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Abstract
Gromov introduced two distance functions, the box distance and the observable distance, on
the space of isomorphism classes of metric measure spaces and developed the convergence
theory of metric measure spaces. We investigate several topological properties on the space
equipped with these distance functions toward a deep understanding of convergence theory.
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1 Introduction

The study of convergence of metric measure spaces is one of central topics in geometric
analysis on metric measure spaces. This study originates in that of Gromov-Hausdorff con-
vergence/collapsing of Riemannianmanifolds, which has widely been developed and applied
to solutions to many significant problems in geometry and topology.

Gromov introduced two fundamental concepts of distance functions, thebox distance func-
tion� and the observable distance function dconc, on the set, sayX , of isomorphism classes of
metric measure spaces and developed his distinctive theory in [[11], Chapter 3. 12+]. The box
distance function is simpler and is close to ametrization ofmeasuredGromov-Hausdorff con-
vergence. Besides, this distance is equivalent to the Gromov-Prokhorov distance introduced
byGreven-Pfaffelhuber-Winter [9] (see [20]). The topology and the convergence notion given
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by these distance functions are widely used as in [10, 27]. On the other hand, the observable
distance function induces a very characteristic topology, called the concentration topology,
based on the concentration of measure phenomenon due to Lévy [19] and Milman [22] (see
also [18]). The concentration topology is effective to capture the high-dimensional aspects
of spaces and admits the convergence of many sequences whose dimensions are unbounded.
The study of the concentration topology has been growing in recent years.

We focus on the topological aspects of the space X with respect to these distance func-
tions � and dconc. The concentration topology is coarser than the topology induced by the
box distance, which is called the box topology simply in this paper. As fundamental prop-
erties, it is known that the space (X ,�) is separable, complete, and non-compact and that
(X , dconc) is also separable but is not complete. However, other topological properties have
not yet been studied. In this paper, we investigate several topological properties toward a
deep understanding of the convergence theory.

Moreover, Gromov also introduced a natural compactification, denoted by �, of X with
respect to the concentration topology at the same time, which is one of powerful tools to study
the concentration topology. The topology of this compactification is called theweak topology
and each element of � is called a pyramid (this name comes from its definition). The space
� of pyramids is interested in itself because this contains many infinite-dimensional objects,
for example, the (virtual) infinite-dimensional Gaussian space. We also investigate the weak
topology on �. Not only � is compact, but it also has already known that � is metrizable
by the third author [26].

Around compactness

We study some properties of X around compactness. The space X is globally non-compact
with respect to both topologies, but it is also locally non-compact.

Theorem 1.1 Any metric measure space has no compact neighborhood with respect to both
the box and concentration topologies. In particular, X is not locally compact in either topol-
ogy.

For the box topology, Theorem 1.1 implies the following fact as a corollary since (X ,�)

is Polish and hence is a Baire space through the Baire category theorem. Here, a topological
space is called a Baire space if any countable union of nowhere dense closed subsets has no
interior.

Corollary 1.2 For the box topology, X is not σ -compact.

On the other hand, since (X , dconc) is incomplete, for the concentration topology, the above
argument is not applied. Actually, we obtain the new fact that the concentration topology is
non-Baire.

Theorem 1.3 For the concentration topology, X is not a Baire space. In particular, X is not
completely metrizable.

In [[1], Question 9.1], it is asked if the Gromov-Hausdorff space is homeomorphic to the
space l2. The answer of the analogous question to (X , dconc) is negative because l2 is a Baire
space.
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Around connectivity

We next study some properties of X and � around connectivity. The following theorem is
very clear as a global property.

Theorem 1.4 For both the box and concentration topologies,X is contractible. Moreover,�
is contractible in the weak topology. In particular, all of them are path connected and simply
connected.

This theorem is proved by constructing explicit deformation retractions. On the other
hand, local properties are unclear and difficult to prove. For the box topology, we obtain a
geodesic between two metric measure spaces with respect to the metric �. This is one of the
most important results in this paper.

Theorem 1.5 For the box distance function,X is a geodesic space. In particular,X is locally
path connected in the box topology.

The existence of geodesics is important and useful geometrically not only topologically.
Moreover, we prove that any two distinct spaces have uncountably many geodesics between
them with respect to the box distance function (see Theorem 6.4). Therefore any geodesic
branches everywhere and the Alexandrov curvature ofX is not bounded from below nor from
above with respect to the box distance function. For the concentration and weak topologies, it
is difficult to obtain a geodesic at present, but it is possible to show the local path connectivity.
Here, a topological space is said to be locally path connected if each point has a neighborhood
basis consisting of path connected sets.

Theorem 1.6 Both X with the concentration topology and � with the weak topology are
locally path connected.

As a consequence of the above discussion, we also obtain the following characteristic
corollary for the weak topology.

Corollary 1.7 For the weak topology, � is a Peano space. Namely, � is a continuous image
of the unit interval.

The topological properties of X and � are summarized in the table below (see Table 1).

Revisit the weak topology on5

As an application of our results, we give a reinterpretation of the weak topology using the
theory of hyperspace. Here, a topological space consisting of (closed) subsets of a topological
space X is called a hyperspace over X . A pyramid in � is originally defined as a (�-closed)
subset of X satisfying certain conditions. Therefore, it is very natural to focus on the relation
with the hyperspace. See Sect. 8 for more details below.

Let X be a Hausdorff space and let F(X) be the set of all closed subsets of X . The
Kuratowski-Painlevé convergence and the Fell topology on F(X) is well-studied. The
Kuratowski-Painlevé convergence is topological if and only if X is locally compact. Here, a
convergence is topological provided that there exists a topology achieving it. Moreover, in
this case, the Fell topology achieves the Kuratowski-Painlevé convergence actually.

We now consider the space F(X ,�). By Theorem 1.1, the underlying space (X ,�)

is not locally compact, so that the Kuratowski-Painlevé convergence is not topological in
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Table 1 Summary of topological
properties

(X ,�) (X , dconc) (�, ρ)

Compact No No Yes

Separable Yes Yes Yes

Complete† Yes No Yes

Locally compact No∗ No∗ Yes

σ -Compact No∗ Unknown Yes

Baire space Yes No∗ Yes

Polish Yes No∗ Yes

(Globally) Contractible Yes∗ Yes∗ Yes∗
Locally path connected Yes∗ Yes∗ Yes∗

Geodesic space† Yes∗ Unknown Unknown

∗ indicates our new results in this paper
† indicates geometric properties with respect to the standard metrics

this case. However, the finest topology whose convergence is weaker than the Kuratowski-
Painlevé convergence always exists. This topology, write τK, is called the topologization of
the Kuratowski-Painlevé convergence. It follows from the general theory of hyperspace that
the hyperspace (F(X ,�), τK) is compact, T1, and sequential (in particular, it is sequentially
compact). Note that τK is strictly finer than the Fell topology.We have the new interpretation
that the space � is a subspace of the compact hyperspace (F(X ,�), τK).

Theorem 1.8 The inclusion map� � P �→ P ∈ (F(X ,�), τK) is a topological embedding
map.

This shows that the weak topology on � is a natural compact topology induced from the
hyperspace F(X ,�).

This paper is organized as follows. In Sect. 2, we describe some definitions and prepare
some fundamental tools. A reader who is familiar with them can safely skip this section.
In Sect. 3, we prove Theorem 1.1 and Corollary 1.2. A key technique is to make metric
measure spaces near a given space by the l p-product. In Sect. 4, we prove Theorem 1.3 and
some related properties. A key tool is the box distance from the one-point space which is
an invariant on X . In Sect. 5, we prove Theorem 1.4 by constructing explicit deformation
retractions via the metric transformation. In Sect. 6, we prove Theorem 1.5. We will show
that a midpoint between two spaces is given by the limit of the sequence of explicit spaces. In
Sect. 7, we prove Theorem 1.6 and Corollary 1.7. For the concentration and weak topologies,
it is possible to create a good continuous path in a small ball instead of geodesics. In Sect. 8,we
prove Theorem 1.8 and describe the relation between the weak topology and the hyperspace
theory.

Following this paper, we also study the scale-change action on the space of metric mea-
sure spaces equipped with the box and concentration topologies in [16]. In [16], we have
discovered the following surprising facts.

• X is not homeomorphic to a cone over the quotient space of the scale-change action.
• This action induces a nontrivial and locally trivial principal bundle structure on X \ {∗},

where ∗ is a one-point metric measure space which is only one fixed point.

Moreover, a similar statement has been obtained for the space � of pyramids.

123



Geometriae Dedicata (2024) 218 :68 Page 5 of 28 68

2 Preliminaries

In this section, we describe the definitions and some properties of metric measure space, the
box distance, the observable distance, pyramid, and the weak topology. We use most of these
notions along [26]. As for more details, we refer to [26] and [[11], Chapter 3 1

2+].

2.1 Metric measure spaces

Let (X , dX ) be a complete separable metric space and μX a Borel probability measure on
X . We call the triple (X , dX , μX ) a metric measure space, or an mm-space for short. We
sometimes say that X is an mm-space, in which case the metric and the measure of X are
respectively indicated by dX and μX .

