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Abstract The generalized least squares (GLS) method uses both data and prior information

to solve for a best-fitting set of model parameters. We review the method and present

simplified derivations of its essential formulas. Concepts of resolution and covariance—

essential in all of inverse theory—are applicable to GLS, but their meaning, and especially

that of resolution, must be carefully interpreted. We introduce derivations that show that the

quantity being resolved is the deviation of the solution from the prior model and that the

covariance of the model depends on both the uncertainty in the data and the uncertainty in

the prior information. On face value, the GLS formulas for resolution and covariance seem to

require matrix inverses that may be difficult to calculate for the very large (but often sparse)

linear systems encountered in practical inverse problems. We demonstrate how to organize

the computations in an efficient manner and present MATLAB code that implements them.

Finally, we formulate the well-understood problem of interpolating data with minimum

curvature splines as an inverse problem and use it to illustrate the GLS method.

Keywords Least squares � Prior information � Resolution � Covariance � Inverse theory �
Tomography � Biconjugate gradient � Splines

1 Introduction

The principle of least squares underpins many types of geophysical data analysis, including

tomography, geophysical inversion and signal processing. First stated more than 200 years
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ago by Legendre (1805), numerous subsequent developments have expanded the tech-

nique, delineated its relationship to other areas of mathematics [e.g., coordinate transfor-

mations (Householder 1958)] and applied it to increasingly varied, complex and large

problems.

Relatively recent developments were the recognition that data can be supplemented

with prior information—expectations about the nature of the solution that are not directly

linked to observations—and the methodology for solving problems that combines prior

information with data in a way that accounts for the uncertainty of each (Lawson and

Hanson 1974; Wiggins 1972; Tarantola and Valette 1982a, b; Menke 1984). The resulting

theory, here called generalized least squares (GLS), is now central to much of the data

processing that occurs in geophysics (and other fields, too). The first purpose of this paper

is to review GLS and presents simplified derivations of its essential formulas. As is the case

in many fields other fields, the approach of some of the seminal papers has turned out to be

unnecessarily complicated.

Key ideas about the resolving power of data were developed independently of

GLS, and especially through the study of continuous inverse problems (Backus and

Gilbert 1968, 1970). These ideas have found fruitful application in GLS (e.g., Wig-

gins 1972; Yao et al. 1999), but at the same time have been the source of consid-

erable confusion. The second purpose of this paper is to clarify the concept of

resolution in problems containing prior information; that is, to rigorously define just

what is being resolved.

Modern inverse problems are extremely large; datasets containing millions of obser-

vations and models containing tens of thousands of parameters are not uncommon. While

GLS provides elegant formula for the resolution and covariance of an estimated model,

those formulas seem, at first inspection, to be difficult to efficiently compute. As a result,

the percentage of data analysis papers (at least in geophysics) that apply GLS but which

omit discussion of resolution and covariance is unnecessarily large. The third purpose of

this paper is to provide practical algorithms for computing them, along with sample

MATLAB code.

No exposition of techniques is complete without an illustrative example. We formulate

the well-understood problem of interpolating data with minimum curvature splines as an

inverse problem and use it to illustrate the GLS method. This problem is chosen both

because it is intuitively appealing and because it has, in the continuum limit, an analytic

solution against which GLS results can be compared.

2 Review of Basis Inverse Theory Principles

2.1 Definition of the Canonical Linear Inverse Problem

We consider a linear forward problem,

dtrue ¼ Gmtrue and dobs ¼ Gmtrue þ n ð2:1:1Þ

where a known N �M data kernel G links noise-free true data dtrue to the true model

parameters mtrue. Observational noise n is always present, so that the observed data differ

from the noise-free ‘‘true’’ data by dobs ¼ dtrue þ n. The generalized inverse G�g turns

these equations around, linking model parameters m through to data d to
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mest ¼ G�gdobs and mtrue ¼ G�gdobs �G�gn ð2:1:2Þ

The generalized inverse, G�g, is an M � N matrix that is a function of the data kernel. Note

that we have distinguished the true model mtrue, obtained by correcting the observed data

for the noise n, from an estimated model mest in which the correction is omitted. The noise

is an unknown quantity, so only an estimate of the true model can be calculated; that is,

mest 6¼ mtrue. Note that at this point, neither the method by which the generalized inverse

G�g has been obtained its functional form has been specified. Many generalized inverses

are possible, of which the GLS generalized inverse, discussed later in this paper, is but one.

2.2 Definition of Model Covariance

Observational error are assumed to be normally distributed with zero mean and with prior

covariance Cd . By ‘‘prior,’’ we mean that the covariance is assigned independently of the

results of the inversion, using, say, an understanding of the limitations of the measurement

process. In many instances, the errors will be statistically independent and with uniform

variance rd
2, in which case Cd ¼ r2

dI. These errors propagate through the inversion process,

leading to estimated of model parameters with covariance Cm. This error propagation is

described by the rule for linear functions of random variables (e.g., Rektorys 1969, Sec

33.6):

Cm ¼ G�gCdG�gT ð2:2:1Þ

The variance of the model parameters is given by the diagonal elements of the

covariance matrix:

r2
mi
¼ Cm½ �ii ð2:2:2Þ

and is typically used to state data confidence bounds for the model parameters, e.g.,

mtrue
i ¼ mest

i � 2rmi
ð95 %Þ ð2:2:3Þ

Note the distinction between the estimated model parameters, which are calculated

during the inversion process and the true model parameters, which though bounded sta-

tistically, cannot be exactly known. The confidence bounds can be quite misleading in the

case where the estimated model parameters are highly correlated.

An estimate of the model parameters, mest, has a corresponding prediction error

e ¼ dobs �Gmest, where the superscript ‘‘obs’’ means ‘‘observed’’; that is, the data mea-

sured during the experiment. The posterior variance of the error:

rpost
e

� �2¼ eTe

m
with m ¼ ðN �MÞ ð2:2:4Þ

is sometimes used as a proxy for the prior variance rd
2, at least in cases where the data are

believed to be uncorrelated and with uniform variance. Note, however, that this formula

assumes that the estimated model is close to the true model, so that the error can be

attributed solely to noise in the data—an assumption that is not always justified.

