector pointing from O to an arbitrary
point of  and Ap(r) the density contrast at r. Hence, Ap(r)dV/(r) represents the infini-
tesimal difference between the mass at r and the background. We are interested in two-
dimensional problems so that we shall denote by € the section of Q in the vertical plane
and consider the reference frame sketched in Fig. 1.

The vertical component g, of gravitation at O is given by

g.(0) = G/MdV 2)
Q

(r-r)*?

where Kk is the unit vector directed downwards. Being Q infinite in the y-direction and
assuming that the density contrast Ap is independent of y, the previous integration can be
carried out between two symmetric ordinates +d,, with d, — oo. Accordingly, one obtains

dy
_ . [ Aplx,7)r-k _ [Ap(x,2)z
Q —d, Q

This is the general form of the 2D integral for calculating the gravity anomaly at O
produced by a distribution of 2D masses having a density contrast Ap with respect to the
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background. Actually, the gravity anomaly is defined as the line integral of the components
of the 2D vector gravitation along the boundary of a mass body.

The computation of the integral in (3) is complicated by the fact that, due to geological
and geochemical processes, the density contrast distribution within € can be arbitrary. A
quite general expression for Ap, able to accommodate a large variety of geological for-
mations, is given by a double polynomial in x and z, (Zhang et al. 2001; Zhou 2008, 2009a,
2010)

N PR
Z cyx'? (4)

j=0

Ny
Ap(x,z) = 0(x,z) =
i=0

where N, and N, represent the maximum power of the polynomial density variation along x
and z, respectively.

The scalars c;; represent the coefficients of the polynomial law; they can be estimated
from the known data points by a least-squares approach (Jacoby and Smilde 2009). In the
sequel, we shall confine the treatment to the case

Ny +N, =3 (5)
since this will suffice to address the majority of the numerical examples previously con-
sidered in the literature and, at the same time, to present our formulation at a degree of
generality sufficient to be generalized to the cases N, + N, > 3.

To simplify the ensuing developments, it is convenient to introduce the two-dimen-
sional vectors p = (x,z) and k.(0, 1). In this way, the previous relation can be written as

_ 0(p)(p - k)
gz<o>—2GQ/ T )

and our objective was to prove that the previous integral can be expressed as a line integral
extended to the boundary 0Q2 of Q. Paralleling an analogous treatment developed in D’Urso
and Marmo (2013b), we first reformulate the general expression (4) of the density contrast
by writing

0(p)=0,+c-p+C-Dy,+C-D,, (7)

where 0, is a scalar, ¢ is a vector, C, and D, are symmetric second-order tensors, C and
D,,p are third-order tensors; furthermore, it has been set

Dyy=p®p Dppp =pRpRp (8)

The second-order (rank-two) tensor p ® p has the following matrix representation

Xz XZ
lo®p] = { 2 } 9)
Xz Z
so that, being
C-(p®p) = Cnx*+2Cxz+ Cp?’ (10)

a quadratic distribution of density can be assigned by suitably defining the coefficients of
the symmetric tensor C. Analogously, the third-order tensors C and p ® p ® p are repre-
sented in matrix form as:
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Cin Ci2 . X2 xz
Ci21 Ci22 xz z2
C=|-+= ==~ R(P®pP) =|- -1 11
Con Canz Po(PEP) Zxrxz (11)
Ci Cox xz z2
i.e., as vectors of rank-two tensors. Being
C-(p2p®@p)=Cix’ + (Ciip + Crag + Copp ¥’z (12)
+ (Ci22 + Ca1a + Cop1)xz* + Cona?’
the representation (4) of the density contrast is recovered from (7) by setting
0, =c cr=c¢ Ch = C
b = Coo 1 10 2 = Col (13)
Cii =c Co = co2 Cpp=c11/2
and
Ciit = c30 Crr = co3 (14)
Cin=Ci1 =Co11 = ¢21/3 Cino =Coip = Cpy =¢12/3 (15)

In conclusion, we derive from (6) the following expression of the gravity anomaly

8.(0) = 2G[0,d? +¢-af + € D2+ C D2, | (16)
where
P K, Q (p-K)p
dgz/—dA d :/7dA
’ 0 p ’ p-p (17)
Q Q
and
o _ [P K)p®p o _ [(pr)pRp@p
Dpp* fdA Dﬂpp* %dA (18)
PP PP

In order to transform the previous domain integrals into boundary integrals, we apply
Gauss theorem in the generalized form illustrated in D’Urso (2013a, 2014a). In this way,
the singularity at p = o of the four domain integrals can be correctly taken into account.

2.1 Analytical Expression of the Gravity Anomaly at O in Terms of Boundary Integral

Let us now illustrate a general approach to express the 2D integrals in (16) as 1D integrals
extended to the boundary of Q. Generality lies in the fact that, owing to the symmetry of
the integrals, application of Gauss theorem can be based upon a unique formula. Actually,
we are going to prove the general formula

/l,,[@p,m]dA 1 /’p[®l’7m](f'"’)ds m=0,1,... (19)

p-p Cm+1 p-p
oQ

where 1, = p - k,, v is the 2D outward unit normal to 0Q and [®p, m] denotes a rank-m
tensor defined by
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1 ifm=0
P if m=1
pRp if m=2
[®p,m] = (20)
PRPR---Qp if m>?2
—_
mtimes
To fix the ideas, we shall prove the identity (19) for m = 2
1
/lpp®pdA:_/ WP 2Py, o)
p-p 3 p-p
Q oQ

since it allows us to illustrate our approach to a degree of generality sufficient to extend the
final result to all integrals in (16) and to the additional ones, not reported in (16), con-
taining tensors of rank superior to three, i.e., tensors of the kind [®p, m] where m > 3. In
the following, we shall make use of some differential identities that are collected in
Appendix 1 in order to not divert the reader from the main stream of our derivation.