Definition 2.1 (mm-Isomorphism) Two mm-spaces X and Y are said to be mm-isomorphic
to each other if there exists an isometry f : suppμX → suppμY such that f∗μX = μY ,
where f∗μX is the push-forward measure of μX by f . Such an isometry f is called an
mm-isomorphism. Denote by X the set of mm-isomorphism classes of mm-spaces.

Note that an mm-space X is mm-isomorphic to (suppμX , dX , μX ). We assume that an
mm-space X satisfies

X = suppμX

unless otherwise stated.We denote by ∗ the one-point mm-space with trivial metric and Dirac
measure.

Definition 2.2 (Lipschitz order) Let X and Y be two mm-spaces. We say that X (Lipschitz)
dominates Y and write Y ≺ X if there exists a 1-Lipschitz map f : X → Y satisfying
f∗μX = μY . We call the relation ≺ on X the Lipschitz order.

The Lipschitz order ≺ is a partial order relation on X .

2.2 Box distance and observable distance

For a subset A of a metric space (X , dX ) and for a real number r > 0, we set

Ur (A) := {x ∈ X | dX (x, A) < r},
where dX (x, A) := infa∈A dX (x, a).

Definition 2.3 (Prokhorov distance) The Prokhorov distance dP(μ, ν) between two Borel
probability measures μ and ν on a metric space X is defined to be the infimum of ε > 0
satisfying

μ(Uε(A)) ≥ ν(A) − ε

for any Borel subset A ⊂ X .

The Prokhorov metric dP is a metrization of the weak convergence of Borel probability
measures on X provided that X is a separable metric space.
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Definition 2.4 (Ky Fan metric) Let (X , μ) be a measure space and (Y , dY ) a metric space.
For two μ-measurable maps f , g : X → Y , we define dμ

KF( f , g) to be the infimum of ε ≥ 0
satisfying

μ({x ∈ X | dY ( f (x), g(x)) > ε}) ≤ ε.

The function dμ
KF is a metric on the set ofμ-measurable maps from X to Y by identifying two

maps if they are equal to each other μ-almost everywhere. We call dμ
KF the Ky Fan metric.

Lemma 2.5 ([26],Lemma1.26)Let X bea topological spacewith aBorel probabilitymeasure
μ and Y a metric space. For any two Borel measurable maps f , g : X → Y , we have

dP( f∗μ, g∗μ) ≤ dμ
KF( f , g).

Definition 2.6 (Parameter) Let I := [0, 1) and let X be an mm-space. A map ϕ : I → X is
called a parameter of X if ϕ is a Borel measurable map such that

ϕ∗L1 = μX ,

where L1 is the one-dimensional Lebesgue measure on I .

Note that any mm-space has a parameter (see [[26], Lemma 4.2]).

Definition 2.7 (Box distance) We define the box distance �(X , Y ) between two mm-spaces
X and Y to be the infimum of ε ≥ 0 satisfying that there exist parameters ϕ : I → X ,
ψ : I → Y , and a Borel subset I0 ⊂ I with L1(I0) ≥ 1 − ε such that

|dX (ϕ(s), ϕ(t)) − dY (ψ(s), ψ(t))| ≤ ε

for any s, t ∈ I0.

Theorem 2.8 ([26], Theorem 4.10) The box distance function � is a complete separable
metric on X .

Various distances equivalent to the box distance are defined and studied, for example, the
Gromov-Prokhorov distance introduced by Greven-Pfaffelhuber-Winter [9].

Theorem 2.9 ([[20], Theorem 3.1], [[26], Remark 4.16]) For any two mm-spaces X and Y ,
we have

�(X , Y ) = dGP((X , 2dX , μX ), (Y , 2dY , μY )),

where dGP(X , Y ) is the Gromov-Prokhorov metric defined to be the infimum of dP(μX , μY )

for all metrics on the disjoint union of X and Y that are extensions of dX and dY . In particular,

dGP(X , Y ) ≤ �(X , Y ) ≤ 2dGP(X , Y ).

The topology induced from the box distance has historically various names, for example,
the weak-Gromov topology. However we call it simply the box topology in this paper.

The following lemma is useful to calculate the box distance.

Lemma 2.10 ([24], Theorem 1.1) Let X and Y be two mm-spaces. Then

�(X , Y ) = min
π∈�(μX ,μY )

min
S⊂X×Y

max{dis S, 1 − π(S)},

where �(μX , μY ) is the set of couplings between μX and μY , and

dis S := sup
{|dX (x, x ′) − dY (y, y′)| : (x, y), (x ′, y′) ∈ S

}

for a Borel subset S ⊂ X × Y , which is called the distortion of S.
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We remark that�(X , Y ) < 1 for any X , Y , but may be quite close to 1. Indeed, there exist
Borel subsets A ⊂ X and B ⊂ Y such that diam A, diam B < 1/2 and μX (A), μY (B) > 0.
Then we have

�(X , Y ) ≤ max{dis (A × B), 1 − μX (A)μY (B)} < 1.

Corollary 2.11 For any mm-space X,

�(X , ∗) = min
A⊂X

max {diam A, 1 − μX (A)}.
In particular, if Y ≺ X, then �(Y , ∗) ≤ �(X , ∗).

Any mm-space can be approximated by a finite mm-space. Here, finite means having
finitely many points.

Proposition 2.12 ([26], Proposition 4.20) Let X be an mm-space and let ε > 0. There exists
a finite mm-space Ẋ such that �(X , Ẋ) < ε.

Given an mm-space X and a parameter ϕ : I → X of X , we set

ϕ∗Li p1(X) := { f ◦ ϕ | f : X → R is 1-Lipschitz},
which consists of Borel measurable functions on I .

Definition 2.13 (Observable distance) We define the observable distance dconc(X , Y )

between two mm-spaces X and Y by

dconc(X , Y ) := inf
ϕ,ψ

dH(ϕ∗Li p1(X), ψ∗Li p1(Y )),

where ϕ : I → X and ψ : I → Y run over all parameters of X and Y respectively, and dH is
the Hausdorff distance with respect to the metric dL

1

KF.

Theorem 2.14 ([26], Proposition 5.5 and Theorem 5.13) The observable distance function
dconc is a metric on X . Moreover, for any two mm-spaces X and Y ,

dconc(X , Y ) ≤ �(X , Y ).

We call the topology on X induced from dconc the concentration topology. We say that a
sequence {Xn}∞n=1 of mm-spaces concentrates to an mm-space X if Xn dconc-converges to
X as n → ∞. Since the concentration topology is coarser than the box topology, (X , dconc)
is separable.

Example 2.15 Let Sn(1) be the n-dimensional unit sphere in R
n+1 with the standard Rie-

mannian structure. The sequence {Sn(1)}∞n=1 concentrates to the one-point mm-space ∗ as
n → ∞. Furthermore, it is known that {Sn(1)}∞n=1 has no �-convergent subsequence (see
[[26], Corollary 5.20] or Lemma 4.2).

Example 2.16 We consider the mm-spaces

Xn :=
n∏

k=1

Sk(1), n = 1, 2, . . . ,

with the natural Riemannian product structure. The sequence {Xn}∞n=1 is dconc-Cauchy but
does not concentrate to any mm-space (see [[26], Example 7.36] and [17]). In particular,
(X , dconc) is not complete.

Denote by X̄ the completion of (X , dconc).
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2.3 Pyramid

Definition 2.17 (Pyramid) A subset P ⊂ X is called a pyramid if it satisfies the following
(1) – (3).

(1) If X ∈ P and if Y ≺ X , then Y ∈ P .
(2) For any Y , Y ′ ∈ P , there exists X ∈ P such that Y ≺ X and Y ′ ≺ X .
(3) P is nonempty and �-closed.

We denote the set of all pyramids by �. Note that Gromov’s definition of a pyramid is only
by (1) and (2). The condition (3) is added in [26].

For an mm-space X , we define

PX := {
Y ∈ X

∣∣ Y ≺ X
}
,

which is a pyramid. We call PX the pyramid associated with X .

We observe that Y ≺ X if and only if PY ⊂ PX . Note that X itself is a pyramid.
We define the weak convergence of pyramids as follows. This is exactly the Kuratowski-

Painlevé convergence as closed subsets of (X ,�) (see Definition 8.1).

Definition 2.18 (Weak convergence) Let P and Pn , n = 1, 2, . . ., be pyramids. We say that
Pn converges weakly to P as n → ∞ if the following (1) and (2) are both satisfied.

(1) For any mm-space X ∈ P , we have

lim
n→∞ �(X ,Pn) = 0.

(2) For any mm-space X ∈ X \ P , we have

lim inf
n→∞ �(X ,Pn) > 0.

Theorem 2.19 ([26], Section 6) There exists a metric ρ on � such that the following (1) –
(4) hold.

(1) ρ is compatible with weak convergence.
(2) � is ρ-compact.
(3) The map ι : X � X �→ PX ∈ � is a 1-Lipschitz topological embedding map with respect

to dconc and ρ.
(4) ι(X ) is ρ-dense in �.