The ratio, q2 = (re
post)2/rd

2, is a measure of how well the data are fitted by an estimated

model. Models for which q2 & 1 fit the data acceptably well and models for which q2 � 1

fit them poorly. This notion can be quantified by recognizing that the quantity X2 = mq2 is

chi-squared distributed with m degrees of freedom and then using a standard chi-squared
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test of significance. The chi-squared distribution is approximately normal for large m with

mean m and variance 2m, so in that case an unacceptably poor fit (at 95 % confidence) is one

for which q2 [ 1þ 2
ffiffiffiffiffiffiffi
2=m

p
. Models for which q2 � 1 over-fit the data, which usually

means that the model contains features whose presence is not justified by data with that

noise level. At 95 % confidence, over-fit data satisfy q2\1� 2
ffiffiffiffiffiffiffi
2=m

p
(in the large m limit).

2.3 Simple Least Squares

The simple least squares solution for data with covariance Cd is obtained by minimizing

the prediction error:

USLS ¼ dobs �Gm
� �T

C�1
d dobs �Gm
� �

ð2:3:1Þ

with respect to model parameters m. This formula can be thought of as the ‘‘sum of

squared prediction errors, with each error weighted by the certainty of the corresponding

observation’’ (since variance quantifies uncertainty, it reciprocal quantifies certainty). The

minimization of USLS yields an estimate for the model parameters (e.g., Lawson and

Hanson 1974):

mest ¼ GTC�1
d G

� ��1
GTC�1

d dobs ð2:3:2Þ

The generalized inverse is G�g ¼ GTC�1
d G

� ��1
GTC�1

d . Note that in the case of

uncorrelated data with uniform variance, Cd ¼ r2
dI, this formula reduces to

G�g ¼ GTG
� ��1

GT. One of the limitations of simple least squares is that this generalized

inverse exists only when the observations are sufficient to uniquely specify a solution; else

the matrix GTC�1
d G

� ��1
does not exist. As discussed below, one of the purposes of GLS is

to overcome this limitation.

In simple least squares, the covariance of the model parameters is:

Cm ¼ G�gCdG�gT ¼ GTC�1
d G

� ��1
GTC�1

d CdC�1
d G GTC�1

d G
� ��1¼ GTC�1

d G
� ��1

ð2:3:3Þ

In general, the model parameters will be correlated and of unequal variance even when

the data are independent and with uniform variance:

Cm ¼ r2
d GTG
� ��1

when Cd ¼ r2
dI ð2:3:4Þ

2.4 Definition of Model Resolution

The model resolution matrix RG ¼ G�gG can be obtained using the fact that an asserted

model mass (that is, a hypothetical model put forward for discussion purposes) predicts

data, dpre ¼ Gmass and model mrec recovered from inverting those data is mrec ¼ G�gdpre

(Wiggins 1972):

mrec ¼ G�gGmass ¼ RGmass ð2:4:1Þ

The resolution matrix RG indicates that the recovered model parameters only equal the

asserted model parameters in the special case where RG ¼ I. This notion can be extended
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to the true and estimated model by including the effect of noise n (Friedel 2003; Gunther

2004):

mest ¼ G�gdobs ¼ G�g Gmtrue þ nð Þ ¼ RGmtrue þG�gn ð2:4:2Þ

The estimated and true models are again related via the resolution matrix RG, up to a

correction factor involving the noise. Unfortunately, this correction factor cannot be cal-

culated, since the noise is unknown. In subsequent discussion, we will acknowledge this

limitation by writing mest 	 RGmtrue, which is to say, focusing on the way in which mest

and mtrue are related when the effect of noise is negligible.

In typical cases, the estimated model parameters are linear combinations (‘‘weighted

averages’’) of the true model parameters. In general, RG has no special symmetry; it is

neither symmetric nor antisymmetric. We note for future reference that the simple least

squares solution, when it exists, has perfect resolution:

RG ¼ G�gG ¼ GTC�1
d G

� ��1
GTC�1

d G ¼ I ð2:4:3Þ

2.5 Meaning of the k-th Row of the Resolution Matrix

The k-th estimated model parameter satisfies:

mest
k 	

X

i

RG
kim

true
i ð2:5:1Þ

and so can be interpreted as being equal to a linear combination of the true model

parameters, where the coefficients are given by the elements of the k-th row of the reso-

lution matrix. Colloquially, we might speak of the estimated model parameters as weighted

averages of the true model parameters. However, strictly speaking, they are only true

weighted averages when the elements of the row are positive and sum to unity,

RG
ki
 0 and

X

i

RG
ki ¼ ½1�k ð2:5:2Þ

which are, in general, not the case.

2.6 Meaning of the k-th Column of the Resolution Matrix

The k-th column of the resolution matrix specifies how each of the estimated model

parameters is influenced by the k-th true model parameter. This can be seen by setting

mtrue ¼ sðkÞ with si
(k) = dik; that is, the all the true model parameters are zero except the k-

th, which is unity. Denoting the set of estimated model parameters associated with sðkÞ as

mestðkÞ, we have (Menke 2012):

mestðkÞ 	 RGsðkÞ or m
estðkÞ
j 	

X

i

RG
ji dik ¼ RG

jk ð2:6:1Þ

Thus, the k-th column of the resolution matrix is analogous to the point-spread function

encountered in image processing (e.g., Smith 1997, Chapter 24); that is, a single true model

parameter spreads out into many estimated model parameters.

If instead of being set to a spike, mtrue is set some other pattern, then the resulting mest

provides information on how well that pattern can be recovered. When the model
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represents the discrete version of a function m(x, y) of two spatial variables (x, y), a

common choice for the pattern is the checkboard (an alternating pattern of positive and

negative fluctuations) and the procedure is called a checkerboard test.

2.7 Spread Resolution and the Size of Covariance Trade-Off

Spread of resolution can be quantified by the degree of departure of RG from an identity

matrix and size of Cm by the magnitude of its main diagonal, which represents variance.

A general principle of inverse theory is that resolution trades off with variance (Backus

and Gilbert 1970). A solution with small spread of resolution tends to have large

variance and vice versa. Many inverse methods (including GLS) have a tunable

parameter that defines a ‘‘trade-off curve’’ of allowable combinations of spread and size.

Users can then select a combination of resolution and variance that is optimum for their

particular use.

3 Generalized Least Squares (GLS)

3.1 Definition of Prior Information

Generalized least squares (Lawson and Hanson 1974; Wiggins 1972; Tarantola and Valette

1982a, b; Menke 1984; see also Menke 2012) improves upon simple least squares by

supplementing the observations with prior information, represented by the linear equation

H0m ¼ hpri
0 , where the superscript ‘‘pri’’ indicates prior. This equation, assumed to be

determined independently from any actual observations, encodes prior expectations about

the behavior of the model parameters. Many (but not all) classes of prior information can

be represented by judiciously choosing the matrix H0 and vector hpri
0 ; for example, the

model parameters have specific values, mh i

H0 ¼ I and hpri
0 ¼ mh i

the average of the model parameters have a specific value, mh i

H0 ¼ M�1 1 1 � � � 1½ � and hpri
0 ¼ mh i

the model parameters are flat

H0 with rows like 0 0 � � � 0 1 �2 1 0 � � � 0½ � and hpri
0 ¼ 0

and the model parameters are smooth

H0 with rows like 0 0 � � � 0 1 �2 1 0 � � � 0½ � and hpri
0 ¼ 0 ð3:1:1Þ

and so forth. The accuracy of the prior information is described by a covariance matrix Ch0

that represents the quality of the underlying expectations.