Let us consider the following identity involving the divergence of a rank-three tensor.

div {l,,(p ®p)® p’;p} = {(p ®p)® ﬁ} gradi, + 1, [(grad ) ﬁ} ®p )

P . P
+zp®{gradp —}—0—1 p®p)div—,
P |( )p_p o(P®p) o p

which stems from the identity (119) of Appendix 1. Furthermore, application of the
identity (120) provides

grad1, = grad (p - k,) = (grad p)tk, = K, (23)

since k. is a constant vector field and grad p = I where I is the rank-two identity tensor.
Substituting the previous relation in (22), one obtains

. P P p p
div|1,(p ® ®—}:{ ® ®—}x,+l{—® +pR——
[p(p p) b p (p®p) b Ty BT
P
+ 1,(p ® p) div — 24
ol ) oy (24)

PP . P
=31,——+ 1,(p® p)div —
"pop ol p-p

Finally, integrating the previous identity over € yields

1 dA=- [ div|,(p®p) @ —I[dA — = | 1,(p ® p)div —dA
Q/”M s [l neglan=s [uoe i u o

The second integral on the right-hand side can be computed by means of the general
result (Tang 2006)

F/(P(p)div {ﬁ}m N {06(0)(:/1(0) EZ i? (26)
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where ¢ is a scalar function and F denotes an arbitrary 2D domain. The previous
expression can be extended to arbitrary tensors by applying it to each scalar component of
the tensor. Furthermore, the quantity o represents the angular measure, expressed in
radians, of the intersection between F and a circular neighborhood of the singularity point
p = o, see D’Urso (2012, 2013a, 2014a) for additional details. Although its computation is
not required in the ensuing developments, we specify for completeness that o can be
computed by means of the general algorithm detailed in D’Urso and Russo (2002).

On account of (26), one infers that the second integral on the right-hand side of (25) is
the null rank-two tensor O since

ifo ¢ Q

{ [1yp @ pl,_,0(0) ifoeQ (27)

. P
1,(p®p)div——dA =
b/p< )div L

However, the expression [1,(p ® p)],_, amounts to evaluating the quantity 1,(p ® p) at the
singularity point p = o, that yields trivially the null tensor O. Hence, according to (27), the
last integral in (25) is always the null tensor, independently from the position of singularity
point p = o with respect to the domain € of integration. In conclusion, upon application of
Gauss theorem to the second integral in (25), we finally infer the identity (21). Remarkably,
the derivation of this identity has also allowed us to prove that the singularity at p = o, of
the integrand function appearing on the left-hand side of (21), can be actually ignored.

Furthermore, it is not difficult to rephrase the path of reasoning detailed in formulas
(22)—(27) so as to prove the more general formula (19). Hence, defining

20 (p-x)(p-v) 2@ (p-x)p(p-v)
00 = / WERP Vg o= [PV (28)
PP pp
oQ oQ
wo_ [(pr)p@p(p-V) o _ [(pKr)p@p@p(p-V)
Dpp = / - ds Dppp = - ds (29)
p-p p-p
) o0
one has, recalling definitions (17) and (18)
doe oQ oQ
Q _ 00 Q_“p Q _ “pp Q _ _pep 30
dp - dp dp ) 3 pep T Y ( )
In conclusion, application of formula (19)—(16) yields
c-df? c-p? C-D?
g.(0) = 2G |0,d%* + St (31)

a formula that will be specialized to the case of polygonal domains in the next subsection.
2.2 Algebraic Expression of the Gravity Anomaly at O

In order to derive an algebraic expression suitable to be programmed, we specialize for-
mula (31) to the case of a polygonal domain 2. Actually, this is by far the most common
case since geological formations are either polygonal or can be approximated to polygons
by subdividing the real boundary by an arbitrary number of vertices and edges. Once again,
in order to illustrate the rationale of our derivation, we shall make reference to formula
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(21). In particular, denoting by n the common number of vertices and edges belonging to
0Q (see Fig. 1), formula (21) simplifies to

/l,,p@p 32/ psi) - x][p ()®p(sz)][p(sf)-V(Sf)]dsi (32)
Q

PP si) - p(si)

where s; is the curvilinear abscissa along the ith edge 0;Q2 of the boundary of Q.

The edge 0;Q connects the vertices p; and p;,,, see, e.g., Fig. 1, and it will be assumed
that, along each edge, the relevant curvilinear abscissa has its origin at the ith vertex. Being
the product p(s;) - v(s;) constant along each side, formula (32) becomes

Dpp I~ [ Ip(si) - kc]lp(si) @ p(si)] N
Q/MdA—3lzl:pl v,aé - ds; (33)

p(si) - p(si)

where v; is the outward unit normal to the ith edge. Assuming a counterclockwise circu-
lation sense along 0;Q2 and denoting by /; = |p,,; — p;| the length of the ith edge, it turns
out v; = (piy; — p;)"/l; where (-)" denotes a clockwise rotation of (-). In particular,
pi Vi = p;- pii, /i where p | = (ziy1, —xi11) (D’Urso 2013a).