In particular, (�, ρ) is a compactification of (X , dconc). We often identify X withPX , and we
say that a sequence of mm-spaces converges weakly to a pyramid if the associated pyramid
converges weakly. In a minor abuse of notation, we use X as the image ι(X ) in �.

Remark 2.20 One of constructions of the metric ρ is as follows:

ρ(P,P ′) :=
∞∑

k=1

1

2k+2k
dH(P ∩ X (k, k),P ′ ∩ X (k, k)),

where dH is the Hausdorff metric with respect to � and

X (N , R) :=
{
(RN , ‖ · ‖∞, μ)

∣∣ μ is a Borel probability measure on R
N such that

suppμ is contained in the closed R-ball centered at 0.

}
.

Note that X (N , R) is a �-compact subset of X .
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(�, ρ) is also a compactification of the completion X̄ of (X , dconc).

Theorem 2.21 ([26], Theorem 7.27) The natural extension ι : X̄ → � of the 1-Lipschitz map
ι : X � X �→ PX ∈ � is a topological embedding map.

We use X̄ as the image ι(X̄ ) in � similar to X .
The following proposition, which follows from the definition of the weak convergence

directly, will be frequently used in this paper.

Proposition 2.22 If a sequence {Xn}∞n=1 of mm-spaces concentrates to an mm-space X as
n → ∞, then there exists a sequence {Yn}∞n=1 ofmm-spaces�-converging to X with Yn ≺ Xn

for every n.

Lemma 2.23 ([26], Lemma 7.14) For any pyramid P , there exists a sequence {Ym}∞m=1 of
mm-spaces such that

Y1 ≺ Y2 ≺ · · · ≺ Ym ≺ · · · and
∞⋃

m=1

PYm

�

= P.

Such a sequence {Ym}∞m=1 is called an approximation of P . We see that Ym converges
weakly to P as m → ∞ and that Ym ∈ P for all m.

Example 2.24 (Virtual infinite-dimensional Gaussian space) Let λ be a positive real number.
The n-dimensional Euclidean space (Rn, ‖ · ‖) with the n-dimensional centered Gaussian
measure γ n

λ2
on R

n of variance λ2 is called the n-dimensional Gaussian space with variance

λ2, write �n
λ2
. The natural projections from R

n+1 to R
n , n = 1, 2, . . ., imply

�1
λ2

≺ �2
λ2

≺ · · · ≺ �n
λ2

≺ · · ·
and {�n

λ2
}∞n=1 converges weakly to the pyramid

P�∞
λ2

:=
∞⋃

n=1

P�n
λ2

�

as n → ∞. We call P�∞
λ2

the virtual infinite-dimensional Gaussian space with variance λ2.

We remark that P�∞
λ2

is neither in X nor in the completion X̄ (see [[26], Corollary 7.42]).

2.4 Observable diameter andmetric transformation

The observable diameter is one of the most fundamental invariants of an mm-space and a
pyramid.

Definition 2.25 (Partial and observable diameter) Let X be an mm-space. For a real number
α, we define the partial diameter diam(X;α) = diam(μX ;α) of X to be the infimum of
diam A, where A ⊂ X runs over all Borel subsets with μX (A) ≥ α and diam A denotes the
diameter of A. For a real number κ > 0, we define the observable diameter of X by

ObsDiam(X;−κ) := sup
{
diam( f∗μX ; 1 − κ)

∣∣ f : X → R is 1-Lipschitz
}
(< +∞).

Moreover, for a real number κ > 0, we define the observable diameter of a pyramid P by

ObsDiam(P;−κ) := lim
δ→0+ sup

X∈P
ObsDiam(X;−(κ + δ))(≤ +∞).
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The observable diameter for mm-spaces is an invariant under mm-isomorphism. Note that

ObsDiam(PX ;−κ) = ObsDiam(X;−κ)

for any κ > 0 and that ObsDiam(P;−κ) is monotone non-increasing and right-continuous
in κ > 0. Moreover, we define

ObsDiam(P) := inf
κ>0

max{ObsDiam(P;−κ), κ}
for any pyramid P and ObsDiam(X) := ObsDiam(PX ) for any mm-space X . It is easy to
see that

ObsDiam(P) = sup
X∈P

ObsDiam(X).

Theorem 2.26 ([25], Theorem 1.1, Limit formula for observable diameter) Let P and Pn,
n = 1, 2, . . ., be pyramids. If Pn converges weakly to P as n → ∞, then

ObsDiam(P;−κ) = lim
ε→0+ lim inf

n→∞ ObsDiam(Pn;−(κ + ε))

= lim
ε→0+ lim sup

n→∞
ObsDiam(Pn;−(κ + ε))

for any κ > 0.

Theorem 2.27 ([25], Corollary 5.8) Let Pn, n = 1, 2, . . ., be pyramids. Then the following
(1) – (3) are equivalent to each other.

(1) Pn converges weakly to the one-point mm-space ∗ as n → ∞.
(2) limn→∞ ObsDiam(Pn;−κ) = 0 for any κ > 0.
(3) limn→∞ ObsDiam(Pn) = 0.

Example 2.28 ([26], Theorem 2.21) The sequence {Sn(1)}∞n=1 of unit spheres satisfies

lim
n→∞ObsDiam(Sn(1)) = 0,

in relation to Example 2.15. We use this fact in Sect. 4.

Example 2.29 (cf. [25], Example 3.13) The observable diameter of the virtual infinite-
dimensional Gaussian space P�∞

λ2
with variance λ2 is

ObsDiam(P�∞
λ2

;−κ) = diam(γ 1
λ2

; 1 − κ) = 2λI−1((1 − κ)/2)

for any κ and λ with 0 < κ < 1 and λ ≥ 0, where

I (r) := γ 1
12([0, r ]) = 1√

2π

∫ r

0
exp(− x2

2
) dx .

Therefore P�∞
λ2

converges weakly to ∗ as λ → 0.

Definition 2.30 (Metric transformation) A function F : [0,+∞) → [0,+∞) is a metric
preserving function provided that F ◦ dX is a metric on X for any metric space (X , dX ). For
a metric preserving function F , we define the metric transformation of an mm-space X and
of a pyramid P by

F(X) := (X , F ◦ dX , μX ) and F(P) :=
⋃

X∈P
PF(X)

�
.
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If a metric preserving function F is continuous, the topologies of F(X) and X coincide.
In addition, if F is nondecreasing, F(P) is a pyramid for any pyramid P and

F(PX ) = PF(X)

holds for every mm-space X . Note that if {Ym}∞m=1 is an approximation of a pyramid P , then
{F(Ym)}∞m=1 is an approximation of F(P).

Let F(s) := ts for t > 0, which is a continuous nondecreasingmetric preserving function.
We denote F(X) and F(P) by t X and tP , respectively. Note that

tP = {
t X

∣∣ X ∈ P}
,

which is considered classically.

Lemma 2.31 Let F be a continuous nondecreasingmetric preserving function. Thenwe have

ObsDiam(F(P);−2κ) ≤ 4F(ObsDiam(P;−κ))

for any pyramid P and any κ > 0, where we agree that F(+∞) = sups>0 F(s).

Proof For any mm-space X and any κ > 0, we already have obtained the same estimate

ObsDiam(F(X);−2κ) ≤ 4F(ObsDiam(X;−κ))

in [[14], Lemma 3.22]. Using this, we check for a given pyramid P . Let {Ym}∞m=1 be an
approximation of P . By Theorem 2.26, we have

ObsDiam(F(P);−2κ) = lim
ε→0+ lim inf

m→∞ ObsDiam(F(Ym);−2(κ + ε))

≤ lim
ε→0+ lim inf

m→∞ 4F(ObsDiam(Ym;−(κ + ε)))

≤ lim
ε→0+ 4F(ObsDiam(P;−(κ + ε)))

≤ 4F(ObsDiam(P;−κ)).

The proof is completed. ��
Definition 2.32 LetP andP ′ be twopyramids and let 1 ≤ p ≤ +∞.Wedefine the l p-product
of P and P ′ by

P ×p P ′ :=
⋃

X∈P,Y∈P ′
PX×pY

�
,

where X ×p Y is the l p-product space of two mm-spaces X and Y .

Note that if {Xm}∞m=1 and {Ym}∞m=1 are approximations of pyramids P and P ′, respectively,
then {Xm ×p Ym}∞m=1 is an approximation of P ×p P ′.

3 No compact neighborhood inX
In this section, we prove Theorem 1.1 and Corollary 1.2. For the box topology, we prove the
following lemma which implies Theorem 1.1 (in fact they are equivalent).

Lemma 3.1 Any neighborhood of an mm-space X is not precompact with respect to the box
topology.

123



68 Page 12 of 28 Geometriae Dedicata (2024) 218 :68

Proof For any small ε > 0, it is sufficient to prove thatU2ε(X) ⊂ (X ,�) is not precompact.
We construct a countable discrete net in U2ε(X). There exists a finite mm-space Ẋ such that
�(X , Ẋ) < ε by Proposition 2.12 and let N := # Ẋ , where # means the number of points.
We define mm-spaces Yn , n = 1, 2, . . ., as

Yn := {1, 2, . . . , (2N )n}
with metric dYn (i, j) := ε for i �= j and uniform probability measure μYn :=
(2N )−n ∑(2N )n

i=1 δi . By Corollary 2.11, we have

�(Yn, ∗) ≤ diam Yn = ε.

