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Abstract This review addresses long-term (tens of years) seismic ground-motion fore-

casting (seismic hazard assessment) in the presence of alternative computational models

(the so-called epistemic uncertainty affecting hazard estimates). We review the different

approaches that have been proposed to manage epistemic uncertainty in the context of

probabilistic seismic hazard assessment (PSHA). Ex-ante procedures (based on the com-

bination of expert judgments about inherent characteristics of the PSHA model) and ex-

post approaches (based on empirical comparison of model outcomes and observations)

should not be considered as mutually exclusive alternatives but can be combined in a

coherent Bayesian view. Therefore, we propose a procedure that allows a better exploi-

tation of available PSHA models to obtain comprehensive estimates, which account for

both epistemic and aleatory uncertainty. We also discuss the respective roles of empirical

ex-post scoring and testing of alternative models concurring in the development of com-

prehensive hazard maps. In order to show how the proposed procedure may work, we also

present a tentative application to the Italian area. In particular, four PSHA models are

evaluated ex-post against macroseismic effects actually observed in a large set of Italian

municipalities during the time span 1957–2006. This analysis shows that, when the whole

Italian area is considered, all the models provide estimates that do not agree with the

observations. However, two of them provide results that are compatible with observations,

when a subregion of Italy (Apulia Region) is considered. By focusing on this area, we

computed a comprehensive hazard curve for a single locality in order to show the feasi-

bility of the proposed procedure.
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1 Introduction

The forecast of accelerations expected at a site during a future time span (the exposure

time) of the order of tens of years (long-term seismic hazard assessment) plays a basic role

in the definition of effective strategies for seismic risk reduction. Since available knowl-

edge about the seismogenic process is presently inadequate to predict future seismic

occurrences, several situations are considered as possible from the physical point of view.

The major task of seismologists in this context is the assessment of the likelihood to be

associated with each possible level of the seismic ground motion (the seismic scenario),

i.e. to provide a probabilistic seismic hazard assessment (PSHA). This outcome is gen-

erally formalized in terms of probability distributions that associate with a scenario an

exceedance probability during a given exposure time. For engineering purposes, these

distributions are finally represented by a single value of ground shaking (such as reference

values for the horizontal peak ground acceleration PGAa) that corresponds to a specific

exceedance probability level a fixed as a function of the degree of conservativism con-

sidered as acceptable (Reiter 1990). This representation tends to mask the inherent prob-

abilistic character of outcomes provided by PSHA computational models: actually, each of

them can be seen as a ‘probability generator’ as defined by Lind (1996) and, consequently,

its outcomes can be considered as ‘forecasts’ and not as ‘predictions’ by following De

Finetti’s terminology (De Finetti 1974).

Since methodological improvements are much faster than data set upgrades, a number

of different computational models devoted to PSHA have been proposed that are based on

different assumptions and views of the seismogenic process. In general, PSHA can be

performed by considering different pieces of information concerning both deterministic

aspects (seismic sources location and geometry, geodetic strain field, etc.) and statistical

evidence (past seismic history, magnitude-frequency distribution, etc.). Available models

(e.g., Cornell 1968; McGuire 1978; Frankel 1995; Woo 1996; Pace et al. 2006; Bozkurt

et al. 2007; D’Amico and Albarello 2008) mainly differ for the balance between deter-

ministic and statistical evidence used in each case to evaluate the likelihood of the possible

future seismic scenarios: in this view, no dichotomy exists between probabilistic and

deterministic models (Bommer 2002). Anyway, several alternative PSHA computational

models (in terms of basic assumptions, considered information, etc.) coexist, each ex-ante

plausible and internally consistent, but resulting in quite different hazard estimates (see,

e.g., Pace et al. 2011). Beside this multiplicity of alternative models, for some of them one

must also consider the high sensitivity to empirical information that, in its turn, is char-

acterized by high or poorly defined uncertainty (e.g., geometry of seismogenic sources and

empirical attenuation relationships for the ground motion). This implies that, even adopting

the same computational scheme, important differences in the final assessment can be

induced by different choices concerning basic empirical information. In the following, we

will consider each PSHA model as a whole, including computational aspects and data used

to feed computations.

In general, uncertainty relative to the choice among alternative PSHA models and basic

pieces of information is defined as epistemic to distinguish it from the one (aleatory)

related to the inherent variability of the physical processes responsible for ground motion

(Budnitz et al. 1997). In principle (De Finetti 1974), all sources of uncertainty are

inherently epistemic in that they belong to the lack of knowledge of the observer and can

be coherently expressed in terms of probability (see, e.g., O’Hagan and Oakley 2004).

Thus, distinction between epistemic and aleatory uncertainty only has a heuristic value:

while the second one is accounted within each PSHA model by introducing a suitable
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modelling of relevant aleatory processes, accounting for epistemic uncertainty requires a

sort of meta-analysis with respect to each single model. This meta-analysis is mandatory

since the presence of different PSHAs for the same area poses a number of problems to

stakeholders responsible for political decisions and risk reduction strategies, who must

choose among several apparently equivalent hazard evaluations.

Since probabilistic hazard models are of concern here, each resulting in a probability

distribution associated with a ground-motion parameter (hazard curve), comparing them

can also be seen as a typical probability scoring problem developed and applied in other

contexts (e.g., Lind 1996). In the following, we will use the term scoring to indicate

procedures devoted to evaluating epistemic uncertainty of competing PSHA models.

One can achieve scoring in two ways. The first one is ex-ante, that is by considering

inherent properties of the PSHA model, i.e. its internal coherency and capability to take

into account current knowledge about underlying physical process evaluated by panels of

scientists. The second way is ex-post, that is by comparing outcomes of each PSHA

model (‘forecasts’) with observations; it is incorrect to use the term validation for this

kind of meta-analysis (Oreskes et al. 1994); the term empirical scoring will be preferred

here. The problem of judging heuristic value of competing models (probabilistic or not) is

quite general and has been also addressed by Lipton (2005). A major conclusion is that,

despite the fact that ex-post tests based on the comparisons of forecasts and observations

cannot be judged as inherently better, they can be considered as more robust against

fudging.

Scoring is inherently different from empirical testing. Here, we will use this last term to

indicate a procedure devoted to evaluate the absolute feasibility of an approach and results

into a dichotomic outcome: the considered estimates are or are not compatible with

observations to a confidence threshold. In principle, testing aims at identifying wrong

PSHA models while scoring aims at comparing models each considered plausible.

In the following, we propose an attempt to go beyond the contraposition of ex-post/ex-

ante and scoring/testing procedures and their essential complementary character will be

enlightened. In Sects. 2 and 3, we will propose a unitary formalization to provide a

comprehensive PSHA combining epistemic and aleatory uncertainty. Then, in Sects. 4

and 5, scoring and testing procedures proposed in the literature will be reviewed and

discussed to enlighten relative advantages and drawbacks in the general frame outlined

here. Lastly, we will describe an exemplary application of the proposed integrated

approach to Italy.