Introducing in (32) the dimensionless abscissa 4; = s;/I;, we finally get

ll’ [p /Lz z ) Y p(;‘l)}
[1Ppu=Sm e [P s

which represents the starting point to derive the basic formulas useful for programming.
Actually, defining

1 1
Ai) K [p( 1) K )
499 — / Pf Y dag / p 35
=) b 00 o) (9)
0 0
1
: 2i) K ]p(4) @ p(4i)
Da,Q _ / [p( Z d/‘Ll 36
N TR o
1
/i) -k ]p(4) ® p(4i) @ p(4)
D@Q:/[p( Z ’ d;” 37
= ) o) - p() G7
we can express the integrals (28) and (29) as
dﬁg = Z(Pi : Vi)lidsig d,a,g = Z;(Pi : Vi)lid?;ig (38)
0 N o) 0 _ 50
Dpﬂ - Z(pi ' v")l"Dﬂp DPPP Z( Vi)l Dppp (39)

i=1 i=1

Accordingly, formula (31) of the gravity anomaly simplifies as follows

" c-d%* c.pj? C-DiY
o)_zGZ(pi-p;,){o,,dﬁfM 2" + 3”" + 4""” (40)
i=1
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The previous integrals can be evaluated analytically by introducing the following

parameterization of the ith edge
p(4i) = pi + Zi(piv1 — pi) = pi + ZiAp;
In this way, one has

p(2) - k. = (pi - ) + Zi(Dp; - 1) = ai + bid;

and
p(2i) - p(2i) = pidif +2qii + wi
where
pi=Ap,-Ap;  qi=p;-Ap;  ui=p;-p;
Furthermore,

p(2) @ p(2i) = p; @ p; + 2i(p; @ Ap; + Ap; @ p;) + 27 Ap; @ Ap;
=Dy, + 24iDpap, + ’I?DAP,AP,’
Analogously, setting
Dppip, =Pi@p; @ p;  Dppnp, =pi®p; QAP+ p; @ Ap; @ pi + Ap; ® p; ® p,;
Dy apap, = Pi @ Ap; @ Ap; + Ap; @ p; @ Ap;
+ Ap; @ Ap; ® p;
DAp,-Ap,Ap,- = Apl ® Apz ® Apia
one has
p(Zi) @ p(4i) @ p(4i) = Dy pp, + 4Dy, pap, + )‘?DP[AP[AP,‘ + }'?DAIJ(AP‘AP[

Thus, defining
) a; + b
f(/bi) - 2’—”

Piki +2qidi + u;
formula (40) simplifies to

1

1
g.(0) = ZGZ(Pi “pii1){ Oo /f(&‘)dl% + % : /f(ii)(f'i + 4iAp;)d;
— )

= 0

+
Slie!

S O~ _

f(i,) [Dﬂiﬂi + /liDp,Ap,v + ;“izDAI’I'APi] dl{‘

Jr
&0

f ()Li ) [(Cp,»p,»pi + iicp.‘p,Api + /I?CP,AP,'AP, + A? CAP:’AI’,’AP:‘] dz;
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Grouping together the quantities multiplying the same exponent of 4; and setting

0,()),. ¢ '2Pi + o ?p,-p,» + C- I[A)ipm,-p; (52)
Ggp,»Ap; = = D3Ap'Ap' + C: DZ‘AP,AP, (54)

formula (40) becomes

g.(0) = ZGi(Pi pi) {101‘ [ai (90 + 9,?},)} + 1y {aﬁg,,,. + big,(;),}
P

+ 1y [aiOgﬂ,AI’i + b,-()g)pi} + I3 [aiO(A)p,Ap,-Ap,- + biO(A),,,A,;I} (56)
+ Libi o(A)p,-AmAl’f }
where
2k
Ii = / o 7
piﬂ,i -+ Zqi;vi + u;

0

0, is defined in (13), @, b; in (42), 0 — 03, — 03, n, — 0%, apap, N (52)~(55).

The actual computation of the integrals Ij; will be detailed in Sect. 4. In particular,
singularities in their expression, due to the vanishing of the denominator in (57), will be
proved to be ineffective. Hence, formula (56) is singularity-free in the sense that, for edges
characterized by singularities of the integrals [;;, the whole addend of the sum is zero.

3 Gravity Anomaly of a 2D Body at an Arbitrary Point P

Gravity anomaly calculations at an observation point which does not coincide with the
origin of the reference frame have been first addressed by Zhou (2010). Specifically, the
author devised two alternative formulations: the first one, named coordinate transforma-
tion, was conceived so as to make the observation point as the origin of the new coordinate
system and employing the solution obtained by the author in Zhang et al. (2001) and Zhou
(2009a). Clearly, this approach requires one to express the density contrast as a function of
the new coordinates. In the second formulation proposed by Zhou (2010), named solution
transformation, the solution at an arbitrary point is extrapolated from that obtained at the
origin of the reference frame.

On the contrary, denoting by @ = (xp,zp) the position vector of an arbitrary point P, we
show that the approach illustrated in the previous section, as well as the function expressing
the density contrast, can be left unchanged provided that one introduces the vector

p=6—-o (58)
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Fig. 2 Representation of P
geometric quantities used to ®
assign density contrast (¢) and 0 X

define the position of € with
respect to an arbitrary point P

defining the relative position of the generic point ¢ = (x, z) of Q with respect to P, see, e.g.,
Fig. 2. Hence, the gravity anomaly at P is given by

0(a)(p - %)
g.(P) =g (0) =2G [ ————dA (59)
Q/ p-p

an expression which trivially simplifies to (6) whenever @ = 0. On account of (7), the
previous expression becomes

D D
g.(w) =26 Go/l—”dA+c-/ﬂdA+C./’ﬂJdA+(c./MdA
s PP S S ] pop

(60)

where Dg and Dg44 are defined as in (8).