Let us define Xn := Ẋ ×∞ Yn and prove that {Xn}∞n=1 is a discrete net in U2ε(X).
Since �(A ×p B, A ×p C) ≤ �(B,C) in general (see [[14], Proposition 4.1]), we have

�(Xn, X) < �(Xn, Ẋ) + ε ≤ �(Yn, ∗) + ε ≤ 2ε.

Thus Xn ∈ U2ε(X) for any n. We next prove that

�(Xm, Xn) ≥ min{ε, min
x �=x ′ dẊ (x, x ′), 1

2
} =: δ > 0

for any m �= n. Assume that m > n. By Lemma 2.10, there exist a coupling measure
π ∈ �(μXm , μXn ) and a closed set S ⊂ Xm × Xn such that

�(Xm, Xn) = max{dis S, 1 − π(S)}.
If there exist two pairs (x, y), (x ′, y) ∈ S with x �= x ′ in Xm , then we have

�(Xm, Xn) ≥ dis S ≥ dXm (x, x ′) ≥ δ.

If not, then we have #S ≤ #Xn = N (2N )n and

π(S) ≤ #S

#Ym
max
x∈Ẋ

μẊ ({x}) ≤ N (2N )n

(2N )m
≤ 1

2
,

which implies that �(Xm, Xn) ≥ 1 − π(S) ≥ 1
2 ≥ δ. Therefore {Xn}∞n=1 is δ-discrete. This

completes the proof. ��
In order to prove Theorem 1.1 for the concentration topology, we start with recalling the

following proposition.

Proposition 3.2 (cf. [[7], Theorem 3.3.9], [[29], 18.4]) Let Y be a Hausdorff space and let
X ⊂ Y be a dense subset. If a point x ∈ X has a compact neighborhood (in the relative
topology of Y ), then x is an interior point of X. In particular, if X is locally compact, then
X is open in Y .

The l p-product is useful to construct a convergent sequence to a given mm-space or
pyramid. The following proposition is known.

Proposition 3.3 ([26], Proposition 7.32) Let X and Y be two mm-spaces. If ObsDiam(Y ) <

1/2, then we have

dconc(X ×p Y , X) ≤ ObsDiam(Y )

for any 1 ≤ p ≤ +∞.
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This proposition can be generalized to pyramids as follows.

Proposition 3.4 Let P and P ′ be two pyramids. If ObsDiam(P ′) < 1/2, then we have

ρ(P ×p P ′,P) ≤ ObsDiam(P ′)

for any 1 ≤ p ≤ +∞.

Proof Let {Xm}∞m=1 and {Ym}∞m=1 be approximations of P and P ′ respectively. For each m,
we have

ρ(PXm×pYm ,PXm ) ≤ dconc(Xm ×p Ym, Xm) ≤ ObsDiam(Ym) ≤ ObsDiam(P ′)

by Proposition 3.3. Thus we have

ρ(P ×p P ′,P) = lim
m→∞ ρ(PXm×pYm ,PXm ) ≤ ObsDiam(P ′).

The proof is completed. ��
Lemma 3.5 For given X ∈ X and 1 ≤ p ≤ +∞, the pyramid Pλ for λ > 0 is defined by

Pλ := PX ×p P�∞
λ2

.

Then Pλ converges weakly to X as λ → 0.

Proof This follows directly from Theorem 2.27, Example 2.29, and Proposition 3.4. ��
This leads to the following corollaries.

Corollary 3.6 Every X ∈ X is not an interior point of X with respect to the weak topology.
Similarly, every X̄ ∈ X̄ is not an interior point of X̄ with respect to the weak topology.

Proof Take any X ∈ X and put Pλ := PX ×p P�∞
λ2

for any λ > 0 and some 1 ≤ p ≤ +∞.

By Lemma 3.5, Pλ converges weakly to X as λ → 0. Thus it is sufficient to prove that the
pyramid Pλ is not in X̄ for any λ > 0.

Indeed, if Pλ ∈ X̄ , then P�∞
λ2

∈ X̄ by P�∞
λ2

⊂ Pλ (see [[26], Theorem 7.25 and Definition

7.9]). This contradicts the fact P�∞
λ2

∈ � \ X̄ . Therefore Pλ ∈ � \ X̄ holds for any λ > 0.
The proof is completed. ��
Corollary 3.7 Both �\X and �\X̄ are dense in �.

Proof This follows immediately from the proof of Corollary 3.6. ��
Proof of Theorem 1.1 With respect to the box topology, Lemma 3.1 implies Theorem 1.1.
Proposition 3.2 and Corollary 3.6 mean that every X ∈ X has no compact neighborhood in
the relative weak topology, that is, the concentration topology. The proof is completed. ��

In order to prove Corollary 1.2, we recall the following propositions.

Proposition 3.8 ((Part of) Baire category theorem, cf. [[29], 25.4]) Every completely metriz-
able topological space is a Baire space.

Proposition 3.9 (cf. [[29], 25B]) If a topological space X is Hausdorff, σ -compact, and
Baire, then at least one point in X has a compact neighborhood.
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Proof of Corollary 1.2 Since (X ,�) is complete metric space, (X ,�) is Hausdorff and Baire.
Theorem 1.1 and Proposition 3.9 together mean that (X ,�) is not σ -compact.

Remark 3.10 Let {Ym}∞m=1 be an approximation of the pyramid X . It holds that

X =
∞⋃

m=1

PYm

�

and each PYm is �-compact (see [[15], Lemma 2.25] and [[17], Theorem 1.1]). Here, Corol-
lary 1.2 says that the �-closure operation is essential, namely

∞⋃

m=1

PYm � X .

The following is obtained by the same reason as Corollary 1.2.

Corollary 3.11 The completion X̄ of (X , dconc) is not σ -compact.

4 X with the concentration topology is not a Baire space

In this section, we prove Theorem 1.3. The key tool is the box distance from the one-point
mm-space ∗, which is an invariant on X (see Corollary 2.11).

Proposition 4.1 For any mm-space X,

�(X , ∗) ≥ 1 − sup
x∈X

μX (U1(x)).

Proof Take any Borel subset A of X with diam A < 1 and choose x ∈ A. Then A ⊂ U1(x)
and

1 − μX (A) ≥ 1 − μX (U1(x)).

Thus we have

max {diam A, 1 − μX (A)} ≥ 1 − μX (U1(x)) ≥ 1 − sup
x∈X

μX (U1(x)).

Corollary 2.11 implies the desired inequality. ��
Lemma 4.2 Let Sn(1) be the n-dimensional unit sphere with the standard Riemannian struc-
ture. Then

lim
n→∞ �(Sn(1), ∗) = 1.

Proof For any x ∈ Sn(1), we have

lim
n→∞ μSn(1)(U1(x)) = lim

n→∞

∫ 1
0 sinn−1 t dt

∫ π

0 sinn−1 t dt
= 0.

Combining this and Proposition 4.1 implies limn→∞ �(Sn(1), ∗) = 1. ��
Proposition 4.3 If a sequence {Xn}∞n=1 of mm-spaces concentrates to an mm-space X, then

�(X , ∗) ≤ lim inf
n→∞ �(Xn, ∗).
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Proof Since {Xn}∞n=1 concentrates to X , there exists a sequence {Yn}∞n=1 of mm-spaces �-
converging to X with Yn ≺ Xn for every n, by Proposition 2.22. Thus we have

lim inf
n→∞ �(Xn, ∗) ≥ lim

n→∞ �(Yn, ∗) = �(X , ∗)

by Corollary 2.11. The proof is completed. ��
Proof of Theorem 1.3 Let X δ be the set of all mm-spaces with �(X , ∗) ≤ δ for δ ≥ 0. By
Proposition 4.3, the set X δ is closed with respect to the concentration topology. Since

X =
∞⋃

n=1

X 1− 1
n ,

if X δ is nowhere dense for any δ ∈ [0, 1), then X is not a Baire space. We prove that X δ

is nowhere dense. Take any mm-space X ∈ X δ . It is sufficient to prove that X is not an
interior point of X δ . Indeed, the product space X ×p Sn(1) concentrates to X as n → ∞ by
Proposition 3.3 and Example 2.28 but

lim inf
n→∞ �(X ×p Sn(1), ∗) ≥ lim

n→∞ �(Sn(1), ∗) = 1.

Thus X is not an interior point of X δ . The proof is completed.

Remark 4.4 (1) From the above proof, X with the concentration topology is meager (i.e., a
countable union of nowhere dense subsets) in itself. Actually, this fact is stronger than
non-Baire.

(2) The Baire category theorem (Proposition 3.8) claims thatX is not completely metrizable,
or equivalently, X is not a Gδ subset of �. Namely, there is no complete metric giving
the concentration topology.

Proposition 4.5 (1) X is meager and non-comeager in �.
(2) � \ X is a Baire space with respect to the relative topology of �.