2 A Generalized Frame for PSHA

We denote by Hi a generic ith PSHA model (including the computational scheme and the

relevant pieces of information considered for the assessment). We assume that M of such

models actually exist and that this set includes all the possible methodologies considered as

plausible. Each hazard estimate relative to a ground-shaking parameter g (e.g., PGA,

response spectrum ordinate and macroseismic intensity) deduced by using the i th model

can be considered as a conditional probability in the form P(g|Hi). Here, P is the proba-

bility that the threshold g will be reached or exceeded during a future earthquake occurred

during the exposure time of interest. This conditional probability parameterizes aleatory

uncertainty managed by the ith PSHA model. In this context, the unconditional hazard

estimate P(g) can be given in the form
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P gð Þ ¼
XM

i¼1

Q Hið ÞP g Hijð Þ ð1Þ

where the probability Q(Hi) is the degree of belief associated with the procedure Hi. In this

form, Q(Hi) represents epistemic uncertainty.This formalization is defined ensemble

forecasting by Marzocchi et al. (2012) and represents a rational merging procedure

allowing one to include different aspects of the seismogenic process (differently accounted

by the considered models) in a single forecasting.

Strictly speaking, Eq. (1) only holds in the case that one considers the M procedures as

mutually exclusive and collectively exhaustive (the MECE criterion by following Bommer

and Scherbaum 2008). Furthermore, this position implicitly assumes that one of the con-

sidered models may be the ‘true’ model, i.e. at least one model exists that is able to

describe exhaustively what it is supposed to model (see, e.g., Burnham and Anderson

2002). However, one can note that the MECE condition can hardly be considered to hold.

As concerns exhaustiveness, one should be aware that further PSHA models can exist in

the grey literature not accessible to most researchers: not considering these PSHA models

implies that Q(Hi) = 0 is implicitly associated with each of them. More important is the

lack of exclusiveness. In fact, most models share a number of features (e.g., seismotectonic

zoning and seismic catalogue) and, thus, they are not mutually exclusive. A possibility

accounting for correlation among forecasts provided by the considered models is proposed

by Marzocchi et al. (2012). In general, one should be aware that in the presence of mutual

dependence among the M models, P(g) defined in Eq. (1) anyway represents an upper

bound for the unconditional probability (e.g., Gnedenko 1976). This implies that ensemble

estimates provided by Eq. (1) include a certain degree of conservativism.

For engineering purposes, hazard relative to an exposure time of interest is generally

expressed in terms of the ground shaking ga (here addressed as a reference ground-motion

threshold) associated with a fixed exceedance probability a such that

a ¼ P gað Þ ð2Þ

In other terms, ga is the reference ground motion representing a percentile of the

ensemble probability distribution P(g) accounting for both aleatory and epistemic uncer-

tainty associated with a set of PSHA models.

It is worth noting that the above formulation resulting in a single ensemble hazard curve

allows some potential conceptual difficulties described by Bommer and Scherbaum (2008)

to be overcome. These are inherent to the formulations currently adopted to manage

epistemic and aleatory uncertainty. Commonly, a suite of hazard curves P g Hijð Þ from a

number of PSHA models is available, and this implies that a number of gi
a values exist for a

fixed value of a (or equivalently for a fixed average return time by following Bommer and

Scherbaum 2008).

There are two ways to select a value accounting for the relevant epistemic uncertainty.

The first is the one proposed above [Eq. (2)] by considering the percentile of the ensemble

hazard curve P(g) from Eq. (1). The second one is based on the definition of a new discrete

probability distribution G gi
a

� �
over the domain of the M possible ground-shaking values gi

a,

each representing the a percentile of the hazard function relative to a single ith PSHA

model.

In this view, selecting a representative ground-shaking threshold implies the definition

of a new percentile gab associated with a probability b such that b ¼ G gab
� �

.
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It is worth noting that, in general, the reference ground-shaking value obtained in this

way differs from the one obtained from Eq. (2). In fact, ga and gab are the percentiles of

two different distribution functions: ga for P(g) (i.e. the unconditional hazard function) and

gab for the discrete distribution G gi
a

� �
relative to the percentiles associated with the set of

conditional hazard functions P(g|Hi) and with a fixed exceedance probability a.

This way of combining epistemic (Q) and aleatory (P) uncertainty, however, makes a

correct interpretation of the outcome difficult. What is the exceedance probability asso-

ciated with this value: a, b or a combination of these values? This ambiguity is inherent to

the splitting of aleatory and epistemic uncertainties into two levels of ontologically dif-

ferent probabilities and to the lack of a clear and formally coherent combination of

probability distributions relative to both kinds of uncertainty. The formulation here pro-

posed avoids this drawback, since epistemic uncertainty is fully included in the estimate of

ga via Eqs. (1) and (2). In Fig. 1, one can see a theoretical example showing relationships

among P(g), P(g|Hi), ga and gab.

3 Scoring and Testing PSHA Outcomes

By considering the definition of the ensemble hazard estimate in Eq. (1) and the fact that

each term P(g|Hi) is entirely defined in the frame of the single ith computational scheme

Hi, the final PSHA outcome P(g) relies on the estimation of the values attributed to the

likelihoods Q(Hi). Scoring PSHA procedures aims at assessing Q(Hi) values, and this can

be achieved by considering expert judgement or numerical modelling (the ex-ante

approach) or from the comparison of PSHA outcomes with observations (the ex-post

approach). These two approaches, however, should not be considered as alternative, and

their complementary character can be made evident in the frame of a Bayesian view

Fig. 1 Comparison between the unconditional hazard curve P(g) computed by Eq. (1) and hazard curves
obtained from different models (H1, H2, H3, H4). In this theoretical example, the Q values of 0.1, 0.3, 0.2
and 0.4 have been assumed for epistemic uncertainty associated with the models H1, H2, H3 and H4,
respectively. The quantiles relative to an exceedance probability a = 0.1 have also been indicated by
following the two possible approaches described by Bommer and Scherbaum (2008): the one (ga) deduced
from the approach proposed here [Eqs. (1), (2)] and the one (gab) determined by the alternative approach
with b = 0.5 (see text for details)
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considered by Marzocchi et al. (2012) and others (see also Humbert and Viallet 2008;

Viallet et al. 2008; Selva and Sandri 2013).

In this view, the reliability of each PSHA procedure Q(Hi) after the set of S seismic

occurrences eS is known (the ‘evidence’ E) can be expressed in terms of a conditional

probability Q(Hi|E). In this condition, the Bayes theorem holds by stating that

Q Hið Þ ¼ Q Hi Ejð Þ ¼ 1

K
Q� Hið ÞQ E Hijð Þ ð3Þ

In this formalization, Q(Hi|E) is the ex-post reliability evaluation of the PSHA model Hi

and Q*(Hi) is the prior degree of belief associated with Hi and corresponds to the ex-ante

evaluation. The term Q(E|Hi) represents the likelihood of the evidence E in the case that

the Hi model is applied. This term actually represents the probability that the model Hi

explains the evidence E: in other words, it is the forecast of the model about that specific

observed scenario. The factor K is a normalization factor that is constant for the whole set

of considered possible PSHA models.