To exploit the results illustrated in the previous section, it is convenient to express ¢ as a
function of p. For brevity, this is detailed only for the rank-three tensor D44 since it is the
more cumbersome to handle. In particular, recalling (58), one has

Do‘o‘a’:0'®0'®0':(p+w)®(ﬂ+w)®(p+w)

(61)
= Dppp + Dppo + Dowp + Dowe
where Dypo = 0 @ 0 ® o,
Dppr =PRPRO+pRORp+0RpRp (62)
and
Dowp =0 Q0Qp+o0Qp0+plolw (63)

:wa®0+w®ﬂ®w+P®wa

Hence, (60) becomes
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g (o) :ZG{[()(,+C'(1)+C'waJF(C'waw]d’il“FC'df

+C a2 gotocd +D2)

+ € [Doo 47 +0© df © 0 +d? 2 Doo

Q Q Q Q Q
+C D eo+dvondl +ooDy| +C DL, L,
which represents the generalization of (16) to the case w # o.
Special attention has to be paid to the symbol df,2 Qo dff, which is a shorthand to
denote the third-order tensor

o o [(pr)pRoO®p
dp®w®dp_/TdA (65)

In spite of its symbol, which has been adopted to emphasize its symmetric expression, the
tensor above cannot be obtained as triple tensor product of the vectors df and w. Rather, as
detailed in Sect. 3.3, it is conveniently computed starting from the rank-two tensor Dfp.

For the sake of clarity, and to parallel the treatment developed in the previous section, we
shall consider separately the analytical expression of the gravity attraction at an arbitrary
point P and its algebraic counterpart, i.e., the formula useful for programming.

3.1 Analytical Expression of the Gravity Anomaly at an Arbitrary Point P in Terms
of Boundary Integral

Although p is now defined from (58), it can be shown that formula (19) holds as well.
Thus, recalling (30) and setting

formula (64) simplifies to
oQ o0 oQ oQ
_ o0 € dp dﬂ dﬂ DPP
g (w) = ZG{(OO +0w)d’, +T+C' 7®w+w®7+?
1 2
+C- [5 (wa®d;‘2+w®dﬁg®w+d§Q®wa) (67)

oQ

1 0Q oQ 0Q 0Q PP
3 (P eordlvond? +oaDi) + 2

}

Obviously, (67) coincides with (31) when @ = 0. We are now in the position to simplify
(67) to the case of a polygonal boundary.

3.2 Algebraic Expression of the Gravity Anomaly at an Arbitrary Point P

On account of (38) and (39), formula (67) becomes
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n N co c- dG,Q da,Q da,-Q DG,Q
i 4 P P PP
gz(w):2Gl§:1 pi Piii} 0o + Ou)d,)™ + 5 +C- RO to®——+—"

I
+C- {5 (Do @32 + 0@ 5% © 0 + 472 © Do)
R¥e)

1 0;Q 0,Q 0;Q 0,2 pPPP
+§<Dpp ®w+dp ®w®dp +(D®Dpp) +T

}

Furthermore, recalling the definitions (41)—(43), (45), (49), and (57), one can express
(35)-(37)

(68)

d5® = aily; + bil; (69)
40 = (ailo; + bilyi)p; + (ailyi + bilyi) Ap; (70)
D = (ailoi + bil1i)Dy,p, + (ailii + bilai) Dy, 1)
+ (@il + bil3;)Dag,ap,
D32 = (ailoi + bil1i)Dyip,p, + (@ilii + bilai) Dy, g9, 72)

+ (aibi 4 bil3;)) Dy ap,np, + (Gil3; + bils;)Dag,ap,ap,

In order to shorten the subsequent formulas to the maximum extent, it is convenient to
introduce the following additional notation

Dyo=p@o+toxp, Dppo = Ap; @ 0+ 0 @ Ap; (73)
and

Dppiw = pi®p; @+ p,R&&P; + 0B P;®p; = Dpp ®w +w@Dpyp, (74)

Dp.ap0 = pi®Ap;@w +4p;@p;@w+w@P;®@4p; + W@ Ap; ® p;+
(75)

+p@wep; + Ap.@wdP; =
Dp,apj0 = AP;®4Ap; @ 0 + 0@ Ap; @ Ap; + Ap; @& 7AP; = 76)
76
= Dup,sp, @0+ @ ®Dp,4p,

Dopwp, =0 Q0 Rp;, + 0 p;, R0+ p; 30Q (77)

:wa®pi+w®pi®w+pi®])ww
Dowrp, =0 R0 @Ap, + 0 QAp;, Q0+ Ap, @R @ (78)

:wa®Ap1+w®Apz®w+Apz®wa
The symbols p;R@RT;, p,RwEAp,;, 4p,@ew®p;, and 4p;R&®7P; denote quantities

that have been formally introduced in the previous expression simply to preserve its
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symmetry of representation and to facilitate the reader in checking the correctness of
formula (81). As a matter of fact, they do not have to be computed since they are associated

with the integral (65) and its discrete counterpart d?,’g Ro® d%’g in (68). The computation
of this last quantity is addressed in Sect. 3.3.

Substituting the previous expressions in (68) and defining

05 = ¢ ;)”"“’ + % - (Dowp, + Dy p0) (79)
0%y, = % - %  (Dowtp, + Dpapo)  Onpap = c Dgpf“’ © (80)
we get
Z ot) { i (00 + 00 + 00+ 0] )]
+1117 (G‘A’p +6A,,) +b,»(0,,+9;’i+0w+9§i)} (1)

|
+ 1 [al (GAPAP + QAP Ap) + b; (92 o+ Gip,)]

0
+ 1 [a eAp Apdp, T bi (GA/J Ao, T HAP Ap; )} + I4ib"9Ap;Ap,»Ap,}

where 0, is defined in (13), a;, b; in (42), Iy (k= 0,1,2,3) in (57), 05 — 03, — 0%, , —
0% Ap.ap, I (52)=(55), 0, in (66), 0 — Oy, — 0%, 5, in (79) and (80).