Proof We first prove that the subset X of � is meager. By the definition of the weak conver-
gence and Lemma 2.23, the closure of X δ with respect to the weak topology is

�δ := {P ∈ �
∣∣ �(X , ∗) ≤ δ for any X ∈ P}

.

It is sufficient to prove that the interior of �δ is empty for every δ ∈ [0, 1). Actually, given a
pyramid P ∈ �δ , the product pyramid P ×p PSn(1) converges weakly to P by Proposition
3.4 and Example 2.28. This together with Sn(1) ∈ P ×p PSn(1) implies that P is not an
interior point of �δ . Thus the subset X of � is meager.

Suppose that X is comeager in �. The complement � \ X is meager and hence � is
meager in itself. This is a contradiction. Thus X is not comeager in �.

The statement (2) follows directly from the fact that all comeager subset in the Baire space
� is a Baire space (see [[12], Proposition 1.16]). ��
Remark 4.6 X δ is properly included in �δ as a subset of �. For example,

{
X ∈ X

∣∣ diam X ≤ δ
}

is a pyramid in�δ but it is not�-compact, so that it belongs to�\X (see [17]). Indeed, letting
Xn , n = 1, 2, . . ., as the l∞-product space of n copies of the interval [0, δ], the sequence
{Xn}∞n=1 has no �-convergent subsequence (see [[26], Proposition 7.37]).
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5 X and5 are contractible

In this section, we prove Theorem 1.4 by giving explicit deformation retractions. From now
on, for two given maps f and g on a space X , we use the notation ( f , g) as the map on X
defined by

( f , g)(x) := ( f (x), g(x)), x ∈ X .

For example, (idX , idX ) means the map X � x �→ (x, x) ∈ X × X .

Lemma 5.1 The map H : X × [0, 1] → X defined by

H(X , t) := t X

for X ∈ X and t ∈ [0, 1] is continuous with respect to both the box and concentration
topologies, where we agree that 0X = ∗ for any mm-space X.

Proof Wefirst prove the lemma for the box topology.We take any {(Xn, tn)}∞n=1 ⊂ X ×[0, 1]
converging to (X , t). Then we have

�(tn Xn, t X) ≤ �(tn Xn, tn X) + �(tn X , t X) ≤ �(Xn, X) + �(tn X , t X)

since the map t �→ �(t X , tY ) is nondecreasing. It is sufficient to prove that tn X �-converges
to t X as tn → t for a fixed mm-space X . Let ε > 0 be a positive real number. There exists a
finite mm-space Ẋ such that �(X , Ẋ) < ε by Proposition 2.12. Then we have

�(tn Ẋ , t Ẋ) ≤ |tn − t | diam Ẋ .

Indeed, letting π := (id Ẋ , id Ẋ )∗μẊ and S := {(x, x) | x ∈ Ẋ}, we have
π(S) = 1 and dis S = |tn − t | diam Ẋ .

Note that this is true even if tn = 0 or t = 0. Thus we have

lim sup
n→∞

�(tn X , t X) ≤ lim sup
n→∞

�(tn Ẋ , t Ẋ) + 2ε ≤ 2ε.

As ε → 0, we obtain the conclusion. Similarly, for the concentration topology, we obtain

dconc(tn Xn, t X) ≤ dconc(tn Xn, tn X) + dconc(tn X , t X) ≤ dconc(Xn, X) + �(tn X , t X)

since the map t �→ dconc(t X , tY ) is nondecreasing and dconc ≤ �. Thus the map H is also
continuous with respect to the concentration topology. ��
Lemma 5.2 The map H : � × [0, 1] → � defined by

H(P, t) := Ft (P), where Ft (s) := min{s, t

1 − t
},

for P ∈ � and t ∈ [0, 1] is continuous with respect to the weak topology, where we agree
that F1(P) = P and F0(P) = ∗ for any pyramid P .

Proof We take any {(Pn, tn)}∞n=1 ⊂ � × [0, 1] converging to (P, t). The main result of [15]
implies that Ftn (Pn) converges weakly to Ft (P) if t > 0 (see [[15], Corollary 1.5]). We
check only that if tn → 0, then Ftn (Pn) converges weakly to ∗ as n → ∞. By Lemma 2.31,
for any κ > 0, we have

ObsDiam(Ftn (Pn);−2κ) ≤ 4Ftn (ObsDiam(Pn;−κ)) ≤ 4tn
1 − tn

→ 0
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as n → ∞. Therefore Ftn (Pn) converges weakly to ∗ as n → ∞ by Theorem 2.27. The
proof is completed. ��
Remark 5.3 The map (P, t) �→ tP is discontinuous, in fact, tX = X for any t > 0. One
reason for this is that the function s �→ ts does not converge uniformly to 0 as t → 0. On
the other hand, the map (X , t) �→ Ft (X), where Ft in above lemma, is also continuous with
respect to both the box and concentration topologies.

Proof of Theorem 1.4 The maps in Lemmas 5.1 and 5.2 are deformation retractions of X and
� onto {∗}, respectively. Therefore these are contractible.

6 (X ,�) is a geodesic space

The aim of this section is to prove Theorem 1.5. We prepare several tools due to the optimal
transport theory.

Definition 6.1 (ε-Subtransport plan) Let μ and ν be two Borel probability measures on a
metric space X . A Borel measure π on X × X is called a subtransport plan between μ and
ν provided that pr0∗π ≤ μ and pr1∗π ≤ ν, where pri , i = 0, 1, is the projection given by
(x0, x1) �→ xi . For a subtransport plan π , the deficiency of π is defined to be

def π := 1 − π(X × X).

A subtransport plan π is called an ε-subtransport plan if it satisfies

suppπ ⊂ {(x, x ′) ∈ X × X | dX (x, x ′) ≤ ε}.
Theorem 6.2 [Strassen’s theorem [[28], Corollary 1.28]] For any two Borel probability
measures μ and ν on a complete separable metric space X, we have

dP(μ, ν) = inf

{
ε > 0

∣∣ There exists an ε-subtransport plan π

between μ and ν with def π ≤ ε

}
.

Let Cb(X) be the set of all continuous bounded real-valued functions on a metric space
X , which is a Banach space with the supremum norm ‖ · ‖∞. It is well-known that the map

X � x �→ dX (x, · ) − dX (x̄, · ) ∈ Cb(X),

where x̄ is a fixed point in X , is isometric. This map is called the Kuratowski embedding.

Proof of Theorem 1.5 Take any two mm-spaces X0 and X1. We construct a midpoint X 1
2

between X0 and X1, that is,

�(X0, X 1
2
) = �(X1, X 1

2
) = 1

2
�(X0, X1)

(see [6], Theorem 2.4.16). Let rn := �(X0, X1) + n−1. By Theorem 2.9, we have

dGP(2X0, 2X1) = �(X0, X1) < rn,

hence there exists a complete separable metric space Zn such that both 2X0 and 2X1 are
embedded in Zn isometrically and

dZn
P (μX0 , μX1) < rn .
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Moreover, by the Kuratowski embedding, Zn can be assumed to be a Banach space with
norm ‖ · ‖. By Strassen’s theorem, there exists an rn-subtransport plan πn between μX0 and
μX1 over (Zn, ‖ · ‖) with def πn ≤ rn . We define a map M : Zn × Zn → Zn by

M(x0, x1) := x0 + x1
2

and define a probability measure μ 1
2 ,n on Zn by

μ 1
2 ,n := M∗πn + 1

2
(μX0 − pr0∗πn) + 1

2
(μX1 − pr1∗πn).

Let us prove

dZn
P (μXi , μ 1

2 ,n) ≤ 1

2
rn, i = 0, 1.

We first find a subtransport plan between μX0 and μ 1
2 ,n . We define a measure π0,n on

Zn × Zn by

π0,n := (pr0, M)∗πn + 1

2
(idZn , idZn )∗(μX0 − pr0∗πn).

The measure π0,n is a subtransport plan between μX0 and μ 1
2 ,n . Indeed,

pr0∗π0,n = pr0∗πn + 1

2
(μX0 − pr0∗πn) ≤ μX0 ,

pr1∗π0,n = M∗πn + 1

2
(μX0 − pr0∗πn) ≤ μ 1

2 ,n .

Moreover, we have

π0,n(Zn × Zn) = πn(Zn × Zn) + 1

2
(1 − πn(Zn × Zn)) ≥ 1 − 1

2
rn .

We verify that π0,n is a (1/2)rn-subtransport plan. Take any (x, y) ∈ suppπ0,n with x �= y.
There exists (x0, x1) ∈ suppπn such that

x = x0 and y = x0 + x1
2

.

Then we have

‖x − y‖ = 1

2
‖x0 − x1‖ ≤ 1

2
rn .

Therefore π0,n is a (1/2)rn-subtransport plan with def π0,n ≤ (1/2)rn , which implies that

dZn
P (μX0 , μ 1

2 ,n) ≤ 1

2
rn

by Strassen’s theorem again. Similarly, letting

π1,n := (M, pr1)∗πn + 1

2
(idZn , idZn )∗(μX1 − pr1∗πn),

the measure π1,n is a (1/2)rn-subtransport plan between μ 1
2 ,n and μX1 with def π1,n ≤

(1/2)rn and hence

dZn
P (μX1 , μ 1

2 ,n) ≤ 1

2
rn .