In many cases, the prior information will be uncorrelated, implying that Ch0 is a

diagonal matrix [but see Abers (1994) for an interesting counterexample]. In many cases,

all the prior information will also be equally uncertain, in which case Ch0 ¼ r2
hI, where r2

h

is the variance of the prior information.
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The case of a non-uniform prior variance has wide uses, because it can be used to assert

that one part of the model obeys prior information, like mi & hmii, more strongly than

others. This allows a kind of hypothesis testing that is called squeezing (Lerner-lam and

Jordan 1987). The presence of a certain feature in the model is tested by designing prior

information that asserts that the feature is absent and assigning that feature—and that

feature only—low variance. The feature will be suppressed (squeezed) in a solution that

includes this prior information, relative to one that does not. The feature is only accepted as

significant if the posterior variance re
2 of the error (see 2.2.1) is significantly more for the

squeezed model than the unsqueezed model. The ratio F = (re
2)squeezed/(re

2)unsqueezed is F-

distributed with m1 ¼ m2 ¼ N �M degrees of freedom, so significance can be assessed with

a standard F test.

In general, the prior information needs to be neither consistent nor sufficient to uniquely

determine the model parameters. However, it is always possible to add additional—but

very weak—information to uniquely determine a set or prior model parameters, say mH

that can be used for reference, that is, allowing us to answer the question of how much the

data changed our preconceptions about the model. We take the approach of augmenting

H0m ¼ hpri
0 to

Hm ¼ hpri ¼ H0

I

� �
m ¼ hpri

0

0

� �
ð3:1:2Þ

This modification adds the information that the model parameters are close to zero.

When assigned high variance, it will force to zero linear combinations of model parameters

that are not resolved by H0m ¼ hpri
0 while having negligible effect on the others. We define

the corresponding covariance to be

Ch ¼
Ch0 0

0 e�2I

� �
ð3:1:3Þ

Here, e-2 is the variance of the additional information, which is presumed very large

(implying that e is very small). We can then define the reference model mH to be the simple

least squares solution to the augmented system:

mH ¼ HTC�1
h H

� ��1
HTC�1

h hpri ¼ HT
0 C�1

h0 H0 þ e2I
� ��1

HT
0 C�1

h0 hpri
0 ð3:1:4Þ

We will call mH the prior model, for it is the one predicted by the prior information,

acting alone. We can define the data predicted by the prior information as:

dH ¼ GmH ð3:1:5Þ

3.2 The Generalized Least Squares Solution

The GLS is solution obtained by minimizing the generalized error, that is, the sum of the

simple least squares prediction error USLS and the error in prior information,

h�Hm½ �TC�1
h h�Hm½ � (Tarantola and Valette 1982a, b):

UGLS ¼ dobs �Gm
� �T

C�1
d dobs �Gm
� �

þ hpri �Hm
� �T

C�1
h hpri �Hm
� �

ð3:2:1Þ

Note that no cross-terms appear in this equation. We have assumed that observational

errors do not correlate with errors in the prior information. By defining:
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F ¼ C
�1=2
d G

C
�1=2
h H

" #

and fobs ¼ C
�1=2
d dobs

C
�1=2
h hpri

" #

; ð3:2:2Þ

we can write UGLS ¼ fobs � Fm
� �T

C�1
f fobs � Fm
� �

, with Cf ¼ I, which is in the form of a

simple least squares minimization problem. Note that the covariance of fobs is, indeed,

Cf ¼ I; the data and prior information have been weighted so as to produce uncorrelated

random variables with unit variance. Here, dobs denotes the observed values of the data and

hpri the prior values of the information (that is, the values that are asserted). The combined

vector fobs includes both observations and prior information, but we simplify its superscript

to ‘‘obs.’’

The solution is given by the simple least squares formula:

mest ¼ FTF
� ��1

FTfobs ð3:2:3Þ

or

mest ¼ G�gdobs þH�ghpri

with G�g ¼ A�1GTC�1
d and H�g ¼ A�1HTC�1

h and A ¼ GTC�1
d GþHTC�1

h H ð3:2:4Þ

The presumption in GLS is that the addition of prior information to the problem is

sufficient to eliminate any non-uniqueness that would have been present had only obser-

vations been used. Thus, the inverse of A is presumed to exist. Note that since A is

symmetric, its inverse A�1 will also be symmetric.

3.3 Variance of Generalized Least Squares

The standard formula for error propagation gives:

Cm ¼ F�gCf F
�gT ¼ FTF

� ��1
FTIF FTF

� ��1¼ FTF
� ��1¼ A�1 ð3:3:1Þ

Note that this covariance depends on both the prior covariance of the data, Cd , and the

variance of the prior information, Ch. We can identify the contribution of the two sources

of error as:

Cm ¼ G�gCdG�gT þH�gChH�gT ð3:3:2Þ

since

Cm ¼ G�gCdG�gT þH�gChH�gT ¼ A�1GTC�1
d CdC�1

d GA�1 þ A�1HTC�1
h ChC�1

h HA�1

¼ A�1GTC�1
d GA�1 þ A�1HTC�1

h HA�1 ¼ A�1 GTC�1
d GþHTC�1

h H
� �

A�1

¼ A�1AA�1 ¼ A�1 ð3:3:3Þ

Thus, the covariance of the model parameters consists of the sum of a term,

G�gCdG�gT, which is identical in form (but not in value) to the one encountered in simple

least squares, and an analogous term arising from the prior information. In the limit of

Cdk k ! 1 (very noisy data), Cm depends only upon Ch, and in the limit of Chk k ! 1
(very weak information), Cm depends only upon Cd .
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Since the predicted data are linear functions of the estimated model parameters through

the equation, dpre ¼ Gmest, their covariance is given by:

Cdpre ¼ GCmGT ¼ GA�1GT ð3:3:4Þ

3.4 Resolution of Generalized Least Squares

Generalized least squares does not distinguish the weighted data equation

C
�1=2
d Gm ¼ dobs

	 

from the weighted prior information equation C

�1=2
h Hm ¼ hpri

	 