The above formalization enlightens the fundamental and complementary role played by

both ex-post evaluations of performances of the models Hi [through the likelihood

Q(E|Hi)]) and ex-ante evaluations [through the term Q*(Hi)] to provide an hazard estimate

able to capture both aleatory and epistemic uncertainty and also taking advantage by

including a set of PSHA models. By including Eq. (3) into Eq. (1), one has

P gð Þ ¼ 1

K

XM

i¼1

Q� Hið ÞQ E Hijð ÞP g Hijð Þ ð4Þ

The hazard estimate P(g) from Eq. (4) is here defined a comprehensive hazard estimate.

If M mutually exclusive competing PSHA models exist and that this set is complete, one

has

K ¼
XM

i¼1

Q� Hið ÞQ E Hijð Þ ð5Þ

Generally, this factor could be difficult to know (e.g., Gelman et al. 1995) but, as

suggested by Marzocchi et al. (2012), the tentative normalization in Eq. (5) can also be

adopted if one interprets Q(Hi|E) as the ex-post probability that the Hi model is the best

among as a set of candidate models.

In the case that the relative effectiveness of the considered hazard models is of concern

only, a ‘Bayes factor’ can be defined as

Bij ¼
Q Hi Ejð Þ
Q Hj Ej
� � ¼ Q� Hið Þ Q E Hijð Þ

Q� Hj

� �
Q E Hj

��� � ð6Þ

(Kass and Raftery 1995) that is independent of K and allows the evaluation on an empirical

basis and ex-ante evaluations of the relative effectiveness of one ith computational model

against the jth other (the ‘skill’ in the terminology proposed by Marzocchi et al. 2012).

Bayes factors in Eq. (6) can be useful to evaluate the relative role of each PSHA model

contributing to the comprehensive hazard estimate in Eq. (4).

Whatever the definition of K is, a basic problem of the Bayes formulation is that it

provides a comprehensive estimate P(g) also in the case that none of the PSHA models

considered provide realistic results. Thus, one can evaluate (test) in advance the reliability
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of each single model, before applying Eq. (5). Such testing can be performed ex-post by

comparing forecasts provided by each PSHA model with a set of observations (e.g.,

Schorlemmer et al. (2007)).

Testing presents a number of specific problems discussed by Marzocchi et al. (2012).

One among the others concerns the definition of a specific (and conventional) significance

threshold for considering a PSHA model not compatible with observations. By following

Box and Draper (1987): ‘how wrong any model has to be not to be useful?’. In the view

presented here, the importance of testing should not be emphasized too much. Actually, the

basic aim of testing is only the preliminary evaluation if at least one of the considered

PSHA models is compatible with observations, i.e. it is not explicitly rejected (at a sig-

nificance level) when compared with observations. In this frame, committing type-II error

(i.e. accepting the null hypothesis when it is wrong) is less important than committing type-

I error (rejecting the null hypothesis when it is correct), which corresponds to wrogly

exclude from the comprehensive hazard estimate a model actually able to capture correctly

specific features of the seismogenic process. Thus, relatively low-power tests are accept-

able for the empirical testing of PSHA models. On the other hand, when considered in the

weighting structure of Eq. (4), one can expect that relative importance of an empirically

weak model is downsized by the respective Q(Hi|E) value.

Despite the fact that some similarity exists between scoring and testing procedures, we

will review them separately to clarify respective specificities and similarities.

4 Ex-ante Scoring

4.1 Logic Tree

In the seismological practice, the ex-ante approach has led to the formulation of the logic

tree, that is the most widely used tool to elicit epistemic uncertainty (see, e.g., Kulkarni

et al. 1984; Coppersmith and Youngs 1986; Reiter 1990; Budnitz et al. 1997).

The concept of the logic tree is very simple: for each input element, branches are set up

for different aspects of the considered PSHA models (e.g., probability distribution for

earthquake inter-event times, magnitude-frequency distribution and ground-motion pre-

dictive equation). Weights are thus assigned to each branch by considering expert

judgements to reflect the relative confidence that the analyst has in each model being the

best representation of that component of the hazard input. The weights on branches

originating from a single node of the logic tree are assigned to sum to unity because they

are subsequently used as probabilities (likelihoods) associated with a specific realization

(branch) of the considered PSHA procedure.

This approach is in principle appealing and apparently ‘democratic’ since it allows the

combination of different opinions by a panel of experts. However, it leaves completely

unresolved the issue of assessing each of these opinions, that is completely ex-ante with

respect to the final outcome of the PSHA model, and only depends on the degree of belief

attributed to the opinions of each expert in the panel (and ultimately to the expert himself).

The whole procedure has been often applied without a thorough discussion of the

underlying principles and interpretations (Bommer and Scherbaum 2008). On the other

hand, a coherent interpretation is mandatory for its correct application. In fact, ‘Although

this seems to be a philosophical issue at first glance, its consequences are not, since the

issue is intimately linked to the question of which hazard curve should be used’ (Scher-

baum et al. 2005; Abrahamson and Bommer 2005). Bommer and Scherbaum (2008) have
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examined the most important methodological fallacies attributable to a wrong use of logic

trees.

An important problem for the logic-tree approach can be the cost-benefit ratio. In order

to allow a coherent interpretation of the logic tree in the frame of probability theory,

MECE conditions must hold (Bommer and Scherbaum 2008): one has to consider all

possibilities and these must be mutually exclusive. To reduce efforts (and expenses), one

can consider incomplete relatively small trees that only account for a limited number of

alternatives. This situation requires the agreement of all experts in excluding an alternative

considered ex-ante totally unreliable, and this can be the source of endless discussions in

the relevant scientific community that potentially weaken outcomes of this logic-tree

analysis. Otherwise, one can involve large panels of experts and construct enormous logic

trees made of thousands of branches (e.g., Abrahamson et al. 2002). This, however, may

provide unmanageable outcomes, by requiring some form of Monte Carlo exploration for

eliciting relevant epistemic uncertainty (e.g., Musson 2000; Bradley et al. 2012); this also

enhances the problem of the mutual dependency of the considered models. Preliminary

sensitivity analyses focusing on outcomes instead of single elements of the procedures may

help to reduce a dangerous proliferation of branches (Bommer and Scherbaum 2008).

In any case, the logic tree remains a controversial tool producing harsh disputes that

involved a number of researchers (see Krinitzky 1993; 1995; Klügel 2005; Musson et al.

2005; Page and Carlson 2006).