123



Geometriae Dedicata (2024) 218 :68 Page 19 of 28 68

Defining an mm-space

X 1
2 ,n := (Zn,

1

2
‖ · ‖, μ 1

2 ,n),

this satisfies

�(Xi , X 1
2 ,n) = dGP(2Xi , 2X 1

2 ,n) ≤ dZn
P (μXi , μ 1

2 ,n) ≤ 1

2
rn, i = 0, 1.

We prove that {X 1
2 ,n}∞n=1 is precompact with respect to the box topology. It is sufficient to

prove that for any ε > 0 there exists a positive number �(ε) such that for any n we have a
finite subset Nn of X 1

2 ,n with

μ 1
2 ,n(Uε(Nn)) ≥ 1 − ε, #Nn ≤ �(ε), and diamNn ≤ �(ε)

(see [26], Lemma 4.28). Take a sufficiently small ε > 0 such that 1− rn − 2ε > 0 for every
sufficiently large n, here rn → �(X0, X1) < 1 as n → ∞. There exist a finite subset Ñ0 of
X0 and a finite subset Ñ1 of X1 such that

μX0(Uε(Ñ0)) ≥ 1 − ε and μX1(Uε(Ñ1)) ≥ 1 − ε.

LetZ0 andZ1 be the images of Ñ0 and Ñ1 by the embeddings to Zn , respectively, and define

Nn := Z0 ∪ M(Z0 × Z1) ∪ Z1 ⊂ Zn .

Note that #Nn ≤ #Ñ0 · #Ñ1 + #Ñ0 + #Ñ1. We have

πn(U2ε(Z0) ×U2ε(Z1))

≥ πn(Zn × Zn) − pr0∗πn(Zn \U2ε(Z0)) − pr1∗πn(Zn \U2ε(Z1))

≥ 1 − rn − μX0(X0 \Uε(Ñ0)) − μX1(X1 \Uε(Ñ1)) ≥ 1 − rn − 2ε > 0,

which implies that there exists a pair (x̄, ȳ) ∈ suppπn ∩ (U2ε(Z0) ×U2ε(Z1)). Moreover,

‖M(x0, x1) − M(x̄, ȳ)‖ ≤ 1

2
‖x0 − x̄‖ + 1

2
‖x1 − ȳ‖ ≤ 1

2
diamZ0 + 1

2
diamZ1 + 2ε

for every (x0, x1) ∈ Z0 × Z1. Combining these implies that

diamNn ≤ 3

2
diamZ0 + 3

2
diamZ1 + ‖x̄ − ȳ‖ + 4ε

≤ 3 diam Ñ0 + 3 diam Ñ1 + rn + 4ε

≤ 3 diam Ñ0 + 3 diam Ñ1 + 2.

We verify that

μ 1
2 ,n(U2ε(Nn)) ≥ 1 − 2ε.

Since U2ε(M(Z0 × Z1)) ⊃ M(U2ε(Z0) ×U2ε(Z1)), we have

μ 1
2 ,n(U2ε(Nn))

≥M∗πn(U2ε(M(Z0 × Z1))) + 1

2
(μX0 − pr0∗πn)(U2ε(Z0)) + 1

2
(μX1 − pr1∗πn)(U2ε(Z1))

≥πn(U2ε(Z0) ×U2ε(Z1)) + 1

2
(μX0 − pr0∗πn)(U2ε(Z0)) + 1

2
(μX1 − pr1∗πn)(U2ε(Z1))

≥πn(Zn × Zn) − pr0∗πn(Zn \U2ε(Z0)) − pr1∗πn(Zn \U2ε(Z1))
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+ 1

2
(μX0 − pr0∗πn)(U2ε(Z0)) + 1

2
(μX1 − pr1∗πn)(U2ε(Z1))

≥μX0(Uε(Ñ0)) + μX1(Uε(Ñ1)) − 1 ≥ 1 − 2ε.

Thus {X 1
2 ,n}∞n=1 is precompact. There exists a �-convergent subsequence of {X 1

2 ,n}∞n=1 and
its limit, denote by X 1

2
, satisfies

�(Xi , X 1
2
) ≤ 1

2
�(X0, X1), i = 0, 1.

The proof is completed. ��
Remark 6.3 (1) The Gromov-Prokhorov distance dGP is also geodesic on X .
(2) Any geodesic metric space is locally path connected clearly. Hence X is locally path

connected in the box topology.

On (X ,�), a geodesic between two distinct mm-spaces is never unique and it branches
everywhere.

Theorem 6.4 For any two mm-spaces which are not mm-isomorphic, there exists a family
of uncountably many pairwise-disjoint �-geodesics between them. Here, two geodesics are
disjoint if they do not intersect anywhere except the endpoints. In particular, every�-geodesic
branches everywhere.

In order to construct a family of geodesics, we prepare the following lemma.

Lemma 6.5 Let {Xt }t∈[0,1] be a�-geodesic from anmm-space X0 to anmm-space X1 and let
r := �(X0, X1). Take any r-Lipschitz function f : [0, 1] → [0,+∞)with f (0) = f (1) = 0
and any mm-space Z with 0 < diam Z ≤ 1 and define an mm-space Yt , t ∈ [0, 1], by

Yt := Xt ×∞ f (t)Z .

Then {Yt }t∈[0,1] is also �-geodesic from X0 to X1.

Proof Take any s, t ∈ [0, 1] and fix them. It is sufficient to prove that

�(Ys, Yt ) ≤ |s − t |r
by the triangle inequality. Since �(Xs, Xt ) = |s − t |r , there exist a coupling π ∈
�(μXs , μXt ) and a closed set S ⊂ Xs × Xt such that

max{dis S, 1 − π(S)} = |s − t |r
by Lemma 2.10. Here we define a coupling π ′ ∈ �(μXs ⊗ μZ , μXt ⊗ μZ ) and a closed
subset S′ ⊂ Ys × Yt by

π ′ := (pr1, pr3, pr2, pr3)∗(π ⊗ μZ ), S′ := {
(x, z, y, z)

∣∣ (x, y) ∈ S, z ∈ Z
}
.

Then we see that

π ′(S′) = (π ⊗ μZ )(S × Z) = π(S) ≥ 1 − |s − t |r .
Moreover, for any (x, z, y, z), (x ′, z′, y′, z′) ∈ S′, we have

∣∣max{dXs (x, x
′), f (s)dZ (z, z′)} − max{dXt (y, y

′), f (t)dZ (z, z′)}∣∣
≤ max{|dXs (x, x

′) − dXt (y, y
′)|, | f (s) − f (t)|dZ (z, z′)}
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≤ max{dis S, | f (s) − f (t)|}
≤ |s − t |r ,

which implies that dis S′ ≤ |s − t |r . Therefore we obtain
�(Ys, Yt ) ≤ max{dis S′, 1 − π ′(S′)} ≤ |s − t |r

by Lemma 2.10 and then {Yt }t∈[0,1] is a �-geodesic. The proof is completed. ��

Proof of Theorem 6.4 Let X0 and X1 be mm-spaces and assume r := �(X0, X1) > 0. By
Theorem 1.5, there exists a �-geodesic {Xt }t∈[0,1] from X0 to X1. We take a function f and
an mm-space Z satisfying the assumption of Lemma 6.5, e.g.,

f (t) := r min{t, 1 − t} and Z := ([0, 1], | · |,L1).

For any s, t ∈ [0, 1], an mm-space Ys,t is defined by

Ys,t := Xt ×∞ s f (t)Z .

ByLemma 6.5, {Ys,t }t∈[0,1] is a geodesic from X0 to X1 for every s.We prove that {Ys,t }t∈[0,1]
and {Ys′,t }t∈[0,1] are disjoint if s �= s′. It is sufficient to prove that Ys,t and Ys′,t are not mm-
isomorphic for any s, s′, t ∈ [0, 1] with s < s′. The map ϕ := idXt×Z is a 1-Lipschitz
measure-preserving map from Ys′,t to Ys,t . If Ys′,t and Ys,t are mm-isomorphic, then the
map ϕ must be an isometry from Ys′,t to Ys,t in the same way as [26], Proof of Lemma
2.12, which is a contradiction to s < s′. Thus Ys′,t and Ys,t are not mm-isomorphic to each
other. Therefore we obtain a family {t �→ Ys,t }s∈[0,1] of uncountably many pairwise-disjoint
geodesics. The proof is completed.

Corollary 6.6 For any two mm-spaces X0 and X1 which are not mm-isomorphic and for any
t ∈ [0, 1], the set
[X0, X1]t := {

Z ∈ X
∣∣ �(X0, Z) = t�(X0, X1) and �(X1, Z) = (1 − t)�(X0, X1)

}

is not compact with respect to the box topology.