By eliminating all terms depending explicitly on o, i.e., 0, 0;_, 0% p, and 0% p.Ap,s it CAN
be easily checked that the previous expression does simplify to (56) when w = o, i.e., when
the gravity anomaly is evaluated at the origin of the reference frame. The previous
expression is particularly useful for programming since I;, I3; and I4; can be expressed as a
function of Iy; and /;; by means of formulas (130)—(132) detailed in Appendix 2. The
resulting formula is not reported explicitly since it amounts to performing straightforward
algebraic manipulations.

To derive an alternative expression of the gravity anomaly which can be conveniently
used to check the correct implementation of the more efficient one reported in (81), one can
set

wi = aili +bilgy k=0,...,3 (82)
and replace formulas (69)—(72) with

5Q _
d,

— 0i

2% = 10ip; + 1:Ap; (83)
fo;? = 10iDy,p, + 11iDp,ap, + 12DapAp, (84)

0;Q
Dppp IOiDﬂ[ﬂ,P‘ + lli]D)PiP;APi

+ 12D ap,ap, + 13D apAp,p,
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Hence, formula (68) becomes
n
c
g (0) = ZGZPi : p,ﬁl{[(% + O] 10i +§' (10ip; + 11:Ap;)
i=1

D D,, Da,. D, Dap ap,
+C- { < po L p’p')-i-lu( Ap,w+ p,Ap,>+12i AP,AP,]

2 3 2 3 3 (86)
Dowp. Dppo  Dppp Dowtp,  Dpapo  Dppap.
+ {lo, ( ) + 3 + A + 1y ) + 3 + 4
Dapapo | Dpapap, Dap,ap,p;
+ 1y ( 3 + 1 + 13 n

a formula which can be further elaborated upon by expressing I;, I; and Iy; as a function of
Ip; and I;; in the formulas for 15;, 13; and 14;.

3.3 Evaluation of the Third-Order Tensor dgfg R R d%’g

We have denoted by the symbol d%'g Qo df,"Q in (68) the third-order tensor

1

R¥e) R¥e) ) K p(Li) @ 0 @ p(L)
i i 7
4% 20 d) / o) pO) dz; (87)

0

As a matter of fact, the tensor to evaluate is the rank-two tensor D%,f2 since its components

have to be suitably combined with those of @ in order to compute (87). In turn, this
depends upon the rule which is adopted to define the matrix associated with a third-order
tensor, a rule which usually depends upon the adopted programming language. For
instance, extending the rule defined in (11) to three arbitrary vectors t, v and w, one obtains
hiviwy Hviwy
Lvow) tivaw
to(vew) = |- -2 L 1222 (88)
hviwy LHviwy
hvowy tHHvowy
The products #;wy, t;w, are the components of the tensor t ® w which plays the role of the

tensor Df’JpQ, i.e., the one to be actually computed.

Accordingly, we can define the matrix associated with dig Qo dﬁ"g as

wl[Dg;};z]n wl[Dg);;z]lz
w2 [Dpy 111 @a[Dpy in
[’ 0wed)=-~~~———--—-- (89)
wl[D ]21 wl[D ]22
wz[D o1 wz[Dpp 2

where [Da Q] denotes the ij entry of the matrix associated with D?,"f .
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4 Ineffective Singularities of the Algebraic Expressions of the Gravity Anomaly

It has already been shown that the analytical expression (31) of the gravity anomaly is
singularity-free in the sense that its expression holds rigorously whatever is the position of
the point O with respect to €. The same property holds true for the expression (67) referred
to an arbitrary point P. However, the algebraic counterparts of (31) and (67), which are
provided by formulas (56) and (81), respectively, still hide some singularities.

They are associated with the expression of the integrals I;;, provided in (57), since some
special positions of the generic edge of 0Q with respect to the observation point can make
the denominator of (57) vanish. However, we are going to prove that such singularities are
ineffective from the computational point of view since they can actually be ignored when
evaluating the ith addend of the sums (56) and (81).

To fully understand this point, let us first notice that the opposite of the discriminant 4;
of the quadratic function at the denominator in (57) is always nonnegative, being

Ai=pitti — g} = (a1 Pis1)(pi - p1) — (i Pisy)> >0 (90)

by virtue of the Cauchy—Schwarz inequality (Tang 2006). The quantity 4; can vanish,
making undefined the integral Iy; in (57), if and only if either p;(p, ;) = 0 or p; and p;,
are parallel. In turn, this happens when the observation point does belong to the line
containing the ith edge. Accordingly, if 4; > 0, formulas (124) and (125) simplify to

1 pis1 - Ap; pi - Ap;]
Ioj = —— { arctan ~ T —' — arctan ——— (91)
' ‘/Ai \/A,' \/AT, i
and
I — 1 F log Pis1 Pin1 (p; Api)lol'_ 7 (92)
Ap;-Ap; |2 Pi Pi _

respectively. Furthermore, formulas (130)—(132) can be used to evaluate Iy;, I3; and ;.

Clearly, the previous expressions become singular if 4; = 0, i.e., when the ith edge does
belong to a line containing the observation point. Nevertheless, we shall prove that the
contribution of the ith edge to the gravity anomaly is zero. Hence, from the computational
point of view, it is possible to skip the evaluation of the ith addend in formula (56)
whenever the ith edge does belong to a line containing O. The same property can be
invoked for formulas (81) and (86) whenever the ith edge does belong to a line containing
the arbitrary point P at which the gravity anomaly is required. The conditions stated above
do hold when p; =0 or p,,| =0 or p; is parallel to p,, ;. These three cases will be
addressed separately in the sequel.