; the

latter is simply appended to the bottom of the former to create the combined equation

Fm ¼ fobs. Consequently, in analogy to the simple least squares case, we can define a

generalized inverse F�g and a resolution matrix RF as:

F�g ¼ FTF
� ��1

FT so that mest ¼ F�gfpre

RF ¼ F�gF so that mest ¼ RFmtrue þ F�gn and mrec ¼ RFmass
ð3:4:1Þ

However, when defined in this way, the resolution of GLS is perfect, since

RF ¼ F�gF ¼ FTF
� ��1

FTF ¼ A�1A ¼ I ð3:4:2Þ

In general, the estimated model parameters depend upon both dobs and hpri; that is,

mest ¼ G�gdobs þH�ghpri. Consider for the moment the special case of hpri ¼ 0 (we will

relax this requirement in the next section). This case commonly arises in practice, e.g., for

the prior information of smoothness. The estimated model parameters depend only upon

dobs; that is, mest ¼ G�gdobs þ 0. We can use the forward equation to predict data asso-

ciated with an asserted model parameters, dpre ¼ Gmass, and then invert these predictions

back recovered model parameters, mrec ¼ G�gdpre þ 0. Hence, we obtain the usual for-

mula for resolution:

mrec ¼ RGmass with RG ¼ G�gG ð3:4:3Þ

Superficially, we seemed to have achieved contradictory results, as the two resolution

matrices have radically different properties:

RF ¼ I and RG 6¼ I ð3:4:4Þ

However, one step in the derivations is critically different. During the derivation of RG,

we asserted that hpre ¼ 0, even though an arbitrary mass predicts hpre ¼ Hmass 6¼ 0. During

the derivation of RF, we made no such assertion; the hpre imbedded in fpre arises from

hrec ¼ Hmass and is not equal to zero.

That the RG and not RF is the proper definition of resolution can be understood

from the following scenario. Suppose that the model m represents a discrete version of a

continuous function m(x) and that one in trying to find an mest that approximately satisfies

Gm ¼ dobs but is smooth. Smoothness is the opposite of roughness, and the roughness

of a function can be quantified by the mean-squared value of its second derivative. Thus,

we take H0 to be the second-derivative operator (i.e., with rows like

0 � � � 0 1 �2 1 0 � � � 0½ �) and hpri ¼ 0, which leads to the minimization of

H0m½ �T H0m½ �, a quantity proportional to the r.m.s. average of the second derivative. Now

suppose that the asserted solution is the spike mass ¼ sðkÞ (that is, zero except for the k-th

Surv Geophys (2015) 36:1–25 9
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element, which is unity). We want to know how this spike spreads out during the inversion

process, presuming that an experiment produced the data dpre ¼ GsðkÞ that this model

predicts. What values should one use for h in such an inversion? The model predicts

hpre ¼ H0sðkÞ, but these are the actual values of the second derivative. To use them in the

inversion would be to assert that second derivatives are known—much stronger infor-

mation than merely the assertion that their mean-squared average is small. One should,

therefore, use hpri ¼ 0, which leads to a solution that is a column of RG, not RF.

So far, our discussion has been limited to the special case of hpri ¼ 0. We now relax that

condition (Kalscheuer 2008; Kalscheuer et al. 2010), but still require that the prior

information is complete (as above), so that it implies a specific model,

mH ¼ HTC�1
h H

� ��1
HTC�1

h hpri. We now use the prior model mH as a reference model,

defining the deviation of a given model from it as Dm ¼ m�mH. The GLS solution can

be rewritten in terms of this deviation:

Dmest¼mest�mH¼A�1 GTC�1
d dobsþHTC�1

h hpri
� �

�mH

¼A�1 GTC�1
d dobsþHTC�1

h hpri
� �

�A�1AmH

¼A�1 GTC�1
d dobsþHTC�1

h hpri�AmH
� �

¼A�1 GTC�1
d dobsþHTC�1

h hpri�GTC�1
d GmH�HTC�1

h H HTC�1
h H

� ��1
HTC�1

h hpri
� �

¼A�1 GTC�1
d dobsþHTC�1

h hpri�GTC�1
d GmH�HTC�1

h hpri
� �

¼G�g dobs�GmH
� �

¼G�g dobs�dH
� �

ð3:4:5Þ

Thus, the deviation of the model from mH depends only on the deviation of the data

from those predicted by mH:

Dm ¼ G�gDd with Dm ¼ m�mH and Dd ¼ d� dH ð3:4:6Þ

and furthermore

GDm ¼ Dd since GDm ¼ G m�mH
� �

¼ Gm�GmH ¼ d� dH ¼ Dd ð3:4:7Þ

Once again, we can combine Ddpre ¼ GDmass with Dmrec ¼ G�gDdpre into the usual

statement about resolution,

Dmrec ¼ RGDmass with RG ¼ G�gG ð3:4:8Þ

In this case, too, RG is the correct choice for quantifying resolution. However, the

quantity being resolved is the deviation of the model from the reference model, mH, and

not the model itself. The distinction, while of minor significance in cases where mH has a

simple shape, is more important when mH is complicated.

3.5 Linearized GLS

In many cases, the relationship between data and model is nonlinear:

di ¼ gi mð Þ þ ni ð3:5:1Þ

10 Surv Geophys (2015) 36:1–25

123



Here, n represents observational noise. This equation can be compared to the linear case in

(2.1.1). A common approach is to use Taylor’s theorem to linearize this equation about a

trial solution mðpÞ:

di ¼ g mðpÞ
� �

þ
X

j

ogi

omj


m pð Þ

mj � m
ðpÞ
j

� �
þ ni or ddðpÞ ¼ GðpÞdmþ n

with

ddðpÞ ¼ d� g mðpÞ
� �

and dmðpÞ ¼ m�mðpÞ and GðpÞ
h i

ij
¼ ogi

omj


m pð Þ

ð3:5:2Þ

Here, dm is the perturbation of the model parameters from the trial solution mðpÞ, and

dd is the perturbation of the data from those predicted by the trial solution. This approach

leads to a standard linear equation of the form dd ¼ GðpÞdm. We now need to combine this

equation with prior information. We first write the prior information equation, Hm ¼ h
(Sect. 3.1) in terms of perturbations:

Hm ¼ h becomes H m pð Þ þ dmðpÞ
� �

¼ h becomes HdmðpÞ ¼ h�Hm pð Þ ð3:5:3Þ

The GLS Eq. (3.2.2) then becomes:

FðpÞdmðpÞ ¼ f pð Þwith

F pð Þ ¼ C
�1=2
d G pð Þ

C
�1=2
h H

" #

and fðpÞ ¼ C
�1=2
d ddðpÞ

C
�1=2
h dh pð Þ

" #

and ddðpÞ ¼ dobs � g m pð Þ
� �

and dhðpÞ ¼ hpri �Hm pð Þ ð3:5:4Þ

Note that the quantity dhðpÞ represents the perturbation of the prior information from

that predicted by the trial model. An initial solution mð0Þ can be iterated to produce a

sequence of solutions, m 1ð Þ ¼ mð0Þ þ dmð0Þ;mð2Þ ¼ mð1Þ þ dmð1Þ � � �, which under favor-

able circumstances will converge to the solution, mest, that minimizes the generalized error

UGLS.