Proof Take a�-geodesic {Xt }t∈[0,1] from X0 to X1 and a function f satisfying the assumption
of Lemma 6.5. Then the mm-space

Zn := Xt ×∞ f (t)([0, 1]n, ‖ · ‖∞,Ln), n = 1, 2, . . .

is in the set [X0, X1]t for any n. However, this sequence {Zn}∞n=1 has no �-convergent
subsequence. Indeed, suppose that the sequence {Zn}∞n=1 has a �-convergent subsequence.
Then the sequence {([0, 1]n, ‖ · ‖∞,Ln)}∞n=1 has a �-convergent subsequence (to an mm-
space) by [[26], Lemma 4.28]. On the other hand, [[26], Proposition 7.37] implies that this
sequence converges weakly to a pyramid which is not an mm-space. These contradict each
other. This completes the proof. ��

Remark 6.7 (1) Theorem 6.4 shows that the Alexandrov curvature of X is not bounded from
below nor from above with respect to the box metric �.

(2) In the Gromov-Hausdorff space case, one can see the analogous statements of Lemma
6.5 in [[13], Proposition 5.3] and of Corollary 6.6 in [5]. The construction of a family of
geodesics on the Gromov-Hausdorff space has studied in [13, 21].
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7 X and5 are locally path connected

The goal of this section is to prove Theorem 1.6. For the concentration and weak topologies,
it is difficult to obtain a geodesic at present, but it is possible to construct a continuous path
in a small ball. We prepare some lemmas to prove Theorem 1.6.

Proposition 7.1 Let X0 and X1 be two mm-spaces with X0 ≺ X1 and let f : X1 → X0 be a
1-Lipschitz measure-preserving map. For any 0 < t < 1, we define a metric dXt on X1 by

dXt (x, x
′) := (1 − t)dX0( f (x), f (x ′)) + tdX1(x, x

′), x, x ′ ∈ X1,

and define an mm-space

Xt := (X1, dXt , μX1).

Then the map [0, 1] � t �→ Xt is a �-continuous path from X0 to X1 and is monotone with
respect to the Lipschitz order, that is, Xs ≺ Xt for every 0 ≤ s ≤ t ≤ 1.

Proof For any s, t ∈ (0, 1] with s ≤ t , since dXs ≤ dXt , we have Xs ≺ Xt . Moreover, for
any t ∈ (0, 1], the map f is also 1-Lipschitz with respect to dX0 and dXt , which implies
X0 ≺ Xt . Thus we obtain the monotonicity of t �→ Xt .

We next prove the (uniform) continuity with respect to �. We take a real number ε > 0.
By the inner regularity of μX1 , there exists a compact subset K ⊂ X1 such that

μX1(K ) ≥ 1 − ε.

If two real numbers s, t ∈ [0, 1] satisfy |s − t | ≤ (diam K )−1ε, then �(Xs, Xt ) ≤ ε

holds. Indeed, in the case of s, t ∈ (0, 1], letting π := (idX1 , idX1)∗μX1 and S :={
(x, x)

∣∣ x ∈ K
}
, we have π(S) = μX1(K ) ≥ 1 − ε and

dis S = sup
x,x ′∈K

|dXs (x, x
′) − dXt (x, x

′)|

= |s − t | sup
x,x ′∈K

|dX1(x, x
′) − dX0( f (x), f (x ′))|

≤ |s − t | diam K ≤ ε.

Thus we obtain �(Xs, Xt ) ≤ ε by Lemma 2.10. Similarly, if s = 0, then we just put
π := ( f , idX1)∗μX1 and S := {

( f (x), x)
∣∣ x ∈ K

}
. The proof is completed. ��

Proposition 7.2 Let P be a pyramid and let ε > 0. There exist an mm-space X ∈ P and a
ρ-continuous path γ : [0, 1] → � joining PX and P such that

ρ(γ (t),P) < ε and γ (t) ⊂ P
for all t ∈ [0, 1].
Proof Let {Ym}∞m=1 be an approximation of P . By Proposition 7.1, for each m, there exists
a �-continuous path γm : [0, 1] → X from Ym to Ym+1 with Ym ≺ γm(t) ≺ Ym+1 for all t .
We define a map γ : [0, 1) → � by

γ (t) := Pγm (2−2m (1−t)) if 1 − 2−m+1 ≤ t ≤ 1 − 2−m .

Since Ym converges weakly to P as m → ∞, γ (t) converges weakly to P as t → 1. Thus γ

is a ρ-continuous path from PY1 and P with γ (t) ⊂ P for all t . Cutting γ if it is required,
we obtain the desired one. ��

123



Geometriae Dedicata (2024) 218 :68 Page 23 of 28 68

Proof of Theorem 1.6 We first prove that X with the concentration topology is locally path
connected. If not, there exist an mm-space X , a real number ε > 0, and a sequence {Yn}∞n=1
of mm-spaces concentrating to X such that for any dconc-continuous path γ : [0, 1] → X
from Yn to X , there exists t ∈ [0, 1] such that

dconc(γ (t), X) > ε.

By Proposition 2.22, there exists a sequence {Zn}∞n=1 of mm-spaces �-converging to X
with Zn ≺ Yn for every n. By Proposition 7.1 and Theorem 1.5, for each n, there exist
�-continuous paths γ 1

n and γ 2
n such that

• γ 1
n : [0, 1] → X joins Yn to Zn and satisfies Zn ≺ γ 1

n (t) ≺ Yn for any 0 ≤ t ≤ 1,
• γ 2

n : [0, 1] → X is a �-geodesic from Zn to X .

Joining the two paths γ 1
n and γ 2

n , we obtain a continuous path fromYn to X . By the assumption
and by

lim sup
n→∞

sup
t∈[0,1]

dconc(γ
2
n (t), X) ≤ lim

n→∞ �(Zn, X) = 0,

there exists {tn}∞n=1 ⊂ [0, 1] such that

dconc(γ
1
n (tn), X) > ε

for any sufficiently large n. On the other hand, {γ 1
n (tn)}∞n=1 must concentrate to X as n → ∞.

Indeed, since Zn ≺ γ 1
n (tn) ≺ Yn for all n and both Yn , Zn concentrate to X , any limit P of

a weak convergent subsequence of {γ 1
n (tn)}∞n=1 satisfies PX ⊂ P ⊂ PX , which implies that

γ 1
n (tn) concentrates to X as n → ∞. This contradicts dconc(γ 1

n (tn), X) > ε. Therefore X is
locally path connected in the concentration topology.

We next prove that � is locally path connected. The outline of the proof is same as that in
the first half. Suppose that � is not locally path connected. There exist a pyramid P , a real
number ε > 0, and a sequence {Pn}∞n=1 of pyramids converging weakly to P such that for
any ρ-continuous path γ : [0, 1] → � from Pn to P , there exists t ∈ [0, 1] such that

ρ(γ (t),P) > ε.

For every m and n, by Proposition 7.2, there exist mm-spaces Xm ∈ P , Yn ∈ Pn and
ρ-continuous paths γ 1

n and γ 4
m such that

• γ 1
n : [0, 1] → � joins Pn to PYn and satisfies ρ(γ 1

n (t),Pn) ≤ n−1 for any 0 ≤ t ≤ 1.
• γ 4

m : [0, 1] → � joins PXm to P and satisfies ρ(γ 4
m(t),P) ≤ m−1 for any 0 ≤ t ≤ 1.

In particular, {PYn }∞n=1 converges weakly to P . Thus, by the definition of the weak conver-
gence, for any m, there exists a sequence {Zmn}∞n=1 of mm-spaces such that

lim
n→∞ �(Zmn, Xm) = 0 and Zmn ≺ Yn for every n.

For every m, we choose n = n(m) as

�(Zmn(m), Xm) ≤ m−1 and lim
m→∞ n(m) = ∞,

and put

Ym := Yn(m), Zm := Zmn(m), and γ 1
m := γ 1

n(m).

By Proposition 7.1 and Theorem 1.5, for each m, there exist �-continuous paths γ 2
m and γ 3

m
such that
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• γ 2
m : [0, 1] → X joins Ym to Zm and satisfies Zm ≺ γ 2

m(t) ≺ Ym for any 0 ≤ t ≤ 1.
• γ 3

m : [0, 1] → X is a �-geodesic from Zm to Xm .

Joining the four paths γ 1
m , γ

2
m , γ

3
m , and γ 4

m , we obtain a ρ-continuous path from Pm = Pn(m)

to P . By the assumption and by

lim
m→∞ sup

t∈[0,1]
ρ(γ 1

m(t),P) = lim
m→∞ sup

t∈[0,1]
ρ(γ 3

m(t),P) = lim
m→∞ sup

t∈[0,1]
ρ(γ 4

m(t),P) = 0,

there exists {tm}∞m=1 ⊂ [0, 1] such that
ρ(γ 2

m(tm),P) > ε

for any sufficiently large m. On the other hand, {γ 2
m(tm)}∞m=1 must converge weakly to P as

m → ∞ in the same discussion as above. These contradict each other. Therefore� is locally
path connected. The proof of the theorem is completed.

Theorems 1.4 and 1.6 together imply Corollary 1.7 directly. We recall the Peano space
through the following theorem.