Possibly, most of the difficulties disappear if one considers the logic tree not as a

coherent formal approach to elicit epistemic uncertainty but just a tool aiming at facili-

tating panel discussion and the quantitative expression of expert judgements in a proba-

bilistic language. Actually, the logic-tree procedure does not quantify the variability on the

physical parameter itself but the variability on expert opinion (Viallet et al. 2008).

This last view should not be considered as reductive with respect to the actual

importance of expert discussions and evaluations. When the internal coherency of the

logic-tree outcome, i.e. the condition

XM

i¼1

Q� Hið Þ ¼ 1 ð7Þ

is fulfilled, the logic tree may effectively provide prior probabilities to be used as a first

step for the prior scoring of PSHA models (see Eq. (3)).

4.2 Numerical Simulations

A different ex-ante approach has been proposed (Grandori 1993; Grandori et al. 1998;

2004; 2006), which is based on the analysis of the outcomes provided by each PSHA

model when fed by synthetic seismic catalogues assumed representative of the ‘true’

seismicity. The major outcome of this approach is the comparative evaluation of robustness

of PSHA models against deviations from the relevant input reference model. In practice, as

each procedure is based on a specific seismicity model, one aims at evaluating the per-

formances of each procedure when data used for its parameterization do not fit the input

model. In the applications proposed so far, this approach only resulted in generic con-

siderations about the adequacy of a model and no explicit evaluation of the relevant Q*(Hi)

values was provided.
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5 Ex-post Scoring and Testing

The ex-post perspective leads to the development of classes of procedures that in the

literature are known as scoring rules (see, e.g., Winkler 1996; Johnstone 2007). An out-

standing example of scoring procedures in the field of Earth Sciences was the early one

proposed by Brier (1950) to evaluate weather forecasts (see also, Sanders, 1967). Beauval

(2011) has provided a first review of ex-post testing in the field of PSHA.

In general, ex-post procedures are based on the direct comparison of probabilistic

outcomes of the relevant PSHA model with empirical observations concerning what

actually occurred during a control time period. In the case of time-independent PSHA

estimates, one can choose on purpose any control period. This is not the case for time-

dependent hazard estimates, which require as a control period the specific time interval

involved in the considered forecast. The relationship between the learning data set (i.e. the

sample of data considered to parameterize the PSHA model) and the control data set used

for scoring or testing is a critical aspect in that their mutual independency should be

warranted. However, in most cases, the parameterization of PSHA models cannot ignore

most recent information. An example in this sense is the definition of seismogenic sources

considered in the PSHA Cornell–McGuire computational scheme (Cornell 1968; McGuire

1978) that can be considered as ‘standard’ in the common PSHA practice. This problem

reduces in some way the feasibility of such forward comparison. An alternative possibility

is to perform backward evaluations, by comparing forecasts with past observations, i.e. by

using as the control data set information in some way included in the model. This could

bias results in favour of the PSHA model. When one considers for testing backward

comparison, the statistical significance of discrepancy eventually revealed between fore-

casts and observations is an upper bound of the actual significance. If, even in this case, the

discrepancies reveal to be significant (e.g., with respect to a fixed significance threshold),

the eventual rejection of the model under study could be considered as safe.

The further problematic aspect concerns the choice of observables one uses for testing

and scoring. Although non-seismometric observables might be considered (see, e.g., Brune

1996; Anooshehpoor et al. 2004), past seismicity (in terms of observed earthquake rates,

maximum ground-shaking levels, etc.) represents the most important benchmark for testing

hazard estimates.

The most straightforward approach to score PSHA models is obviously the direct

comparison with observations relative to the ground-shaking parameters considered in the

probabilistic forecast. These parameters are generally those of engineering interest and are

mainly instrumental (e.g., PGA). At least for Italy, reliable accelerometric data are

available for about 40 years at a number of sites (Luzi et al. 2008; Pacor et al. 2011). On

the other hand, PSHA models aim at forecasting potentially damaging earthquakes, i.e.

those characterized by larger magnitudes. In low seismicity areas, these events have very

low probabilities of occurrence for exposure times of the order of tens of years. This makes

empirical testing quite problematic when single sites are considered (Beauval et al. 2008;

Iervolino 2013). Mak et al. (2014) report a discussion concerning the power of such tests in

most common situations.

To overcome this problem, two approaches have been proposed. The first one is per-

forming an area-based test (Ward 1995). In this case, a number of sites are examined for

the same exposure time. The basic idea is that such sample can be considered as a multiple

realization of the same process. Depending on the characteristics of the model of concern,

ergodicity can be assumed or not to evaluate relevant statistics. The second possibility is

using macroseismic information. This kind of data is largely available in many countries

Surv Geophys (2015) 36:269–293 277

123



(Italy, at first), by covering the whole territory for hundreds of years (e.g., Usami 2003;

Locati et al. 2011; Mezcua et al. 2013a). This database, eventually integrated by instru-

mental data suitably rescaled (e.g., Mezcua et al. 2013b), could thus represent an important

benchmark for a PSHA model due to its wide space/time coverage. In both cases, one must

consider specific statistics for scoring and testing.

5.1 Scoring

In the general frame here proposed, the most natural approach to scoring is using likeli-

hood. Given the PSHA model Hi and the set of S sites where ground shaking has been

monitored during the control interval Dt*, the model’s likelihood can be estimated from the

control sample EDt* (the evidence) of seismic occurrences es at each of the S sites. Such

occurrences concern probabilistic forecasts provided by the PSHA model (e.g., overcoming

of a PGA threshold during the control interval). In general, one has

Q E Hijð Þ ¼ ciLi ð8Þ

where Li is the probability that the PSHA model attributes to the single configuration of

observed seismic occurrences and the coefficient c accounts for number of possible

equivalent combinations of occurrences in the model considered.

If the expected seismic occurrences es are mutually independent (in the ith PSHA model

of concern) and if, over the duration of the control period, at Ni out of S sites the forecast

was fulfilled, then we have

Li ¼
YNi

s¼1

P es Hijð Þ
( )

YS

s¼Niþ1

1� P es Hijð Þ½ �
( )

ð9Þ

where P(es|Hi) is the probability that the ith model associates with the occurrence es at the

sth site. When all occurrences have the same probability in the ith model, one has

ci ¼
Ni!

Ni � Sð Þ!S!
ð10Þ

It is worth noting that the reliability of the hypothesis of mutual independence of the

considered occurrences es has to be evaluated in the frame of the considered PSHA model:

Q(E|Hi) is a feature of the model Hi and not of the seismogenic process to be modelled.

As an example, in the case that the ground-motion parameter considered for hazard

assessment is PGA, S could be the number of accelerometric stations permanently active

during Dt*. One can keep as fixed the probability of exceedance a within an exposure time

of duration Dt = Dt* for all the sites (e.g., 0.1), and the corresponding values of ground

shaking gsi are determined at each sth site from the ith PSHA model. Then, the number

N of stations where at least one event with ground shaking exceeding gsi has occurred

during Dt* is computed and, finally, the value of Li can be derived from Eq. (9).