4.1 Simplification of the Line Integrals (35)—(37) to the Case p; =0

Recalling (41), the parameterization of the ith edge becomes
p(Ai) = Zipi (93)
so that
p(A) -k, = Aipiyy - K, = bil; (94)

and
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p(4i) - p(4i) = iizpiﬂ “Pir1 = l’z”li2 (95)

Accordingly, we get from (35) to (37)

1
£ = bi [d4 _ ﬁlim[ log/,]!

— (96)
i) A i 6—0
14 J 14

e
which is singular at 1; = 0, and
b; oo b

ae _
4~ = l;piﬂ D, = 2 Piv1 @ Piy

1b;
00 _ Lbi
Dppp - gl;piﬂ»l ® pi+l ® pi+l (97)
However, dﬁ"g in formulas (40) and (68), and hence the logarithm in (96), is scaled by
pi - P, Setting & = |p;|, we infer that
b:
. 1 .
tim(p; - piy o = lime - loge = 0 (98)
since the logarithm tends to infinite with an arbitrarily low degree. In addition, being dﬁ’Q ,
Df;‘lfz and ]D)g"’f; finite, we ultimately infer that the contribution of the ith edge to the
expressions (56), (81), and (86) of the gravity anomaly is zero.

4.2 Simplification of the Line Integrals (35)—(37) to the Case p;,; =0

In this case, the ith edge is parameterized in the form

p(Z) = nip; = (1 = Z)p; 0<n<l1 (99)
Hence,
p(%i) - K, = n;p; - K. = ain; (100)
and
p(%i) - p(2) = mipi - p; = win; (101)

Being d4; = —dy;, one has

0
oo @ [dn ai. .
d,” = _M_1/17—, = u—illj(}[ log4], (102)
1
a0 _ % oo _lai o0 _1ai
d, — Dy, _Eu_ipi@)pi Dppp_gu_ipi®pi®pi (103)

Hence, we can repeat the considerations developed in the previous subsection, by
exchanging the role of p; and p,_ ;, and conclude that the contribution of the ith edge to the
expressions (56), (81), and (86) of the gravity anomaly vanishes.
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4.3 Simplification of the Line Integrals (35)—(37) to the Case p;||p;,

In this case, we can set p, | = f;p; with 0<f8; = |p;,|/|p;| and parameterize the ith edge
as

plAi(&)] = &ip; (104)
where
G=1+4p—1) 1<E< B, (105)

and it has been assumed f5; > 1. As it will be apparent in the sequel, the case ff; <1 does
not modify the final result. Being also

P()»i) cK; = fipi K, = a;ié; (106)
and
p(2i) - p(A) = pi&s (107)
and d¢; = d;(f; — 1), we now have

Bi
. i dé a; logﬁ
402 — a T % Ve (108)
’ Pi(ﬁi—l) , & piBi—1

pi@p;®p; (109)

5. a; , 1a; , la; 7 —1
dZ'Q:EZPi D?;‘;):E;:(ﬁiJrl)Pi@Pi Diﬁ:g;ﬁﬁzfl
The four integrals above are well defined but are scaled by the quantity p;, - pf;l, which is
zero by hypothesis. Hence, recalling formulas (40) and (68), the ith edge does not give any
contribution to the sum in (56), (81), and (86). In conclusion, it has been proved that,
whenever p; - pi; = 0, which is equivalent to state p; =0 or p;,; =0 or p,[|p;,,, the
computation of the ith addend of the sum in (56), (81), and (86) can be skipped. Clearly,
from the numerical point of view, the analytical condition p; - pi, = 0 is replaced by
lp; - pi1 || <tol where tol is a machine-dependent numerical tolerance (Table 1).

5 Numerical Examples

The formulas illustrated in the previous sections have been coded in a MATLAB program
in order to check their correctness and robustness. They have been applied to model tests
and case studies derived from the specialized literature. In particular, the density contrast
has been assumed to vary separately along the horizontal and the vertical directions or
along both of them. In all examples, the density contrast is expressed in units grams per
cubic centimeter while distances are expressed in kilometers; the value of the gravitational
constant G is 6.67259 x 107! m? kg~ s72.

For all the examples, we include a graphical and a tabular comparison between our
results and those already published in the literature, although these last ones have been
inferred, to the best of the author’s expertise, from the diagrams in which they have been
originally reported. We also include the computing time (CT) obtained by running the
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MATLAB code on a INTEL CORE2 PC with 16 Gb of RAM and a i7-4700HQ CPU
having clock speed of 2.40 GHz. They can be useful to allow for a comparison with
computations carried out by using different methods or with more complex modellings,
e.g., those required to evaluate the gravitational effects of an arbitrary volumetric mass
layer in which a laterally varying radial density change has been assumed (Tenzer et al.
2012a, b, c).

The model test in Fig. 3 is a 2D rectangular cylinder at a depth of 1 km, 6 km wide, and
1 km high; it has been first considered by Rao (1986), and subsequently by Zhang et al.
(2001), by assuming a density contrast given by

0(z) = 1.54 +0.24z — 0.0357% (110)

Figure 4 shows a perfect agreement between the solid line, representing jointly the results
by Rao (1986) and Zhang et al. (2001), and the dotted line that has been computed by
means of the proposed approach. Each point in the figure represents the gravity anomaly
associated with a position of the observation point having as coordinates z =0 and an
abscissa x equal to that of the plotted point.