Theorem 7.3 (Hahn-Mazurkiewicz theorem, cf. [[29], 31.5]) A Hausdorff space is compact,
connected, metrizable, and locally connected if and only if it is a continuous image of the
unit closed interval [0, 1]. (Such a space is called a Peano space.)

8 Revisit the weak topology on5

Let X be a Hausdorff space and let F(X) be the set of all closed subsets of X .
We recall that for a given net {Aλ}λ∈� in F(X), the upper closed limit and the lower

closed limit of {Aλ}λ∈� are defined as

Ls Aλ :=
{
x ∈ X

∣∣ For any neighborhood Ux of x and for any λ ∈ �,

there exists λ′ ≥ λ such that Ux ∩ Aλ′ �= ∅.

}
,

Li Aλ :=
{
x ∈ X

∣∣ For any neighborhood Ux of x, there exists λ ∈ �

such that Ux ∩ Aλ′ �= ∅ for every λ′ ≥ λ.

}
,

Note that Ls Aλ and Li Aλ are closed subsets of X and Li Aλ ⊂ Ls Aλ. A element of Ls Aλ

is called a cluster point of {Aλ}λ∈� and a element of Li Aλ a limit point. In the case that X
is a metric space with metric d , we see that

Ls Aλ = {
x ∈ X

∣∣ lim infλ d(x, Aλ) = 0
}
and Li Aλ = {

x ∈ X
∣∣ lim supλ d(x, Aλ) = 0

}
,

where lim infλ aλ := supλ∈� infλ′≥λ aλ and lim supλ aλ := infλ∈� supλ′≥λ aλ for a net
{aλ}λ∈� of real numbers.

Definition 8.1 A net {Aλ}λ∈� Kuratowski-Painlevé converges to A ∈ F(X) provided that

Li Aλ = Ls Aλ = A.

It is well-known that the Kuratowski-Painlevé convergence is topological (that is, there
exists a topology achieving the convergence) if and only if X is locally compact (see [23]).
On the other hand, the finest topology whose convergence is weaker than the Kuratowski-
Painlevé convergence always exists. This topology, write τK, is called the topologization of
the Kuratowski-Painlevé convergence, or convergence topology historically.

123



Geometriae Dedicata (2024) 218 :68 Page 25 of 28 68

We next recall the Fell topology τF on F(X). The Fell topology is deeply related to the
Kuratowski-Painlevé convergence. This topology is determined by the following subbase:
{{A ∈ F(X) : A ∩ V �= ∅} ∣∣ V is open

} ∪ {{A ∈ F(X) : A ⊂ X \ K } ∣∣ K is compact
}
.

The Kuratowski-Painlevé convergence implies τF-convergence, so that τF ⊂ τK. If X is
locally compact, then the τF-convergence implies the Kuratowski-Painlevé convergence con-
versely. In this case, the Fell topology achieves the Kuratowski-Painlevé convergence.

We review some terms for topological spaces. A topological space is said to be T1 if for
every two distinct points, each has a neighborhood not containing the other point. And it is
said to be sequential if for any subset S, the set of the limit points of sequences (indexed by
the natural numbers) in S is closed. The quotient space of a metric space is sequential and
the converse is also true. The known results used in this paper are listed as follows.

Theorem 8.2 (Mrowka’s theorem, cf. [[3], Theorems5.2.11and5.2.12]) Let X be aHausdorff
space. Any net {Aλ}λ∈� in F(X) has a Kuratowski-Painlevé convergent subnet. Moreover,
if X is second countable, then any sequence {An}∞n=1 in F(X) has a Kuratowski-Painlevé
convergent subsequence.

We remark that a subnet of a sequence is not necessarily a subsequence.Mrowka’s theorem
says the compactness and the sequential compactness of both τF and τK.

Theorem 8.3 (cf. [[3], Proposition 5.1.2], [[8], 4A2T(b)(i)]) Let X be a Hausdorff space.
Then the following (1) and (2) hold.

(1) Both τF and τK are T1.
(2) τF is Hausdorff if and only if X is locally compact.

Theorem 8.4 ([4], Theorems 3.12 and 3.13) Let X be a metrizable space. Then the following
(1)–(3) hold.

(1) τK is sequential if and only if X is separable.
(2) τK = τF if and only if X has at most one point that has no compact neighborhood.
(3) τF is sequential if and only if X is separable and X has at most one point that has no

compact neighborhood.

Theorem 8.5 (cf. [3], Theorem 5.2.10) Let X be a first countable Hausdorff space and let A
and An, n = 1, 2, . . ., be a closed subsets of X. Then {An}∞n=1 τF-converges to A if and only
if {An}∞n=1 Kuratowski-Painlevé converges to A. In particular, a limit of any τF-convergent
sequence is unique.

We now consider the space F(X ,�). Theorem 1.1 and some properties of (X ,�) imply
that

• the Kuratowski-Painlevé convergence on F(X ,�) is not topological,
• (F(X ,�), τF) is compact and T1, but neither Hausdorff nor sequential,
• (F(X ,�), τK) is compact, T1, and sequential,
• τF � τK,
• τF and τK are sequentially equivalent on F(X ,�).

Remark 8.6 (1) τK is the sequential modification of the Fell topology τF. The sequential
modification of a topology is a stronger topology whose open sets consist of all sequen-
tially open sets of the original topology.
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(2) Viewing τK from another angle, if X is a metrizable space, then τK is the infimum of the
Wijsman topologies τWd , where d runs over all compatible metrics on X . For a metric
space (X , d), the Wijsman topology τWd on F(X) is the weakest topology such that the
function A �→ d(x, A) on F(X) is continuous for every x ∈ X . Here, if there exists a
compatible metric d on X such that τK = τWd , then X must be locally compact (see
[2]). Over (X ,�), there is no minimum of the Wijsman topologies.

(3) The authors do not know whether (F(X ,�), τK) is Hausdorff or not.

We now prove Theorem 1.8.

Proof of Theorem 1.8 Since both� and (F(X ,�), τK) are sequential, it is sufficient to prove
that, for any sequence {Pn}∞n=1 of pyramids, the weak convergence and the τK-convergence
coincide with each other. Actually, these coincide with the Kuratowski-Painlevé convergence
by Definition 2.18 and Theorem 8.5, respectively. This completes the proof.

The final topic in this paper starts with the following fact.

Proposition 8.7 ([26], Corollary 6.15) Any pyramid is dconc-closed.

This means that � ⊂ F(X , dconc) ⊂ F(X ,�). The following observation is interesting.

Proposition 8.8 The Kuratowski-Painlevé convergence on F(X ,�) and F(X , dconc) coin-
cide for any sequences of pyramids.

Proof Let {Pn}∞n=1 be a sequence of pyramids. We denote by Ls� Pn and Li� Pn the upper
closed limit and the lower closed limit with respect to the box distance function�. Similarly,
we denote by Lsconc Pn and Liconc Pn them with respect to the observable distance function
dconc. Since dconc ≤ �,

Ls� Pn ⊂ Lsconc Pn and Li� Pn ⊂ Liconc Pn

are trivial.We prove Lsconc Pn ⊂ Ls� Pn . Let X ∈ Lsconc Pn . Then there exist a subsequence
{ni }∞i=1 of {n} and mm-spaces Xi ∈ Pni , i = 1, 2, . . . such that Xi concentrates to X as
i → ∞. By Proposition 2.22, we find a sequence {Yi }∞i=1 of mm-spaces �-converging to X
with Yi ≺ Xi for every i . Since Pni is a pyramid, we have Yi ∈ Pni and hence

lim inf
n→∞ �(X ,Pn) ≤ lim inf

i→∞ �(X ,Pni ) ≤ lim
i→∞ �(X , Yi ) = 0,

which implies that X ∈ Ls� Pn . We obtain Lsconc Pn ⊂ Ls� Pn . Similarly, Liconc Pn ⊂
Li� Pn is obtained. The proof is completed. ��
Remark 8.9 Propositions 8.7 and 8.8 claim that the concept of pyramids is completely the
same if the box distance� is replaced by the observable distance dconc in Definitions 2.17 and
2.18. It seems more natural to define it in terms of dconc as a compactification of (X , dconc).
What is rather amazing is that the theory is developed by replacing dconc into �.

Proposition 8.8 leads to another embedding as follows.

Theorem 8.10 The inclusion map � � P �→ P ∈ (F(X , dconc), τK) is a topological
embedding map.

Note that (F(X , dconc), τK) is also compact, T1, and sequential. This τK is just the
topologization of the Kuratowski-Painlevé convergence over (X , dconc) which is unrelated
to (F(X ,�), τK) by definition.
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9 Further questions

The following question remains.

Question 9.1 Is X with the concentration topology σ -compact? Is � \ X a Gδ subset of �?
Is � \ X completely metrizable? These questions are equivalent to one another.

Question 9.2 Are (X , dconc) and (�, ρ) geodesic spaces?

Question 9.3 Is (F(X ,�), τK) Hausdorff (metrizable)?

Question 9.4 Is there a relation between (F(X ,�), τK) and (F(X , dconc), τK)?

Question 9.5 Can � be embedded into (F(X ,�), τF) or (F(X ,�), τW�) topologically?
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