After any iteration, the covariance of dmðpÞ can be calculated as Cm ¼ FðpÞTFðpÞ
� ��1

(see 3.3.1). Since m pþ1ð Þ ¼ mðpÞ þ dmðpÞ and mðpÞ is a constant, it is also the covariance of

m pþ1ð Þ. Its value after the final iteration can be used as an estimate of the covariance of

mest. However, this estimate must be used cautiously because it is based on a linear

approximation.

The issue of resolution is treated exactly parallel to its handling in the linear problem. The

linearized Eq. (3.5.4) has exactly the same form as the original linear version (3.2.2), except

that m is replaced with dmðpÞ, dobs is replaced with ddðpÞ and hpri is replaced with dhðpÞ.
Therefore, we can arrive at the proper formula for resolution by making these sub-

stitutions in the results of the original linear derivation. In analogy to the linear case, we

define quantities:

dmHðpÞ ¼ HTC�1
h H

� ��1
HTC�1

h dhðpÞ ¼ mH �m pð Þ and ddHðpÞ ¼ GðpÞdmHðpÞ ð3:5:5Þ
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The first equation represents the perturbation of the prior model from the trial model.

The second equation represents the data perturbation predicted by that model perturbation.

In further analogy to the linear case, we define the deviations:

DdmðpÞ ¼ dmðpÞ � dmHðpÞ and DddðpÞ ¼ ddðpÞ � ddHðpÞ ð3:5:6Þ

As in the linear case (3.4.7), DdmðpÞ is predicted from DddðpÞ via a generalized inverse

analogous to (3.2.4):

DdmðpÞ ¼ GðpÞ
h i�g

DddðpÞ with

GðpÞ
h i�g

¼ G pð ÞTC�1
d G pð Þ þHTC�1

h H
h i�1

G pð ÞTC�1
d

ð3:5:7Þ

We can then define a resolution matrix:

RGðpÞ ¼ GðpÞ
h i�g

G pð Þ that satisfies DdmðpÞ
� �rec

¼ RGðpÞ DdmðpÞ
� �ass

ð3:5:8Þ

This resolution matrix is exactly analogous to the linear case (3.4.8); one merely sub-

stitutes the linearized data kernel GðpÞ for the usual and linear data kernel, G. Superficially,

the quantity being resolved looks complicated—the deviation between two perturbations.

However, closer examination reveals:

DdmðpÞ ¼ dmðpÞ � dmHðpÞ ¼ m�mðpÞ
� �

� mH �m pð Þ
� �

¼ m�mH ð3:5:9Þ

This is the same quantity as in the linear case (3.4.6), that is, the deviation of the model

from the prior model.

3.6 Symmetric Resolution in the Special Case of Convolutions

Let us consider the special case where m represents the discrete version of a continuous

function m(x) and where G and H represent convolutions (Bracewell 1986; Claerbout

1976; see also Menke and Menke 2011). That is, Gm is the discrete version of

G tð Þ � m tð Þ, where * is the convolution operator. Furthermore, let us assume that the data

and prior information are uncorrelated and with uniform variances, Cd ¼ r2
dI and

Ch ¼ r2
hI. Convolutions commute; that is, G tð Þ � H tð Þ ¼ H tð Þ � G tð Þ. Consequently, the

corresponding matrices will commute as well (except possibly for ‘‘edge effects’’); that is,

GH ¼ HG. Furthermore, the transpose of a convolution matrix is itself a convolution—

namely the original convolution backward in time; that is, HT ! H �tð Þ. These properties

imply that the resolution matrix:

RG ¼ G�gG ¼ A�1GTr�2
d G ð3:6:1Þ

is symmetric, since:
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RG¼? RG
� �T� A�1GTr�2

d G¼? GTr�2
d GA�1 � GT GA¼? AGTG �

GTG r�2
d GTGþ r�2

h HTH
� �

¼? r�2
d GTGþ r�2

h HTH
� �

GTG �

r�2
h GTGHTH¼? r�2

h HTHGTG � HTHGTG ¼ HTHGTG

ð3:6:2Þ

4 Computational Efficiencies

4.1 Calculating the Generalized Least Squares Solution

In practice, the matrix inverse A�1 ¼ FT F
� ��1

is not needed when computing an estimate

of the model parameters from data; instead, once solves the linear system:

FTF
� �

mest ¼ FTfobs ð4:1:1Þ

Furthermore, when the biconjugate gradient solver (Press et al. 2007) is used, the matrix

A ¼ FTF ¼ GTC�1
d GþHTC�1

h H needs never to be explicitly calculated, since it is only

used by the solver to multiply a known vector, say v (Menke 2005). This product can be

written as:

Av ¼ ATv ¼ GT C�1
d Gvð Þ

� �
þHT C�1

h Hvð Þ
� �

; ð4:1:2Þ

that is, each intermediate result is a vector, not a matrix. This technique can lead to

substantial efficiencies in speed and memory requirements, especially when the matrices

are very large but sparse. The exemplary MATLAB code, below, calculates the solution

mest, assuming that Cd and Ch are diagonal matrices with main diagonals vard and varh.

ð4:1:3Þ

Here, @glsfcn is a handle to a function glsfcn that implements the multiplication

shown in (4.1.2). Note that this function accesses the matrices G and H and the vectors vard

and varh through their having been declared global variables in the main program.

ð4:1:4Þ
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4.2 Linearized GLS

Exemplary MATLAB code for the key part of the linearized inverse problem is shown

below:

ð4:2:1Þ

Here, g(m_p) and dgdm(m_p) are two user-supplied functions that return g m pð Þ� �

and G m pð Þ� �
, respectively. The maximum number of iterations is set here to 10, and the

loop terminates early if the fractional change in the solution, from one iteration to the next,

drops below 1 9 10-5. These limits may need to be modified (by trial and error) to reflect

the convergence properties of the actual problem being solved.