The second example, shown in Fig. 5, has been first addressed by Garcia-Abdeslem
et al. (2005b) and later considered in Zhou (2008). It refers to the Sebastian Vizcaino Basin
in Mexico for which the density contrast has been assumed in the form

0(z) = —0.7 +2.548 x 107%7 — 2.73 x 1078z? (111)
Fig. 3 2D rectangular domain, 0
derived from Rao (1986), with
density contrast given by (110) 051 ]
T |
=
< 15} ‘ 1
5
a 2f ]
25} 1
3 ;
0 2 4 6 8 10 12
x [km]
Fig. 4 Comparison between the 60 F
results of the present approach
and those in Zhang et al. (2001) TG 50f .
for the domain in Fig. 3 9]
£
—_ 40 L .|
>
£
E 3ot 1
c
IS
2 20 ﬂ
>
g
o 10 —— Zhang et al.(2001), fig.2
0 ‘ ® present approach ‘

0 2 4 6 8 10 12
Distance along a transect on x—axis [km]

@ Springer



412 Surv Geophys (2015) 36:391-425

Fig. 5 Domain derived from -0.05
Garcia-Abdeslem et al. (2005b)
with density contrast given by 0r 1

111

o

o

a
i

Depth [km]
o

0.15 J
0.2 1
0.25 :
0 0.5 1 1.5 2
x [km]
Fig. 6 Comparison between the 0

—— Zhou (2008), fig.3

results of the present approach e present approach

and those in Zhou (2008) for the
domain in Fig. 5

Gravity anomaly [mGal]
|
@

_8 i i i i
-0.5 0 0.5 1 1.5 2 25

Distance along a transect on x—axis [km]

where z is expressed in meters. The gravity anomaly along a transect on the x-axis is shown
in Fig. 6 and successfully compared with that computed in Zhou (2008) by two distinct
methodologies named LI with arctangent kernel and density integrated LI. In both meth-
odologies, Zhou evaluated the resulting integrals by the Gauss—-Legendre quadrature
method (Table 2).

Figure 7 illustrates an elongated segment valley first considered by Murthy and Rao
(1979) and later analyzed by Zhang et al. (2001). The density contrast is given by

0(z) = —0.55 +2 x 107z (112)

where z is expressed in meters. Figure 8 shows the comparison of the gravity anomaly
computed by different procedures, i.e., the one presented in Zhang et al. (2001), the two
methodologies quoted above by Zhou (2008) and that contributed in the present paper
(Table 3).

Figure 9 illustrates a case analyzed by Martin-Atienza and Garcia-Abdeslem (1999),
Zhou (2009a, 2010) in which the density contrast varies only along the horizontal position

0(z) =0.5+2 x 1075x — 2 x 1082 (113)

The gravity anomaly, calculated along a transect on the x-axis, is shown in Fig. 10 where
our results are compared with those obtained by Zhou (2010). These last results had been
previously compared by Zhou with those based on the LI method with logarithmic kernel,
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Fig. 7 Domain derived from
Murthy and Rao (1979) with
density contrast given by (112)
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Fig. 8 Comparison between the 5 -
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results of the present approach —— Zhou (2008), fig.4
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>-15¢ 1
=
g
o -20 1
_og ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
0 2 4 6 8 10 12 14 16 18 20
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previously contributed in Zhou (2009a), and the original results by Martin-Atienza and
Garcia-Abdeslem (1999) (Table 4).

The last numerical example, shown in Fig. 11, refers to a case first studied by Martin-
Atienza and Garcia-Abdeslem (1999) and later re-examined in Zhou (2009a). The
geometry in Fig. 11 refers to folded and overturned strata in a sedimentary basin in which
the density contrast varies simultaneously along the horizontal and vertical directions

0(x,2) = —0.7 =5 x 10 8xz + 4 x 1078 + 6 x 10787 (114)

The boundary of the body has been approximated by a 26-sided polygon, and the gravity
anomaly has been computed at 41 stations. The high number of polygon vertices and the
more complex density contrast function explain the computing time of 0.32681 s which is
considerably higher than those experienced in previous examples. Figure 12 superimposes
our results with those obtained by Martin-Atienza and Garcia-Abdeslem (1999), the
seminumerical LI method by Zhou (2009a), and the analytical method in Zhou (2010)
(Table 5).

5.1 Error Analysis
It is interesting to consider the susceptibility of the formulas derived in the paper to

numerical rounding error. As shown in Holstein and Ketteridge (1996), this depends on the
target aspect ratio y = /0 where « is the typical linear dimension of the target and ¢ its
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Fig. 9 Domain derived from -0.5 :
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typical distance from the observation point. For 2D bodies, the anomaly calculation (6) is
governed by an area integral weighted by the density contrast, the vertical component of
the position vector, proportional to ¢, and the inverse square law factor, proportional to
1/6%.

The density contrast functions considered in the previous examples show that 0(p) is
obtained as the sum of separate terms having substantially the same order of magnitude as
the constant term 6,. Nevertheless one has to consider separately the integrals (17) and
(18), and compute their one-dimensional counterparts (28) and (29).

In particular, we have

Q — Q. - 2,
A%~ 0(2) = 0(dy)  d% = 0(62) = 0(6%) (115)
and
Q (520 — (53 Qo (S — 54
D,, ~ 0(6") = 0(57y) D,,, = 0(5°a) = O(5") (116)

where ~ means “has order of magnitude equal to.”
Thus, when computed in a finite floating point precision €, the rounding error

0(6")}6), k =1,.. .4, progressively increases as the target distance ¢ increases relative to
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Fig. 11 Domain derived from -0.5 .
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the target size o. However, as shown in the previous figures, this is generally beyond the
region of geophysical interest.