5.2 Testing by the Likelihood Approach

Likelihood has been recently applied for testing short-term (e.g., Schorlemmer and Ger-

stenberger 2007; Schorlemmer et al. 2007; Zechar et al. 2010) and long-term (Albarello

and D’Amico 2008) earthquake forecasting. The basis of this testing procedure is the

definition of the support li to the ith PSHA procedure that is defined in form
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li ¼ logðLiÞ ð11Þ

and Li is the same as in Eq. (8). One can consider this statistics as a minimal sufficient

statistics for the ith model and the relevant evidence (Edwards 1972). If the conditions of

Eq. (9) hold, one has

li ¼
XNi

s¼1

log P es Hijð Þ½ � þ
XS

s¼Niþ1

log 1� P es Hijð Þ½ � ð12Þ

That reduces to

li ¼ Ni log að Þ þ S� Nið Þ log 1� að Þ ð13Þ

when P(es|Hi) = a are equal. The larger the support, the larger is the probability that what

has been observed during the control period is the result of a stochastic process whose

features are captured by the computational model Hi. If li is the support value relative to the

observed control set and the ith PSHA model, then the random quantity

Zi ¼
li � li lð Þ

ri lð Þ ð14Þ

is asymptotically distributed as the standard Gauss distribution (Kagan and Jackson 1994).

In the case that P(es|Hi) = a and occurrences are mutually independent, expectation of the

random variable li only depends on Ni that is Bernoullian variable with expectation Sa and

variance Sa (1-a). In this situation, one has

l lð Þ ¼ S a log að Þ þ 1� að Þ log 1� að Þ½ � ð15Þ

and

Fig. 2 Expected value and standard deviation of the support li [Eqs. (15) and (16)] as a function of the
exceedance probability a when S = 100
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r lð Þ ¼ log að Þ � log 1� að Þ½ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Sa 1� að Þ

p
ð16Þ

Dependance of l(l) and r(l) on a is shown in Fig. 2. When Eqs. (15) and (16) hold, one has

Zi ¼
Ni � Saffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Sa 1� að Þ

p ð17Þ

In general, negative Z values indicate that ith model overestimated the hazard since the

actual number of exceedances is lower than the observed one. The reverse is true for

positive Z values. One could consider the outcomes of the ith model not supported by

observation when Zij j[ 2.

Rhoades et al. (2011) proposed a similar approach to test seismicity rates (T test).

5.3 Testing by the Counting Approach

In general, this method is based on the comparison of the expected and the observed

frequency of occurrences relative to any seismic observable (Albarello and D’Amico 2005;

Rhoades et al. 2008; Fujiwara et al. 2009). A number of authors applied this approach for

testing seismic hazard estimates (Ordaz and Reyes 1999; Dowrick and Cousins 2003;

Stirling and Petersen 2006; Stirling and Gerstenberger 2010; Gerstenberger and Stirling

2011; Mezcua et al. 2013b). To this purpose, they analysed at a number of sites the

statistics

Zsi ¼
Ns g0ð Þ � Fsi g0ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Fsi g0ð Þ
p ð18Þ

where Ns(g0) is the observed number of times that a ground-motion threshold g0 is over-

come at the sth site during the control interval Dt* and Fsi(g0) & Dt* ksi(g0), with ksi(g0)

representing the exceedance rate of g0 deduced from the considered ith PSHA model at the

sth site. Values in Eq. (18) that are much lower than -1 or much larger than 1, respec-

tively, indicate that the PSHA model tends to overestimate or underestimate the actual

hazard level of the site under study. A similar approach, based on different observables (i.e.

inter-event times), was used by Mucciarelli et al. (2000; 2006).

In order to obtain a more comprehensive evaluation of a hazard map as a whole,

Humbert and Viallet (2008) consider the overall number of times that a ground-motion

threshold g0 is exceeded at all the S sites where an accelerometric station is available for

the time period considered for testing. In this case, Eq. (18) can be used by substituting

Fi(g0) with

Fi g0ð Þ ¼
XS

s¼1

Fsi g0ð Þ ð19Þ

where Fsi is the number of occurrences at the sth station expected on the basis of the ith

PSHA model. In the same way, N(g0) becomes the overall number of times that g0 was

exceeded during the control period. To take into account possible mutual dependence of

occurrences at the considered sites, Humbert and Viallet (2008) also suggest increasing the

SD of the relevant distribution of occurrences by a factor that they estimated by Monte

Carlo simulations.
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A slightly different statistical procedure was adopted by McGuire (1979), McGuire and

Barnhard (1981) and Albarello and D’Amico (2008). One can formalize this last approach

as follows.

A binary variable es(g0) is defined which assumes the value of 1 in case that during the

control interval Dt* (which has the same extension of the hazard exposure time Dt) at least

one earthquake occurred producing a ground motion in excess of g0 at the sth site;

otherwise, es(g0) = 0. The control sample EDt* is defined as the set of realizations of the

variable es(g0) at S sites. The ith considered PSHA model Hi provides a probability

P(es|Hi) = Psi for the case es(g0) = 1.

The number N of sites that are expected to experience at least one earthquake during Dt*

with ground shaking [g0 when the ith PSHA model holds is

li Nð Þ ¼
XS

s¼1

Psi ð20Þ

In the hypothesis that the realizations of the binary variable es(g0) are mutually inde-

pendent (in the PSHA model of concern), one has

ri Nð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XS

s¼1

Psi 1� Psið Þ

vuut ð21Þ

When S is relatively large, the Lyapunov variant of the central limit theorem (e.g.,

Gnedenko 1976) implies that

Zi ¼
N � li Nð Þ

ri Nð Þ ð22Þ

follows the standard Gauss distribution: negative Z values indicate that the ith model

overestimated hazard, since the actual number of exceedances is lower than the observed

one. The reverse is true for positive Z values.

Equation (22) allows us to evaluate whether a potential disagreement between the

experimental value N and the forecast li(N) is statistically significant (e.g., Zij j[ 2), thus

rendering the Hi PSHA model not supported by the set of S observations.

One can apply the same approach to test hazard estimates expressed in terms of gs,

which is the ground-motion values that correspond to a fixed exceedance probability a,

assessed through the considered PSHA computational procedure for an exposure time

equal to Dt. In this case, we have es = 1 if the ground shaking at the site during the control

period Dt* (of duration Dt) exceeded gs at the sth site; otherwise, es = 0. By definition,

P(es = 1) = a. In this case, one has

li Nð Þ ¼ Sa ð23Þ

and

ri Nð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Sa 1� að Þ

p
ð24Þ

Thus, if Ni exceedances have been obtained for the ith model, Eq. (22) becomes identical

to Eq. (17) making the counting and likelihood tests entirely equivalent (in these conditions).
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5.4 Testing by Comparing Hazard Estimates with Intensity Data

Historical macroseismic data represent an important benchmark for testing long-term

hazard estimates. However, such a comparison requires specific cautions and may provide

controversial results when maximum intensity observations are considered only (Miyaz-

awa and Mori 2009, 2010; Beauval et al. 2010).