4.3 Calculating the k-th Row (or Column) of A�1

Note that the equation:

AA�1 ¼ I or
X

j

AijA
�1
jk ¼ dik ð4:3:1Þ

can be read as a sequence of vector equations:

AvðkÞ ¼ sðkÞwith vðkjÞ
h i

i
¼ A�1
� �

ik
and sðkÞ

h i

i
¼ dik ð4:3:2Þ
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That is, vðkÞ is the k-th column of A�1 and sðkÞ is the corresponding column of the

identity matrix. Hence, we can solve for the k-th column of A�1 by solving the system

AvðkÞ ¼ sðkÞ. As in the previous section, the biconjugate gradient solver can be used to

solve this system very efficiently. Finally, note that since A�1 is symmetric, its k-th row is

vðkÞT. The exemplary MATLAB code, below, calculates the vk, assuming (as before) that

Cd and Ch are diagonal matrices with main diagonals vard and varh.

ð4:3:3Þ

4.4 Calculating the k-th Row or Column of Cm

In some instances, it is sufficient to compute a few representative elements of Cm, as

contrasted to the complete matrix. The results of the last section can be used directly, since

Cm ¼ A�1. Exemplary MATLAB code for calculating the 95 % confidence intervals of

model parameter mj of the data is shown below:

ð4:4:1Þ

4.5 Calculating the k-th Row of the Generalized Inverse

Notice that:

G�g ¼ A�1GTC�1
d or G�g½ �kj¼

X

i

A�1
ki GTC�1

d

� �
ij

ð4:5:1Þ

Hence, the k-th row of the generalized inverse G�g and equals the k-th row of A�1

dotted into GTC�1
d

� �
. We can construct the k-th row of the generalized inverse after using

Surv Geophys (2015) 36:1–25 15
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the method of the previous section to calculate the k-th row of A�1. In many cases, Cd is a

diagonal matrix, which substantially simplifies the process of computing GTC�1
d

� �
:

GTC�1

d~

h i

jk
¼
X

i

Gijr
�2
di

dik ¼ Gkjr
�2
dk

ð4:5:2Þ

Exemplary MATLAB code is shown below:

ð4:5:3Þ

4.6 Calculating the k-th Row of the Resolution Matrix

In some instances, it is sufficient to compute a few representative rows of RG, as contrasted

to the complete matrix. The resolution matrix is formed from the generalized inverse and

data kernel through:

RG ¼ G�gG or RG
kj ¼

X

i

G
�g
ki Gij ð4:6:1Þ

Thus, the k-th row of the resolution matrix is the k-th row of the generalized inverse

dotted into the data kernel. We can construct the k-th row of the resolution matrix after

using the method of the previous section to calculate the k-th row of the generalized

inverse.

Exemplary MATLAB code is shown below:

ð4:6:2Þ

4.7 Calculating the k-th Column of the Resolution Matrix.

Let us define the k-th column of the resolution matrix as the vector rðkÞ; that is,

r
ðkÞ
i ¼ RG

ik ð4:7:1Þ

Then, notice that the definition RG ¼ G�gG can be written as

RG ¼ G�gGI or r
ðkÞ
i ¼ RG

ik ¼
X

p

G
�g
ip

X

q

Gpqdqk ¼
X

p

G�g
pq dðkÞq

where dðkÞq ¼
X

q

Gpqdqk ¼
X

q

GpqsðkÞp

ð4:7:2Þ

As before, sðkÞ is the k-th column of the identity matrix. The quantity dðkÞ ¼ GsðkÞ is the

data predicted by a set of model parameters mtrueðkÞ ¼ sðkÞ that are all zero, except for the k-

th, which is unity. Thus, the two-step process:
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dðkÞ ¼ GsðkÞ and rðkÞ ¼ G�gdðkÞ ð4:7:3Þ

forms the k-th column of the resolution matrix. In practice, the linear system ArðkÞ ¼
GTC�1

d dðkÞ is solved (e.g., with a biconjugate gradients solver) instead of the equation

containing the generalized inverse. Exemplary MATLAB code is shown below:

ð4:7:4Þ

5 Minimum Curvature Splines as an Illustrative Example

5.1 Statement of the Problem

Let model parameters m and data d represent discrete version of continuous functions m(x)

and d(x), say with spacing Dx. We would like to find model parameters that are approx-

imately equal to the data [that is, m(x) & d(x)], but which are smoother (that is, have

smaller second derivative). This is, of course, a data interpolation problem, and in that

context, its solution would be called a minimum curvature spline (Schoenberg 1946;

Briggs 1974; Smith and Wessel 1990).

Since the model parameters are direct estimates of the data, we set G ¼ I. Smoothing is

achieved by setting h0 ¼ 0 and H0 to the second-derivative operator, with rows like:

Dxð Þ�2
0 � � � 0 1 �2 1 0 � � � 0½ � ð5:1:1Þ

Thus, H0m 	 0 for a smooth function. The data d are uncorrelated with unit variance,

rd
2 = 1, and the prior information h0 ¼ 0 is uncorrelated with uniform variance, rh

2. The

degree of smoothing increases with c2 = rd
2/rh

2, that is, as the variance of the prior

information of smoothness is decreased.

5.2 GLS Solution

Since h0 ¼ 0, the solution has the form mest ¼ G�gdobs. The generalized inverse G�g is:

G�g ¼ A�1r�2
d with A ¼ r�2

d Iþ r�2
h HT

0 H0 þ e2I
� �

Surv Geophys (2015) 36:1–25 17
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or

G�g ¼ B�1 with B ¼ r2
dA ¼ ð1þ e2r2

dÞI þ c2HT
0 H0

� �
ð5:2:1Þ

The model mH implied by the prior information alone can be deduced directly, because

it corresponds to the smallest model with zero second derivative. The condition of a zero

second derivative implies that mH is linear, and the condition that mH is small selects the

linear function mH ¼ 0. Hence, we do not need to distinguish between m and Dm and will

continue to use m. Having resolved this issue, we can set e2 ¼ 0 without affecting sub-

sequent results. The variance of the model parameters is:

Cm ¼ A�1 ¼ r2
dB�1 ð5:2:2Þ

and the resolution matrix is:

RG ¼ G�gG ¼ B�1 ð5:2:3Þ

Note that RG ¼ I (perfect resolution) when c2 = 0. Furthermore, RG is symmetric,

since B is symmetric.