As a final remark, it is worth mentioning that higher-order terms in the density contrast,
though more prone to computational noise as ¢ increases, provide a progressively lower
contribution to the gravity anomaly. This is in accordance with the significance of higher-
order density polynomials in 2D modelling. As a matter of fact, geological settings require
mostly 3D gravity modelling: the errors caused by 2D gravity modelling with high-order
polynomials will often be larger than the errors caused by piecewise constant densities in a
relative few number of 3D polygonal bodies.

6 Conclusions

The gravity anomaly at arbitrary points produced by a 2D body whose shape is an arbitrary
polygon and where density contrast varies with a polynomial law has been obtained in
closed form. It is expressed as a sum of quantities that depend only upon the coordinates of
the vertices of the polygon and upon the parameters that define the density contrast. The
solution procedure, based upon a generalized application of Gauss theorem, takes con-
sistently into account the singularity intrinsic to the integrals to evaluate. Accordingly, by
means of rigorous mathematical arguments, singularities are proved to give no contribution
either to the analytical expression of the gravity anomaly or to its algebraic counterpart.
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The formulation presented in the paper, which has been limited to polynomial density
contrasts varying with a cubic law as a maximum, can be easily extended to polynomials of
higher degree. The effectiveness of the proposed approach has been intensively tested by
numerical comparisons, carried out by means of a MATLAB code, with several examples
derived from the specialized literature. Future contributions will concern the cases of
density contrast variable with exponential law for 2D domains and 3D polyhedral bodies
endowed with polynomial or exponential density contrasts.

Acknowledgments The author wishes to express his deep gratitude to the Editor-in-Chief, Prof. M.J.
Rycroft, and to the three anonymous reviewers for careful suggestions and useful comments that resulted in
an improved version of the original manuscript.

Appendix 1: Some Useful Differential Identities

We prove hereafter some differential identities that are useful for the derivations illustrated
in the main body of the paper; they are reported in the same order in which they are
required.

Let us begin with the component expression of the divergence of the rank-three tensor

divy(a®@b @ ¢)]; = y(abjeq) (117)

where a, b, ¢ () are vector (scalar) differentiable fields and (-) /x means derivation with
respect to the kth variable. Applying the chain rule to (117), Tang (2006), one obtains

Y(abje) o = ¥ abjee + Yay bk + yab; e + Yaibjey i
= (a®@b ®¢); (gradyy), + Y[(grada)e];b; (118)
+ ya;[(gradb)c]; + y(a®@b);dive
Thus, combining (117) and (118), one has

diviy(a®b®c)] = (a®b® c)grady + y[(grada)c] @ b

+ Ya® [(gradb)c] + y(a @ b)dive (119)

A further useful identity concerns the gradient of a scalar field expressed as scalar
product of two vector fields

grad (a-b) = [grad a]tb + [grad b]ta (120)
where (-)¢ stands for transpose. It stems from the relation
[grad (a - b}, = (ajby) , (121)
Actually, carrying out the derivations in the previous expression yields
(ajbj)/i =a;;b; + ab;; = [(grad a)t]ijbj + [(grad b)t]ijaj, (122)

which represents the component form of (120).
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Appendix 2: Recursive Computation of Integrals

Application of formula (56) requires the analytical computation of integrals of the kind

1
k
x
L= | ——————dx 123
¢ /px2+2qx+u (123)
0

where p > 0 and the discriminant of the denominator, i.e., 4 = q2 — pu, is assumed to be
negative. Hence, the quadratic function px*> + 2gx + u is always positive on the real
interval [0, 1]. The case of a null discriminant A will be directly addressed in Sect. 4 where
the evaluation of [;;, which makes use of the formulas derived hereafter for 4 <0, will be
detailed.

As previously shown by Zhou (2010), the generic integral (123) can be computed
recursively as a function of two integrals, namely

1 1 p+q q
Iy = dx = arctan — arctan 124
0 O/px2+2qx+u V-4 V-4 V-4 (124)
and
/ 1 2
X p+2q+u q
L= —————dx=—log—— — = 125
1 /px2+2qx+u 2p 0og u p 0 ( )
0

Both results can be obtained, after some manipulation, by setting t = x + ¢g/p in the
integrand functions above. To make the paper self-contained, we rephrase the result given
in Zhou (2010)

k Xl 2 Xl
Jk:/ B) x dx: 7—q/27dx
px2+2gx+u plk—1) p ) px®>+2qx+u

y ‘o (126)
e
pJ) px*+2gx+u
where k > 1 and the terminology of this paper has been adopted.
For instance, if kK = 2, one has
Jzz/ x? dle/px2+(2qx+u—2qx—u)dx
pxr+2gx +u p pxr+2gx +u
2
o et
px* +2gx +u (127)

dx
= a2 — T —u [
p{/ q/px2+2qx+u u/px2+2qx+u}

1
=—[x —2qJ1 — uJy]
4

Analogously,
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1 a2 1[x2 2 4q? — 2
,3__[)6__2%_”]1}:_[__ﬂ+ujl+ﬂjo (128)
p pl2 p p p
and
4q> — 2q(4q* -2 4q* —
SEA IE. el O q(4q : ), g - Py (129)
3p p P P P
Hence,
1
L :;7{1 —2g1; — uly) (130)
171 29 4¢*>—pu 2qu
,3:,{,,ﬁ+u,l+i,o} (131)
P2 p p p
and
11 4q% - 2q(4q> — 2 49’ —
14:_{__g+ (el L £17(612 p”)ll—”(qu”)m} (132)
pl3 p p p p
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