Another possibility has been explored by Mucciarelli et al. (2006, 2008) that is based on

the comparison of outcomes of the standard PSHA (in terms of PGAa values) with hazard

estimates provided by the direct analysis of local seismic histories, i.e. from the list of

effects of past earthquakes documented at the site. Unlike previous approaches, in this

case, the comparison is not between forecasts and observations but between two kinds of

forecasts. In particular, forecasts provided by the standard Cornell–McGuire approach have

been compared with those deduced by a PSHA procedure specifically devoted to the full

exploitation of macroseismic information (Magri et al. 1994; Albarello and Mucciarelli

2002), that has been recently implemented in the computer program SASHA (D’Amico

and Albarello 2008). This approach (hereafter ‘site approach’) has been applied to the

PSHA in Italy and elsewhere (Guidoboni and Ferrari 1995; Mucciarelli et al. 1996, 2000,

2008; Azzaro et al. 1999, 2008; Albarello et al. 2002; D’Amico and Albarello 2003, 2008;

Galea 2007; Bindi et al. 2012) and shares with the Cornell–McGuire approach the

hypothesis that the seismogenic process is stationary. However, it is strongly different from

the latter, in that it does not consider seismotectonic constraints, and is mainly based on

local macroseismic information that is not taken into account in standard PSHA

procedures.

The basic idea of Mucciarelli et al. (2006, 2008) is that PSHA provided by the analysis

of macroseismic observations at the site could provide a more direct image of the local

hazard than that provided by standard approaches. In fact, these last ones are based on a

number of assumptions (seismogenic sources, ground-motion attenuation relationships,

etc.), that in many cases can be considered as debatable.

Of course, such comparison requires some cautions. In fact, PSHA estimates provided

by the analysis of local seismic histories are expressed in terms of macroseismic intensity.

This implies that to compare such results with standard outcomes (e.g., in terms of PGAa)

requires some form of conversion. To tackle this problem, two possibilities exist. The first

possibility is comparing standard PSHA outcomes (expressed as PGA, PSA, etc.) with

macroseismic hazard estimates relying on the availability of conversion relationships

between macroseismic and instrumental parameters (e.g., for Italy, Faccioli and Cauzzi

2006; Faenza and Michelini 2010; 2011). However, these relationships are empirical in

nature and the relevant large uncertainties are expressed in the form of a suitable proba-

bility distribution. When the comparison of standard PSHA outcomes and macroseismic

estimates is performed, one must take into account this additional source of uncertainty. It

is worth noting that converting the ground-motion value g0 deduced by a PSHA model

(PGA to say) into another observable (macroseismic intensity) just using the average

estimates, without taking into account relevant variance, could severely bias the com-

parison. A correct procedure requires the convolution of the relevant probability distri-

butions (hazard curves and probabilistic conversion relationship) inside the PSHA model

(e.g., D’Amico and Albarello 2008). Selva and Sandri (2013) adopted a different approach,

by considering uncertainty associated with conversion relationships in the selection of

observables.

The second possibility relies on the use of rank comparisons. Actually, this implies that

the comparison will only concern the relative ranking that each PSHA model attributes to
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the investigated localities in the respective domains of the shaking parameters considered

(see Mucciarelli et al. 2008 for details). The geographical distribution of rank differences

could allow us to individuate possible biases introduced by seismotectonic zoning in the

standard hazard estimates. In fact, in the case that these differences show a regional

pattern, possible distortions induced by incorrect seismotectonic characterization can be

detected. In the case that rank differences show local-scale variations, these can be

attributed to local amplification effects that are discarded by standard procedures but taken

into account in the analysis of site seismic history.

5.5 Testing by Monte Carlo Procedures

The Monte Carlo approach proposed and applied by Musson (2004, 2012) offers a possible

further alternative to the scoring procedures. The author proceeded from the consideration

that the hazard estimate is a combination of probability distributions relative to different

aspects of the seismic process (e.g., location and size of future earthquakes or attenuation

of seismic energy from the source to the site). These probability distributions are then used

to build up a number of synthetic catalogues (relative to source activations or ground

shaking at the site) randomly generated on the assumption that the probability distributions

considered in the computational model are representative for the actual seismogenic

process. From these virtual catalogues, a number of statistics are derived and compared

with those obtained from observed catalogues. The major drawback of this kind of

approach is that it is extremely time-consuming when applied to a large number of sites.

Furthermore, in the proposed applications, no likelihood estimate for the tested PSHA

models has been actually supplied.

6 An Application to Italy

In order to show a possible application of the approaches proposed above, we consider four

seismic hazard maps of Italy in terms of macroseismic intensity (Fig. 3). In these maps, the

highest Mercalli–Cancani–Sieberg (MCS) intensity degree with probability of exceedance

not less than 10 % in 50 years (hereafter indicated as the reference intensity Iref) is shown

for all the Italian municipalities (each estimate refers to the relevant main town) in the

mainland and Sicily (7,722 sites). In one case (Fig. 3a), the hazard map (Gómez Capera

et al. 2010) was obtained by following the standard Cornell–McGuire approach imple-

mented in the Seisrisk III computer program (Bender and Perkins 1987) modified to

account for the use of intensity attenuation relationships. Actually, the outcome here

considered is the result of a logic-tree procedure where epistemic uncertainty relative to

some aspects of the model was accounted for (see, for details, Gómez Capera et al. 2010).

In the other cases (Fig. 3b, c, d), the maps were obtained on purpose in the present study by

using the site approach implemented in the SASHA code (D’Amico and Albarello 2008),

which is based on the statistical analysis of local seismic history (see Sect. 5.4). We

consider three possible implementations of this approach. The first one is based on virtual

local seismic histories, i.e. time series of intensity values deduced at each site from epi-

central data through attenuation relationships (Fig. 3b). The second one only uses intensity

data actually observed at each site (Fig. 3c). The third implementation considers integrated

local seismic histories built by combining observed intensities with virtual intensities for

known earthquakes whose effects were not documented at the relevant site (Fig. 3d). In

general, since larger uncertainty affect virtual intensities, one can expect that hazard
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estimates in Fig. 3b may tend to overestimate hazard. On the other hand, hazard estimates

based on observed intensities only (Fig. 3c) may generally provide underestimate of the

hazard due to incompleteness of local seismic histories. In principle, one can expect that

the best estimates will correspond to the combination of both pieces of information (virtual

and observed intensities) as reported in Fig. 3d.