5.3 Numerical Example

We used MATLAB to solve the exemplary smoothing problem, using synthetic data

consisting of a sinusoidal function m(x) with additive normally distributed noise (Figs. 1,

2, 3). The example shown here is for N = M = 101, which executes in 0.45 s on a

notebook computer with a 2.5-GHz Intel Core i5-3210 M CPU. Test runs for

N = M = 5,001 (not shown) were also successful and executed in a few minutes. The

MATLAB code for this example is provided as supplementary material.

5.4 Analytic Analysis for Weak Smoothing

In most practical cases, a purely numerical solution to a GLS problem would be sufficient.

However, many inverse problems (such as this one) have a sufficiently simple structure

that analytic analysis adds important insights. Furthermore, it provides a reference against

which the numerical results can be compared.

We first consider the case where the smoothness constraint is weak (c2 � 1). We can

expand the matrix B�1 in a Taylor series (e.g., Menke and Abbott 1989, Exercise 2.1),

keeping only the first two terms:

B�1 ¼ G�g ¼ RG ¼ r�2
d Cm ¼ ½Iþ c2HT

0 H0��1 	 I� c2HT
0 H0 ð5:4:1Þ

A row of B�1 looks like:

0 � � � 0 � cDxð Þ�2
4 cDxð Þ�2

1� 6 cDxð Þ�2
� �

4 cDxð Þ�2 � cDxð Þ�2
0 � � � 0

h i

ð5:4:2Þ

In the absence of the smoothness information (c2 = 0), B�1 = I, implying that esti-

mated model parameters are uncorrelated and with uniform variance rd
2 and that the

resolution is perfect. As the strength of smoothness information is increased, the magnitude
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Fig. 1 (Top) Numerical test of
the exemplary smoothing
problem discussed in the text, for
c = 0.05. The observed data
(black circles) and estimated
model parameters (red curve),
with selected 95 % confidence
intervals (blue bars), are shown.
(Bottom) Similar example, but
for c = 0.005. Note that the
smaller c implies that less weight
is given to the prior information
of smoothness, leading to a
rougher curve. The confidence
intervals are also wider, a
manifestation of the trade-off of
resolution and variance
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Fig. 2 Resolution of the
exemplary smoothing problem
discussed in the text. Selected

rows of the resolution matrix RG

for the case c = 0.05. Rows
(black) are calculated
individually, according to the
method described in the text. In
this example, the resolution
matrix is symmetric, so
transposed columns, computed
individually using the method
described in the text, are also
plotted (green). Results from the
continuum limit, where the
inverse problem is converted into
a differential equation, are also
shown (red). As expected, all
curves agree
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of the central value decreases and the nearest neighbor values become positive. For

example, when cDxð Þ�2¼ 0:01, a row of B�1 looks like:

0 � � � 0 �0:01 0:04 0:94 0:04 �0:01 0 � � � 0½ � ð5:4:3Þ

The smoothing has caused the variance of each model parameter (the central value) to

decrease from rd
2 to 0.94rd

2. However, the smoothing has also created covariance between

model parameters, which decreases with separation. The smoothing has also caused the

spread of the resolution to increase. However, although the row-sum is unity, the outermost

nonzero values are negative, indicating that the smoothing cannot be interpreted as a

weighted average in the normal sense.

5.5 Resolution in the Continuum Limit

Suppose, as before, the vector sðkÞ represents the k-th column of the identity matrix (say a

column k corresponding to position xk). The equation gðkÞ ¼ G�gsðkÞ can be understood

both as the k-th column of the generalized inverse and as the data predicted by a model that

is a single spike at position xk. We have:

gðkÞ ¼ G�gsðkÞ ¼ B�1sðkÞ ¼ ½Iþ c2HT
0 H��1sðkÞ ð5:5:1Þ

Moving the matrix inverse to the l.h.s. of the equation yields:

re
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Fig. 3 Same as Fig. 2, but for
c = 0.005. Results for the
smaller c have the smaller spread
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c2HT
0 H0gðkÞ þ gðkÞ ¼ sðkÞ ð5:5:2Þ

The second-derivative matrix H0 is symmetric, so that HT
0 H0 ¼ H0H0; that is, a second-

derivative operator applied twice to yield the fourth-derivative operator. Except for the first

and last row, where edge effects are important, the matrix equation is the discrete analog to

the differential equation:

c2 d4gðkÞ

dx4
þ gðkÞðxÞ ¼ Dxdðx� xkÞ ð5:5:3Þ

The factor of Dx has been added so that the area under Dxdðx� xkÞ is the same as the

area under sðkÞ. This well-known differential equation has solution (Hetenyi 1979; see also

Menke and Abbott 1989; Smith and Wessel 1990):

gðkÞðxÞ ¼ V exp � x� xkj j=að Þ cos x� xkj j=að Þ þ sin x� xkj j=að Þf g ð5:5:4Þ

with

V ¼ Dxa3

8c2
and a ¼ 2cð Þ1=2 ð5:5:5Þ

This differential equation arises in a civil engineering context, where it is used to

describe the deflection g(k)(x) of a elastic beam of flexural rigidity c2 floating on a fluid

foundation, due to a point load at xk (Hetenyi 1979). The beam will take on a shape that

exactly mimics the load only in the case when it has no rigidity; that is, c2 = 0. For any

finite rigidity, the beam will take on a shape that is a smoothed version of the load, where

the amount of smoothing increases with c2. In our example, the model is analogous to the

deflection of the beam and the data to the load; that is, the data are smoothed to produce the

model. The parameter a = (2c)1/2 gives the scale length over which the smoothing occurs.

The function g(k)(x) is analogous to the k-th row of the generalized inverse, so its (k, j)

element is just the function evaluated at the x-position corresponding to the j-th position,

or:

G
�g
kj ¼ gðkÞðxjÞ ¼ V exp � xj � xk

 =a
� �

cos xj � xk

 =a
� �

þ sin xj � xk

 =a
� �	 


Since, in this example, Cm ¼ r2
dG�g and RG ¼ G�g, we have found expressions for the

covariance and resolution, as well. The variance of an estimated model parameter is

r2
m ¼ r2

dV ¼ r2
dDx 8cð Þ�1=2

. Note that the variance of a model parameter declines as the

smoothing is increased, but the number of highly correlated neighboring model parameters

increases, being proportional to a=Dx ¼ 2cð Þ1=2=Dx. Owing to the trigonometric functions,

RG has negative (but small) side lobes. Note that the resolution matrix RG is symmetric—a

result guaranteed by the fact that both G and H0 correspond to convolutions. The spread of

the resolution is proportional to a = (2c)1/2, a measure of width of the main diagonal of RG.