In order to illustrate how the procedures in Sects. 2, 3, 4 and 5 work, to each of the

above PSHA models an ex-ante degree of belief Q* has been tentatively attributed. In

particular, based on expert judgement, we, respectively, assessed the values of 0.4, 0.1, 0.2

and 0.3 for the standard Cornell McGuire model, for the site approach models based on

Fig. 3 Hazard maps of Italy in terms of the highest intensity degree with probability of exceedance not less
than 10 % in 50 years (Iref). Dots correspond to municipalities of Italy (except Sardinia), and the hazard
estimates refer to the relevant main towns. The maps were obtained using: (a) the standard Cornell–McGuire
approach (Gómez Capera et al. 2010); (b) the site approach (D’Amico and Albarello 2008) by considering
virtual intensities only; (c) the site approach by considering observed intensities only; and (d) the site
approach by considering a combination of virtual and observed intensities (see text for details). To allow
visual comparison, the real-valued Iref estimates in a were truncated to the lowest integer intensity class. The
boundaries of the Apulia Region are also shown (southeast of the Italian mainland)
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virtual intensities only, observed intensities only and for combined observed and virtual

intensities. These choices could be motivated as follows. The highest Q* value is attributed

to the Cornell–McGuire model since it includes seismotectonic information, and this, in

principle, makes this PSHA model more complete than the other ones. Since no infor-

mation at the site is actually considered, we attributed the smallest Q* value to the PSHA

model based on virtual intensities. We attributed a slightly higher Q* value to the PSHA

model based on the analysis of documented intensities only since it is expected that large

incompleteness may affect most of localities. Finally, we attributed a higher Q* value to

the PSHA model based on the analysis of combined observed and virtual intensities that in

principle is able to take full advantage from available information about the seismic

history.

It is worth noting that, in the case of the standard approach, conventional real-valued Iref

intensities are obtained which correspond to the exceedance value of 10 %, while, in the

case of the site approach, integer intensity values are considered and, thus, Iref is the

highest intensity degree with exceedance probability not less than 0.1.

We compared the outcomes of the four models with maximum MCS intensities

observed during the control period 1957–2006 at the same sites considered for the hazard

assessment (Fig. 4). We deduced intensity data from the Italian macroseismic database

DBMI11 (Locati et al. 2011). It is worth noting that these data are the result of a revision

and extension of the previous database (DBMI04: Stucchi et al. 2007) used to feed the

hazard maps in Fig. 4. In the case of the standard estimates, we considered all information

Fig. 4 Maximum observed MCS intensities at the main towns of the Italian municipalities in the period
1957–2006 reported in the DBMI11 database (Locati et al. 2011)
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available at the time of publication (2010) about past seismicity (up to 2002) to feed the

computational model. In the case of the site approach models, instead, we took into

account only information up to 1956. This implies that, in principle, the first model is

favoured with respect to the other ones, and the test is actually prospective only in the case

of the site approach models.

We did not decluster the data set considered for scoring for two reasons. The first one is

that intensity databases cannot be declustered since intensity values mainly reflect

cumulative damage induced by a seismic sequence. In fact, after a damaging event, the

seismic effects relative to subsequent earthquakes on the same settlement are biased by the

conditions of buildings affected by the previous events. The second reason is that PSHA in

terms of macroseismic intensity aims at fixing a reasonable upper bound for seismic effects

expected to be not exceeded at a fixed probability during the exposure time, irrespective of

the fact that these effects result from a mainshock, an aftershock or a seismic swarm. The

fact that some PSHA models (e.g., the one based on the Cornell–McGuire approach)

assume seismicity as a stationary Poisson process (and only independent events are con-

sidered for the model parameterization) is a possible limitation of these models. They fail

when they underestimate seismic occurrences with respect to observations and changing

observations to fit model requests may bias the correct evaluation of performances of those

models.

At first, all the hazard maps in Fig. 3 were tested by computing respective Zi values for a

fixed value of a = 0.1 by Eq. (17). In this situation, one can expect that 772 sites [see

Eq. (23)] would have experienced at least one earthquake with local effects (intensity)

larger than the values in Fig. 3 and the expected SD [Eq. (24)] is 26. Actually, the number

of observed exceedances is 92, 174, 5382 and 165, respectively, in the case of the Cornell–

McGuire model (Fig. 3a) and the site approach models based on virtual intensities only

(Fig. 3b), observed intensities only (Fig. 3c) and combined observed and virtual intensities

(Fig. 3d). These outcomes clearly indicate that hazard appears largely overestimated,

except in the case of the model in Fig. 3c, that dramatically underestimates the hazard.

Respective Z values are -26, -23, 175 and -23, and they indicate that all the models

provide outcomes that are not supported by observations. In particular, except the model in

Fig. 3c, all the PSHA models tend to overestimate largely the observed seismicity. On the

contrary, the model in Fig. 3c strongly underestimates observed occurrences.

Possibly the site approach performs a little bit better than the standard one (despite the

fact that only for the former the test is actually prospective), but the mismatch with

observations is anyway significant. This result suggests that observations do not support

any of the maps in Fig. 3, and this makes possibly unreliable a comprehensive estimate

based on these PSHA models.

However, the above conclusions generally hold when one considers the area under study

as whole. This does not imply that the PSHA models considered do not perform when parts

of the whole area are of concern. An example of this is the hazard estimate in the Apulia

Region whose boundaries are indicated in the maps in Fig. 3. By considering this area

only, we considered for testing 258 localities. In this case, the expected number of ex-

ceedances is 26 with an expected SD of 4.8. Observed number of exceedances for the

considered models is 0, 28.5, 187 and 19, respectively, for hazard models in Figs. 3a, b, c,

d. Respective Z values are -5.4, 0.6, 33.3 and -1.5. In this case, observations do not

support two out of the set of considered models: the Cornell–McGuire model (providing

significant hazard overestimation) and the site approach model based on observed inten-

sities only (providing significant hazard underestimation). In terms of Z values, best per-

forming PSHA model is the one relative to the PSHA model in Fig. 3b (site approach by
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considering virtual intensity values only). The value of L relative to this model is 0.072. By

considering this model as reference, Bayes factors relative to the other models can be

computed (Eq. 6) and result in 0.95 for the PSHA model in Fig. 3d relative to the site

approach by considering the integration of observed and virtual intensities and�10-5 for

both the remaining models. As one can see that, due to the very low likelihood values that

characterize these last models, these cannot play any role in the definition of the com-

prehensive estimate by Eq. 4. It therefore does not matter if these two models are excluded

from the analysis. We report in Fig. 5 an example of the comprehensive hazard estimate

obtained through Eq. (4) at a site of Apulia (Acquaviva delle Fonti).

7 Discussion and Conclusions

In the frame of a formally coherent Bayesian approach, the problem of providing seismic

hazard estimates in the presence of alternative computational models has been analysed.

The basic idea is that several PSHA models can be combined and weighted as a function of

the degree of belief in their actual reliability (scoring). This approach is in line with the one

proposed by Marzocchi et al. (2012) with a basic difference concerning the complementary

role here assigned role to ex-ante (logic-tree approach and expert judgements) and ex-post

evaluations (by matching hazard outcomes with observations) of the considered PSHA

models. This overcomes the drawbacks implicit in both approaches. As concerns ex-ante

scoring procedures, we suggest the logic-tree approach as a tool to allow a panel of experts

to better elicit in a quantitative form their opinions and can be considered useful for

supplying prior probabilities for the Bayesian analysis. This requires, of course, that all

plausible PSHA models are actually considered and the eventual selection only discards

incoherent or clearly wrong models. The fact that these ex-ante evaluations are only used

to supply prior information in the frame of a Bayesian analysis reduces the possible impact

of drawbacks related to the lack of a perfect formal coherency of the logic-tree procedure

and to the inherent subjectivity of expert judgements. This ex-ante scoring is then

Fig. 5 Hazard curve for the site of Acquaviva delle Fonti in Apulia. For each MCS intensity threshold, the
probability is reported that at least one earthquake with intensity at the site equal or larger than the threshold
will occur during a time span of 50 years. The two PSHA models actually contributing to the comprehensive
estimate (continuous line) deduced from Eq. (4) are shown: the one deduced by the site approach
considering site intensity data from epicentral data only (dashed line) and the one deduced by the same
approach from a combination of virtual and observed data (dotted line)
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combined by an ex-post empirical scoring based on the comparison of outcomes provided

by each PSHA model with sets of observables. Due to the presence of prior evaluations,

possible drawbacks of ex-post scoring (e.g., the limited amount of empirical observations

or the short duration of their time coverage) can be mitigated.

In this way, comprehensive hazard estimates can be provided which account for both

epistemic and aleatory uncertainty within a unique frame. In line with Bommer and

Scherbaum (2008), the scoring techniques here considered concern each procedure as a

whole by focusing on final outcomes. In fact, evaluating single parts of a PSHA meth-

odology (e.g., seismicity rates of seismogenic sources and ground-motion attenuation

relationship) and attributing the relevant results to the whole procedure can lead to mis-

leading conclusions. Rabinowitz and Steinberg (1991) and Stirling and Petersen (2006)

convincingly demonstrated that a significant interplay exists among single elements con-

tributing to the final hazard estimate. Thus, the overall reliability of the procedure is more

than just a simple combination of single reliabilities relative to individual components.

Scoring should therefore consider each PSHA methodology as a whole, as well as the

results each methodology provides (Grandori et al. 2006).

We described and discussed several procedures devoted to scoring and testing PSHA

models. Approaches based on likelihood computations seem to be more effective and

coherent with the strategy here proposed to provide comprehensive hazard estimates.

In the perspective here presented, we consider empirical testing as inherently different

from scoring since it only aims at identifying PSHA models not supported by observations.

In other words, it provides a dichotomic outcome that is a function of a conventional

significance threshold testing. A relatively marginal role here is assigned to empirical

testing, which is used to prevent pathological situations where none of the PSHA models

considered is supported by observations. We reviewed several testing procedures and

showed that, under specific conditions, at least two of them (likelihood and counting test)

are equivalent.

In order to show the feasibility of the proposed approach, four hazard maps available for

Italy deduced from different approaches and expressed in terms of macroseismic intensity

as ground-shaking parameter have been considered as an example. It is worth noting that

these maps were not converted from analogous maps expressed in terms of instrumental

parameters (PGA), but they were specifically determined by considering intensity data as

input. In particular, intensity values characterized by an exceedance probability of 10 % in

50 years have been considered as representative of seismic hazard at each site. The

scoring/testing analysis considered as evidence the maximum MCS intensities observed at

the Italian municipalities during the 50-year time span from 1957 to 2006. This analysis is

intrinsically different from the previous ones. Mucciarelli et al. (2008), in fact, only

compared hazard maps developed on different bases and providing different outcomes (Ia
vs. PGAa) without an explicit likelihood analysis. Selva and Sandri (2013) compared

converted PGAa values with macroseismic observations, while Albarello and D’Amico

(2008) compared hazard maps in terms of PGAa with accelerometric observations. The

present analysis, instead, compares outcomes of PSHA model entirely developed esti-

mating intensities against macroseismic observations. The test indicated that none of the

PSHA models taken into account provides results that are supported by observations at

least when the Italian area is considered as a whole. The fact that all the models here

considered fail in reproducing observations could possibly mean that the stationarity

assumption (shared by all the four models) is unrealistic. As an alternative, one can

hypothesize that the data set is biased (e.g., due to the fact that macroseismic observations

of past earthquakes are not actually comparable with the ones relative to most recent
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events) and/or that the adopted attenuation relationships tend to overestimate predicted

intensities. Anyway, discussing the failure of the hazard maps here considered is well

beyond the aims of the present paper and will deserve further studies.

An important aspect of the above analysis deserves a specific discussion. In the

applications of the scoring and testing procedures outlined above, we assumed the mutual

independence among seismic occurrences to compute relevant statistics [Eqs. (9), (12),

(17)]. It is worth noting that this assumption does not concern the actual seismogenic

process but the PSHA model of concern. All the PSHA models considered in the example

only provide forecasts about the possible exceedance of an intensity value at each site

(during the exposure time) without any reference about eventual synchronous occurrence at

sites nearby. On the other hand, however, when a counting testing procedure is considered

[e.g., Eq. (17)], in computing the variance of the expected number of exceedances during a

fixed exposure time, one should account for the mutual correlation of hazard estimates at

the considered sites induced, e.g., by the use of attenuation relationships in the relevant

PSHA model (e.g., Rhoades and McVerry 2001). This effect may bias the relevant Z value

in that it may result in an overestimate. This increases the probability of a Type-I error

when one uses Z for testing PSHA models. One can consider numerical simulations to

evaluate and correct this possible bias (e.g., Humbert and Viallet 2008).

An aspect should be underlined and concerns future development of seismometric

databases to be used for testing and scoring. In general, ground-motion parameters of

engineering interest (e.g., PGA, PSA) are of main concern in seismic hazard estimates.

Thus, data provided by accelerometric stations are of primary importance, and operational

continuity of these networks becomes an important requisite for testing: a small amount of

control sites renders the results strongly sensitive to minor variations in the observational

data set. In many cases, this makes testing ineffective, though scoring is possible anyway.

In our opinion, major efforts in the development of reliable strategies for scoring and

testing PSHA procedures should be devoted more to the collection of extended and well-

documented ground-motion data sets rather than to the development of new testing pro-

cedures. A key aspect in this sense is the availability of accelerometric observations at the

reference soil conditions considered for hazard estimates. This aspect seems to be obvious,

but it is in many cases overlooked: very rough soil characterization is generally available at

most accelerometric sites and this prevents an effective comparison between forecasts

provided by the single PSHA procedure and observations.
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