The size of covariance r2
dDx 8cð Þ�1=2

and the spread of resolution (2c)1/2 define a trade-

off curve in the tunable parameter c. When c is small, the spread is small (good), but the

variance is large (bad). When c is large, the spread is large (bad), but the variance is small

(good). While size of covariance and spread of resolution cannot be controlled indepen-

dently, the parameter c can be chosen to fix the best combination that is optimum for a

given purpose.
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6 Spin-offs of Generalized Least Squares

The GLS method remains one of the most useful and versatile techniques of data analysis,

yet at the same time one that spawned a host of alternatives methodologies, some of which

currently have only niche applications, while others are being more widely applied. In

aggregate, they represent an evolving mindset regarding how data analysis problems are

approached. We review some of these developments briefly here.

6.1 Sparsity

Prior information of the sparseness of the solution, meaning that all but a few of mi’s are

zero, is finding broad application (Candes et al. 2008). However, implementing the idea of

sparsity requires a modification to the GLS method. Consider the generalized error in

(3.2.1) in the special case of H ¼ I, hpri ¼ 0 and C�1
h ¼ kI:

UGLS ¼ dobs �Gm
� �T

C�1
d dobs �Gm
� �

þ k
XM

i¼1

m2
i ð6:1:1Þ

The minimization of this generalized error selects for smallness (meaning that most mi’s

have small amplitude) but not for sparseness. However, the modified error:

U0 ¼ dobs �Gm
� �T

C�1
d dobs �Gm
� �

þ k
XM

i¼1

P mið Þ ð6:1:2Þ

will select for sparseness when the function P is defined as returning zero when mi = 0 and

unity otherwise. In other words, the summation is just a count of the number of nonzero

model parameters. Unfortunately, the only currently known technique for minimizing U0

involves an exhaustive search through all 2M possible combinations of nonzero mi’s, which is

practical only when M is very small (see Menke and Levin 2003, for an example, involving

seismic anisotropy). A better-behaved approximation to (6.1.2) is (Figueiredo et al. 2007):

U1 ¼ dobs �Gm
� �T

C�1
d dobs �Gm
� �

þ k
XM

i¼1

mij j ð6:1:3Þ

The function P(mi) in (6.1.2) is constant for increasing mi, whereas the function mi
2 in

(6.1.1) increases very rapidly with it. The function |mi| in (6.1.3) has an intermediate

behavior; it grows only slowly with mi. Thus, |mi| can be used as an approximation—or

proxy—for P mið Þ. Its use allows the minimization problem (6.1.3) to be recast as a more

tractable linear programming problem (Cuer and Bayer 1980; Boyd and Vandenberghe

2004), for which solution methods are widely available. We will discuss an important

application of sparse solutions in the next section.

6.2 Over-Parameterization and Basis Pursuit

Consider a continuous model parameter m(x) that has been parameterized as a time series

m; that is, by its values at M equally spaced values of x. Other parameterizations are

possible; m(x) can also be represented by a Fourier series (say, with coefficients mð1Þ), by

orthogonal polynomials (say, with coefficients mð2Þ), by overlapping step functions (say,

with coefficients mð3Þ) and in many other ways. In each case, we can write down a linear
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relationship between the coefficients of a particular parameterization (say the k-th

parameterization) and the time series:

m ¼ DðkÞmðkÞ ð6:2:1Þ

The matrix DðkÞ can be thought of as a dictionary of the component shapes (or basis

functions) in the k-th parameterization. Each of its columns gives the pattern of one shape

as a function of x. The data Eq. (2.1.1) then become:

d ¼ Gm becomes d ¼ GDðkÞ
h i

mðkÞ ¼ GðkÞmðkÞ ð6:2:2Þ

Here, GðkÞ is an abbreviation for GDðkÞ.
The choice of parameterization has long been an important subject in least squares

theory. Traditionally, models have been either even-parameterized (able to uniquely rep-

resent any possible m) or under-parameterized (able to represent only a subset of possible

m’s). Under-parameterizations are used both to reduce computational burden and to

impose prior information (e.g., impose smoothness by omitting high-wavenumber coeffi-

cients from a Fourier parameterization). However, recent work has demonstrated that over-

parameterizations have extremely important uses, as well.

An over-parameterization can be assembled by combining several even-parameteriza-

tions. Suppose, for example, that k = 1 represents a Fourier parameterization and that

k = 2 represents a step function parameterization. Then, a new parameterization m�, with

a M* = 2 M coefficients, is:

m� ¼ m 1ð Þ

m 2ð Þ

� �
implying D� ¼ D 1ð Þ D 2ð Þ� �

and G� ¼ GD� ð6:2:3Þ

Superficially, the redundancy of an over-parameterization would appear to be a dis-

advantage. It adds more model parameters without increasing the ability of the parame-

terization to represent the model. However, it can be quite useful when the choice of basis

functions is guided by prior information about the character of m. For instance, suppose

one believes that m should consist of the superposition of a single sinusoid and a single-

step function. The m� parameterization requires just two nonzero coefficients, whereas

either the m 1ð Þ and m 2ð Þ, used individually, require M. The problem of finding a sparse

solution to an over-parameterized model, which is associated with the phrase basis pursuit

(Chen et al. 1998), connects the ideas of sparseness developed in Sect. 6.1 with those of

pattern detection. Note that the parameter k in:

U1 ¼ dobs �G�m�
� �T

C�1
d dobs �G�m�
� �

þ c
XM�

i¼1

m�i
  ð6:1:3Þ

controls the relative weight given to prediction error and sparseness. Applications of the

technique include detecting sharp boundaries in tomographic images (Gholami and Siah-

koohi 2010) and estimating compact earthquake slip patterns (Evans and Meade 2012).

7 Conclusions

Generalized least squares has proven to be an extremely powerful tool for solving inverse

problems, that is, for gaining knowledge about the world. The concepts of resolution and
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variance, so useful for understanding the behavior of inverse problems in general, are

applicable to GLS, but with some caveats. Resolution is computed via the usual formula;

however, the quantity that is being resolved is not the model itself (as it is in simpler

inverse problems), but its deviation from the prior model; that is, the model implied by the

prior information. This is true irrespective of whether the problem is exactly linear or

approximately linearized. The formula for covariance contains a term not present in the

simple least squares case, which is proportional to the uncertainty of the prior information.

Thus, the covariance of the model depends on both the covariance of the data and the

covariance of the prior information. Although both formulas superficially require large

matrices to be inverted, the calculations can be organized to allow individual rows and

columns of both to be computed without the need for matrix inversion. In practice, a few

representative rows are usually all that is needed, for it is impractical to completely analyze

very large matrices, anyway.
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